Confidence interval estimation of population means subject to order restrictions using resampling procedures

This article addresses the problem of constructing confidence intervals for ordered population means of k independent normal populations using jackknife and bootstrap methodologies. The goal is to achieve the nominal coverage probability with width of the interval no bigger than that of the standard...

Full description

Saved in:
Bibliographic Details
Published inStatistics & probability letters Vol. 31; no. 4; pp. 255 - 265
Main Author Peddada, Shyamal Das
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.02.1997
Elsevier
SeriesStatistics & Probability Letters
Subjects
Online AccessGet full text
ISSN0167-7152
1879-2103
DOI10.1016/S0167-7152(96)00037-5

Cover

Abstract This article addresses the problem of constructing confidence intervals for ordered population means of k independent normal populations using jackknife and bootstrap methodologies. The goal is to achieve the nominal coverage probability with width of the interval no bigger than that of the standard confidence interval centered at the unrestricted maximum likelihood estimator (UMLE). Confidence intervals considered in this article are based on the point estimator introduced in Hwang and Peddada (1994). The methodology described in this article is applicable to a reasonably broad class of order restrictions. It is seen that the bootstrap procedures such as the percentile method, the BC method and the BC a method fail rather badly, while the confidence intervals based on weighted jackknife performs very well. Simulation studies suggest that the new procedure is robust even if the data are obtained from heavy tailed distributions such as t distribution with very small degrees of freedom.
AbstractList This article addresses the problem of constructing confidence intervals for ordered population means of k independent normal populations using jackknife and bootstrap methodologies. The goal is to achieve the nominal coverage probability with width of the interval no bigger than that of the standard confidence interval centered at the unrestricted maximum likelihood estimator (UMLE). Confidence intervals considered in this article are based on the point estimator introduced in Hwang and Peddada (1994). The methodology described in this article is applicable to a reasonably broad class of order restrictions. It is seen that the bootstrap procedures such as the percentile method, the BC method and the BC a method fail rather badly, while the confidence intervals based on weighted jackknife performs very well. Simulation studies suggest that the new procedure is robust even if the data are obtained from heavy tailed distributions such as t distribution with very small degrees of freedom.
This article addresses the problem of constructing confidence intervals for ordered population means of k independent normal populations using jackknife and bootstrap methodologies. The goal is to achieve the nominal coverage probability with width of the interval no bigger than that of the standard confidence interval centered at the unrestricted maximum likelihood estimator (UMLE). Confidence intervals considered in this article are based on the point estimator introduced in Hwang and Peddada (1994). The methodology described in this article is applicable to a reasonably broad class of order restrictions. It is seen that the bootstrap procedures such as the percentile method, the BC method and the BCa method fail rather badly, while the confidence intervals based on weighted jackknife performs very well. Simulation studies suggest that the new procedure is robust even if the data are obtained from heavy tailed distributions such as t distribution with very small degrees of freedom.
Author Peddada, Shyamal Das
Author_xml – sequence: 1
  givenname: Shyamal Das
  surname: Peddada
  fullname: Peddada, Shyamal Das
  organization: Division of Statistics, University of Virginia, Charlottesville, VA 22903, USA
BackLink http://econpapers.repec.org/article/eeestapro/v_3a31_3ay_3a1997_3ai_3a4_3ap_3a255-265.htm$$DView record in RePEc
BookMark eNqFUcFuGyEQRVUi1XHzCZE4todNgV3Aqx6qykrSRpFySHJGLMymWOtlBdiS_76zdtpDLzm8AUbznob3LsjZGEcg5Iqza864-vqERVeaS_G5VV8YY7Wu5Aey4CvdVoKz-ows_o18JBc5b3BISMkXZFjHsQ8eRgc0jAXS3g4UcglbW0IcaezpFKfdcHptwY6Z5l23AVdoiTQmD4kmJKTg5pFMdzmMr3PLbqdhvk4pOvA77Hwi570dMly-nUvycnvzvP5ZPTze_Vr_eKhcrZtStSBAKe07xTTv285p1nCUEKoTTSPEivGGddYLpnrPtV1Bqxvf2L63tZS2rpfk_qSbYAJnpoS_SQcDgHtaXMfsTW1rjuWA4G2r8QiIBjEh0BsjlDS_yxbFvp3EXIo5J-iNC-VoR0k2DIYzM6dgjimY2WLTKnNMwUhky__Yf7d5j_f9xAP0aR8gmezCnJIPCb03PoZ3FP4Aov2kGg
CitedBy_id crossref_primary_10_1080_03610911003650367
crossref_primary_10_1002_qre_400
crossref_primary_10_1371_journal_pone_0271163
crossref_primary_10_1007_s00477_015_1111_8
crossref_primary_10_1524_stnd_21_4_367_25347
crossref_primary_10_1016_j_jspi_2012_04_018
Cites_doi 10.2307/1267698
10.1214/aos/1176325358
10.1214/aoms/1177698418
10.1016/0167-7152(92)90288-G
10.1214/aoms/1177700384
10.1214/aos/1176346594
10.2307/2289144
ContentType Journal Article
Copyright 1997
Copyright_xml – notice: 1997
DBID AAYXX
CITATION
DKI
X2L
DOI 10.1016/S0167-7152(96)00037-5
DatabaseName CrossRef
RePEc IDEAS
RePEc
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DKI
  name: RePEc IDEAS
  url: http://ideas.repec.org/
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Mathematics
EISSN 1879-2103
EndPage 265
ExternalDocumentID eeestapro_v_3a31_3ay_3a1997_3ai_3a4_3ap_3a255_265_htm
10_1016_S0167_7152_96_00037_5
S0167715296000375
GroupedDBID --K
--M
-~X
.~1
0R~
123
1B1
1OL
1RT
1~.
1~5
29Q
4.4
457
4G.
5VS
6OB
7-5
71M
8P~
9JN
9JO
AAAKF
AAAKG
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
AAYJJ
ABAOU
ABEHJ
ABFNM
ABJNI
ABMAC
ABUCO
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADGUI
ADMUD
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
APLSM
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HAMUX
HMJ
HVGLF
HX~
HZ~
H~9
IHE
J1W
KOM
LY1
M26
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDS
SES
SEW
SME
SPC
SPCBC
SSB
SSD
SSW
SSZ
T5K
TN5
WUQ
XPP
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
0R
1
8P
ABFLS
ABPTK
ADALY
DKI
G-
HX
HZ
IPNFZ
K
M
STF
X
X2L
ID FETCH-LOGICAL-c374t-9e2e667db6071f9bc7041ced26b2442280140bad206fd17a8e974d4affa355a33
IEDL.DBID .~1
ISSN 0167-7152
IngestDate Wed Aug 18 03:10:16 EDT 2021
Tue Jul 01 02:28:31 EDT 2025
Thu Apr 24 22:58:09 EDT 2025
Fri Feb 23 02:29:00 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Confidence intervals
Coverage probability
Order restriction
Jackknife
Node
Bootstrap
Pivot
Standard error
Weighted jackknife
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c374t-9e2e667db6071f9bc7041ced26b2442280140bad206fd17a8e974d4affa355a33
PageCount 11
ParticipantIDs repec_primary_eeestapro_v_3a31_3ay_3a1997_3ai_3a4_3ap_3a255_265_htm
crossref_citationtrail_10_1016_S0167_7152_96_00037_5
crossref_primary_10_1016_S0167_7152_96_00037_5
elsevier_sciencedirect_doi_10_1016_S0167_7152_96_00037_5
ProviderPackageCode CITATION
AAYXX
PublicationCentury 1900
PublicationDate 1997-02-01
PublicationDateYYYYMMDD 1997-02-01
PublicationDate_xml – month: 02
  year: 1997
  text: 1997-02-01
  day: 01
PublicationDecade 1990
PublicationSeriesTitle Statistics & Probability Letters
PublicationTitle Statistics & probability letters
PublicationYear 1997
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Efron (BIB1) 1982
Hinkley (BIB3) 1977; 19
Efron (BIB2) 1987; 82
Miller (BIB6) 1964; 35
Hwang (BIB4) 1985; 13
Hwang, Peddada (BIB5) 1994; 22
Miller (BIB7) 1968; 39
Serfling (BIB10) 1980
Robertson, Wright, Dykstra (BIB9) 1988
Peddada, Patwardhan (BIB8) 1992; 15
Miller (10.1016/S0167-7152(96)00037-5_BIB7) 1968; 39
Serfling (10.1016/S0167-7152(96)00037-5_BIB10) 1980
Robertson (10.1016/S0167-7152(96)00037-5_BIB9) 1988
Hinkley (10.1016/S0167-7152(96)00037-5_BIB3) 1977; 19
Hwang (10.1016/S0167-7152(96)00037-5_BIB4) 1985; 13
Efron (10.1016/S0167-7152(96)00037-5_BIB2) 1987; 82
Peddada (10.1016/S0167-7152(96)00037-5_BIB8) 1992; 15
Efron (10.1016/S0167-7152(96)00037-5_BIB1) 1982
Hwang (10.1016/S0167-7152(96)00037-5_BIB5) 1994; 22
Miller (10.1016/S0167-7152(96)00037-5_BIB6) 1964; 35
References_xml – volume: 35
  start-page: 1594
  year: 1964
  end-page: 1605
  ident: BIB6
  article-title: A trustworthy Jackknife
  publication-title: Ann. Math. Statist.
– volume: 39
  start-page: 567
  year: 1968
  end-page: 582
  ident: BIB7
  article-title: Jackknife variances
  publication-title: Ann. Math. Statist.
– volume: 82
  start-page: 171
  year: 1987
  end-page: 200
  ident: BIB2
  article-title: Better bootstrap confidence intervals (with Discussion)
  publication-title: J. Amer. Statist. Assoc.
– volume: 19
  start-page: 285
  year: 1977
  end-page: 292
  ident: BIB3
  article-title: Jackknifing in unbalanced situations
  publication-title: Technometrics
– volume: 22
  start-page: 67
  year: 1994
  end-page: 93
  ident: BIB5
  article-title: Confidence interval estimation subject to order restrictions
  publication-title: Ann. Statist.
– year: 1988
  ident: BIB9
  article-title: Order restricted statistical inference
– volume: 13
  start-page: 295
  year: 1985
  end-page: 314
  ident: BIB4
  article-title: Universal domination and stochastic domination
  publication-title: Ann. Statist.
– year: 1982
  ident: BIB1
  article-title: The Jackknife, the Bootstrap and other Resampling Plans
– volume: 15
  start-page: 77
  year: 1992
  end-page: 83
  ident: BIB8
  article-title: Qualms about
  publication-title: Statist. Probab. Lett.
– year: 1980
  ident: BIB10
  article-title: Approximation theorems of Mathematical Statistics
– volume: 19
  start-page: 285
  year: 1977
  ident: 10.1016/S0167-7152(96)00037-5_BIB3
  article-title: Jackknifing in unbalanced situations
  publication-title: Technometrics
  doi: 10.2307/1267698
– volume: 22
  start-page: 67
  year: 1994
  ident: 10.1016/S0167-7152(96)00037-5_BIB5
  article-title: Confidence interval estimation subject to order restrictions
  publication-title: Ann. Statist.
  doi: 10.1214/aos/1176325358
– volume: 39
  start-page: 567
  year: 1968
  ident: 10.1016/S0167-7152(96)00037-5_BIB7
  article-title: Jackknife variances
  publication-title: Ann. Math. Statist.
  doi: 10.1214/aoms/1177698418
– volume: 15
  start-page: 77
  year: 1992
  ident: 10.1016/S0167-7152(96)00037-5_BIB8
  article-title: Qualms about BCa bootstrap confidence intervals
  publication-title: Statist. Probab. Lett.
  doi: 10.1016/0167-7152(92)90288-G
– year: 1988
  ident: 10.1016/S0167-7152(96)00037-5_BIB9
– volume: 35
  start-page: 1594
  year: 1964
  ident: 10.1016/S0167-7152(96)00037-5_BIB6
  article-title: A trustworthy Jackknife
  publication-title: Ann. Math. Statist.
  doi: 10.1214/aoms/1177700384
– volume: 13
  start-page: 295
  year: 1985
  ident: 10.1016/S0167-7152(96)00037-5_BIB4
  article-title: Universal domination and stochastic domination
  publication-title: Ann. Statist.
  doi: 10.1214/aos/1176346594
– volume: 82
  start-page: 171
  year: 1987
  ident: 10.1016/S0167-7152(96)00037-5_BIB2
  article-title: Better bootstrap confidence intervals (with Discussion)
  publication-title: J. Amer. Statist. Assoc.
  doi: 10.2307/2289144
– year: 1980
  ident: 10.1016/S0167-7152(96)00037-5_BIB10
– year: 1982
  ident: 10.1016/S0167-7152(96)00037-5_BIB1
SSID ssj0002551
Score 1.4778109
Snippet This article addresses the problem of constructing confidence intervals for ordered population means of k independent normal populations using jackknife and...
This article addresses the problem of constructing confidence intervals for ordered population means of k independent normal populations using jackknife and...
SourceID repec
crossref
elsevier
SourceType Index Database
Enrichment Source
Publisher
StartPage 255
SubjectTerms Bootstrap
Bootstrap Confidence intervals Coverage probability Jackknife Node Order restriction Pivot Standard error Weighted jackknife
Confidence intervals
Coverage probability
Jackknife
Node
Order restriction
Pivot
Standard error
Weighted jackknife
Title Confidence interval estimation of population means subject to order restrictions using resampling procedures
URI https://dx.doi.org/10.1016/S0167-7152(96)00037-5
http://econpapers.repec.org/article/eeestapro/v_3a31_3ay_3a1997_3ai_3a4_3ap_3a255-265.htm
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELYqWGBAPMWz8sAAQ2iTOHEyokJViGDgIbpZtuNAJGijNkVi4bdz5yQFBlSJwUl0yjmRz_Kdk---I-TYaBWBmTE5JoYNSqSlE3lKOoqlyI6lMx1g7vDNbTh4ZNfDYNgivSYXBmGV9dpfrel2ta4lnXo0O0Wed-4RQM9d_G9oWVQw0ZwxjnP97PMb5gEhs9vwe-Pd31k8VQ9WeBKHp7YTJ_jLPy1PTGH0D9_TXydrddBIz6v32iAtM9okqzdzxtXpJlnBqLEiXd4ir5jHV1ULpbkFNYI20mlUeYp0nNFiXriLvhlwV3Q6U_hJhpZjauk4KRbtmOQ27WFKER7_jCKJCHS4tI4vnYFkmzz2Lx96A6cuq-Bon7PSiY1nwpCnCqnlslhp3mUuqHihAl-P9Diw6VIy9bphlrpcRgb2HCmTWSYhOJG-v0OWRuOR2SWUZVzFnjGZhDjGh-s4kB7XPmN-qlIV7RHWDKbQNec4lr54FT_AZSEXaAMRI8AObCCCPXI2Vysq0o1FClFjKfFr9ghwDItUe9ay8wcZA8MrYRTFu_Cl78LhAxoCcuCUQ2PQCmgwtYQXBuKlfNv__wsckJWKEhchModkqZzMzBEEOqVq25ncJsvnV8ngFs_J3VMC0ovk6guWV_vi
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED7xGIAB8RTl6YEBhlCSOK8RVaDyKAtFYrNsx4FIfURtisTCb-fOSUsZEBKDE8vKOZbP8p2T774DODVaxahmCo5J8IASa-nEnpKO4imxY-lMBxQ73HkM28_87iV4WYDWNBaGYJX13l_t6Xa3rlua9Ww2izxvPhGAPnLpv6FlUQkWYZkHeMdFffH5jfNAn9mdEnzT499hPFUXtvEsCc9tL07wm4FaHpnC6Dnjc7MB67XXyK6qgW3CghlswVpnRrk63oJVchsr1uVt6FEgX5UulOUW1YjSxKdRBSqyYcaKWeYu1jdor9h4ouibDCuHzPJxMsraMcpt3MOYET7-lZokQdCxai1fOsGWHXi-ue622k6dV8HRfsRLJzGeCcMoVcQtlyVKR5fcRREvVGjsiR8HT11Kpt5lmKVuJGODh46UyyyT6J1I39-FpcFwYPaA8SxSiWdMJtGR8bGeBNKLtM-5n6pUxQ3g08kUuiYdp9wXPTGHLgsjQToQCSHsUAciaMDFTKyoWDf-EoinmhI_lo9Ay_CXaMtqdvYiY3B6Jc6ieBe-9F28fGAhRA7eciwcS4EFl5bwwkC8lf39_w_gBFba3c6DeLh9vD-A1Yofl_Ayh7BUjibmCL2eUh3bVf0Fner62Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Confidence+interval+estimation+of+population+means+subject+to+order+restrictions+using+resampling+procedures&rft.jtitle=Statistics+%26+probability+letters&rft.au=Peddada%2C+Shyamal+Das&rft.date=1997-02-01&rft.pub=Elsevier+B.V&rft.issn=0167-7152&rft.eissn=1879-2103&rft.volume=31&rft.issue=4&rft.spage=255&rft.epage=265&rft_id=info:doi/10.1016%2FS0167-7152%2896%2900037-5&rft.externalDocID=S0167715296000375
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-7152&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-7152&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-7152&client=summon