Enhancing Deep-Learning Classification for Remote Motor Imagery Rehabilitation Using Multi-Subject Transfer Learning in IoT Environment
One of the most promising applications for electroencephalogram (EEG)-based brain–computer interfaces (BCIs) is motor rehabilitation through motor imagery (MI) tasks. However, current MI training requires physical attendance, while remote MI training can be applied anywhere, facilitating flexible re...
Saved in:
Published in | Sensors (Basel, Switzerland) Vol. 24; no. 24; p. 8127 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
19.12.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | One of the most promising applications for electroencephalogram (EEG)-based brain–computer interfaces (BCIs) is motor rehabilitation through motor imagery (MI) tasks. However, current MI training requires physical attendance, while remote MI training can be applied anywhere, facilitating flexible rehabilitation. Providing remote MI training raises challenges to ensuring an accurate recognition of MI tasks by healthcare providers, in addition to managing computation and communication costs. The MI tasks are recognized through EEG signal processing and classification, which can drain sensor energy due to the complexity of the data and the presence of redundant information, often influenced by subject-dependent factors. To address these challenges, we propose in this paper a multi-subject transfer-learning approach for an efficient MI training framework in remote rehabilitation within an IoT environment. For efficient implementation, we propose an IoT architecture that includes cloud/edge computing as a solution to enhance the system’s efficiency and reduce the use of network resources. Furthermore, deep-learning classification with and without channel selection is applied in the cloud, while multi-subject transfer-learning classification is utilized at the edge node. Various transfer-learning strategies, including different epochs, freezing layers, and data divisions, were employed to improve accuracy and efficiency. To validate this framework, we used the BCI IV 2a dataset, focusing on subjects 7, 8, and 9 as targets. The results demonstrated that our approach significantly enhanced the average accuracy in both multi-subject and single-subject transfer-learning classification. In three-subject transfer-learning classification, the FCNNA model achieved up to 79.77% accuracy without channel selection and 76.90% with channel selection. For two-subject and single-subject transfer learning, the application of transfer learning improved the average accuracy by up to 6.55% and 12.19%, respectively, compared to classification without transfer learning. This framework offers a promising solution for remote MI rehabilitation, providing both accurate task recognition and efficient resource usage. |
---|---|
AbstractList | One of the most promising applications for electroencephalogram (EEG)-based brain-computer interfaces (BCIs) is motor rehabilitation through motor imagery (MI) tasks. However, current MI training requires physical attendance, while remote MI training can be applied anywhere, facilitating flexible rehabilitation. Providing remote MI training raises challenges to ensuring an accurate recognition of MI tasks by healthcare providers, in addition to managing computation and communication costs. The MI tasks are recognized through EEG signal processing and classification, which can drain sensor energy due to the complexity of the data and the presence of redundant information, often influenced by subject-dependent factors. To address these challenges, we propose in this paper a multi-subject transfer-learning approach for an efficient MI training framework in remote rehabilitation within an IoT environment. For efficient implementation, we propose an IoT architecture that includes cloud/edge computing as a solution to enhance the system's efficiency and reduce the use of network resources. Furthermore, deep-learning classification with and without channel selection is applied in the cloud, while multi-subject transfer-learning classification is utilized at the edge node. Various transfer-learning strategies, including different epochs, freezing layers, and data divisions, were employed to improve accuracy and efficiency. To validate this framework, we used the BCI IV 2a dataset, focusing on subjects 7, 8, and 9 as targets. The results demonstrated that our approach significantly enhanced the average accuracy in both multi-subject and single-subject transfer-learning classification. In three-subject transfer-learning classification, the FCNNA model achieved up to 79.77% accuracy without channel selection and 76.90% with channel selection. For two-subject and single-subject transfer learning, the application of transfer learning improved the average accuracy by up to 6.55% and 12.19%, respectively, compared to classification without transfer learning. This framework offers a promising solution for remote MI rehabilitation, providing both accurate task recognition and efficient resource usage.One of the most promising applications for electroencephalogram (EEG)-based brain-computer interfaces (BCIs) is motor rehabilitation through motor imagery (MI) tasks. However, current MI training requires physical attendance, while remote MI training can be applied anywhere, facilitating flexible rehabilitation. Providing remote MI training raises challenges to ensuring an accurate recognition of MI tasks by healthcare providers, in addition to managing computation and communication costs. The MI tasks are recognized through EEG signal processing and classification, which can drain sensor energy due to the complexity of the data and the presence of redundant information, often influenced by subject-dependent factors. To address these challenges, we propose in this paper a multi-subject transfer-learning approach for an efficient MI training framework in remote rehabilitation within an IoT environment. For efficient implementation, we propose an IoT architecture that includes cloud/edge computing as a solution to enhance the system's efficiency and reduce the use of network resources. Furthermore, deep-learning classification with and without channel selection is applied in the cloud, while multi-subject transfer-learning classification is utilized at the edge node. Various transfer-learning strategies, including different epochs, freezing layers, and data divisions, were employed to improve accuracy and efficiency. To validate this framework, we used the BCI IV 2a dataset, focusing on subjects 7, 8, and 9 as targets. The results demonstrated that our approach significantly enhanced the average accuracy in both multi-subject and single-subject transfer-learning classification. In three-subject transfer-learning classification, the FCNNA model achieved up to 79.77% accuracy without channel selection and 76.90% with channel selection. For two-subject and single-subject transfer learning, the application of transfer learning improved the average accuracy by up to 6.55% and 12.19%, respectively, compared to classification without transfer learning. This framework offers a promising solution for remote MI rehabilitation, providing both accurate task recognition and efficient resource usage. One of the most promising applications for electroencephalogram (EEG)-based brain-computer interfaces (BCIs) is motor rehabilitation through motor imagery (MI) tasks. However, current MI training requires physical attendance, while remote MI training can be applied anywhere, facilitating flexible rehabilitation. Providing remote MI training raises challenges to ensuring an accurate recognition of MI tasks by healthcare providers, in addition to managing computation and communication costs. The MI tasks are recognized through EEG signal processing and classification, which can drain sensor energy due to the complexity of the data and the presence of redundant information, often influenced by subject-dependent factors. To address these challenges, we propose in this paper a multi-subject transfer-learning approach for an efficient MI training framework in remote rehabilitation within an IoT environment. For efficient implementation, we propose an IoT architecture that includes cloud/edge computing as a solution to enhance the system's efficiency and reduce the use of network resources. Furthermore, deep-learning classification with and without channel selection is applied in the cloud, while multi-subject transfer-learning classification is utilized at the edge node. Various transfer-learning strategies, including different epochs, freezing layers, and data divisions, were employed to improve accuracy and efficiency. To validate this framework, we used the BCI IV 2a dataset, focusing on subjects 7, 8, and 9 as targets. The results demonstrated that our approach significantly enhanced the average accuracy in both multi-subject and single-subject transfer-learning classification. In three-subject transfer-learning classification, the FCNNA model achieved up to 79.77% accuracy without channel selection and 76.90% with channel selection. For two-subject and single-subject transfer learning, the application of transfer learning improved the average accuracy by up to 6.55% and 12.19%, respectively, compared to classification without transfer learning. This framework offers a promising solution for remote MI rehabilitation, providing both accurate task recognition and efficient resource usage. |
Author | AlAhmadi, Saad Khabti, Joharah Soudani, Adel |
Author_xml | – sequence: 1 givenname: Joharah orcidid: 0000-0002-1536-649X surname: Khabti fullname: Khabti, Joharah – sequence: 2 givenname: Saad orcidid: 0000-0001-9406-6809 surname: AlAhmadi fullname: AlAhmadi, Saad – sequence: 3 givenname: Adel orcidid: 0000-0003-0397-9843 surname: Soudani fullname: Soudani, Adel |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39771862$$D View this record in MEDLINE/PubMed |
BookMark | eNpdkk1vEzEQhi1URD_gwB9AK3GBw4I_dtfrIwoBIqWqBOnZsr3j1NGuHWwvUn8BfxunKVHVk2dGj995RzOX6MwHDwi9JfgTYwJ_TrShTU8of4EuSAnrnlJ89iQ-R5cp7TCmjLH-FTpngnPSd_QC_V36O-WN89vqK8C-XoOK_pAtRpWSs86o7IKvbIjVT5hChuo65JKsJrWFeF-Kd0q70eUjd5sOn6_nMbv616x3YHK1iconC7E6iTtfrcKmWvo_LgY_gc-v0UurxgRvHt8rdPttuVn8qNc331eLL-vaMN7kWlNlBBTvmgtigQuNaWMxHnowHVaiAyK41lhrU0jdKIDGEMp6g3nhOLtCq6PuENRO7qObVLyXQTn5UAhxK1XMzowgByFaRUlrsIaGNUIZiynpSu9W2A6GovXhqLWP4fcMKcvJJQPjqDyEOUlGWtZz2glS0PfP0F2Yoy-TFqoRvG0JO5h790jNeoLhZO__ugrw8QiYGFKKYE8IwfJwCvJ0CuwfujSlwg |
Cites_doi | 10.1109/CCDC62350.2024.10588021 10.3390/s24103168 10.1088/1741-2552/ad09ff 10.1109/TNSRE.2023.3241301 10.1109/MetroInd4.0IoT48571.2020.9138229 10.1016/j.future.2021.02.013 10.1109/CIBCB49929.2021.9562821 10.1109/TNSRE.2020.2974056 10.1016/j.bspc.2023.105786 10.1016/j.smhl.2022.100339 10.1109/TBME.2019.2913914 10.1016/j.neuroimage.2014.05.062 10.3389/frobt.2018.00130 10.1109/TBME.2017.2742541 10.3389/fnhum.2024.1305445 10.1016/j.neucom.2022.08.024 10.3390/s19173746 10.1109/ACCESS.2017.2749422 10.1109/MNET.2019.1800083 10.1016/j.adhoc.2019.102047 10.1109/TNSRE.2023.3342331 10.1016/j.bspc.2022.104456 10.1109/JIOT.2017.2683200 10.3389/fnins.2024.1381572 10.1109/ACCESS.2018.2817523 10.3389/fnhum.2023.1194751 10.1016/j.jnca.2018.10.008 10.1016/j.neunet.2022.06.008 10.1016/j.sysarc.2019.02.009 10.1038/nrn2456 10.1155/2018/1386470 10.1002/hbm.23730 10.1088/1741-2552/aace8c 10.1016/j.bspc.2020.102101 10.3390/s21082779 10.1016/j.neunet.2020.12.013 10.3389/fnhum.2023.1143027 10.3390/s22239547 10.1109/SMC42975.2020.9283028 10.3390/jimaging8020020 10.1016/j.eswa.2018.09.019 10.1109/TCSS.2024.3462823 10.1016/j.neunet.2020.11.002 10.1016/j.neucom.2023.126659 10.1109/TNSRE.2023.3259730 10.1007/s11036-020-01620-5 10.3390/app13085205 10.1016/j.ipm.2022.103262 10.1088/1741-2552/ad7f8d 10.1016/j.bspc.2022.104066 |
ContentType | Journal Article |
Copyright | 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 DOA |
DOI | 10.3390/s24248127 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials - QC ProQuest Central ProQuest One ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Medical Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1424-8220 |
ExternalDocumentID | oai_doaj_org_article_d995a215c0be4349acf021618b59f6ed 39771862 10_3390_s24248127 |
Genre | Journal Article |
GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO ITC KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M CGR CUY CVF ECM EIF NPM PJZUB PPXIY 3V. 7XB 8FK AZQEC DWQXO K9. PKEHL PQEST PQUKI PRINS 7X8 PUEGO |
ID | FETCH-LOGICAL-c374t-b2ac9e718b791fe79b024f00d8ec60a96e197bb0bbc2acb4aee4c1238c074f073 |
IEDL.DBID | DOA |
ISSN | 1424-8220 |
IngestDate | Wed Aug 27 01:10:40 EDT 2025 Fri Jul 11 15:49:12 EDT 2025 Fri Jul 25 23:01:08 EDT 2025 Mon Jul 21 05:46:55 EDT 2025 Tue Jul 01 02:10:08 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 24 |
Keywords | brain–computer interface (BCI) internet of things (IoT) motor imagery (MI) transfer learning (TL) edge computing electroencephalogram (EEG) deep learning (DL) |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c374t-b2ac9e718b791fe79b024f00d8ec60a96e197bb0bbc2acb4aee4c1238c074f073 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-0397-9843 0000-0001-9406-6809 0000-0002-1536-649X |
OpenAccessLink | https://doaj.org/article/d995a215c0be4349acf021618b59f6ed |
PMID | 39771862 |
PQID | 3149755137 |
PQPubID | 2032333 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_d995a215c0be4349acf021618b59f6ed proquest_miscellaneous_3153872691 proquest_journals_3149755137 pubmed_primary_39771862 crossref_primary_10_3390_s24248127 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-Dec-19 |
PublicationDateYYYYMMDD | 2024-12-19 |
PublicationDate_xml | – month: 12 year: 2024 text: 2024-Dec-19 day: 19 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Sensors (Basel, Switzerland) |
PublicationTitleAlternate | Sensors (Basel) |
PublicationYear | 2024 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | ref_50 Li (ref_8) 2023; 31 Cardoso (ref_1) 2020; 28 Sarwar (ref_18) 2021; 119 ref_13 Gao (ref_23) 2022; 507 ref_10 ref_52 Emam (ref_30) 2019; 117 Jiang (ref_16) 2019; 125 ref_24 ref_21 Yousefpour (ref_17) 2019; 98 Abdellatif (ref_29) 2019; 33 ref_27 ref_26 Mukherjee (ref_14) 2017; 5 Han (ref_11) 2008; 9 Irimia (ref_2) 2018; 5 Schirrmeister (ref_32) 2017; 38 ref_36 ref_35 ref_34 ref_33 He (ref_41) 2020; 67 ref_31 Tao (ref_25) 2024; 32 Zanini (ref_40) 2018; 65 Lin (ref_28) 2017; 4 Yang (ref_19) 2018; 6 ref_38 ref_37 Asanza (ref_51) 2021; 54 Gao (ref_39) 2023; 31 Wu (ref_44) 2022; 153 Han (ref_12) 2014; 99 ref_47 ref_46 ref_43 Brunner (ref_45) 2008; 16 ref_42 Varsehi (ref_22) 2021; 133 Paul (ref_15) 2018; 2018 ref_3 Zhang (ref_9) 2021; 136 Kristiani (ref_20) 2021; 26 ref_49 ref_48 ref_5 ref_4 ref_7 ref_6 |
References_xml | – ident: ref_36 doi: 10.1109/CCDC62350.2024.10588021 – ident: ref_27 doi: 10.3390/s24103168 – ident: ref_37 doi: 10.1088/1741-2552/ad09ff – volume: 31 start-page: 1128 year: 2023 ident: ref_39 article-title: Double Stage Transfer Learning for Brain–Computer Interfaces publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2023.3241301 – ident: ref_31 doi: 10.1109/MetroInd4.0IoT48571.2020.9138229 – volume: 119 start-page: 188 year: 2021 ident: ref_18 article-title: Lightweight, Divide-and-Conquer Privacy-Preserving Data Aggregation in Fog Computing publication-title: Future Gener. Comput. Syst. doi: 10.1016/j.future.2021.02.013 – ident: ref_24 doi: 10.1109/CIBCB49929.2021.9562821 – volume: 28 start-page: 988 year: 2020 ident: ref_1 article-title: A Low-Cost Lower-Limb Brain-Machine Interface Triggered by Pedaling Motor Imagery for Post-Stroke Patients Rehabilitation publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2020.2974056 – ident: ref_34 doi: 10.1016/j.bspc.2023.105786 – ident: ref_7 doi: 10.1016/j.smhl.2022.100339 – volume: 67 start-page: 399 year: 2020 ident: ref_41 article-title: Transfer Learning for Brain–Computer Interfaces: A Euclidean Space Data Alignment Approach publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2019.2913914 – volume: 99 start-page: 293 year: 2014 ident: ref_12 article-title: Cultural Differences in Human Brain Activity: A Quantitative Meta-Analysis publication-title: Neuroimage doi: 10.1016/j.neuroimage.2014.05.062 – volume: 5 start-page: 1 year: 2018 ident: ref_2 article-title: High Classification Accuracy of a Motor Imagery Based Brain-Computer Interface for Stroke Rehabilitation Training publication-title: Front. Robot. AI doi: 10.3389/frobt.2018.00130 – volume: 65 start-page: 1107 year: 2018 ident: ref_40 article-title: Transfer Learning: A Riemannian Geometry Framework With Applications to Brain–Computer Interfaces publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2017.2742541 – ident: ref_13 doi: 10.3389/fnhum.2024.1305445 – volume: 507 start-page: 180 year: 2022 ident: ref_23 article-title: Convolutional Neural Network and Riemannian Geometry Hybrid Approach for Motor Imagery Classification publication-title: Neurocomputing doi: 10.1016/j.neucom.2022.08.024 – ident: ref_49 doi: 10.3390/s19173746 – volume: 5 start-page: 19293 year: 2017 ident: ref_14 article-title: Security and Privacy in Fog Computing: Challenges publication-title: IEEE Access doi: 10.1109/ACCESS.2017.2749422 – volume: 33 start-page: 196 year: 2019 ident: ref_29 article-title: Edge Computing for Smart Health: Context-Aware Approaches, Opportunities, and Challenges publication-title: IEEE Netw. doi: 10.1109/MNET.2019.1800083 – volume: 54 start-page: 388 year: 2021 ident: ref_51 article-title: SSVEP-EEG Signal Classification Based on Emotiv EPOC BCI and Raspberry Pi publication-title: IFAC-Pap. – ident: ref_21 doi: 10.1016/j.adhoc.2019.102047 – volume: 32 start-page: 154 year: 2024 ident: ref_25 article-title: ADFCNN: Attention-Based Dual-Scale Fusion Convolutional Neural Network for Motor Imagery Brain–Computer Interface publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2023.3342331 – ident: ref_26 doi: 10.1016/j.bspc.2022.104456 – volume: 4 start-page: 1125 year: 2017 ident: ref_28 article-title: A Survey on Internet of Things: Architecture, Enabling Technologies, Security and Privacy, and Applications publication-title: IEEE Internet Things J doi: 10.1109/JIOT.2017.2683200 – ident: ref_38 doi: 10.3389/fnins.2024.1381572 – volume: 6 start-page: 17119 year: 2018 ident: ref_19 article-title: Machine Learning Differential Privacy With Multifunctional Aggregation in a Fog Computing Architecture publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2817523 – ident: ref_10 doi: 10.3389/fnhum.2023.1194751 – volume: 125 start-page: 93 year: 2019 ident: ref_16 article-title: A Survey on Location Privacy Protection in Wireless Sensor Networks publication-title: J. Netw. Comput. Appl. doi: 10.1016/j.jnca.2018.10.008 – volume: 153 start-page: 235 year: 2022 ident: ref_44 article-title: Transfer Learning for Motor Imagery Based Brain–Computer Interfaces: A Tutorial publication-title: Neural Netw. doi: 10.1016/j.neunet.2022.06.008 – volume: 98 start-page: 289 year: 2019 ident: ref_17 article-title: All One Needs to Know about Fog Computing and Related Edge Computing Paradigms: A Complete Survey publication-title: J. Syst. Archit. doi: 10.1016/j.sysarc.2019.02.009 – volume: 9 start-page: 646 year: 2008 ident: ref_11 article-title: Culture-Sensitive Neural Substrates of Human Cognition: A Transcultural Neuroimaging Approach publication-title: Nat. Rev. Neurosci. doi: 10.1038/nrn2456 – volume: 2018 start-page: 1 year: 2018 ident: ref_15 article-title: Fog Computing-Based IoT for Health Monitoring System publication-title: J. Sens. doi: 10.1155/2018/1386470 – volume: 38 start-page: 5391 year: 2017 ident: ref_32 article-title: Deep Learning with Convolutional Neural Networks for EEG Decoding and Visualization publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.23730 – ident: ref_42 doi: 10.1088/1741-2552/aace8c – ident: ref_6 doi: 10.1016/j.bspc.2020.102101 – ident: ref_50 doi: 10.3390/s21082779 – volume: 136 start-page: 1 year: 2021 ident: ref_9 article-title: Adaptive Transfer Learning for EEG Motor Imagery Classification with Deep Convolutional Neural Network publication-title: Neural Netw. doi: 10.1016/j.neunet.2020.12.013 – ident: ref_43 doi: 10.3389/fnhum.2023.1143027 – ident: ref_52 doi: 10.3390/s22239547 – ident: ref_47 doi: 10.1109/SMC42975.2020.9283028 – ident: ref_46 doi: 10.3390/jimaging8020020 – volume: 117 start-page: 1 year: 2019 ident: ref_30 article-title: Edge-Based Compression and Classification for Smart Healthcare Systems: Concept, Implementation and Evaluation publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2018.09.019 – ident: ref_48 doi: 10.1109/TCSS.2024.3462823 – volume: 133 start-page: 193 year: 2021 ident: ref_22 article-title: An EEG Channel Selection Method for Motor Imagery Based Brain–Computer Interface and Neurofeedback Using Granger Causality publication-title: Neural Netw. doi: 10.1016/j.neunet.2020.11.002 – ident: ref_33 doi: 10.1016/j.neucom.2023.126659 – volume: 31 start-page: 1743 year: 2023 ident: ref_8 article-title: MDTL: A Novel and Model-Agnostic Transfer Learning Strategy for Cross-Subject Motor Imagery BCI publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2023.3259730 – volume: 26 start-page: 1070 year: 2021 ident: ref_20 article-title: The Implementation of a Cloud-Edge Computing Architecture Using OpenStack and Kubernetes for Air Quality Monitoring Application publication-title: Mob. Netw. Appl. doi: 10.1007/s11036-020-01620-5 – ident: ref_35 doi: 10.3390/app13085205 – ident: ref_3 doi: 10.1016/j.ipm.2022.103262 – ident: ref_4 doi: 10.1088/1741-2552/ad7f8d – ident: ref_5 doi: 10.1016/j.bspc.2022.104066 – volume: 16 start-page: 1 year: 2008 ident: ref_45 article-title: BCI Competition 2008--Graz Data Set A publication-title: Inst. Knowl. Discov. (Lab. Brain-Comput. Interfaces) Graz Univ. Technol. |
SSID | ssj0023338 |
Score | 2.435717 |
Snippet | One of the most promising applications for electroencephalogram (EEG)-based brain–computer interfaces (BCIs) is motor rehabilitation through motor imagery (MI)... One of the most promising applications for electroencephalogram (EEG)-based brain-computer interfaces (BCIs) is motor rehabilitation through motor imagery (MI)... |
SourceID | doaj proquest pubmed crossref |
SourceType | Open Website Aggregation Database Index Database |
StartPage | 8127 |
SubjectTerms | Accuracy Brain research Brain-Computer Interfaces brain–computer interface (BCI) Classification Cloud computing Communication Cultural differences Data processing Deep Learning deep learning (DL) Edge computing Efficiency electroencephalogram (EEG) Electroencephalography - methods Humans Internet of Things internet of things (IoT) Memory motor imagery (MI) Neural networks Rehabilitation Sensors Signal Processing, Computer-Assisted transfer learning (TL) |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nb9swDCW67tIdhm5dV7fdoBW7CvWHbEWnYe1StAW2w9ACuRmSTGU91M6S9LBf0L89UnGcXLarTQg2KZGPEvUI8FlnQak0GOmdVVIpjdLkjZapS63NQ555G6t8f1TX9-p2Uk76DbdFX1a59onRUTed5z3y84KgvOZuJPrL7LfkrlF8utq30HgBL5m6jEu69GSTcBWUf63YhApK7c8XfBViFBvIbMWgSNX_b3wZ48zVPrzuAaL4urLoG9jB9i282qINPIDncfuLaTLaqfiGOJM9R-pUxA6XXPsT1S0Ij4qfSLZA8b2j3FrcPDJjxR96uE3PLWLZgIhXcSU5Et6ZETGGBZyLYfCHVtx0d2K8uRn3Du6vxneX17JvqCB9odVSutx6gxSNnDZZQG0cReiQps0IfZVaU2FmtHOpc54knbKIylNoG3kCGoGcwSHstl2LRyCUc3mDoQqaZMoip0BXjqwOurEkX4YEztYqrmcr3oya8g22Qz3YIYELVv4gwFTX8UE3n9b9yqkbY0pLwMSnDlWhjPWBcElFP1GaUGGTwOnadHW__hb1ZrYk8Gl4TSuHj0Nsi90Ty5Cz13llsgTer0w-fAnD4oySveP_D34CezmpkMtbMnMKu8v5E34gkLJ0H-NM_AsoB-lK priority: 102 providerName: ProQuest – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwEB1RuLQHBJSPLVAZxNVt4jjx-lBVLSwCJHpArMQtsp3xggQJLItUfgF_m7E3G0Bqb1yTUeLMePxm4vEbgD2VeikTr7mzRnIpFXItKsUTmxgjvEidiVW-f4qjoTy5yC_mYNZjs1Xg_T9Tu9BPaji-_vb37vEnOfyPkHFSyv79PhxxIKBSH2CBAEkF_zyV3WaCyCgNm5IKvRV_A0WRsf__YWaEm8MlWGzjRPZrathlmMN6BT69Yg_8DE-D-jKwZdQjdoB4y1uq1BGLjS5DCVDUOqOwlJ0hmQTZaUMpNju-CcQVj3TxNUs3i9UDLJ7I5bSehB80LEKZxzHrHn5Vs-PmnA1eDsitwvBwcL5_xNu-CtxlSk64FcZpJFCySqcelbYE1D5Jqj66IjG6wFQraxNrHUlaaRClI4TrO4o3PK0JazBfNzVuAJPWigp94RXJ5JkgvMv7RnlVGZLPfQ92Zyoub6f0GSWlHcEOZWeHHvwOyu8EAuN1vNCMR2XrQGWldW4oPnGJRZlJbZyn8KSgj8i1L7DqwdbMdOVsFpUZ5X8qtLChd-x0t8mBwq6IqbF5CDK05itR6LQH61OTdyMJ0XFKOd-X9xjhJnwUpOhQC5PqLZifjB9wmyKaif0a5-szznj3ug priority: 102 providerName: Scholars Portal |
Title | Enhancing Deep-Learning Classification for Remote Motor Imagery Rehabilitation Using Multi-Subject Transfer Learning in IoT Environment |
URI | https://www.ncbi.nlm.nih.gov/pubmed/39771862 https://www.proquest.com/docview/3149755137 https://www.proquest.com/docview/3153872691 https://doaj.org/article/d995a215c0be4349acf021618b59f6ed |
Volume | 24 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwEB7BcoEDYpdXoFQGcbU2DyeOj_tot0VqhapW6i2ynfHCgXS1bQ_8Av72jp009IK47MUHZ5RYM_F8M8n4G4CvMnFCxE5xa7TgQkjkKq0lj02sderSxOpQ5TsvJivxbZ2vj1p9-Zqwlh64Vdx5rVSuCZdsbFBkQmnrCJaKpDS5cgXW3vsS5h2SqS7VyijzanmEMkrqz7f-EEQZWsccoU8g6f93ZBkQZvwKXnahIbtol3QKT7A5gxdHhIGv4c-o-eEJMppbdo14xzt21FsWelv6qp-gaEaRKFsgWQHZbENZNZv-8lwVv2nymJibhYIBFg7hcnIh_psMC-jl8J71N__ZsOlmyUZ_z8S9gdV4tLya8K6VAreZFDtuUm0VEg4ZqRKHUhnCZhfHdYm2iLUqMFHSmNgYS5JGaERhCdRKSyGGIzfwFk6aTYPvgQlj0hpd4STJ5FlKEJeXWjpZa5LPXQRfDiqu7lrGjIoyDW-HqrdDBJde-b2AJ7kOE2T6qjN99T_TRzA4mK7qdt62yijlk75rDT3jc3-Z9oz_EaIb3Oy9DLl5mRYqieBda_J-JT4gTijN-_AYK_wIz1NStC9_SdQATnb3e_xEQczODOGpXEsay_HNEJ5djubfF8PwDtM4E-UDEnn2HA |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELaW5QAcVjyXLAsYBEdrHceJ6wNCwHbVso8D6kq9BdsZFw4kpe0K7S_g3_AbGTtN2gvc9pqMrMTztme-IeSNSr2U3GvmrJFMSgVMi0oxbrkxwovUmVjle1GMLuXnaT7dIX-6XphQVtnZxGioq8aFM_KjDEN5FaaRqPfznyxMjQq3q90IjVYsTuH6F6Zsy3fjY-TvWyFOhpNPI7aeKsBcpuSKWWGcBjTJVunUg9IW3ZTnvBqAK7jRBaRaWcutdUhppQGQDu37wKG39agRuO4tchsdLw8apaabBC_DfK9FL8oyzY-WofViEAfWbPm8OBrg3_Fs9Gsn98neOiClH1oJekB2oH5I7m3BFD4iv4f1twDLUc_oMcCcrTFZZzRO1Ay1RpG9FONf-gWQ90DPG8zl6fhHQMi4xofbcOA0linQ2PrL0HCFkyAafaaHBe0X_17TcTOhw00n3mNyeSNb_YTs1k0NTwmV1ooKfOEV0uSZQMeaD4zyqjJIn_uEvO62uJy3OB0l5jeBD2XPh4R8DJvfEwRo7figWczKtaaWlda5wUDIcQsyk9o4j3FQgT-Ra19AlZDDjnXlWt-X5UY6E_Kqf42aGq5fTA3NVaBB56JEodOE7Lcs778khOEpJpcH_1_8JbkzmpyflWfji9Nn5K7A7QylNak-JLurxRU8xwBpZV9EqaTk602rwV9iRyda |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LjtMwcLQsEoID4k1gAYPgGDVxnLg-IAS01ZaFFUK7Um_BdsZlD5uUtiu0X8A_8XWMnaTtBW57dUaWM--x5wHwWqZOiMSp2BotYiEkxopXMk5MojV3PLU6ZPkeF4en4tMsn-3Bn74WxqdV9joxKOqqsf6OfJCRKy_9NBI5cF1axNfR5N3iZ-wnSPmX1n6cRssiR3j5i8K31dvpiGj9hvPJ-OTjYdxNGIhtJsU6NlxbhaSejVSpQ6kMmSyXJNUQbZFoVWCqpDGJMZYgjdCIwpKuH1qyvI6kg_a9BtdlRuciWZKzbbCXUezXdjLKMpUMVr4MYxiG1-zYvzAm4N--bbBxkztwu3NO2fuWm-7CHtb34NZOy8L78Htc__AtOuo5GyEu4q4_65yF6Zo-7yiQmpEvzL4h8QGyLw3F9Wx67rtlXNLibmtwFlIWWCgDjkmJ-VshFuynwyXbbH5Ws2lzwsbbqrwHcHolqH4I-3VT42NgwhheoSucJJg842Rk86GWTlaa4HMXwasexeWi7dlRUqzj6VBu6BDBB4_8DYBvsx0WmuW87KS2rJTKNTlFNjEoMqG0deQTFfQTuXIFVhEc9KQrO9lflVtOjeDl5jNJrX-K0TU2Fx6GDI3khUojeNSSfHMS75KnFGg--f_mL-AGCUD5eXp89BRucsKmz7JJ1QHsr5cX-Ix8pbV5HpiSwferloK_wnUrkA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhancing+Deep-Learning+Classification+for+Remote+Motor+Imagery+Rehabilitation+Using+Multi-Subject+Transfer+Learning+in+IoT+Environment&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Joharah+Khabti&rft.au=Saad+AlAhmadi&rft.au=Adel+Soudani&rft.date=2024-12-19&rft.pub=MDPI+AG&rft.eissn=1424-8220&rft.volume=24&rft.issue=24&rft.spage=8127&rft_id=info:doi/10.3390%2Fs24248127&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_d995a215c0be4349acf021618b59f6ed |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |