The experimental study on thermal conductivity of backfill material of ground source heat pump based on iron tailings
•The thermal conductivity of iron tailings is higher than that of loess at same condition.•Mixtures of tailings and loess present higher thermal conductivity than single use of loess and iron tailings.•When loess and tailings are mixed with the mass ratio of 3:7, the thermal conductivities are highe...
Saved in:
Published in | Energy and buildings Vol. 174; pp. 1 - 12 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Lausanne
Elsevier B.V
01.09.2018
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •The thermal conductivity of iron tailings is higher than that of loess at same condition.•Mixtures of tailings and loess present higher thermal conductivity than single use of loess and iron tailings.•When loess and tailings are mixed with the mass ratio of 3:7, the thermal conductivities are higher than that of the others.•The thermal conductivity of backfill materials shows great relationship with saturation.•A empirical equation of thermal conductivity of backfill material was proposed.
Iron tailings are the remains of solid waste after iron ore concentrates are selected by mineral processing technology. For a long time, iron tailings are disposed through accumulation and burial, which not only occupy large space but also increase the cost of treatment. Ground source heat pump (GSHP) system is a kind of environmental-friendly, energy-saving system by using geothermal energy. This is getting more and more wide use in China. The main problem of using GSHP is the low thermal property of backfill materials in the loess region of Northwest China, which affects the thermal efficiency of GSHP system. Improving the thermal conductivity of backfill materials is necessary and urgent for energy conservation. The authors hypothesized that thermal efficiency increases as the rate of tailings addition increases. To test this hypothesis, the authors applied iron tailings to the backfill material. Experiments were conducted to measure the thermal conductivity of the loess and iron tailings, determined under the conditions of different dry density, water content, and mixing ratio. Then, the changes of thermal conductivity were analyzed as tailings' mix proportion varies. The optimum mix ratio was determined and the reason was discussed. The results showed that the thermal conductivity of backfill material is a formula of saturation and rate of tailings addition. A series of functional equation was given in the end. The calculated value of the formulae matched well with the experimental data. The research concluded that the iron tailings as backfill material of GSHP is feasible and the result can be used as a reference for related engineering research. |
---|---|
AbstractList | •The thermal conductivity of iron tailings is higher than that of loess at same condition.•Mixtures of tailings and loess present higher thermal conductivity than single use of loess and iron tailings.•When loess and tailings are mixed with the mass ratio of 3:7, the thermal conductivities are higher than that of the others.•The thermal conductivity of backfill materials shows great relationship with saturation.•A empirical equation of thermal conductivity of backfill material was proposed.
Iron tailings are the remains of solid waste after iron ore concentrates are selected by mineral processing technology. For a long time, iron tailings are disposed through accumulation and burial, which not only occupy large space but also increase the cost of treatment. Ground source heat pump (GSHP) system is a kind of environmental-friendly, energy-saving system by using geothermal energy. This is getting more and more wide use in China. The main problem of using GSHP is the low thermal property of backfill materials in the loess region of Northwest China, which affects the thermal efficiency of GSHP system. Improving the thermal conductivity of backfill materials is necessary and urgent for energy conservation. The authors hypothesized that thermal efficiency increases as the rate of tailings addition increases. To test this hypothesis, the authors applied iron tailings to the backfill material. Experiments were conducted to measure the thermal conductivity of the loess and iron tailings, determined under the conditions of different dry density, water content, and mixing ratio. Then, the changes of thermal conductivity were analyzed as tailings' mix proportion varies. The optimum mix ratio was determined and the reason was discussed. The results showed that the thermal conductivity of backfill material is a formula of saturation and rate of tailings addition. A series of functional equation was given in the end. The calculated value of the formulae matched well with the experimental data. The research concluded that the iron tailings as backfill material of GSHP is feasible and the result can be used as a reference for related engineering research. Iron tailings are the remains of solid waste after iron ore concentrates are selected by mineral processing technology. For a long time, iron tailings are disposed through accumulation and burial, which not only occupy large space but also increase the cost of treatment. Ground source heat pump (GSHP) system is a kind of environmental-friendly, energy-saving system by using geothermal energy. This is getting more and more wide use in China. The main problem of using GSHP is the low thermal property of backfill materials in the loess region of Northwest China, which affects the thermal efficiency of GSHP system. Improving the thermal conductivity of backfill materials is necessary and urgent for energy conservation. The authors hypothesized that thermal efficiency increases as the rate of tailings addition increases. To test this hypothesis, the authors applied iron tailings to the backfill material. Experiments were conducted to measure the thermal conductivity of the loess and iron tailings, determined under the conditions of different dry density, water content, and mixing ratio. Then, the changes of thermal conductivity were analyzed as tailings' mix proportion varies. The optimum mix ratio was determined and the reason was discussed. The results showed that the thermal conductivity of backfill material is a formula of saturation and rate of tailings addition. A series of functional equation was given in the end. The calculated value of the formulae matched well with the experimental data. The research concluded that the iron tailings as backfill material of GSHP is feasible and the result can be used as a reference for related engineering research. |
Author | Yin, Tianyu Kong, Dequan Wan, Rong Kang, Jiayuan Ning, Jiangfeng Ma, Jianping |
Author_xml | – sequence: 1 givenname: Rong surname: Wan fullname: Wan, Rong – sequence: 2 givenname: Dequan surname: Kong fullname: Kong, Dequan email: dkong906@yahoo.com – sequence: 3 givenname: Jiayuan surname: Kang fullname: Kang, Jiayuan – sequence: 4 givenname: Tianyu surname: Yin fullname: Yin, Tianyu – sequence: 5 givenname: Jiangfeng surname: Ning fullname: Ning, Jiangfeng – sequence: 6 givenname: Jianping surname: Ma fullname: Ma, Jianping |
BookMark | eNqFkEtPAyEYRYnRxFb9CSYkrmeEeQBdGdP4Spq4qWvCwEdLnTIjMEb_vTTt3hXJzbkXOHN07gcPCN1SUlJC2f2uBN9NrjdlRagoCSsJJWdoRgWvCka5OEczUnNRcC7EJZrHuCOEsJbTGZrWW8DwM0Jwe_BJ9TimyfziweO0hbDPgR68mXRy3y7l3OJO6U_r-h7vVcq1TORwE4bJGxyHKWjAW1AJj9N-zHAEc1hz4TCpXO_8Jl6jC6v6CDen8wp9PD-tl6_F6v3lbfm4KnTNm1QoEAsrwFhFa1C2aZoWiGK2NrrVixYM4YuOV1VXLxpGO815y2pglnZWZKKpr9DdcXcMw9cEMcldfqDPV8qKUtaQXCCZao-UDkOMAawcsw0VfiUl8mBY7uTJsDwYloTJbDj3Ho49yF_4dhBk1A68BuMC6CTN4P5Z-AP1xou2 |
CitedBy_id | crossref_primary_10_1016_j_conbuildmat_2023_131409 crossref_primary_10_1088_1757_899X_479_1_012053 crossref_primary_10_1016_j_conbuildmat_2021_123022 crossref_primary_10_1016_j_jobe_2024_108442 crossref_primary_10_1088_1755_1315_267_4_042010 crossref_primary_10_1007_s10765_023_03163_9 crossref_primary_10_1016_j_jiec_2023_02_036 crossref_primary_10_1016_j_renene_2024_120055 crossref_primary_10_1515_rams_2022_0313 crossref_primary_10_1007_s10064_024_03705_x crossref_primary_10_1680_jenge_23_00033 crossref_primary_10_1016_j_applthermaleng_2020_115914 crossref_primary_10_1016_j_enbuild_2023_113560 crossref_primary_10_1016_j_geothermics_2022_102613 crossref_primary_10_1016_j_applthermaleng_2020_115814 crossref_primary_10_2139_ssrn_3907227 crossref_primary_10_3390_en15051801 crossref_primary_10_1016_j_applthermaleng_2019_01_100 crossref_primary_10_1016_j_energy_2022_123783 crossref_primary_10_1016_j_geothermics_2023_102672 crossref_primary_10_1016_j_geothermics_2021_102343 crossref_primary_10_1115_1_4052187 crossref_primary_10_1016_j_powtec_2021_08_012 |
Cites_doi | 10.1016/j.ijthermalsci.2017.03.013 10.1016/j.egypro.2013.12.034 10.1007/s12205-011-0005-7 10.1016/j.rser.2016.11.268 10.1680/jenge.15.00025 10.1016/j.applthermaleng.2014.05.033 10.1016/j.applthermaleng.2016.07.102 10.2136/sssaj2000.6441285x 10.1016/j.geothermics.2017.01.007 10.1139/cgj-2014-0518 10.1007/s10765-017-2202-1 10.1016/j.conbuildmat.2013.07.019 10.1007/s00231-011-0800-1 10.1016/j.ijheatmasstransfer.2012.10.067 10.1016/j.rser.2015.04.021 10.1002/er.1898 |
ContentType | Journal Article |
Copyright | 2018 Elsevier B.V. Copyright Elsevier BV Sep 1, 2018 |
Copyright_xml | – notice: 2018 Elsevier B.V. – notice: Copyright Elsevier BV Sep 1, 2018 |
DBID | AAYXX CITATION 7ST 8FD C1K F28 FR3 KR7 SOI |
DOI | 10.1016/j.enbuild.2018.06.010 |
DatabaseName | CrossRef Environment Abstracts Technology Research Database Environmental Sciences and Pollution Management ANTE: Abstracts in New Technology & Engineering Engineering Research Database Civil Engineering Abstracts Environment Abstracts |
DatabaseTitle | CrossRef Civil Engineering Abstracts Engineering Research Database Technology Research Database Environment Abstracts ANTE: Abstracts in New Technology & Engineering Environmental Sciences and Pollution Management |
DatabaseTitleList | Civil Engineering Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1872-6178 |
EndPage | 12 |
ExternalDocumentID | 10_1016_j_enbuild_2018_06_010 S0378778817335417 |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GroupedDBID | --M -~X .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JM 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AAXUO ABFYP ABJNI ABLST ABMAC ABYKQ ACDAQ ACGFS ACIWK ACRLP ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFRAH AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AHIDL AHJVU AIEXJ AIKHN AITUG AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BJAXD BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JARJE JJJVA KCYFY KOM LY6 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL SDF SDG SES SPC SPCBC SSJ SSR SST SSZ T5K ~02 ~G- --K 29G AAQXK AAXKI AAYXX ABFNM ABTAH ABXDB ACNNM ADMUD AFJKZ AKRWK ASPBG AVWKF AZFZN CITATION FEDTE FGOYB G-2 HVGLF HZ~ R2- RPZ SAC SET SEW WUQ ZMT ZY4 7ST 8FD C1K F28 FR3 KR7 SOI |
ID | FETCH-LOGICAL-c374t-ae89f8edfa13eaf4445e0a6f3dc5c95ed079b722b39461bc77563e6f1bf8c5c43 |
IEDL.DBID | AIKHN |
ISSN | 0378-7788 |
IngestDate | Thu Oct 10 22:54:57 EDT 2024 Thu Sep 26 15:41:07 EDT 2024 Fri Feb 23 02:27:56 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Loess Thermal conductivity Backfill material Iron tailings Ground source heat pump |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c374t-ae89f8edfa13eaf4445e0a6f3dc5c95ed079b722b39461bc77563e6f1bf8c5c43 |
PQID | 2116407560 |
PQPubID | 2045483 |
PageCount | 12 |
ParticipantIDs | proquest_journals_2116407560 crossref_primary_10_1016_j_enbuild_2018_06_010 elsevier_sciencedirect_doi_10_1016_j_enbuild_2018_06_010 |
PublicationCentury | 2000 |
PublicationDate | 2018-09-01 |
PublicationDateYYYYMMDD | 2018-09-01 |
PublicationDate_xml | – month: 09 year: 2018 text: 2018-09-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Lausanne |
PublicationPlace_xml | – name: Lausanne |
PublicationTitle | Energy and buildings |
PublicationYear | 2018 |
Publisher | Elsevier B.V Elsevier BV |
Publisher_xml | – name: Elsevier B.V – name: Elsevier BV |
References | Usowicz Usowicz (bib0037) 2013; 57 Zhongqiu (bib0002) 2004 Shengyuan (bib0001) 2000; 1 Zhang, Liao (bib0004) 2015; 49 Z.M., Yuxiao, Soil Mechanics & Foundation Engineering, ISBN 978-7-5629-3064-8, 31–32. etc (bib0018) 2012 Guo, Wang, Yang (bib0009) 2015 Lee, Zhuang, Lee (bib0029) 2017; 67 Tetiana, Mykola, Karim (bib0031) 2013; 42 Lee, Shang (bib0008) 2013; 48 Kroener, Vallati, Bittelli (bib0014) 2014; 70 Abuhamdeh, Reeder (bib0025) 2000; 64 Shanxiong, Shouyi (bib0033) 1994; 16 Songsong (bib0007) 2010; 31 Lucia, Simonetti, Chiesa (bib0005) 2017; 70 Desmedt, Bael, Hoes (bib0026) 2012; 36 Barry-Macaulay, Bouazza, Wang, Singh (bib0028) 2015; 52 Johnston, Narsilio, Colls (bib0003) 2011; 15 Shan, Shunqun (bib0016) 2015; 21 (bib0022) 1999 Nikiforova, Savytskyi, Limam, Bosschaerts, Belarbi (bib0015) 2013; 42 Cho, Lee, Kwon (bib0032) 2011; 47 Wanjun, Xihao, Gengshe (bib0012) 2017; 38 Bidarmaghz, Makasis, Narsilio (bib0023) 2016; 3 Haibo, Ping, Zhongyi (bib0034) 2012; 36 Nairen, Zhaohong (bib0006) 2006 Ocłon, Cisek, Pilarczyk (bib0013) 2015; 95 Ocłoń, Bittelli, Cisek (bib0010) 2016; 108 Hui, Chengfu, Kunlong (bib0020) 2017; 39 Rerak, Ocłoń (bib0011) 2017 Shan, Shunqun, Huiqiang (bib0036) 2015; 21 weiming, Ping, Zhao (bib0035) 2002; 24 Nikiforova, Savytskyi, Limam (bib0021) 2013; 42 etc (bib0019) 2005; 02 Zhang, Wang (bib0027) 2017; 117 Jinzhong, Yanrong (bib0017) 1998; 03 Bovesecchi, Coppa1, Potenza (bib0030) 2017; 38 Nikiforova (10.1016/j.enbuild.2018.06.010_bib0015) 2013; 42 Nikiforova (10.1016/j.enbuild.2018.06.010_bib0021) 2013; 42 Shengyuan (10.1016/j.enbuild.2018.06.010_bib0001) 2000; 1 Kroener (10.1016/j.enbuild.2018.06.010_bib0014) 2014; 70 Zhang (10.1016/j.enbuild.2018.06.010_bib0027) 2017; 117 Cho (10.1016/j.enbuild.2018.06.010_bib0032) 2011; 47 Wanjun (10.1016/j.enbuild.2018.06.010_bib0012) 2017; 38 etc (10.1016/j.enbuild.2018.06.010_bib0019) 2005; 02 Songsong (10.1016/j.enbuild.2018.06.010_bib0007) 2010; 31 Guo (10.1016/j.enbuild.2018.06.010_bib0009) 2015 Rerak (10.1016/j.enbuild.2018.06.010_bib0011) 2017 Usowicz Usowicz (10.1016/j.enbuild.2018.06.010_bib0037) 2013; 57 Nairen (10.1016/j.enbuild.2018.06.010_bib0006) 2006 Bidarmaghz (10.1016/j.enbuild.2018.06.010_bib0023) 2016; 3 Lee (10.1016/j.enbuild.2018.06.010_bib0008) 2013; 48 Lee (10.1016/j.enbuild.2018.06.010_bib0029) 2017; 67 etc (10.1016/j.enbuild.2018.06.010_bib0018) 2012 (10.1016/j.enbuild.2018.06.010_bib0022) 1999 Shan (10.1016/j.enbuild.2018.06.010_bib0036) 2015; 21 Zhongqiu (10.1016/j.enbuild.2018.06.010_bib0002) 2004 Lucia (10.1016/j.enbuild.2018.06.010_bib0005) 2017; 70 Shanxiong (10.1016/j.enbuild.2018.06.010_bib0033) 1994; 16 Bovesecchi (10.1016/j.enbuild.2018.06.010_bib0030) 2017; 38 Desmedt (10.1016/j.enbuild.2018.06.010_bib0026) 2012; 36 Haibo (10.1016/j.enbuild.2018.06.010_bib0034) 2012; 36 Johnston (10.1016/j.enbuild.2018.06.010_bib0003) 2011; 15 Hui (10.1016/j.enbuild.2018.06.010_bib0020) 2017; 39 10.1016/j.enbuild.2018.06.010_bib0024 Abuhamdeh (10.1016/j.enbuild.2018.06.010_bib0025) 2000; 64 Shan (10.1016/j.enbuild.2018.06.010_bib0016) 2015; 21 Ocłoń (10.1016/j.enbuild.2018.06.010_bib0010) 2016; 108 Jinzhong (10.1016/j.enbuild.2018.06.010_bib0017) 1998; 03 Ocłon (10.1016/j.enbuild.2018.06.010_bib0013) 2015; 95 weiming (10.1016/j.enbuild.2018.06.010_bib0035) 2002; 24 Zhang (10.1016/j.enbuild.2018.06.010_bib0004) 2015; 49 Barry-Macaulay (10.1016/j.enbuild.2018.06.010_bib0028) 2015; 52 Tetiana (10.1016/j.enbuild.2018.06.010_bib0031) 2013; 42 |
References_xml | – volume: 15 start-page: 643 year: 2011 end-page: 653 ident: bib0003 article-title: Emerging geothermal energy technologies publication-title: KSCE J. Civ. Eng. contributor: fullname: Colls – volume: 3 start-page: 225 year: 2016 end-page: 236 ident: bib0023 article-title: Geothermal energy in loess publication-title: J. Env. Geotech. contributor: fullname: Narsilio – volume: 21 start-page: 172 year: 2015 end-page: 176 ident: bib0036 article-title: Relationship among soil's thermal conductivity, dry density, saturation and temperature publication-title: J. Tianjin Chengjian Univ. contributor: fullname: Huiqiang – volume: 39 start-page: 98 year: 2017 end-page: 104 ident: bib0020 article-title: Experimental analysis of the basic engineering properties of expansive soils improved by iron tailings sand publication-title: J. Civ. Archit. Env. Eng. contributor: fullname: Kunlong – volume: 70 start-page: 510 year: 2014 end-page: 523 ident: bib0014 article-title: Numerical simulation of coupled heat, liquid water and water vapor in soils for heat dissipation of underground electrical power cables publication-title: Appl. Therm. Eng. contributor: fullname: Bittelli – volume: 49 start-page: 51 year: 2015 end-page: 59 ident: bib0004 article-title: Ontology of ground source heat pump publication-title: Renewable Sustainable Energy Rev. contributor: fullname: Liao – start-page: 928 year: 2015 end-page: 937 ident: bib0009 article-title: Experimental study on thermal conductivity of cement and lime improved loess, CICTP 2015 publication-title: Efficient Safe Green Multimod. Transp. contributor: fullname: Yang – volume: 57 start-page: 536 year: 2013 end-page: 541 ident: bib0037 article-title: Effects of aggregate size on soil thermal conductivity: comparison of; measured and model-predicted data publication-title: Int. J. Heat Mass Transfer contributor: fullname: Usowicz Usowicz – volume: 117 start-page: 172 year: 2017 end-page: 183 ident: bib0027 article-title: Review of soil thermal conductivity and predictive models publication-title: Int. J. Therm. Sci. contributor: fullname: Wang – volume: 67 start-page: 76 year: 2017 end-page: 85 ident: bib0029 article-title: Evaluation of effective thermal conductivity of unsaturated granular materials using random network model publication-title: Geothermics contributor: fullname: Lee – volume: 47 start-page: 1385 year: 2011 end-page: 1393 ident: bib0032 article-title: An empirical model for the thermal conductivity of compacted bentonite and a bentonite–sand mixture publication-title: Heat Mass Transfer contributor: fullname: Kwon – start-page: 88 year: 2012 end-page: 92 ident: bib0018 article-title: Situation of discharge and comprehensive utilization of iron tailings domestic and abroad publication-title: Concrete contributor: fullname: etc – volume: 42 start-page: 775 year: 2013 end-page: 783 ident: bib0015 article-title: Methods and results of experimental researches of thermal conductivity of soils publication-title: Energy Procedia contributor: fullname: Belarbi – volume: 42 start-page: 775 year: 2013 end-page: 783 ident: bib0031 article-title: Methods and results of experimental researches of thermal conductivity of soils publication-title: Energy Procedia contributor: fullname: Karim – volume: 24 start-page: 770 year: 2002 end-page: 773 ident: bib0035 article-title: A calculation method of thermal conductivity of soils publication-title: J. Glaciol. Geocryol. contributor: fullname: Zhao – volume: 48 start-page: 636 year: 2013 end-page: 646 ident: bib0008 article-title: Thermal properties of mine tailings and tire crumbs mixtures publication-title: Constr. Build. Mater. contributor: fullname: Shang – volume: 70 start-page: 867 year: 2017 end-page: 874 ident: bib0005 article-title: Ground-source pump system for heating and cooling: Review and thermodynamic approach publication-title: Renew. Sustainable Energy Rev. contributor: fullname: Chiesa – volume: 16 start-page: 48 year: 1994 end-page: 53 ident: bib0033 article-title: Experimental study on thermal conductivity of sands, the research institute of Wuhanite geochemistry of the Chinese academy of sciences publication-title: Chin. J. Geotech. Eng. contributor: fullname: Shouyi – volume: 03 start-page: 293 year: 1998 end-page: 297 ident: bib0017 article-title: State and prospect of making use of ferreous tailings to research and produce wall materials publication-title: Hous. Mater. Appl. contributor: fullname: Yanrong – volume: 1 start-page: 38 year: 2000 end-page: 40 ident: bib0001 article-title: Comprehensive utilization of tailings is an important way to realize sustainable development of mining industry in China publication-title: J. Finance Econ. Coll. contributor: fullname: Shengyuan – year: 2017 ident: bib0011 article-title: The effect of soil and cable backfill thermal conductivity on the temperature distribution in underground cable system publication-title: 4th Scientific and Technical Conference on Modern Technologies and Energy Systems (WTiUE), 13, UNSP 02004 contributor: fullname: Ocłoń – volume: 31 start-page: 343 year: 2010 end-page: 346 ident: bib0007 article-title: Characteristics and research development of backfill materials in drill borehole for GSHP publication-title: Energy Technol. contributor: fullname: Songsong – year: 1999 ident: bib0022 article-title: Beijing: China Architecture – volume: 42 start-page: 775 year: 2013 end-page: 783 ident: bib0021 article-title: Methods and results of experimental researches of thermal conductivity of soils publication-title: Energy Procedia contributor: fullname: Limam – volume: 38 start-page: 656 year: 2017 end-page: 662 ident: bib0012 article-title: Effect of moisture content and dry density on thermal parameters of loess publication-title: Rock Soil Mech. contributor: fullname: Gengshe – volume: 95 year: 2015 ident: bib0013 article-title: Numerical simulation of heat dissipation processes in underground power cable system situated in thermal backfill and buried in a multilayered soil publication-title: Energy Convers. Manage. contributor: fullname: Pilarczyk – volume: 02 start-page: 171 year: 2005 end-page: 175 ident: bib0019 article-title: Some studies on geotechnical engineering technology of ground heat pump system publication-title: Bull. Sci. Technol. contributor: fullname: etc – volume: 36 start-page: 42 year: 2012 end-page: 46 ident: bib0034 article-title: Influence of porosity and saturation on thermal properties of silty soils publication-title: J. Nanjing Forestry Univ. contributor: fullname: Zhongyi – volume: 38 start-page: 68 year: 2017 ident: bib0030 article-title: A numerical model to explain experimental results of effective thermal conductivity measurements on unsaturated soils publication-title: Int. J. Thermophys. contributor: fullname: Potenza – volume: 21 start-page: 172 year: 2015 end-page: 176 ident: bib0016 article-title: Relationship Among Soil's Thermal Conductivity, Dry Density, Saturation and Temperature publication-title: J. Tianjin Chengjian Univ. contributor: fullname: Shunqun – volume: 64 start-page: 1285 year: 2000 end-page: 1290 ident: bib0025 article-title: Soil thermal conductivity: effects of density, moisture, salt concentration, and organic matter publication-title: Soil Sci. Soc. Am. J. contributor: fullname: Reeder – volume: 36 start-page: 1238 year: 2012 end-page: 1246 ident: bib0026 article-title: Experimental performance of borehole heat exchangers and grouting materials for ground source heat pumps publication-title: Int. J. Energy Res. contributor: fullname: Hoes – volume: 52 start-page: 1892 year: 2015 end-page: 1900 ident: bib0028 article-title: Evaluation of soil thermal conductivity models publication-title: Canad. Geotech. J. contributor: fullname: Singh – volume: 108 start-page: 233 year: 2016 end-page: 250 ident: bib0010 article-title: The performance analysis of a new thermal backfill material for underground power cable system publication-title: Appl. Therm. Eng. contributor: fullname: Cisek – year: 2006 ident: bib0006 article-title: Study On the Diabatic Process Between Backfill Material of Ground-Coupled Heat Pump and Underground contributor: fullname: Zhaohong – year: 2004 ident: bib0002 article-title: Experiment research of utilization of iron tailings synthesize forsterite refractory with secondary sintering method publication-title: Univ. Sci. Technol. Liaon. contributor: fullname: Zhongqiu – volume: 117 start-page: 172 year: 2017 ident: 10.1016/j.enbuild.2018.06.010_bib0027 article-title: Review of soil thermal conductivity and predictive models publication-title: Int. J. Therm. Sci. doi: 10.1016/j.ijthermalsci.2017.03.013 contributor: fullname: Zhang – volume: 42 start-page: 775 year: 2013 ident: 10.1016/j.enbuild.2018.06.010_bib0021 article-title: Methods and results of experimental researches of thermal conductivity of soils publication-title: Energy Procedia doi: 10.1016/j.egypro.2013.12.034 contributor: fullname: Nikiforova – volume: 15 start-page: 643 issue: 4 year: 2011 ident: 10.1016/j.enbuild.2018.06.010_bib0003 article-title: Emerging geothermal energy technologies publication-title: KSCE J. Civ. Eng. doi: 10.1007/s12205-011-0005-7 contributor: fullname: Johnston – volume: 24 start-page: 770 year: 2002 ident: 10.1016/j.enbuild.2018.06.010_bib0035 article-title: A calculation method of thermal conductivity of soils publication-title: J. Glaciol. Geocryol. contributor: fullname: weiming – volume: 36 start-page: 42 issue: 2 year: 2012 ident: 10.1016/j.enbuild.2018.06.010_bib0034 article-title: Influence of porosity and saturation on thermal properties of silty soils publication-title: J. Nanjing Forestry Univ. contributor: fullname: Haibo – volume: 70 start-page: 867 year: 2017 ident: 10.1016/j.enbuild.2018.06.010_bib0005 article-title: Ground-source pump system for heating and cooling: Review and thermodynamic approach publication-title: Renew. Sustainable Energy Rev. doi: 10.1016/j.rser.2016.11.268 contributor: fullname: Lucia – volume: 42 start-page: 775 year: 2013 ident: 10.1016/j.enbuild.2018.06.010_bib0015 article-title: Methods and results of experimental researches of thermal conductivity of soils publication-title: Energy Procedia doi: 10.1016/j.egypro.2013.12.034 contributor: fullname: Nikiforova – volume: 3 start-page: 225 issue: 4 year: 2016 ident: 10.1016/j.enbuild.2018.06.010_bib0023 article-title: Geothermal energy in loess publication-title: J. Env. Geotech. doi: 10.1680/jenge.15.00025 contributor: fullname: Bidarmaghz – volume: 21 start-page: 172 issue: 3 year: 2015 ident: 10.1016/j.enbuild.2018.06.010_bib0016 article-title: Relationship Among Soil's Thermal Conductivity, Dry Density, Saturation and Temperature publication-title: J. Tianjin Chengjian Univ. contributor: fullname: Shan – ident: 10.1016/j.enbuild.2018.06.010_bib0024 – start-page: 928 year: 2015 ident: 10.1016/j.enbuild.2018.06.010_bib0009 article-title: Experimental study on thermal conductivity of cement and lime improved loess, CICTP 2015 publication-title: Efficient Safe Green Multimod. Transp. contributor: fullname: Guo – volume: 16 start-page: 48 issue: 5 year: 1994 ident: 10.1016/j.enbuild.2018.06.010_bib0033 article-title: Experimental study on thermal conductivity of sands, the research institute of Wuhanite geochemistry of the Chinese academy of sciences publication-title: Chin. J. Geotech. Eng. contributor: fullname: Shanxiong – volume: 42 start-page: 775 year: 2013 ident: 10.1016/j.enbuild.2018.06.010_bib0031 article-title: Methods and results of experimental researches of thermal conductivity of soils publication-title: Energy Procedia doi: 10.1016/j.egypro.2013.12.034 contributor: fullname: Tetiana – volume: 70 start-page: 510 year: 2014 ident: 10.1016/j.enbuild.2018.06.010_bib0014 article-title: Numerical simulation of coupled heat, liquid water and water vapor in soils for heat dissipation of underground electrical power cables publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2014.05.033 contributor: fullname: Kroener – year: 2017 ident: 10.1016/j.enbuild.2018.06.010_bib0011 article-title: The effect of soil and cable backfill thermal conductivity on the temperature distribution in underground cable system contributor: fullname: Rerak – volume: 1 start-page: 38 year: 2000 ident: 10.1016/j.enbuild.2018.06.010_bib0001 article-title: Comprehensive utilization of tailings is an important way to realize sustainable development of mining industry in China publication-title: J. Finance Econ. Coll. contributor: fullname: Shengyuan – volume: 108 start-page: 233 year: 2016 ident: 10.1016/j.enbuild.2018.06.010_bib0010 article-title: The performance analysis of a new thermal backfill material for underground power cable system publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2016.07.102 contributor: fullname: Ocłoń – volume: 02 start-page: 171 year: 2005 ident: 10.1016/j.enbuild.2018.06.010_bib0019 article-title: Some studies on geotechnical engineering technology of ground heat pump system publication-title: Bull. Sci. Technol. contributor: fullname: etc – volume: 64 start-page: 1285 issue: 4 year: 2000 ident: 10.1016/j.enbuild.2018.06.010_bib0025 article-title: Soil thermal conductivity: effects of density, moisture, salt concentration, and organic matter publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj2000.6441285x contributor: fullname: Abuhamdeh – volume: 21 start-page: 172 issue: 3 year: 2015 ident: 10.1016/j.enbuild.2018.06.010_bib0036 article-title: Relationship among soil's thermal conductivity, dry density, saturation and temperature publication-title: J. Tianjin Chengjian Univ. contributor: fullname: Shan – year: 2006 ident: 10.1016/j.enbuild.2018.06.010_bib0006 contributor: fullname: Nairen – year: 1999 ident: 10.1016/j.enbuild.2018.06.010_bib0022 – volume: 67 start-page: 76 year: 2017 ident: 10.1016/j.enbuild.2018.06.010_bib0029 article-title: Evaluation of effective thermal conductivity of unsaturated granular materials using random network model publication-title: Geothermics doi: 10.1016/j.geothermics.2017.01.007 contributor: fullname: Lee – year: 2004 ident: 10.1016/j.enbuild.2018.06.010_bib0002 article-title: Experiment research of utilization of iron tailings synthesize forsterite refractory with secondary sintering method publication-title: Univ. Sci. Technol. Liaon. contributor: fullname: Zhongqiu – volume: 31 start-page: 343 issue: 6 year: 2010 ident: 10.1016/j.enbuild.2018.06.010_bib0007 article-title: Characteristics and research development of backfill materials in drill borehole for GSHP publication-title: Energy Technol. contributor: fullname: Songsong – volume: 03 start-page: 293 year: 1998 ident: 10.1016/j.enbuild.2018.06.010_bib0017 article-title: State and prospect of making use of ferreous tailings to research and produce wall materials publication-title: Hous. Mater. Appl. contributor: fullname: Jinzhong – volume: 52 start-page: 1892 issue: 11 year: 2015 ident: 10.1016/j.enbuild.2018.06.010_bib0028 article-title: Evaluation of soil thermal conductivity models publication-title: Canad. Geotech. J. doi: 10.1139/cgj-2014-0518 contributor: fullname: Barry-Macaulay – volume: 38 start-page: 68 year: 2017 ident: 10.1016/j.enbuild.2018.06.010_bib0030 article-title: A numerical model to explain experimental results of effective thermal conductivity measurements on unsaturated soils publication-title: Int. J. Thermophys. doi: 10.1007/s10765-017-2202-1 contributor: fullname: Bovesecchi – volume: 48 start-page: 636 year: 2013 ident: 10.1016/j.enbuild.2018.06.010_bib0008 article-title: Thermal properties of mine tailings and tire crumbs mixtures publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2013.07.019 contributor: fullname: Lee – start-page: 88 issue: 2 year: 2012 ident: 10.1016/j.enbuild.2018.06.010_bib0018 article-title: Situation of discharge and comprehensive utilization of iron tailings domestic and abroad publication-title: Concrete contributor: fullname: etc – volume: 39 start-page: 98 year: 2017 ident: 10.1016/j.enbuild.2018.06.010_bib0020 article-title: Experimental analysis of the basic engineering properties of expansive soils improved by iron tailings sand publication-title: J. Civ. Archit. Env. Eng. contributor: fullname: Hui – volume: 47 start-page: 1385 issue: 11 year: 2011 ident: 10.1016/j.enbuild.2018.06.010_bib0032 article-title: An empirical model for the thermal conductivity of compacted bentonite and a bentonite–sand mixture publication-title: Heat Mass Transfer doi: 10.1007/s00231-011-0800-1 contributor: fullname: Cho – volume: 57 start-page: 536 issue: 2 year: 2013 ident: 10.1016/j.enbuild.2018.06.010_bib0037 article-title: Effects of aggregate size on soil thermal conductivity: comparison of; measured and model-predicted data publication-title: Int. J. Heat Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2012.10.067 contributor: fullname: Usowicz Usowicz – volume: 49 start-page: 51 year: 2015 ident: 10.1016/j.enbuild.2018.06.010_bib0004 article-title: Ontology of ground source heat pump publication-title: Renewable Sustainable Energy Rev. doi: 10.1016/j.rser.2015.04.021 contributor: fullname: Zhang – volume: 95 issue: 352-370 year: 2015 ident: 10.1016/j.enbuild.2018.06.010_bib0013 article-title: Numerical simulation of heat dissipation processes in underground power cable system situated in thermal backfill and buried in a multilayered soil publication-title: Energy Convers. Manage. contributor: fullname: Ocłon – volume: 38 start-page: 656 year: 2017 ident: 10.1016/j.enbuild.2018.06.010_bib0012 article-title: Effect of moisture content and dry density on thermal parameters of loess publication-title: Rock Soil Mech. contributor: fullname: Wanjun – volume: 36 start-page: 1238 issue: 13 year: 2012 ident: 10.1016/j.enbuild.2018.06.010_bib0026 article-title: Experimental performance of borehole heat exchangers and grouting materials for ground source heat pumps publication-title: Int. J. Energy Res. doi: 10.1002/er.1898 contributor: fullname: Desmedt |
SSID | ssj0006571 |
Score | 2.4059236 |
Snippet | •The thermal conductivity of iron tailings is higher than that of loess at same condition.•Mixtures of tailings and loess present higher thermal conductivity... Iron tailings are the remains of solid waste after iron ore concentrates are selected by mineral processing technology. For a long time, iron tailings are... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Publisher |
StartPage | 1 |
SubjectTerms | Backfill Backfill material Concentrates (ores) Energy conservation Engineering research Formulas (mathematics) Functional equations Geothermal energy Ground source heat pump Heat conductivity Heat exchangers Heat pumps Iron Iron ores Iron tailings Loess Mine tailings Mineral processing Moisture content Pumps Solid wastes Tailings Thermal conductivity Thermodynamic efficiency Waste disposal Waste materials Water content |
Title | The experimental study on thermal conductivity of backfill material of ground source heat pump based on iron tailings |
URI | https://dx.doi.org/10.1016/j.enbuild.2018.06.010 https://www.proquest.com/docview/2116407560 |
Volume | 174 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB60XvQgPrFaSw5et9002SR7lGKpD0R8gLew2SRQrdui9epvN7MPXwiCxw1JWCaTb2aSmS8ARz4RxvhURCqoQ8R5zCKVURFZpYSMc8aYKxNkL8X4jp_dJ_dLMGxqYTCtssb-CtNLtK5b-rU0-_PJpH8Ts6BsyIYuGUs4lcuwEszRQLVg5fj0fHz5AcgiKeMu7B_hgM9Cnv5DDxkGJlPkDKUVkyfW0v5uon6AdWmBRhuwXruO5Lj6u01YcsUWrH0hFNyG17Dq5CtpPynpY8msIOjoPYWGEP8ixWv5ZgSZeWKy_NFPplMSXNdSG7ERaz0KS6qTfYJ4TeZh3QnaPIuzYXEcweRTPGjfgbvRye1wHNUPK0Q5k3wRZU6lXjnrM8pc5jnniYsz4ZnNkzxNnI1lauRgYFjKBTW5lIlgTnhqvAo9ONuFVjEr3B4QYVWa421siHx4ljKTyoGyOVMyTEadbUOvkaWeV_wZukkse9C18DUKX2OCHY3boBqJ62-KoAPG_zW006yQrnfiiw4BLt5VBsdu__8zH8AqflW5ZR1oLZ5f3WFwRhamC8u9N9oNKje8vrjq1qr3DmN24jc |
link.rule.ids | 315,783,787,4509,24128,27936,27937,45597,45691 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTwIxEG4QDurB-Iwoag9eV3Zpt48jIRoQ5CIk3Jrttk1QXIjC_7ezD18xMfHabZvNzPTrTDvzFaFrFzOtnWSB8OYQUBqSQCQRC4wQjIcpIcTmCbJj1p_S-1k8q6FeVQsDaZUl9heYnqN12dIupdlezeftx5B4YwM2dE5ITCO-hRreG5B-dTa6g2F__AHILM7jLugfwIDPQp720w0wDMwXwBkaFUyeUEv7-xb1A6zzHehuH-2VriPuFn93gGo2O0S7XwgFj9DGax1_Je3HOX0sXmYYHL0X3-DjX6B4zd-MwEuHdZI-u_ligb3rmlsjNEKtR2ZwcbKPAa_xyusdw55nYDYojsOQfAoH7cdoenc76fWD8mGFICWcroPECumENS6JiE0cpTS2YcIcMWmcytiakEvNOx1NJGWRTjmPGbHMRdoJ34OSE1TPlpk9RZgZIVO4jfWRD00k0ZJ3hEmJ4H6yyJomuqlkqVYFf4aqEsueVCl8BcJXkGAXhU0kKomrb4agPMb_NbRVaUiVK_FN-QAX7iq9Y3f2_5mv0HZ_8jBSo8F4eI524EuRZ9ZC9fXrxl54x2StL0vDewfJYuKW |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+experimental+study+on+thermal+conductivity+of+backfill+material+of+ground+source+heat+pump+based+on+iron+tailings&rft.jtitle=Energy+and+buildings&rft.au=Wan%2C+Rong&rft.au=Kong%2C+Dequan&rft.au=Kang%2C+Jiayuan&rft.au=Yin%2C+Tianyu&rft.date=2018-09-01&rft.pub=Elsevier+B.V&rft.issn=0378-7788&rft.volume=174&rft.spage=1&rft.epage=12&rft_id=info:doi/10.1016%2Fj.enbuild.2018.06.010&rft.externalDocID=S0378778817335417 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-7788&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-7788&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-7788&client=summon |