Data-driven model development to predict the aging of a Li-ion battery pack in electric vehicles representative conditions
•A generic aging model of lithium-ion batteries has been developed and presented.•This model is independent of the aging mechanism's knowledge.•The calibration of the model is easy and fully automated.•The model has been validated on several profiles including PHEV. An empirical generic Li-ion...
Saved in:
Published in | Journal of energy storage Vol. 39; p. 102592 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.07.2021
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •A generic aging model of lithium-ion batteries has been developed and presented.•This model is independent of the aging mechanism's knowledge.•The calibration of the model is easy and fully automated.•The model has been validated on several profiles including PHEV.
An empirical generic Li-ion aging model, compatible with a large number of aging mechanisms without their a priori knowledge has been developed as well as a calibration methodology allowing its fast and automated parameter setting. This model has been applied to simulate the aging behavior of a 26 Ah cell. To train this model, a large aging test campaign has been conducted dedicated to both calibration and validation purposes. This one takes into account calendar, cycling, and their combinations. Based on the design of the aging campaign it is able to account for the effect of State Of Charge, temperature and current on aging. As its calibration is based on an automated process, it can be trained automatically and does not need expert knowledge for operation. Simulation data are validated to a 2% error in comparison to experimental data and is then validated for automotive applications. |
---|---|
AbstractList | •A generic aging model of lithium-ion batteries has been developed and presented.•This model is independent of the aging mechanism's knowledge.•The calibration of the model is easy and fully automated.•The model has been validated on several profiles including PHEV.
An empirical generic Li-ion aging model, compatible with a large number of aging mechanisms without their a priori knowledge has been developed as well as a calibration methodology allowing its fast and automated parameter setting. This model has been applied to simulate the aging behavior of a 26 Ah cell. To train this model, a large aging test campaign has been conducted dedicated to both calibration and validation purposes. This one takes into account calendar, cycling, and their combinations. Based on the design of the aging campaign it is able to account for the effect of State Of Charge, temperature and current on aging. As its calibration is based on an automated process, it can be trained automatically and does not need expert knowledge for operation. Simulation data are validated to a 2% error in comparison to experimental data and is then validated for automotive applications. An empirical generic Li-ion aging model, compatible with a large number of aging mechanisms without their a priori knowledge has been developed as well as a calibration methodology allowing its fast and automated parameter setting. This model has been applied to simulate the aging behavior of a 26 Ah cell. To train this model, a large aging test campaign has been conducted dedicated to both calibration and validation purposes. This one takes into account calendar, cycling, and their combinations. Based on the design of the aging campaign it is able to account for the effect of State Of Charge, temperature and current on aging. As its calibration is based on an automated process, it can be trained automatically and does not need expert knowledge for operation. Simulation data are validated to a 2% error in comparison to experimental data and is then validated for automotive applications. |
ArticleNumber | 102592 |
Author | Belaïd, Sofiane Mingant, Rémy Bernard, Julien Petit, Martin |
Author_xml | – sequence: 1 givenname: Rémy surname: Mingant fullname: Mingant, Rémy email: remy.mingant@ifp.fr – sequence: 2 givenname: Martin surname: Petit fullname: Petit, Martin – sequence: 3 givenname: Sofiane surname: Belaïd fullname: Belaïd, Sofiane – sequence: 4 givenname: Julien surname: Bernard fullname: Bernard, Julien |
BackLink | https://ifp.hal.science/hal-03312439$$DView record in HAL |
BookMark | eNp9kMtOAyEUhompibX2AdyxdTF1uMyFuGrqpSZN3HThjlA401Kn0ACZpD69NDUuXXEg5_vP4btFI-cdIHRPyhkpSf24n0FMM1pSku-0EvQKjSmraEEq1o7-avp5g6Yx7ssyQxUhoh6j72eVVGGCHcDhgzfQYwMD9P54AJdw8vgYwFidyx1gtbVui32HFV7ZwnqHNyolCCd8VPoLW4ehB52C1XiAndU9RBwgJ8QcplIegrV3xqaMxjt03ak-wvT3nKD168t6sSxWH2_vi_mq0KzhqRCi5l1eeSNaYKrmNWlawhsu2KbRVdlpMNAyaGrKwBglGtaKruJK8Y53LWET9HCJ3aleHoM9qHCSXlm5nK_k-a1kjFDOxHDuJZdeHXyMAbo_gJTyrFruZVYtz6rlRXVmni4M5D8MFoKM2oLLa9mQXUjj7T_0D9WLiSs |
CitedBy_id | crossref_primary_10_1016_j_est_2024_110560 crossref_primary_10_1109_ACCESS_2023_3296440 crossref_primary_10_1016_j_est_2022_105183 crossref_primary_10_1016_j_apenergy_2023_122481 crossref_primary_10_3390_batteries9070385 crossref_primary_10_3390_wevj14040102 crossref_primary_10_1016_j_est_2022_104537 crossref_primary_10_1109_ACCESS_2024_3376736 crossref_primary_10_3390_en16052484 crossref_primary_10_3390_en15124186 |
Cites_doi | 10.1016/j.jpowsour.2013.08.053 10.1149/1.3043429 10.1016/j.jpowsour.2018.05.073 10.1016/j.ssi.2018.02.038 10.1016/j.jpowsour.2010.11.134 10.1016/j.electacta.2016.02.109 10.1016/j.microrel.2018.06.113 10.1016/j.jpowsour.2017.05.121 10.3390/wevj8020388 10.1016/j.jpowsour.2017.10.092 10.1016/S0378-7753(01)00783-2 10.1016/j.apenergy.2016.03.119 10.1016/j.jpowsour.2018.02.063 10.1016/j.jpowsour.2013.06.130 10.1016/j.apenergy.2019.113343 10.1016/j.jpowsour.2018.08.064 10.1016/j.rser.2019.109254 10.1016/j.jpowsour.2017.05.110 10.1016/j.energy.2017.11.130 10.1016/j.jpowsour.2018.07.018 10.2516/ogst/2013106 10.1016/j.rser.2015.11.042 10.1016/j.jpowsour.2016.05.040 10.1016/j.energy.2019.04.070 10.1149/04513.0073ecst 10.1016/j.apenergy.2016.08.118 10.1016/j.jpowsour.2014.07.003 10.1016/j.jpowsour.2016.06.036 10.1109/VPPC.2011.6043002 10.1016/j.pecs.2019.01.001 10.1016/j.jpowsour.2018.08.030 10.1016/j.jpowsour.2012.05.012 10.1016/j.energy.2018.06.116 |
ContentType | Journal Article |
Copyright | 2021 Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: 2021 – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | AAYXX CITATION 1XC VOOES |
DOI | 10.1016/j.est.2021.102592 |
DatabaseName | CrossRef Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science Environmental Sciences |
EISSN | 2352-1538 |
ExternalDocumentID | oai_HAL_hal_03312439v1 10_1016_j_est_2021_102592 S2352152X21003352 |
GroupedDBID | --M 0R~ 457 4G. 7-5 AACTN AAEDT AAEDW AAHCO AAIAV AAKOC AALRI AAOAW AARIN AAXUO ABJNI ABMAC ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE AEBSH AFKWA AFTJW AGHFR AGUBO AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ APLSM AXJTR BELTK BJAXD BKOJK BLXMC EBS EFJIC EFLBG EJD FDB FIRID FYGXN KOM O9- OAUVE ROL SPC SPCBC SSB SSD SSR SST SSZ T5K ~G- AAQFI AAXKI AAYXX AFJKZ AKRWK CITATION 1XC VOOES |
ID | FETCH-LOGICAL-c374t-9964f000b98e3a646178147493b7c50fcede83e7623edda97389f54aa4f4f813 |
IEDL.DBID | AIKHN |
ISSN | 2352-152X |
IngestDate | Tue Oct 15 15:30:45 EDT 2024 Thu Sep 26 17:22:10 EDT 2024 Fri Feb 23 02:44:19 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Aging Generic model Easy training Li-ion battery State of health State of Health Generic Model |
Language | English |
License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c374t-9964f000b98e3a646178147493b7c50fcede83e7623edda97389f54aa4f4f813 |
ORCID | 0000-0002-9969-1686 0000-0002-4226-6689 |
OpenAccessLink | https://ifp.hal.science/hal-03312439 |
ParticipantIDs | hal_primary_oai_HAL_hal_03312439v1 crossref_primary_10_1016_j_est_2021_102592 elsevier_sciencedirect_doi_10_1016_j_est_2021_102592 |
PublicationCentury | 2000 |
PublicationDate | July 2021 2021-07-00 2021-07 |
PublicationDateYYYYMMDD | 2021-07-01 |
PublicationDate_xml | – month: 07 year: 2021 text: July 2021 |
PublicationDecade | 2020 |
PublicationTitle | Journal of energy storage |
PublicationYear | 2021 |
Publisher | Elsevier Ltd Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
References | Bian, Liu, Yan (bib0005) 2019; 177 Grolleau, Molina-Concha, Delaille, Revel, Bernard, Pelissier, Peter (bib0003) 2013; 45 Li, Liu, Foley, Zülke, Berecibar, Nanini-Maury, van Mierlo, Hoster (bib0014) 2019; 113 Redondo-Iglesias, Venet, Pelissier (bib0008) 2018; 88-90 R Development Core Team Baghdadi, Briat, Gyan, Vinassa (bib0026) 2016; 194 Berecibar, Gandiaga, Villarreal, Omar, van Mierlo, van den Bossche (bib0006) 2016; 56 Gyan, Aubret, Hafsaoui, Sellier, Bourlot, Zinola, Badin (bib0002) 2013; 68 Lucu, Martinez-Laserna, Gandiaga, Liu, Camblong, Widanage, Marco (bib0036) 2020; 30 Dubarry, Berecibar, Devie, Anseán, Omar, Villarreal (bib0015) 2017; 360 Gao, Jiang, Zhang, Zhang, Jiang (bib0029) 2018; 400 Lin, Hao, Liu, Jia (bib0031) 2018; 400 Barai, Uddin, Dubarry, Somerville, McGordon, Jennings, Bloom (bib0013) 2019; 72 Maher, Yazami (bib0016) 2014; 247 Gandoman, Jaguemont, Goutam, Gopalakrishnan, Firouz, Kalogiannis, Omar, van Mierlo (bib0001) 2019; 251 Goh, Park, Seo, Kim, Kim (bib0011) 2018; 159 Mathieu, Baghdadi, Briat, Gyan, Vinassa (bib0034) 2017; 141 Ben-Marzouk, Chaumond, Redondo-Iglesias, Montaru, Pélissier (bib0038) 2016; 8 Petit, Prada, Sauvant-Moynot (bib0021) 2016; 172 Baghdadi, Briat, Delétage, Gyan, Vinassa (bib0025) 2016; 325 Cannarella, Arnold (bib0017) 2014; 269 Ecker, Gerschler, Vogel, Käbitz, Hust, Dechent, Sauer (bib0024) 2012; 215 Lucu, Martinez-Laserna, Gandiaga, Liu, Camblong, Widanage, Marco (bib0035) 2020; 30 Waldmann, Hogg, Wohlfahrt-Mehrens (bib0027) 2018; 384 Wang, Liu, Hicks-Garner, Sherman, Soukiazian, Verbrugge, Tataria, Musser, Finamore (bib0022) 2011; 196 Yang, Leng, Zhang, Ge, Wang (bib0030) 2017; 360 Chicago. Safari, Morcrette, Teyssot, Delacourt (bib0020) 2009; 156 Legrand, Knosp, Desprez, Lapicque, Raël (bib0032) 2014; 245 Liu, Xie, Pan, Wang, Li, Zheng (bib0019) 2018; 320 Belaid, Mingant, Petit, Martin, Bernard (bib0004) 2017 Li, Abdel-Monem, Gopalakrishnan, Berecibar, Nanini-Maury, Omar, van den Bossche, van Mierlo (bib0007) 2018; 373 R Foundation for Statistical Computing. ISBN: 3-900051-07-0. Lucu, Martinez-Laserna, Gandiaga, Camblong (bib0012) 2018; 401 Bloom, Cole, Sohn, Jones, Polzin, Battaglia, Henriksen, Motloch, Richardson, Unkelhaeuser, Ingersoll, Case (bib0023) 2001; 101 Yang, Ge, Liu, Leng, Wang (bib0028) 2018; 395 Di Domenico, Pognant-Gros, Petit, Creff (bib0010) 2015 Mingant, Bernard, Sauvant-Moynot (bib0009) 2016; 183 Prada E., Di Dominico D., Creff Y., Bernard J., Sauvant-Moynot V. (eds.) (2011) Bai, Wang (bib0033) 2016; 323 Siemens Digital Industry Software (2017) Simcenter Amesim. Available at: https://www.plm.automation.siemens.com/global/fr/products/simcenter/simcenter-amesim.html. Gyan (10.1016/j.est.2021.102592_bib0002) 2013; 68 Di Domenico (10.1016/j.est.2021.102592_bib0010) 2015 Yang (10.1016/j.est.2021.102592_bib0028) 2018; 395 Bian (10.1016/j.est.2021.102592_bib0005) 2019; 177 Safari (10.1016/j.est.2021.102592_bib0020) 2009; 156 Yang (10.1016/j.est.2021.102592_bib0030) 2017; 360 Mathieu (10.1016/j.est.2021.102592_bib0034) 2017; 141 Belaid (10.1016/j.est.2021.102592_bib0004) 2017 Dubarry (10.1016/j.est.2021.102592_bib0015) 2017; 360 Li (10.1016/j.est.2021.102592_bib0014) 2019; 113 Redondo-Iglesias (10.1016/j.est.2021.102592_bib0008) 2018; 88-90 Baghdadi (10.1016/j.est.2021.102592_bib0025) 2016; 325 Maher (10.1016/j.est.2021.102592_bib0016) 2014; 247 Liu (10.1016/j.est.2021.102592_bib0019) 2018; 320 Wang (10.1016/j.est.2021.102592_bib0022) 2011; 196 Berecibar (10.1016/j.est.2021.102592_bib0006) 2016; 56 Bai (10.1016/j.est.2021.102592_bib0033) 2016; 323 Lucu (10.1016/j.est.2021.102592_bib0036) 2020; 30 Waldmann (10.1016/j.est.2021.102592_bib0027) 2018; 384 Bloom (10.1016/j.est.2021.102592_bib0023) 2001; 101 Baghdadi (10.1016/j.est.2021.102592_bib0026) 2016; 194 Barai (10.1016/j.est.2021.102592_bib0013) 2019; 72 Legrand (10.1016/j.est.2021.102592_bib0032) 2014; 245 10.1016/j.est.2021.102592_bib0039 10.1016/j.est.2021.102592_bib0018 Li (10.1016/j.est.2021.102592_bib0007) 2018; 373 Mingant (10.1016/j.est.2021.102592_bib0009) 2016; 183 Cannarella (10.1016/j.est.2021.102592_bib0017) 2014; 269 10.1016/j.est.2021.102592_bib0037 Ben-Marzouk (10.1016/j.est.2021.102592_bib0038) 2016; 8 Gandoman (10.1016/j.est.2021.102592_bib0001) 2019; 251 Petit (10.1016/j.est.2021.102592_bib0021) 2016; 172 Grolleau (10.1016/j.est.2021.102592_bib0003) 2013; 45 Lucu (10.1016/j.est.2021.102592_bib0035) 2020; 30 Lucu (10.1016/j.est.2021.102592_bib0012) 2018; 401 Ecker (10.1016/j.est.2021.102592_bib0024) 2012; 215 Lin (10.1016/j.est.2021.102592_bib0031) 2018; 400 Gao (10.1016/j.est.2021.102592_bib0029) 2018; 400 Goh (10.1016/j.est.2021.102592_bib0011) 2018; 159 |
References_xml | – volume: 172 start-page: 398 year: 2016 end-page: 407 ident: bib0021 article-title: Development of an empirical aging model for Li-ion batteries and application to assess the impact of Vehicle-to-Grid strategies on battery lifetime publication-title: Appl Energy contributor: fullname: Sauvant-Moynot – volume: 68 start-page: 137 year: 2013 end-page: 147 ident: bib0002 article-title: Experimental Assessment of Battery Cycle Life Within the SIMSTOCK Research Program publication-title: Oil and Gas Science and Technology - Rev.IFP Energies nouvelles contributor: fullname: Badin – volume: 196 start-page: 3942 year: 2011 end-page: 3948 ident: bib0022 article-title: Cycle-life model for graphite-LiFePO4 cells publication-title: J.Power Sources contributor: fullname: Finamore – volume: 251 year: 2019 ident: bib0001 article-title: Concept of reliability and safety assessment of lithium-ion batteries in electric vehicles: basics, progress, and challenges publication-title: Appl Energy contributor: fullname: van Mierlo – volume: 56 start-page: 572 year: 2016 end-page: 587 ident: bib0006 article-title: Critical review of state of health estimation methods of Li-ion batteries for real applications publication-title: Renewable and Sustainable Energy Reviews contributor: fullname: van den Bossche – volume: 88-90 start-page: 1212 year: 2018 end-page: 1215 ident: bib0008 article-title: Calendar and cycling ageing combination of batteries in electric vehicles publication-title: Microelectronics Reliability contributor: fullname: Pelissier – volume: 360 start-page: 28 year: 2017 end-page: 40 ident: bib0030 article-title: Modeling of lithium plating induced aging of lithium-ion batteries: transition from linear to nonlinear aging publication-title: J Power Sources contributor: fullname: Wang – volume: 101 start-page: 238 year: 2001 end-page: 247 ident: bib0023 article-title: An accelerated calendar and cycle life study of Li-ion cells publication-title: J.Power Sources contributor: fullname: Case – volume: 373 start-page: 40 year: 2018 end-page: 53 ident: bib0007 article-title: A quick on-line state of health estimation method for Li-ion battery with incremental capacity curves processed by Gaussian filter publication-title: J.Power Sources contributor: fullname: van Mierlo – volume: 113 year: 2019 ident: bib0014 article-title: Data-driven health estimation and lifetime prediction of lithium-ion batteries: a review publication-title: Renewable and Sustainable Energy Reviews contributor: fullname: Hoster – volume: 45 start-page: 73 year: 2013 end-page: 81 ident: bib0003 article-title: The French SIMCAL Research Network For Modelling of Calendar Aging for Energy Storage System in EVs And HEVs - EIS Analysis on LFP/C Cells publication-title: ECS Trans contributor: fullname: Peter – volume: 320 start-page: 126 year: 2018 end-page: 131 ident: bib0019 article-title: Simplified modeling and parameter estimation to predict calendar life of Li-ion batteries publication-title: Solid State Ionics contributor: fullname: Zheng – volume: 400 start-page: 641 year: 2018 end-page: 651 ident: bib0029 article-title: Aging mechanisms under different state-of-charge ranges and the multi-indicators system of state-of-health for lithium-ion battery with Li(NiMnCo)O2 cathode publication-title: J Power Sources contributor: fullname: Jiang – year: 2015 ident: bib0010 article-title: State of Health estimation for NCA-C Lithium-ion cells publication-title: 2015 IFAC Workshop on Engine and Powertrain Control, Simulation and Modeling contributor: fullname: Creff – volume: 247 start-page: 527 year: 2014 end-page: 533 ident: bib0016 article-title: A study of lithium ion batteries cycle aging by thermodynamics techniques publication-title: J.Power Sources contributor: fullname: Yazami – volume: 269 start-page: 7 year: 2014 end-page: 14 ident: bib0017 article-title: State of health and charge measurements in lithium-ion batteries using mechanical stress publication-title: J.Power Sources contributor: fullname: Arnold – volume: 183 start-page: 390 year: 2016 end-page: 398 ident: bib0009 article-title: Novel state-of-health diagnostic method for Li-ion battery in service publication-title: Appl Energy contributor: fullname: Sauvant-Moynot – volume: 194 start-page: 461 year: 2016 end-page: 472 ident: bib0026 article-title: State of health assessment for lithium batteries based on voltage–time relaxation measure publication-title: Electrochim. Acta contributor: fullname: Vinassa – volume: 30 year: 2020 ident: bib0036 article-title: Data-driven nonparametric Li-ion battery ageing model aiming at learning from real operation data - Part B: cycling operation publication-title: Journal of Energy Storage contributor: fullname: Marco – volume: 141 start-page: 2108 year: 2017 end-page: 2119 ident: bib0034 article-title: -optimal design of experiments applied to lithium battery for ageing model calibration publication-title: Energy contributor: fullname: Vinassa – volume: 245 start-page: 208 year: 2014 end-page: 216 ident: bib0032 article-title: Physical characterization of the charging process of a Li-ion battery and prediction of Li plating by electrochemical modeling publication-title: J.Power Sources contributor: fullname: Raël – volume: 156 start-page: A145 year: 2009 end-page: A153 ident: bib0020 article-title: Multimodal Physics-Based Aging Model for Life Prediction of Li-Ion Batteries publication-title: J.Electrochem.Soc contributor: fullname: Delacourt – volume: 8 start-page: 388 year: 2016 end-page: 397 ident: bib0038 article-title: Experimental Protocols and First Results of Calendar and/or Cycling Aging Study of Lithium-Ion Batteries – the MOBICUS Project publication-title: WEVJ contributor: fullname: Pélissier – volume: 159 start-page: 61 year: 2018 end-page: 73 ident: bib0011 article-title: Successive-approximation algorithm for estimating capacity of Li-ion batteries publication-title: Energy contributor: fullname: Kim – volume: 177 start-page: 57 year: 2019 end-page: 65 ident: bib0005 article-title: A model for state-of-health estimation of lithium ion batteries based on charging profiles publication-title: Energy contributor: fullname: Yan – volume: 215 start-page: 248 year: 2012 end-page: 257 ident: bib0024 article-title: Development of a lifetime prediction model for lithium-ion batteries based on extended accelerated aging test data publication-title: J.Power Sources contributor: fullname: Sauer – start-page: 1 year: 2017 end-page: 9 ident: bib0004 article-title: Strategies to Extend the Lifespan of Automotive Batteries through Battery Modeling and System Simulation: the MOBICUS Project publication-title: 2017 IEEE Vehicle Power and Propulsion Conference (VPPC) contributor: fullname: Bernard – volume: 400 start-page: 305 year: 2018 end-page: 316 ident: bib0031 article-title: Health conscious fast charging of Li-ion batteries via a single particle model with aging mechanisms publication-title: J Power Sources contributor: fullname: Jia – volume: 323 start-page: 115 year: 2016 end-page: 124 ident: bib0033 article-title: An internal state variable mapping approach for Li-Plating diagnosis publication-title: J Power Sources contributor: fullname: Wang – volume: 72 start-page: 1 year: 2019 end-page: 31 ident: bib0013 article-title: A comparison of methodologies for the non-invasive characterisation of commercial Li-ion cells publication-title: Prog Energy Combust Sci contributor: fullname: Bloom – volume: 30 year: 2020 ident: bib0035 article-title: Data-driven nonparametric Li-ion battery ageing model aiming at learning from real operation data – Part A: storage operation publication-title: Journal of Energy Storage contributor: fullname: Marco – volume: 395 start-page: 251 year: 2018 end-page: 261 ident: bib0028 article-title: A look into the voltage plateau signal for detection and quantification of lithium plating in lithium-ion cells publication-title: J Power Sources contributor: fullname: Wang – volume: 384 start-page: 107 year: 2018 end-page: 124 ident: bib0027 article-title: Li plating as unwanted side reaction in commercial Li-ion cells – A review publication-title: J Power Sources contributor: fullname: Wohlfahrt-Mehrens – volume: 360 start-page: 59 year: 2017 end-page: 69 ident: bib0015 article-title: State of health battery estimator enabling degradation diagnosis: model and algorithm description publication-title: J Power Sources contributor: fullname: Villarreal – volume: 325 start-page: 273 year: 2016 end-page: 285 ident: bib0025 article-title: Lithium battery aging model based on Dakin's degradation approach publication-title: J.Power Sources contributor: fullname: Vinassa – volume: 401 start-page: 85 year: 2018 end-page: 101 ident: bib0012 article-title: A critical review on self-adaptive Li-ion battery ageing models publication-title: J.Power Sources contributor: fullname: Camblong – volume: 247 start-page: 527 year: 2014 ident: 10.1016/j.est.2021.102592_bib0016 article-title: A study of lithium ion batteries cycle aging by thermodynamics techniques publication-title: J.Power Sources doi: 10.1016/j.jpowsour.2013.08.053 contributor: fullname: Maher – volume: 156 start-page: A145 issue: 3 year: 2009 ident: 10.1016/j.est.2021.102592_bib0020 article-title: Multimodal Physics-Based Aging Model for Life Prediction of Li-Ion Batteries publication-title: J.Electrochem.Soc doi: 10.1149/1.3043429 contributor: fullname: Safari – start-page: 1 year: 2017 ident: 10.1016/j.est.2021.102592_bib0004 article-title: Strategies to Extend the Lifespan of Automotive Batteries through Battery Modeling and System Simulation: the MOBICUS Project contributor: fullname: Belaid – volume: 395 start-page: 251 year: 2018 ident: 10.1016/j.est.2021.102592_bib0028 article-title: A look into the voltage plateau signal for detection and quantification of lithium plating in lithium-ion cells publication-title: J Power Sources doi: 10.1016/j.jpowsour.2018.05.073 contributor: fullname: Yang – volume: 320 start-page: 126 year: 2018 ident: 10.1016/j.est.2021.102592_bib0019 article-title: Simplified modeling and parameter estimation to predict calendar life of Li-ion batteries publication-title: Solid State Ionics doi: 10.1016/j.ssi.2018.02.038 contributor: fullname: Liu – volume: 196 start-page: 3942 issue: 8 year: 2011 ident: 10.1016/j.est.2021.102592_bib0022 article-title: Cycle-life model for graphite-LiFePO4 cells publication-title: J.Power Sources doi: 10.1016/j.jpowsour.2010.11.134 contributor: fullname: Wang – volume: 194 start-page: 461 year: 2016 ident: 10.1016/j.est.2021.102592_bib0026 article-title: State of health assessment for lithium batteries based on voltage–time relaxation measure publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2016.02.109 contributor: fullname: Baghdadi – volume: 88-90 start-page: 1212 year: 2018 ident: 10.1016/j.est.2021.102592_bib0008 article-title: Calendar and cycling ageing combination of batteries in electric vehicles publication-title: Microelectronics Reliability doi: 10.1016/j.microrel.2018.06.113 contributor: fullname: Redondo-Iglesias – volume: 360 start-page: 59 year: 2017 ident: 10.1016/j.est.2021.102592_bib0015 article-title: State of health battery estimator enabling degradation diagnosis: model and algorithm description publication-title: J Power Sources doi: 10.1016/j.jpowsour.2017.05.121 contributor: fullname: Dubarry – volume: 8 start-page: 388 issue: 2 year: 2016 ident: 10.1016/j.est.2021.102592_bib0038 article-title: Experimental Protocols and First Results of Calendar and/or Cycling Aging Study of Lithium-Ion Batteries – the MOBICUS Project publication-title: WEVJ doi: 10.3390/wevj8020388 contributor: fullname: Ben-Marzouk – volume: 373 start-page: 40 year: 2018 ident: 10.1016/j.est.2021.102592_bib0007 article-title: A quick on-line state of health estimation method for Li-ion battery with incremental capacity curves processed by Gaussian filter publication-title: J.Power Sources doi: 10.1016/j.jpowsour.2017.10.092 contributor: fullname: Li – volume: 101 start-page: 238 issue: 2 year: 2001 ident: 10.1016/j.est.2021.102592_bib0023 article-title: An accelerated calendar and cycle life study of Li-ion cells publication-title: J.Power Sources doi: 10.1016/S0378-7753(01)00783-2 contributor: fullname: Bloom – year: 2015 ident: 10.1016/j.est.2021.102592_bib0010 article-title: State of Health estimation for NCA-C Lithium-ion cells contributor: fullname: Di Domenico – volume: 172 start-page: 398 year: 2016 ident: 10.1016/j.est.2021.102592_bib0021 article-title: Development of an empirical aging model for Li-ion batteries and application to assess the impact of Vehicle-to-Grid strategies on battery lifetime publication-title: Appl Energy doi: 10.1016/j.apenergy.2016.03.119 contributor: fullname: Petit – volume: 384 start-page: 107 year: 2018 ident: 10.1016/j.est.2021.102592_bib0027 article-title: Li plating as unwanted side reaction in commercial Li-ion cells – A review publication-title: J Power Sources doi: 10.1016/j.jpowsour.2018.02.063 contributor: fullname: Waldmann – volume: 245 start-page: 208 year: 2014 ident: 10.1016/j.est.2021.102592_bib0032 article-title: Physical characterization of the charging process of a Li-ion battery and prediction of Li plating by electrochemical modeling publication-title: J.Power Sources doi: 10.1016/j.jpowsour.2013.06.130 contributor: fullname: Legrand – volume: 251 year: 2019 ident: 10.1016/j.est.2021.102592_bib0001 article-title: Concept of reliability and safety assessment of lithium-ion batteries in electric vehicles: basics, progress, and challenges publication-title: Appl Energy doi: 10.1016/j.apenergy.2019.113343 contributor: fullname: Gandoman – volume: 401 start-page: 85 year: 2018 ident: 10.1016/j.est.2021.102592_bib0012 article-title: A critical review on self-adaptive Li-ion battery ageing models publication-title: J.Power Sources doi: 10.1016/j.jpowsour.2018.08.064 contributor: fullname: Lucu – volume: 113 year: 2019 ident: 10.1016/j.est.2021.102592_bib0014 article-title: Data-driven health estimation and lifetime prediction of lithium-ion batteries: a review publication-title: Renewable and Sustainable Energy Reviews doi: 10.1016/j.rser.2019.109254 contributor: fullname: Li – volume: 360 start-page: 28 year: 2017 ident: 10.1016/j.est.2021.102592_bib0030 article-title: Modeling of lithium plating induced aging of lithium-ion batteries: transition from linear to nonlinear aging publication-title: J Power Sources doi: 10.1016/j.jpowsour.2017.05.110 contributor: fullname: Yang – volume: 141 start-page: 2108 year: 2017 ident: 10.1016/j.est.2021.102592_bib0034 article-title: d-optimal design of experiments applied to lithium battery for ageing model calibration publication-title: Energy doi: 10.1016/j.energy.2017.11.130 contributor: fullname: Mathieu – volume: 30 year: 2020 ident: 10.1016/j.est.2021.102592_bib0035 article-title: Data-driven nonparametric Li-ion battery ageing model aiming at learning from real operation data – Part A: storage operation publication-title: Journal of Energy Storage contributor: fullname: Lucu – volume: 400 start-page: 641 year: 2018 ident: 10.1016/j.est.2021.102592_bib0029 article-title: Aging mechanisms under different state-of-charge ranges and the multi-indicators system of state-of-health for lithium-ion battery with Li(NiMnCo)O2 cathode publication-title: J Power Sources doi: 10.1016/j.jpowsour.2018.07.018 contributor: fullname: Gao – volume: 68 start-page: 137 issue: 1 year: 2013 ident: 10.1016/j.est.2021.102592_bib0002 article-title: Experimental Assessment of Battery Cycle Life Within the SIMSTOCK Research Program publication-title: Oil and Gas Science and Technology - Rev.IFP Energies nouvelles doi: 10.2516/ogst/2013106 contributor: fullname: Gyan – volume: 56 start-page: 572 year: 2016 ident: 10.1016/j.est.2021.102592_bib0006 article-title: Critical review of state of health estimation methods of Li-ion batteries for real applications publication-title: Renewable and Sustainable Energy Reviews doi: 10.1016/j.rser.2015.11.042 contributor: fullname: Berecibar – volume: 323 start-page: 115 year: 2016 ident: 10.1016/j.est.2021.102592_bib0033 article-title: An internal state variable mapping approach for Li-Plating diagnosis publication-title: J Power Sources doi: 10.1016/j.jpowsour.2016.05.040 contributor: fullname: Bai – ident: 10.1016/j.est.2021.102592_bib0037 – volume: 177 start-page: 57 year: 2019 ident: 10.1016/j.est.2021.102592_bib0005 article-title: A model for state-of-health estimation of lithium ion batteries based on charging profiles publication-title: Energy doi: 10.1016/j.energy.2019.04.070 contributor: fullname: Bian – volume: 45 start-page: 73 issue: 13 year: 2013 ident: 10.1016/j.est.2021.102592_bib0003 article-title: The French SIMCAL Research Network For Modelling of Calendar Aging for Energy Storage System in EVs And HEVs - EIS Analysis on LFP/C Cells publication-title: ECS Trans doi: 10.1149/04513.0073ecst contributor: fullname: Grolleau – volume: 183 start-page: 390 year: 2016 ident: 10.1016/j.est.2021.102592_bib0009 article-title: Novel state-of-health diagnostic method for Li-ion battery in service publication-title: Appl Energy doi: 10.1016/j.apenergy.2016.08.118 contributor: fullname: Mingant – volume: 269 start-page: 7 year: 2014 ident: 10.1016/j.est.2021.102592_bib0017 article-title: State of health and charge measurements in lithium-ion batteries using mechanical stress publication-title: J.Power Sources doi: 10.1016/j.jpowsour.2014.07.003 contributor: fullname: Cannarella – volume: 325 start-page: 273 year: 2016 ident: 10.1016/j.est.2021.102592_bib0025 article-title: Lithium battery aging model based on Dakin's degradation approach publication-title: J.Power Sources doi: 10.1016/j.jpowsour.2016.06.036 contributor: fullname: Baghdadi – ident: 10.1016/j.est.2021.102592_bib0039 – volume: 30 year: 2020 ident: 10.1016/j.est.2021.102592_bib0036 article-title: Data-driven nonparametric Li-ion battery ageing model aiming at learning from real operation data - Part B: cycling operation publication-title: Journal of Energy Storage contributor: fullname: Lucu – ident: 10.1016/j.est.2021.102592_bib0018 doi: 10.1109/VPPC.2011.6043002 – volume: 72 start-page: 1 year: 2019 ident: 10.1016/j.est.2021.102592_bib0013 article-title: A comparison of methodologies for the non-invasive characterisation of commercial Li-ion cells publication-title: Prog Energy Combust Sci doi: 10.1016/j.pecs.2019.01.001 contributor: fullname: Barai – volume: 400 start-page: 305 year: 2018 ident: 10.1016/j.est.2021.102592_bib0031 article-title: Health conscious fast charging of Li-ion batteries via a single particle model with aging mechanisms publication-title: J Power Sources doi: 10.1016/j.jpowsour.2018.08.030 contributor: fullname: Lin – volume: 215 start-page: 248 issue: 0 year: 2012 ident: 10.1016/j.est.2021.102592_bib0024 article-title: Development of a lifetime prediction model for lithium-ion batteries based on extended accelerated aging test data publication-title: J.Power Sources doi: 10.1016/j.jpowsour.2012.05.012 contributor: fullname: Ecker – volume: 159 start-page: 61 year: 2018 ident: 10.1016/j.est.2021.102592_bib0011 article-title: Successive-approximation algorithm for estimating capacity of Li-ion batteries publication-title: Energy doi: 10.1016/j.energy.2018.06.116 contributor: fullname: Goh |
SSID | ssj0001651196 |
Score | 2.2923944 |
Snippet | •A generic aging model of lithium-ion batteries has been developed and presented.•This model is independent of the aging mechanism's knowledge.•The calibration... An empirical generic Li-ion aging model, compatible with a large number of aging mechanisms without their a priori knowledge has been developed as well as a... |
SourceID | hal crossref elsevier |
SourceType | Open Access Repository Aggregation Database Publisher |
StartPage | 102592 |
SubjectTerms | Aging Computer Science Easy training Electric power Engineering Sciences Environmental Sciences Generic model Li-ion battery Modeling and Simulation State of health |
Title | Data-driven model development to predict the aging of a Li-ion battery pack in electric vehicles representative conditions |
URI | https://dx.doi.org/10.1016/j.est.2021.102592 https://ifp.hal.science/hal-03312439 |
Volume | 39 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA_7uOhB_MT5xUM8CWFtk6btcUzH1LmLE3YraZOyKmxj1IH-9b6krdODHry1oQnll_De7-V9EXIlUo6kQKbUVUpQjoybhomjqAiSJHVYFqQ2Q-5xLIbP_H7qTxukX-fCmLDKSvaXMt1K62qkW6HZXeZ598lD7oDaZ4pGi2Myh5qkjerIC1uk3bt7GI43Vy3COMvKNnO-R82c2r9pI71Q_KKh6LmmjIEfeb9pqOasvmu1umewS3Yq0gi98r_2SEPP98n2t1KCB-TjRhaSqpURXmDb24DaxANBsYDlyvhk8HGmwbYmgkUGEkY5xa2BxNbZfAc0oV8hn0PZHidPYa1nNnIObPnLKlVprQHtaFWGex2SyeB20h_Sqq8CTVnAC4omDs8QlyQKNZOCmyxBlwc8YkmQ-k6G0OuQaRSTTCslowBJTeZzKXnGs9BlR6Q1X8z1MQER-ZprRysfeZUIBO6yz_DDSIZoeLlhh1zXUMbLsnpGXIeVvcSIe2xwj0vcO4TXYMc_jkCM0v2vaZe4MV_Lm3LZw94oNmN4LJC-sGjtnvxv7VOyZd7K8Nwz0ipWb_ocSUiRXFSH7BMMmNlk |
link.rule.ids | 230,315,783,787,888,24128,27936,27937,45691 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELaADsCAeIo3J8SEZDWpHScZKx5KoXShSN0sJ3bUgNRWVagEv56zk_AYYGCLnDiKPjvn7-zv7gi5EBlHUqAy6mstKEfGTaPU01SEaZp5LA8zFyH3MBDJE78bBaMlctXEwlhZZW37K5vurHXd0q7RbM-Kov3YQe6Aq88InRbPRg4tkxaygRj_zla3d58MvrZahD0sq8rMBR1q-zTnm07pheYXHcWOb9MYBHHntxVqedzstbq153aTbNSkEbrVd22RJTPZJuvfUgnukPdrVSqq59Z4gStvA_pLDwTlFGZzeyaDl2MDrjQRTHNQ0C8oDg2kLs_mG6AL_QLFBKryOEUGCzN2yjlw6S_rUKWFAfSjdSX32iXD25vhVULrugo0YyEvKbo4PEdc0jgyTAluowR9HvKYpWEWeDlCbyJm0Ewyo7WKQyQ1ecCV4jnPI5_tkZXJdGL2CYg4MNx4RgfIq0QocJQDhg_GKkLHy48OyGUDpZxV2TNkIyt7loi7tLjLCvcDwhuw5Y8pING6_9XtHAfm8_U2XXbS7UvbhtMC6QuLF_7h_959RlaT4UNf9nuD-yOyZu9UUt1jslLOX80JEpIyPa0n3AdxyNxW |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Data-driven+model+development+to+predict+the+aging+of+a+Li-ion+battery+pack+in+electric+vehicles+representative+conditions&rft.jtitle=Journal+of+energy+storage&rft.au=Mingant%2C+R%C3%A9my&rft.au=Petit%2C+Martin&rft.au=Bela%C3%AFd%2C+Sofiane&rft.au=Bernard%2C+Julien&rft.date=2021-07-01&rft.pub=Elsevier+Ltd&rft.issn=2352-152X&rft.eissn=2352-1538&rft.volume=39&rft_id=info:doi/10.1016%2Fj.est.2021.102592&rft.externalDocID=S2352152X21003352 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2352-152X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2352-152X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2352-152X&client=summon |