Enhancing Deep-Learning Classification for Remote Motor Imagery Rehabilitation Using Multi-Subject Transfer Learning in IoT Environment

One of the most promising applications for electroencephalogram (EEG)-based brain–computer interfaces (BCIs) is motor rehabilitation through motor imagery (MI) tasks. However, current MI training requires physical attendance, while remote MI training can be applied anywhere, facilitating flexible re...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 24; no. 24; p. 8127
Main Authors Khabti, Joharah, AlAhmadi, Saad, Soudani, Adel
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 19.12.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract One of the most promising applications for electroencephalogram (EEG)-based brain–computer interfaces (BCIs) is motor rehabilitation through motor imagery (MI) tasks. However, current MI training requires physical attendance, while remote MI training can be applied anywhere, facilitating flexible rehabilitation. Providing remote MI training raises challenges to ensuring an accurate recognition of MI tasks by healthcare providers, in addition to managing computation and communication costs. The MI tasks are recognized through EEG signal processing and classification, which can drain sensor energy due to the complexity of the data and the presence of redundant information, often influenced by subject-dependent factors. To address these challenges, we propose in this paper a multi-subject transfer-learning approach for an efficient MI training framework in remote rehabilitation within an IoT environment. For efficient implementation, we propose an IoT architecture that includes cloud/edge computing as a solution to enhance the system’s efficiency and reduce the use of network resources. Furthermore, deep-learning classification with and without channel selection is applied in the cloud, while multi-subject transfer-learning classification is utilized at the edge node. Various transfer-learning strategies, including different epochs, freezing layers, and data divisions, were employed to improve accuracy and efficiency. To validate this framework, we used the BCI IV 2a dataset, focusing on subjects 7, 8, and 9 as targets. The results demonstrated that our approach significantly enhanced the average accuracy in both multi-subject and single-subject transfer-learning classification. In three-subject transfer-learning classification, the FCNNA model achieved up to 79.77% accuracy without channel selection and 76.90% with channel selection. For two-subject and single-subject transfer learning, the application of transfer learning improved the average accuracy by up to 6.55% and 12.19%, respectively, compared to classification without transfer learning. This framework offers a promising solution for remote MI rehabilitation, providing both accurate task recognition and efficient resource usage.
AbstractList One of the most promising applications for electroencephalogram (EEG)-based brain-computer interfaces (BCIs) is motor rehabilitation through motor imagery (MI) tasks. However, current MI training requires physical attendance, while remote MI training can be applied anywhere, facilitating flexible rehabilitation. Providing remote MI training raises challenges to ensuring an accurate recognition of MI tasks by healthcare providers, in addition to managing computation and communication costs. The MI tasks are recognized through EEG signal processing and classification, which can drain sensor energy due to the complexity of the data and the presence of redundant information, often influenced by subject-dependent factors. To address these challenges, we propose in this paper a multi-subject transfer-learning approach for an efficient MI training framework in remote rehabilitation within an IoT environment. For efficient implementation, we propose an IoT architecture that includes cloud/edge computing as a solution to enhance the system's efficiency and reduce the use of network resources. Furthermore, deep-learning classification with and without channel selection is applied in the cloud, while multi-subject transfer-learning classification is utilized at the edge node. Various transfer-learning strategies, including different epochs, freezing layers, and data divisions, were employed to improve accuracy and efficiency. To validate this framework, we used the BCI IV 2a dataset, focusing on subjects 7, 8, and 9 as targets. The results demonstrated that our approach significantly enhanced the average accuracy in both multi-subject and single-subject transfer-learning classification. In three-subject transfer-learning classification, the FCNNA model achieved up to 79.77% accuracy without channel selection and 76.90% with channel selection. For two-subject and single-subject transfer learning, the application of transfer learning improved the average accuracy by up to 6.55% and 12.19%, respectively, compared to classification without transfer learning. This framework offers a promising solution for remote MI rehabilitation, providing both accurate task recognition and efficient resource usage.One of the most promising applications for electroencephalogram (EEG)-based brain-computer interfaces (BCIs) is motor rehabilitation through motor imagery (MI) tasks. However, current MI training requires physical attendance, while remote MI training can be applied anywhere, facilitating flexible rehabilitation. Providing remote MI training raises challenges to ensuring an accurate recognition of MI tasks by healthcare providers, in addition to managing computation and communication costs. The MI tasks are recognized through EEG signal processing and classification, which can drain sensor energy due to the complexity of the data and the presence of redundant information, often influenced by subject-dependent factors. To address these challenges, we propose in this paper a multi-subject transfer-learning approach for an efficient MI training framework in remote rehabilitation within an IoT environment. For efficient implementation, we propose an IoT architecture that includes cloud/edge computing as a solution to enhance the system's efficiency and reduce the use of network resources. Furthermore, deep-learning classification with and without channel selection is applied in the cloud, while multi-subject transfer-learning classification is utilized at the edge node. Various transfer-learning strategies, including different epochs, freezing layers, and data divisions, were employed to improve accuracy and efficiency. To validate this framework, we used the BCI IV 2a dataset, focusing on subjects 7, 8, and 9 as targets. The results demonstrated that our approach significantly enhanced the average accuracy in both multi-subject and single-subject transfer-learning classification. In three-subject transfer-learning classification, the FCNNA model achieved up to 79.77% accuracy without channel selection and 76.90% with channel selection. For two-subject and single-subject transfer learning, the application of transfer learning improved the average accuracy by up to 6.55% and 12.19%, respectively, compared to classification without transfer learning. This framework offers a promising solution for remote MI rehabilitation, providing both accurate task recognition and efficient resource usage.
One of the most promising applications for electroencephalogram (EEG)-based brain-computer interfaces (BCIs) is motor rehabilitation through motor imagery (MI) tasks. However, current MI training requires physical attendance, while remote MI training can be applied anywhere, facilitating flexible rehabilitation. Providing remote MI training raises challenges to ensuring an accurate recognition of MI tasks by healthcare providers, in addition to managing computation and communication costs. The MI tasks are recognized through EEG signal processing and classification, which can drain sensor energy due to the complexity of the data and the presence of redundant information, often influenced by subject-dependent factors. To address these challenges, we propose in this paper a multi-subject transfer-learning approach for an efficient MI training framework in remote rehabilitation within an IoT environment. For efficient implementation, we propose an IoT architecture that includes cloud/edge computing as a solution to enhance the system's efficiency and reduce the use of network resources. Furthermore, deep-learning classification with and without channel selection is applied in the cloud, while multi-subject transfer-learning classification is utilized at the edge node. Various transfer-learning strategies, including different epochs, freezing layers, and data divisions, were employed to improve accuracy and efficiency. To validate this framework, we used the BCI IV 2a dataset, focusing on subjects 7, 8, and 9 as targets. The results demonstrated that our approach significantly enhanced the average accuracy in both multi-subject and single-subject transfer-learning classification. In three-subject transfer-learning classification, the FCNNA model achieved up to 79.77% accuracy without channel selection and 76.90% with channel selection. For two-subject and single-subject transfer learning, the application of transfer learning improved the average accuracy by up to 6.55% and 12.19%, respectively, compared to classification without transfer learning. This framework offers a promising solution for remote MI rehabilitation, providing both accurate task recognition and efficient resource usage.
Author AlAhmadi, Saad
Khabti, Joharah
Soudani, Adel
Author_xml – sequence: 1
  givenname: Joharah
  orcidid: 0000-0002-1536-649X
  surname: Khabti
  fullname: Khabti, Joharah
– sequence: 2
  givenname: Saad
  orcidid: 0000-0001-9406-6809
  surname: AlAhmadi
  fullname: AlAhmadi, Saad
– sequence: 3
  givenname: Adel
  orcidid: 0000-0003-0397-9843
  surname: Soudani
  fullname: Soudani, Adel
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39771862$$D View this record in MEDLINE/PubMed
BookMark eNpdkk1vEzEQhi1URD_gwB9AK3GBw4I_dtfrIwoBIqWqBOnZsr3j1NGuHWwvUn8BfxunKVHVk2dGj995RzOX6MwHDwi9JfgTYwJ_TrShTU8of4EuSAnrnlJ89iQ-R5cp7TCmjLH-FTpngnPSd_QC_V36O-WN89vqK8C-XoOK_pAtRpWSs86o7IKvbIjVT5hChuo65JKsJrWFeF-Kd0q70eUjd5sOn6_nMbv616x3YHK1iconC7E6iTtfrcKmWvo_LgY_gc-v0UurxgRvHt8rdPttuVn8qNc331eLL-vaMN7kWlNlBBTvmgtigQuNaWMxHnowHVaiAyK41lhrU0jdKIDGEMp6g3nhOLtCq6PuENRO7qObVLyXQTn5UAhxK1XMzowgByFaRUlrsIaGNUIZiynpSu9W2A6GovXhqLWP4fcMKcvJJQPjqDyEOUlGWtZz2glS0PfP0F2Yoy-TFqoRvG0JO5h790jNeoLhZO__ugrw8QiYGFKKYE8IwfJwCvJ0CuwfujSlwg
Cites_doi 10.1109/CCDC62350.2024.10588021
10.3390/s24103168
10.1088/1741-2552/ad09ff
10.1109/TNSRE.2023.3241301
10.1109/MetroInd4.0IoT48571.2020.9138229
10.1016/j.future.2021.02.013
10.1109/CIBCB49929.2021.9562821
10.1109/TNSRE.2020.2974056
10.1016/j.bspc.2023.105786
10.1016/j.smhl.2022.100339
10.1109/TBME.2019.2913914
10.1016/j.neuroimage.2014.05.062
10.3389/frobt.2018.00130
10.1109/TBME.2017.2742541
10.3389/fnhum.2024.1305445
10.1016/j.neucom.2022.08.024
10.3390/s19173746
10.1109/ACCESS.2017.2749422
10.1109/MNET.2019.1800083
10.1016/j.adhoc.2019.102047
10.1109/TNSRE.2023.3342331
10.1016/j.bspc.2022.104456
10.1109/JIOT.2017.2683200
10.3389/fnins.2024.1381572
10.1109/ACCESS.2018.2817523
10.3389/fnhum.2023.1194751
10.1016/j.jnca.2018.10.008
10.1016/j.neunet.2022.06.008
10.1016/j.sysarc.2019.02.009
10.1038/nrn2456
10.1155/2018/1386470
10.1002/hbm.23730
10.1088/1741-2552/aace8c
10.1016/j.bspc.2020.102101
10.3390/s21082779
10.1016/j.neunet.2020.12.013
10.3389/fnhum.2023.1143027
10.3390/s22239547
10.1109/SMC42975.2020.9283028
10.3390/jimaging8020020
10.1016/j.eswa.2018.09.019
10.1109/TCSS.2024.3462823
10.1016/j.neunet.2020.11.002
10.1016/j.neucom.2023.126659
10.1109/TNSRE.2023.3259730
10.1007/s11036-020-01620-5
10.3390/app13085205
10.1016/j.ipm.2022.103262
10.1088/1741-2552/ad7f8d
10.1016/j.bspc.2022.104066
ContentType Journal Article
Copyright 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
DOA
DOI 10.3390/s24248127
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
ProQuest Central
ProQuest One
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE

CrossRef
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_d995a215c0be4349acf021618b59f6ed
39771862
10_3390_s24248127
Genre Journal Article
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
CGR
CUY
CVF
ECM
EIF
NPM
PJZUB
PPXIY
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
PUEGO
ID FETCH-LOGICAL-c374t-b2ac9e718b791fe79b024f00d8ec60a96e197bb0bbc2acb4aee4c1238c074f073
IEDL.DBID DOA
ISSN 1424-8220
IngestDate Wed Aug 27 01:10:40 EDT 2025
Fri Jul 11 15:49:12 EDT 2025
Fri Jul 25 23:01:08 EDT 2025
Mon Jul 21 05:46:55 EDT 2025
Tue Jul 01 02:10:08 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 24
Keywords brain–computer interface (BCI)
internet of things (IoT)
motor imagery (MI)
transfer learning (TL)
edge computing
electroencephalogram (EEG)
deep learning (DL)
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c374t-b2ac9e718b791fe79b024f00d8ec60a96e197bb0bbc2acb4aee4c1238c074f073
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-0397-9843
0000-0001-9406-6809
0000-0002-1536-649X
OpenAccessLink https://doaj.org/article/d995a215c0be4349acf021618b59f6ed
PMID 39771862
PQID 3149755137
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_d995a215c0be4349acf021618b59f6ed
proquest_miscellaneous_3153872691
proquest_journals_3149755137
pubmed_primary_39771862
crossref_primary_10_3390_s24248127
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-Dec-19
PublicationDateYYYYMMDD 2024-12-19
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-Dec-19
  day: 19
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2024
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References ref_50
Li (ref_8) 2023; 31
Cardoso (ref_1) 2020; 28
Sarwar (ref_18) 2021; 119
ref_13
Gao (ref_23) 2022; 507
ref_10
ref_52
Emam (ref_30) 2019; 117
Jiang (ref_16) 2019; 125
ref_24
ref_21
Yousefpour (ref_17) 2019; 98
Abdellatif (ref_29) 2019; 33
ref_27
ref_26
Mukherjee (ref_14) 2017; 5
Han (ref_11) 2008; 9
Irimia (ref_2) 2018; 5
Schirrmeister (ref_32) 2017; 38
ref_36
ref_35
ref_34
ref_33
He (ref_41) 2020; 67
ref_31
Tao (ref_25) 2024; 32
Zanini (ref_40) 2018; 65
Lin (ref_28) 2017; 4
Yang (ref_19) 2018; 6
ref_38
ref_37
Asanza (ref_51) 2021; 54
Gao (ref_39) 2023; 31
Wu (ref_44) 2022; 153
Han (ref_12) 2014; 99
ref_47
ref_46
ref_43
Brunner (ref_45) 2008; 16
ref_42
Varsehi (ref_22) 2021; 133
Paul (ref_15) 2018; 2018
ref_3
Zhang (ref_9) 2021; 136
Kristiani (ref_20) 2021; 26
ref_49
ref_48
ref_5
ref_4
ref_7
ref_6
References_xml – ident: ref_36
  doi: 10.1109/CCDC62350.2024.10588021
– ident: ref_27
  doi: 10.3390/s24103168
– ident: ref_37
  doi: 10.1088/1741-2552/ad09ff
– volume: 31
  start-page: 1128
  year: 2023
  ident: ref_39
  article-title: Double Stage Transfer Learning for Brain–Computer Interfaces
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2023.3241301
– ident: ref_31
  doi: 10.1109/MetroInd4.0IoT48571.2020.9138229
– volume: 119
  start-page: 188
  year: 2021
  ident: ref_18
  article-title: Lightweight, Divide-and-Conquer Privacy-Preserving Data Aggregation in Fog Computing
  publication-title: Future Gener. Comput. Syst.
  doi: 10.1016/j.future.2021.02.013
– ident: ref_24
  doi: 10.1109/CIBCB49929.2021.9562821
– volume: 28
  start-page: 988
  year: 2020
  ident: ref_1
  article-title: A Low-Cost Lower-Limb Brain-Machine Interface Triggered by Pedaling Motor Imagery for Post-Stroke Patients Rehabilitation
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2020.2974056
– ident: ref_34
  doi: 10.1016/j.bspc.2023.105786
– ident: ref_7
  doi: 10.1016/j.smhl.2022.100339
– volume: 67
  start-page: 399
  year: 2020
  ident: ref_41
  article-title: Transfer Learning for Brain–Computer Interfaces: A Euclidean Space Data Alignment Approach
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2019.2913914
– volume: 99
  start-page: 293
  year: 2014
  ident: ref_12
  article-title: Cultural Differences in Human Brain Activity: A Quantitative Meta-Analysis
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2014.05.062
– volume: 5
  start-page: 1
  year: 2018
  ident: ref_2
  article-title: High Classification Accuracy of a Motor Imagery Based Brain-Computer Interface for Stroke Rehabilitation Training
  publication-title: Front. Robot. AI
  doi: 10.3389/frobt.2018.00130
– volume: 65
  start-page: 1107
  year: 2018
  ident: ref_40
  article-title: Transfer Learning: A Riemannian Geometry Framework With Applications to Brain–Computer Interfaces
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2017.2742541
– ident: ref_13
  doi: 10.3389/fnhum.2024.1305445
– volume: 507
  start-page: 180
  year: 2022
  ident: ref_23
  article-title: Convolutional Neural Network and Riemannian Geometry Hybrid Approach for Motor Imagery Classification
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2022.08.024
– ident: ref_49
  doi: 10.3390/s19173746
– volume: 5
  start-page: 19293
  year: 2017
  ident: ref_14
  article-title: Security and Privacy in Fog Computing: Challenges
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2017.2749422
– volume: 33
  start-page: 196
  year: 2019
  ident: ref_29
  article-title: Edge Computing for Smart Health: Context-Aware Approaches, Opportunities, and Challenges
  publication-title: IEEE Netw.
  doi: 10.1109/MNET.2019.1800083
– volume: 54
  start-page: 388
  year: 2021
  ident: ref_51
  article-title: SSVEP-EEG Signal Classification Based on Emotiv EPOC BCI and Raspberry Pi
  publication-title: IFAC-Pap.
– ident: ref_21
  doi: 10.1016/j.adhoc.2019.102047
– volume: 32
  start-page: 154
  year: 2024
  ident: ref_25
  article-title: ADFCNN: Attention-Based Dual-Scale Fusion Convolutional Neural Network for Motor Imagery Brain–Computer Interface
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2023.3342331
– ident: ref_26
  doi: 10.1016/j.bspc.2022.104456
– volume: 4
  start-page: 1125
  year: 2017
  ident: ref_28
  article-title: A Survey on Internet of Things: Architecture, Enabling Technologies, Security and Privacy, and Applications
  publication-title: IEEE Internet Things J
  doi: 10.1109/JIOT.2017.2683200
– ident: ref_38
  doi: 10.3389/fnins.2024.1381572
– volume: 6
  start-page: 17119
  year: 2018
  ident: ref_19
  article-title: Machine Learning Differential Privacy With Multifunctional Aggregation in a Fog Computing Architecture
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2817523
– ident: ref_10
  doi: 10.3389/fnhum.2023.1194751
– volume: 125
  start-page: 93
  year: 2019
  ident: ref_16
  article-title: A Survey on Location Privacy Protection in Wireless Sensor Networks
  publication-title: J. Netw. Comput. Appl.
  doi: 10.1016/j.jnca.2018.10.008
– volume: 153
  start-page: 235
  year: 2022
  ident: ref_44
  article-title: Transfer Learning for Motor Imagery Based Brain–Computer Interfaces: A Tutorial
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2022.06.008
– volume: 98
  start-page: 289
  year: 2019
  ident: ref_17
  article-title: All One Needs to Know about Fog Computing and Related Edge Computing Paradigms: A Complete Survey
  publication-title: J. Syst. Archit.
  doi: 10.1016/j.sysarc.2019.02.009
– volume: 9
  start-page: 646
  year: 2008
  ident: ref_11
  article-title: Culture-Sensitive Neural Substrates of Human Cognition: A Transcultural Neuroimaging Approach
  publication-title: Nat. Rev. Neurosci.
  doi: 10.1038/nrn2456
– volume: 2018
  start-page: 1
  year: 2018
  ident: ref_15
  article-title: Fog Computing-Based IoT for Health Monitoring System
  publication-title: J. Sens.
  doi: 10.1155/2018/1386470
– volume: 38
  start-page: 5391
  year: 2017
  ident: ref_32
  article-title: Deep Learning with Convolutional Neural Networks for EEG Decoding and Visualization
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.23730
– ident: ref_42
  doi: 10.1088/1741-2552/aace8c
– ident: ref_6
  doi: 10.1016/j.bspc.2020.102101
– ident: ref_50
  doi: 10.3390/s21082779
– volume: 136
  start-page: 1
  year: 2021
  ident: ref_9
  article-title: Adaptive Transfer Learning for EEG Motor Imagery Classification with Deep Convolutional Neural Network
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2020.12.013
– ident: ref_43
  doi: 10.3389/fnhum.2023.1143027
– ident: ref_52
  doi: 10.3390/s22239547
– ident: ref_47
  doi: 10.1109/SMC42975.2020.9283028
– ident: ref_46
  doi: 10.3390/jimaging8020020
– volume: 117
  start-page: 1
  year: 2019
  ident: ref_30
  article-title: Edge-Based Compression and Classification for Smart Healthcare Systems: Concept, Implementation and Evaluation
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2018.09.019
– ident: ref_48
  doi: 10.1109/TCSS.2024.3462823
– volume: 133
  start-page: 193
  year: 2021
  ident: ref_22
  article-title: An EEG Channel Selection Method for Motor Imagery Based Brain–Computer Interface and Neurofeedback Using Granger Causality
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2020.11.002
– ident: ref_33
  doi: 10.1016/j.neucom.2023.126659
– volume: 31
  start-page: 1743
  year: 2023
  ident: ref_8
  article-title: MDTL: A Novel and Model-Agnostic Transfer Learning Strategy for Cross-Subject Motor Imagery BCI
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2023.3259730
– volume: 26
  start-page: 1070
  year: 2021
  ident: ref_20
  article-title: The Implementation of a Cloud-Edge Computing Architecture Using OpenStack and Kubernetes for Air Quality Monitoring Application
  publication-title: Mob. Netw. Appl.
  doi: 10.1007/s11036-020-01620-5
– ident: ref_35
  doi: 10.3390/app13085205
– ident: ref_3
  doi: 10.1016/j.ipm.2022.103262
– ident: ref_4
  doi: 10.1088/1741-2552/ad7f8d
– ident: ref_5
  doi: 10.1016/j.bspc.2022.104066
– volume: 16
  start-page: 1
  year: 2008
  ident: ref_45
  article-title: BCI Competition 2008--Graz Data Set A
  publication-title: Inst. Knowl. Discov. (Lab. Brain-Comput. Interfaces) Graz Univ. Technol.
SSID ssj0023338
Score 2.435717
Snippet One of the most promising applications for electroencephalogram (EEG)-based brain–computer interfaces (BCIs) is motor rehabilitation through motor imagery (MI)...
One of the most promising applications for electroencephalogram (EEG)-based brain-computer interfaces (BCIs) is motor rehabilitation through motor imagery (MI)...
SourceID doaj
proquest
pubmed
crossref
SourceType Open Website
Aggregation Database
Index Database
StartPage 8127
SubjectTerms Accuracy
Brain research
Brain-Computer Interfaces
brain–computer interface (BCI)
Classification
Cloud computing
Communication
Cultural differences
Data processing
Deep Learning
deep learning (DL)
Edge computing
Efficiency
electroencephalogram (EEG)
Electroencephalography - methods
Humans
Internet of Things
internet of things (IoT)
Memory
motor imagery (MI)
Neural networks
Rehabilitation
Sensors
Signal Processing, Computer-Assisted
transfer learning (TL)
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nb9swDCW67tIdhm5dV7fdoBW7CvWHbEWnYe1StAW2w9ACuRmSTGU91M6S9LBf0L89UnGcXLarTQg2KZGPEvUI8FlnQak0GOmdVVIpjdLkjZapS63NQ555G6t8f1TX9-p2Uk76DbdFX1a59onRUTed5z3y84KgvOZuJPrL7LfkrlF8utq30HgBL5m6jEu69GSTcBWUf63YhApK7c8XfBViFBvIbMWgSNX_b3wZ48zVPrzuAaL4urLoG9jB9i282qINPIDncfuLaTLaqfiGOJM9R-pUxA6XXPsT1S0Ij4qfSLZA8b2j3FrcPDJjxR96uE3PLWLZgIhXcSU5Et6ZETGGBZyLYfCHVtx0d2K8uRn3Du6vxneX17JvqCB9odVSutx6gxSNnDZZQG0cReiQps0IfZVaU2FmtHOpc54knbKIylNoG3kCGoGcwSHstl2LRyCUc3mDoQqaZMoip0BXjqwOurEkX4YEztYqrmcr3oya8g22Qz3YIYELVv4gwFTX8UE3n9b9yqkbY0pLwMSnDlWhjPWBcElFP1GaUGGTwOnadHW__hb1ZrYk8Gl4TSuHj0Nsi90Ty5Cz13llsgTer0w-fAnD4oySveP_D34CezmpkMtbMnMKu8v5E34gkLJ0H-NM_AsoB-lK
  priority: 102
  providerName: ProQuest
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwEB1RuLQHBJSPLVAZxNVt4jjx-lBVLSwCJHpArMQtsp3xggQJLItUfgF_m7E3G0Bqb1yTUeLMePxm4vEbgD2VeikTr7mzRnIpFXItKsUTmxgjvEidiVW-f4qjoTy5yC_mYNZjs1Xg_T9Tu9BPaji-_vb37vEnOfyPkHFSyv79PhxxIKBSH2CBAEkF_zyV3WaCyCgNm5IKvRV_A0WRsf__YWaEm8MlWGzjRPZrathlmMN6BT69Yg_8DE-D-jKwZdQjdoB4y1uq1BGLjS5DCVDUOqOwlJ0hmQTZaUMpNju-CcQVj3TxNUs3i9UDLJ7I5bSehB80LEKZxzHrHn5Vs-PmnA1eDsitwvBwcL5_xNu-CtxlSk64FcZpJFCySqcelbYE1D5Jqj66IjG6wFQraxNrHUlaaRClI4TrO4o3PK0JazBfNzVuAJPWigp94RXJ5JkgvMv7RnlVGZLPfQ92Zyoub6f0GSWlHcEOZWeHHvwOyu8EAuN1vNCMR2XrQGWldW4oPnGJRZlJbZyn8KSgj8i1L7DqwdbMdOVsFpUZ5X8qtLChd-x0t8mBwq6IqbF5CDK05itR6LQH61OTdyMJ0XFKOd-X9xjhJnwUpOhQC5PqLZifjB9wmyKaif0a5-szznj3ug
  priority: 102
  providerName: Scholars Portal
Title Enhancing Deep-Learning Classification for Remote Motor Imagery Rehabilitation Using Multi-Subject Transfer Learning in IoT Environment
URI https://www.ncbi.nlm.nih.gov/pubmed/39771862
https://www.proquest.com/docview/3149755137
https://www.proquest.com/docview/3153872691
https://doaj.org/article/d995a215c0be4349acf021618b59f6ed
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwEB7BcoEDYpdXoFQGcbU2DyeOj_tot0VqhapW6i2ynfHCgXS1bQ_8Av72jp009IK47MUHZ5RYM_F8M8n4G4CvMnFCxE5xa7TgQkjkKq0lj02sderSxOpQ5TsvJivxbZ2vj1p9-Zqwlh64Vdx5rVSuCZdsbFBkQmnrCJaKpDS5cgXW3vsS5h2SqS7VyijzanmEMkrqz7f-EEQZWsccoU8g6f93ZBkQZvwKXnahIbtol3QKT7A5gxdHhIGv4c-o-eEJMppbdo14xzt21FsWelv6qp-gaEaRKFsgWQHZbENZNZv-8lwVv2nymJibhYIBFg7hcnIh_psMC-jl8J71N__ZsOlmyUZ_z8S9gdV4tLya8K6VAreZFDtuUm0VEg4ZqRKHUhnCZhfHdYm2iLUqMFHSmNgYS5JGaERhCdRKSyGGIzfwFk6aTYPvgQlj0hpd4STJ5FlKEJeXWjpZa5LPXQRfDiqu7lrGjIoyDW-HqrdDBJde-b2AJ7kOE2T6qjN99T_TRzA4mK7qdt62yijlk75rDT3jc3-Z9oz_EaIb3Oy9DLl5mRYqieBda_J-JT4gTijN-_AYK_wIz1NStC9_SdQATnb3e_xEQczODOGpXEsay_HNEJ5djubfF8PwDtM4E-UDEnn2HA
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELaW5QAcVjyXLAsYBEdrHceJ6wNCwHbVso8D6kq9BdsZFw4kpe0K7S_g3_AbGTtN2gvc9pqMrMTztme-IeSNSr2U3GvmrJFMSgVMi0oxbrkxwovUmVjle1GMLuXnaT7dIX-6XphQVtnZxGioq8aFM_KjDEN5FaaRqPfznyxMjQq3q90IjVYsTuH6F6Zsy3fjY-TvWyFOhpNPI7aeKsBcpuSKWWGcBjTJVunUg9IW3ZTnvBqAK7jRBaRaWcutdUhppQGQDu37wKG39agRuO4tchsdLw8apaabBC_DfK9FL8oyzY-WofViEAfWbPm8OBrg3_Fs9Gsn98neOiClH1oJekB2oH5I7m3BFD4iv4f1twDLUc_oMcCcrTFZZzRO1Ay1RpG9FONf-gWQ90DPG8zl6fhHQMi4xofbcOA0linQ2PrL0HCFkyAafaaHBe0X_17TcTOhw00n3mNyeSNb_YTs1k0NTwmV1ooKfOEV0uSZQMeaD4zyqjJIn_uEvO62uJy3OB0l5jeBD2XPh4R8DJvfEwRo7figWczKtaaWlda5wUDIcQsyk9o4j3FQgT-Ra19AlZDDjnXlWt-X5UY6E_Kqf42aGq5fTA3NVaBB56JEodOE7Lcs778khOEpJpcH_1_8JbkzmpyflWfji9Nn5K7A7QylNak-JLurxRU8xwBpZV9EqaTk602rwV9iRyda
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LjtMwcLQsEoID4k1gAYPgGDVxnLg-IAS01ZaFFUK7Um_BdsZlD5uUtiu0X8A_8XWMnaTtBW57dUaWM--x5wHwWqZOiMSp2BotYiEkxopXMk5MojV3PLU6ZPkeF4en4tMsn-3Bn74WxqdV9joxKOqqsf6OfJCRKy_9NBI5cF1axNfR5N3iZ-wnSPmX1n6cRssiR3j5i8K31dvpiGj9hvPJ-OTjYdxNGIhtJsU6NlxbhaSejVSpQ6kMmSyXJNUQbZFoVWCqpDGJMZYgjdCIwpKuH1qyvI6kg_a9BtdlRuciWZKzbbCXUezXdjLKMpUMVr4MYxiG1-zYvzAm4N--bbBxkztwu3NO2fuWm-7CHtb34NZOy8L78Htc__AtOuo5GyEu4q4_65yF6Zo-7yiQmpEvzL4h8QGyLw3F9Wx67rtlXNLibmtwFlIWWCgDjkmJ-VshFuynwyXbbH5Ws2lzwsbbqrwHcHolqH4I-3VT42NgwhheoSucJJg842Rk86GWTlaa4HMXwasexeWi7dlRUqzj6VBu6BDBB4_8DYBvsx0WmuW87KS2rJTKNTlFNjEoMqG0deQTFfQTuXIFVhEc9KQrO9lflVtOjeDl5jNJrX-K0TU2Fx6GDI3khUojeNSSfHMS75KnFGg--f_mL-AGCUD5eXp89BRucsKmz7JJ1QHsr5cX-Ix8pbV5HpiSwferloK_wnUrkA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhancing+Deep-Learning+Classification+for+Remote+Motor+Imagery+Rehabilitation+Using+Multi-Subject+Transfer+Learning+in+IoT+Environment&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Joharah+Khabti&rft.au=Saad+AlAhmadi&rft.au=Adel+Soudani&rft.date=2024-12-19&rft.pub=MDPI+AG&rft.eissn=1424-8220&rft.volume=24&rft.issue=24&rft.spage=8127&rft_id=info:doi/10.3390%2Fs24248127&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_d995a215c0be4349acf021618b59f6ed
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon