A hyperbolic two-fluid model for compressible flows with arbitrary material-density ratios

A hyperbolic two-fluid model for gas–particle flow derived using the Boltzmann–Enskog kinetic theory is generalized to include added mass. In place of the virtual-mass force, to guarantee indifference to an accelerating frame of reference, the added mass is included in the mass, momentum and energy...

Full description

Saved in:
Bibliographic Details
Published inJournal of fluid mechanics Vol. 903
Main Authors Fox, Rodney O., Laurent, Frédérique, Vié, Aymeric
Format Journal Article
LanguageEnglish
Published Cambridge, UK Cambridge University Press 25.11.2020
Cambridge University Press (CUP)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A hyperbolic two-fluid model for gas–particle flow derived using the Boltzmann–Enskog kinetic theory is generalized to include added mass. In place of the virtual-mass force, to guarantee indifference to an accelerating frame of reference, the added mass is included in the mass, momentum and energy balances for the particle phase, augmented to include the portion of the particle wake moving with the particle velocity. The resulting compressible two-fluid model contains seven balance equations (mass, momentum and energy for each phase, plus added mass) and employs a stiffened-gas model for the equation of state for the fluid. Using Sturm's theorem, the model is shown to be globally hyperbolic for arbitrary ratios of the material densities $Z = \rho _f / \rho _p$ (where $\rho _f$ and $\rho _p$ are the fluid and particle material densities, respectively). An eight-equation extension to include the pseudo-turbulent kinetic energy (PTKE) in the fluid phase is also proposed; however, PTKE has no effect on hyperbolicity. In addition to the added mass, the key physics needed to ensure hyperbolicity for arbitrary $Z$ is a fluid-mediated contribution to the particle-phase pressure tensor that is taken to be proportional to the volume fraction of the added mass. A numerical solver for hyperbolic equations is developed for the one-dimensional model, and numerical examples are employed to illustrate the behaviour of solutions to Riemann problems for different material-density ratios. The relation between the proposed two-fluid model and prior work on effective-field models is discussed, as well as possible extensions to include viscous stresses and the formulation of the model in the limit of an incompressible continuous phase.
AbstractList A hyperbolic two-fluid model for gas–particle flow derived using the Boltzmann–Enskog kinetic theory is generalized to include added mass. In place of the virtual-mass force, to guarantee indifference to an accelerating frame of reference, the added mass is included in the mass, momentum and energy balances for the particle phase, augmented to include the portion of the particle wake moving with the particle velocity. The resulting compressible two-fluid model contains seven balance equations (mass, momentum and energy for each phase, plus added mass) and employs a stiffened-gas model for the equation of state for the fluid. Using Sturm's theorem, the model is shown to be globally hyperbolic for arbitrary ratios of the material densities $Z = \rho _f / \rho _p$ (where $\rho _f$ and $\rho _p$ are the fluid and particle material densities, respectively). An eight-equation extension to include the pseudo-turbulent kinetic energy (PTKE) in the fluid phase is also proposed; however, PTKE has no effect on hyperbolicity. In addition to the added mass, the key physics needed to ensure hyperbolicity for arbitrary $Z$ is a fluid-mediated contribution to the particle-phase pressure tensor that is taken to be proportional to the volume fraction of the added mass. A numerical solver for hyperbolic equations is developed for the one-dimensional model, and numerical examples are employed to illustrate the behaviour of solutions to Riemann problems for different material-density ratios. The relation between the proposed two-fluid model and prior work on effective-field models is discussed, as well as possible extensions to include viscous stresses and the formulation of the model in the limit of an incompressible continuous phase.
Abstract A hyperbolic two-fluid model for gas–particle flow derived using the Boltzmann–Enskog kinetic theory is generalized to include added mass. In place of the virtual-mass force, to guarantee indifference to an accelerating frame of reference, the added mass is included in the mass, momentum and energy balances for the particle phase, augmented to include the portion of the particle wake moving with the particle velocity. The resulting compressible two-fluid model contains seven balance equations (mass, momentum and energy for each phase, plus added mass) and employs a stiffened-gas model for the equation of state for the fluid. Using Sturm's theorem, the model is shown to be globally hyperbolic for arbitrary ratios of the material densities $Z = \rho _f / \rho _p$ (where $\rho _f$ and $\rho _p$ are the fluid and particle material densities, respectively). An eight-equation extension to include the pseudo-turbulent kinetic energy (PTKE) in the fluid phase is also proposed; however, PTKE has no effect on hyperbolicity. In addition to the added mass, the key physics needed to ensure hyperbolicity for arbitrary $Z$ is a fluid-mediated contribution to the particle-phase pressure tensor that is taken to be proportional to the volume fraction of the added mass. A numerical solver for hyperbolic equations is developed for the one-dimensional model, and numerical examples are employed to illustrate the behaviour of solutions to Riemann problems for different material-density ratios. The relation between the proposed two-fluid model and prior work on effective-field models is discussed, as well as possible extensions to include viscous stresses and the formulation of the model in the limit of an incompressible continuous phase.
A hyperbolic two-fluid model for gas-particle flow derived using the Boltzmann-Enskog kinetic theory is generalized to include added mass. In place of the virtual-mass force, to guarantee indifference to an accelerating frame of reference, the added mass is included in the mass, momentum and energy balances for the particle phase, augmented to include the portion of the particle wake moving with the particle velocity. The resulting compressible two-fluid model contains seven balance equations (mass, momentum, and energy for each phase, plus added mass) and employs a stiffened-gas model for the equation of state for the fluid. Using Sturm's theorem, the model is shown to be globally hyperbolic for arbitrary ratios of the material densities Z = ρ f /ρ p. An eight-equation extension to include the pseudo-turbulent kinetic energy (PTKE) in the fluid phase is also proposed; however, PTKE has no effect on hyperbolicity. In addition to the added mass, the key physics needed to ensure hyperbolicity for arbitrary Z is a fluid-mediated contribution to the particle-phase pressure tensor that is taken to be proportional to the volume fraction of the added mass. A numerical solver for hyperbolic equations is developed for the 1-D model, and numerical examples are employed to illustrate the behaviour of solutions to Riemann problems for different material-density ratios. The relation between the proposed two-fluid model and prior work on effective-field models is discussed, as well as possible extensions to include viscous stresses and the formulation of the model in the limit of an incompressible continuous phase.
ArticleNumber A5
Author Vié, Aymeric
Fox, Rodney O.
Laurent, Frédérique
Author_xml – sequence: 1
  givenname: Rodney O.
  orcidid: 0000-0003-1944-1861
  surname: Fox
  fullname: Fox, Rodney O.
  email: rofox@iastate.edu
  organization: 1Department of Chemical and Biological Engineering, Iowa State University, 618 Bissell Road, Ames, IA50011-1098, USA
– sequence: 2
  givenname: Frédérique
  surname: Laurent
  fullname: Laurent, Frédérique
  organization: 3Fédération de Mathématiques de CentraleSupélec, CNRS, 3, rue Joliot-Curie, 91192Gif-sur-Yvette CEDEX, France
– sequence: 3
  givenname: Aymeric
  surname: Vié
  fullname: Vié, Aymeric
  organization: 3Fédération de Mathématiques de CentraleSupélec, CNRS, 3, rue Joliot-Curie, 91192Gif-sur-Yvette CEDEX, France
BackLink https://hal.science/hal-02796207$$DView record in HAL
BookMark eNp1kE1rGzEURUVJoLbTXX-AIKtCxn3SjCVraUxSBwzdtJtuhEYftYxm5EhyjP99Z7BpoDSrB49zL5czRTd97C1CnwnMCRD-de-6OQUKc0YWH9CENExUnDWLGzQBoLQihMJHNM15D0BqEHyCfq3w7nywqY3Ba1xOsXLh6A3uorEBu5iwjt0h2Zx9Gyx2IZ4yPvmywyq1viSVzrhTxSavQmVsn30546SKj_kO3ToVsv10vTP08-nxx3pTbb9_e16vtpWueVMqseDMEEcFOGgFCGME0aatjRZGGK1Fs3SWUMeWbU1NbbkmbglkIThRjNS2nqEvl96dCvKQfDdsklF5uVlt5fgDygWjwF_pwN5f2EOKL0ebi9zHY-qHeZI2Tb2kgjVsoB4ulE4x52Td31oCcjQtB9NyNC0H0wNO_8G1L6OCfvDjw3uh-TWkujZ589u-Tflv4A8uVpNB
CitedBy_id crossref_primary_10_1016_j_ijmultiphaseflow_2023_104591
crossref_primary_10_1103_PhysRevFluids_6_104306
crossref_primary_10_1146_annurev_fluid_121021_015818
crossref_primary_10_1115_1_4064660
crossref_primary_10_1016_j_ces_2024_119909
crossref_primary_10_1016_j_ijmultiphaseflow_2023_104456
crossref_primary_10_1016_j_ijmultiphaseflow_2023_104698
crossref_primary_10_1016_j_ijmultiphaseflow_2022_104008
crossref_primary_10_1016_j_ijmultiphaseflow_2023_104715
crossref_primary_10_1016_j_ijmultiphaseflow_2024_104902
crossref_primary_10_1016_j_ijmultiphaseflow_2021_103563
crossref_primary_10_1063_5_0123445
crossref_primary_10_1063_5_0147347
Cites_doi 10.1016/j.ijmultiphaseflow.2015.12.007
10.1007/s00707-018-2267-3
10.1017/jfm.2018.548
10.4208/cicp.021213.140514a
10.1017/S0022112076001110
10.1137/1025002
10.1007/978-1-349-00517-8
10.1016/j.powtec.2018.11.018
10.1017/jfm.2019.807
10.1103/PhysRevFluids.5.014305
10.1016/0301-9322(84)90005-3
10.1137/S0036139996299236
10.2172/1617335
10.1103/PhysRevLett.97.048301
10.1017/S0022112084002366
10.1016/0301-9322(79)90023-5
10.1017/S0022112094001151
10.1016/j.crma.2007.02.006
10.1016/j.ijmultiphaseflow.2019.03.010
10.1016/j.ijmultiphaseflow.2011.05.010
10.1017/S0022112092003434
10.1016/j.ijmultiphaseflow.2019.103138
10.1017/jfm.2019.100
10.1017/S0022112064000210
10.1007/978-3-662-03490-3
10.1016/S0009-2509(02)00237-3
10.1017/S0022112088003246
10.1017/CBO9781139016599
10.1260/1757-482X.3.3.177
10.1017/jfm.2015.728
10.1016/j.ces.2019.06.054
10.1063/1.857838
10.4236/jmp.2011.29120
10.1016/0009-2509(64)85067-3
10.1090/conm/368/06790
10.1017/jfm.2018.856
10.1016/j.apm.2018.01.011
10.1002/aic.12192
10.1146/annurev-fluid-122316-045003
10.1017/jfm.2019.608
10.1017/jfm.2013.380
10.1017/S002211208800206X
10.1103/PhysRevFluids.4.114301
10.1137/16M109209X
10.1137/S1064827597323749
10.1016/j.ces.2011.02.051
ContentType Journal Article
Copyright The Author(s), 2020. Published by Cambridge University Press
2020 This article is published under (https://creativecommons.org/licenses/by/3.0/) (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: The Author(s), 2020. Published by Cambridge University Press
– notice: 2020 This article is published under (https://creativecommons.org/licenses/by/3.0/) (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID IKXGN
AAYXX
CITATION
3V.
7TB
7U5
7UA
7XB
88I
8FD
8FE
8FG
8FK
8G5
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
FR3
GNUQQ
GUQSH
H8D
H96
HCIFZ
KR7
L.G
L6V
L7M
M2O
M2P
M7S
MBDVC
P5Z
P62
PCBAR
PQEST
PQQKQ
PQUKI
PTHSS
Q9U
S0W
1XC
VOOES
DOI 10.1017/jfm.2020.615
DatabaseName Cambridge Open Access Journals
CrossRef
ProQuest Central (Corporate)
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Water Resources Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni Edition)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
ProQuest Central Student
Research Library Prep
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Research Library
Science Database
Engineering Database
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Earth, Atmospheric & Aquatic Science Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering Collection
ProQuest Central Basic
DELNET Engineering & Technology Collection
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Research Library Prep
ProQuest Central Student
Technology Collection
Technology Research Database
Mechanical & Transportation Engineering Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
Water Resources Abstracts
Environmental Sciences and Pollution Management
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
Aerospace Database
ProQuest Engineering Collection
Natural Science Collection
ProQuest Central Korea
ProQuest Research Library
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
Civil Engineering Abstracts
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest DELNET Engineering and Technology Collection
Materials Science & Engineering Collection
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest Central (Alumni)
DatabaseTitleList
Aquatic Science & Fisheries Abstracts (ASFA) Professional
CrossRef

Database_xml – sequence: 1
  dbid: IKXGN
  name: Cambridge Open Access Journals
  url: http://journals.cambridge.org/action/login
  sourceTypes: Publisher
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
Physics
Mathematics
EISSN 1469-7645
ExternalDocumentID oai_HAL_hal_02796207v2
10_1017_jfm_2020_615
n/a
GroupedDBID -DZ
-E.
-~X
.DC
.FH
09C
09E
0E1
0R~
29K
4.4
5GY
5VS
74X
74Y
7~V
88I
8FE
8FG
8FH
8G5
8R4
8R5
AAAZR
AABES
AABWE
AACJH
AAEED
AAGFV
AAKTX
AAMNQ
AARAB
AASVR
AAUIS
AAUKB
ABBXD
ABGDZ
ABITZ
ABJCF
ABJNI
ABKKG
ABMWE
ABMYL
ABQTM
ABQWD
ABROB
ABTCQ
ABUWG
ABZCX
ACBEA
ACBMC
ACCHT
ACGFO
ACGFS
ACGOD
ACIMK
ACIWK
ACQFJ
ACREK
ACUIJ
ACUYZ
ACWGA
ACYZP
ACZBM
ACZUX
ACZWT
ADCGK
ADDNB
ADFEC
ADFRT
ADGEJ
ADKIL
ADOCW
ADOVH
ADVJH
AEBAK
AEMTW
AENEX
AENGE
AEYYC
AFFUJ
AFKQG
AFKRA
AFKSM
AFLOS
AFLVW
AFRAH
AFUTZ
AGABE
AGBYD
AGJUD
AGOOT
AHQXX
AHRGI
AIDUJ
AIGNW
AIHIV
AIOIP
AISIE
AJ7
AJCYY
AJPFC
AJQAS
ALMA_UNASSIGNED_HOLDINGS
ALVPG
ALWZO
AQJOH
ARABE
ARAPS
ATUCA
AUXHV
AZQEC
BBLKV
BENPR
BGHMG
BGLVJ
BHPHI
BKSAR
BLZWO
BMAJL
BPHCQ
C0O
CBIIA
CCPQU
CCQAD
CFAFE
CHEAL
CJCSC
CS3
D-I
DC4
DOHLZ
DU5
DWQXO
E.L
EBS
F5P
GNUQQ
GUQSH
HCIFZ
HG-
HST
HZ~
I.6
IH6
IKXGN
IOEEP
IS6
I~P
J36
J38
J3A
JHPGK
JQKCU
KCGVB
KFECR
L6V
L98
LK5
LW7
M-V
M2O
M2P
M7R
M7S
NIKVX
O9-
OYBOY
P2P
P62
PCBAR
PQQKQ
PROAC
PTHSS
PYCCK
Q2X
RAMDC
RCA
RNS
ROL
RR0
S0W
S6-
S6U
SAAAG
SC5
T9M
TAE
TN5
UT1
WFFJZ
WH7
WQ3
WXU
WXY
WYP
ZYDXJ
~02
-1F
-2P
-2V
-~6
-~N
3V.
6TJ
6~7
8WZ
9M5
A6W
AANRG
ABDMP
ABFSI
ABKAW
ABTAH
ABVFV
ABVZP
ABXAU
ABZUI
ACETC
ACKIV
ACMRT
AEBPU
AEHGV
AENCP
AGLWM
AI.
ALEEW
BESQT
BQFHP
CAG
CCUQV
CDIZJ
COF
CTKSN
EJD
G8K
H~9
I.7
I.9
IOO
KAFGG
KC5
LHUNA
NMFBF
RIG
VH1
VOH
ZE2
ZJOSE
ZMEZD
ZY4
~V1
AAYXX
CITATION
7TB
7U5
7UA
7XB
8FD
8FK
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
MBDVC
PQEST
PQUKI
Q9U
1XC
VOOES
ID FETCH-LOGICAL-c374t-9576d1f290f0b909dd91cdb3dc9d9dcc948fe12f68b32d3e7c1f8015971a613e3
IEDL.DBID IKXGN
ISSN 0022-1120
1469-7645
IngestDate Tue Oct 15 14:44:54 EDT 2024
Thu Oct 10 20:54:28 EDT 2024
Thu Sep 26 17:01:24 EDT 2024
Tue Jul 23 14:23:56 EDT 2024
Wed Mar 13 05:46:36 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords particle/fluid flow
multiphase flow
disperse multiphase flow
compressible flow
hyperbolic two-fluid model
material-density ratio
Language English
License http://creativecommons.org/licenses/by/4.0/This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c374t-9576d1f290f0b909dd91cdb3dc9d9dcc948fe12f68b32d3e7c1f8015971a613e3
ORCID 0000-0003-1944-1861
0000-0002-7365-1205
0000-0003-3998-0862
OpenAccessLink https://www.cambridge.org/core/product/identifier/S0022112020006151/type/journal_article
PQID 2443829646
PQPubID 34769
PageCount 39
ParticipantIDs hal_primary_oai_HAL_hal_02796207v2
proquest_journals_2443829646
crossref_primary_10_1017_jfm_2020_615
crossref_citationtrail_10_1017_jfm_2020_615
cambridge_journals_10_1017_jfm_2020_615
PublicationCentury 2000
PublicationDate 2020-11-25
PublicationDateYYYYMMDD 2020-11-25
PublicationDate_xml – month: 11
  year: 2020
  text: 2020-11-25
  day: 25
PublicationDecade 2020
PublicationPlace Cambridge, UK
PublicationPlace_xml – name: Cambridge, UK
– name: Cambridge
PublicationTitle Journal of fluid mechanics
PublicationTitleAlternate J. Fluid Mech
PublicationYear 2020
Publisher Cambridge University Press
Cambridge University Press (CUP)
Publisher_xml – name: Cambridge University Press
– name: Cambridge University Press (CUP)
References 2010; 56
1991; 3
2007; 344
2019; 4
2015; 17
2006; 97
2011; 2
1988; 193
2016; 789
2002; 57
1984; 148
1999; 21
2020; 882
2019; 207
2020; 122
1829; 11
2011; 37
2019; 866
2011; 3
1996; 59
2019; 860
2019; 343
1994; 267
2020; 5
1976; 77
2017; 15
1964; 18
1964; 19
1984; 10
2013; 731
2018; 852
1954; 32
1992; 237
1979; 5
2011; 66
2019; 114
1988; 197
2018; 50
2016; 81
2019; 877
1983; 25
2019; 230
2018; 57
S0022112020006151_ref50
S0022112020006151_ref1
S0022112020006151_ref6
S0022112020006151_ref14
S0022112020006151_ref7
S0022112020006151_ref13
S0022112020006151_ref16
S0022112020006151_ref8
S0022112020006151_ref9
S0022112020006151_ref15
S0022112020006151_ref2
S0022112020006151_ref3
S0022112020006151_ref12
S0022112020006151_ref4
S0022112020006151_ref11
S0022112020006151_ref5
Sturm (S0022112020006151_ref39) 1829; 11
Richardson (S0022112020006151_ref34) 1954; 32
S0022112020006151_ref41
S0022112020006151_ref40
S0022112020006151_ref47
S0022112020006151_ref46
S0022112020006151_ref49
S0022112020006151_ref48
S0022112020006151_ref43
S0022112020006151_ref42
S0022112020006151_ref45
S0022112020006151_ref44
S0022112020006151_ref30
S0022112020006151_ref36
S0022112020006151_ref35
S0022112020006151_ref38
S0022112020006151_ref37
S0022112020006151_ref32
S0022112020006151_ref31
S0022112020006151_ref33
S0022112020006151_ref29
S0022112020006151_ref28
Drew (S0022112020006151_ref10) 1998
S0022112020006151_ref25
S0022112020006151_ref24
S0022112020006151_ref27
S0022112020006151_ref26
S0022112020006151_ref21
S0022112020006151_ref20
S0022112020006151_ref23
S0022112020006151_ref22
S0022112020006151_ref18
S0022112020006151_ref17
S0022112020006151_ref19
References_xml – volume: 37
  start-page: 1072
  issue: 9
  year: 2011
  end-page: 1092
  article-title: Drag law for monodisperse gas–solid systems using particle-resolved direct numerical simulation of flow past fixed assemblies of spheres
  publication-title: Intl J. Multiphase Flow
– volume: 789
  start-page: 166
  year: 2016
  end-page: 220
  article-title: A multiphase model for compressible granular–gaseous flows: formulation and initial tests
  publication-title: J. Fluid Mech.
– volume: 32
  start-page: 35
  year: 1954
  end-page: 53
  article-title: Sedimentation and fluidization: part I
  publication-title: Trans. Inst. Chem. Engrs
– volume: 50
  start-page: 25
  year: 2018
  end-page: 48
  article-title: Agitation, mixing, and transfers induced by bubbles
  publication-title: Annu. Rev. Fluid Mech.
– volume: 197
  start-page: 241
  year: 1988
  end-page: 257
  article-title: The force exerted on a body in inviscid unsteady non-uniform rotational flow
  publication-title: J. Fluid Mech.
– volume: 97
  start-page: 048301
  year: 2006
  article-title: Interspecies stress in momentum equations for dense binary particulate systems
  publication-title: Phys. Rev. Lett.
– volume: 18
  start-page: 302
  issue: 2
  year: 1964
  end-page: 314
  article-title: Forces on a sphere accelerating in a vicous fluid
  publication-title: J. Fluid Mech.
– volume: 59
  start-page: 72
  year: 1996
  end-page: 96
  article-title: The Gaussian moment closure for gas dynamics
  publication-title: SIAM J. Appl. Maths
– volume: 207
  start-page: 663
  year: 2019
  end-page: 671
  article-title: Implementation of pseudo-turbulence closures in an Eulerian–Eulerian two-fluid model for non-isothermal gas–solid flows
  publication-title: Chem. Engng Sci.
– volume: 56
  start-page: 2523
  issue: 10
  year: 2010
  end-page: 2538
  article-title: Flow of particles suspended in a sheared viscous fluid: effects of finite inertia and inelastic collisions
  publication-title: AIChE J.
– volume: 866
  start-page: 132
  year: 2019
  end-page: 168
  article-title: Analysis and modelling of Reynolds stresses in turbulent bubbly up-flows from direct numerical simulations
  publication-title: J. Fluid Mech.
– volume: 25
  start-page: 35
  issue: 1
  year: 1983
  end-page: 61
  article-title: On upstream differencing and Godunov-type schemes for hyperbolic conservation laws
  publication-title: SIAM Rev.
– volume: 3
  start-page: 2955
  year: 1991
  end-page: 2970
  article-title: The added mass, Basset, and viscous drag coefficients in nondilute bubbly liquids undergoing small-amplitude oscillatory motion
  publication-title: Phys. Fluids A
– volume: 11
  start-page: 419
  year: 1829
  end-page: 425
  article-title: Mémoire sur la résolution des équations numériques
  publication-title: Bull. Sci. Férussac
– volume: 860
  start-page: 318
  year: 2019
  end-page: 349
  article-title: Computationally generated constitutive models for particle phase rheology in gas-fluidized suspensions
  publication-title: J. Fluid Mech.
– volume: 77
  start-page: 27
  year: 1976
  end-page: 44
  article-title: Hydrodynamic interactions between gas bubbles in liquid
  publication-title: J. Fluid Mech.
– volume: 17
  start-page: 1
  issue: 1
  year: 2015
  end-page: 46
  article-title: On the anisotropic Gaussian velocity closure for inertial-particle laden flows
  publication-title: Commun. Comput. Phys.
– volume: 5
  start-page: 014305
  issue: 1
  year: 2020
  article-title: Particle-resolved simulations of shock-induced flow through particle clouds at different Reynolds numbers
  publication-title: Phys. Rev. Fluids
– volume: 15
  start-page: 1553
  issue: 4
  year: 2017
  end-page: 1583
  article-title: Multivariate Gaussian extended quadrature method of moments for turbulent fluid–particle flows
  publication-title: Multiscale Model. Simul.
– volume: 21
  start-page: 1115
  issue: 3
  year: 1999
  end-page: 1145
  article-title: A simple method for compressible multifluid flows
  publication-title: SIAM J. Sci. Comput.
– volume: 66
  start-page: 4421
  year: 2011
  end-page: 4425
  article-title: A hyperbolic model for fluid–solids two-phase flow
  publication-title: Chem. Engng Sci.
– volume: 148
  start-page: 301
  year: 1984
  end-page: 318
  article-title: Two-phase flow equations for a dilute dispersion of gas bubbles in liquid
  publication-title: J. Fluid Mech.
– volume: 5
  start-page: 233
  year: 1979
  end-page: 242
  article-title: The analysis of virtual mass effects in two-phase flow
  publication-title: Intl J. Multiphase Flow
– volume: 731
  start-page: 184
  year: 2013
  end-page: 194
  article-title: On the quest for a hyperbolic effective-field model of disperse flows
  publication-title: J. Fluid Mech.
– volume: 237
  start-page: 323
  year: 1992
  end-page: 341
  article-title: Flow past a sphere with an oscillation in the free-stream velocity and unsteady drag at finite Reynolds number
  publication-title: J. Fluid Mech.
– volume: 19
  start-page: 897
  year: 1964
  end-page: 917
  article-title: On the dispersed two-phase flow in the laminar regime
  publication-title: Chem. Engng Sci.
– volume: 193
  start-page: 75
  year: 1988
  end-page: 110
  article-title: A new theory of the instability of a uniform fluidized bed
  publication-title: J. Fluid Mech.
– volume: 57
  start-page: 3687
  year: 2002
  end-page: 3701
  article-title: On the importance of material frame-indifference and lift forces in multiphase flows
  publication-title: Chem. Engng Sci.
– volume: 114
  start-page: 268
  year: 2019
  end-page: 286
  article-title: Computational analysis of shock-induced flow through stationary particle clouds
  publication-title: Intl J. Multiphase Flow
– volume: 882
  start-page: A27
  year: 2020
  article-title: On bubble forces in turbulent channel flows from direct numerical simulations
  publication-title: J. Fluid Mech.
– volume: 10
  start-page: 691
  issue: 6
  year: 1984
  end-page: 969
  article-title: Virtual mass in multiphase flow
  publication-title: Intl J. Multiphase Flow
– volume: 122
  start-page: 103138
  year: 2020
  article-title: A volume-filtered description of compressible particle-laden flows
  publication-title: Intl J. Multiphase Flow
– volume: 267
  start-page: 185
  year: 1994
  end-page: 219
  article-title: Averaged equations for inviscid dispersed two-phase flows
  publication-title: J. Fluid Mech.
– volume: 343
  start-page: 465
  year: 2019
  end-page: 478
  article-title: Improvement of the Richardson–Zaki liquid–solid fluidisation model on the basis of hydraulics
  publication-title: Powder Technol.
– volume: 3
  start-page: 177
  issue: 3
  year: 2011
  end-page: 195
  article-title: Influence of interfacial pressure term on the hyperbolicity of a general multifluid model
  publication-title: J. Comput. Multiphase Flows
– volume: 852
  start-page: P1
  year: 2018
  article-title: Rheology of dense granular suspensions
  publication-title: J. Fluid Mech.
– volume: 4
  start-page: 114301
  year: 2019
  article-title: Lagrangian investigation of pseudo-turbulence in multiphase flow using superposable wakes
  publication-title: Phys. Rev. Fluids
– volume: 877
  start-page: 282
  year: 2019
  end-page: 329
  article-title: A kinetic-based hyperbolic two-fluid model for binary hard-sphere mixtures
  publication-title: J. Fluid Mech.
– volume: 2
  start-page: 997
  year: 2011
  end-page: 1011
  article-title: A hyperbolic Eulerian model for dilute two-phase suspensions
  publication-title: J. Mod. Phys.
– volume: 81
  start-page: 104
  year: 2016
  end-page: 112
  article-title: Ransom test results from various two-fluid schemes: Is enforcing hyperbolicity a thermodynamically consistent option?
  publication-title: Intl J. Multiphase Flow
– volume: 230
  start-page: 469
  issue: 2
  year: 2019
  end-page: 484
  article-title: Effect of density ratio on velocity fluctuations in dispersed multiphase flow from simulations of finite-size particles
  publication-title: Acta Mech.
– volume: 344
  start-page: 407
  year: 2007
  end-page: 412
  article-title: Influence of interfacial pressure on the hyperbolicity of the two-fluid model
  publication-title: C. R. Acad. Sci. Paris I
– volume: 57
  start-page: 432
  year: 2018
  end-page: 447
  article-title: On the hyperbolicity of the two-fluid model for gas–liquid flows
  publication-title: Appl. Math. Model.
– ident: S0022112020006151_ref15
– ident: S0022112020006151_ref44
  doi: 10.1016/j.ijmultiphaseflow.2015.12.007
– ident: S0022112020006151_ref41
  doi: 10.1007/s00707-018-2267-3
– ident: S0022112020006151_ref13
  doi: 10.1017/jfm.2018.548
– ident: S0022112020006151_ref45
  doi: 10.4208/cicp.021213.140514a
– ident: S0022112020006151_ref46
  doi: 10.1017/S0022112076001110
– ident: S0022112020006151_ref16
  doi: 10.1137/1025002
– ident: S0022112020006151_ref26
  doi: 10.1007/978-1-349-00517-8
– ident: S0022112020006151_ref18
  doi: 10.1016/j.powtec.2018.11.018
– ident: S0022112020006151_ref7
  doi: 10.1017/jfm.2019.807
– ident: S0022112020006151_ref31
  doi: 10.1103/PhysRevFluids.5.014305
– ident: S0022112020006151_ref8
  doi: 10.1016/0301-9322(84)90005-3
– ident: S0022112020006151_ref20
  doi: 10.1137/S0036139996299236
– volume: 11
  start-page: 419
  year: 1829
  ident: S0022112020006151_ref39
  article-title: Mémoire sur la résolution des équations numériques
  publication-title: Bull. Sci. Férussac
  contributor:
    fullname: Sturm
– ident: S0022112020006151_ref47
  doi: 10.2172/1617335
– ident: S0022112020006151_ref48
  doi: 10.1103/PhysRevLett.97.048301
– ident: S0022112020006151_ref4
  doi: 10.1017/S0022112084002366
– ident: S0022112020006151_ref9
  doi: 10.1016/0301-9322(79)90023-5
– ident: S0022112020006151_ref49
  doi: 10.1017/S0022112094001151
– ident: S0022112020006151_ref28
  doi: 10.1016/j.crma.2007.02.006
– ident: S0022112020006151_ref30
  doi: 10.1016/j.ijmultiphaseflow.2019.03.010
– ident: S0022112020006151_ref42
  doi: 10.1016/j.ijmultiphaseflow.2011.05.010
– ident: S0022112020006151_ref24
  doi: 10.1017/S0022112092003434
– ident: S0022112020006151_ref38
  doi: 10.1016/j.ijmultiphaseflow.2019.103138
– ident: S0022112020006151_ref6
  doi: 10.1017/jfm.2019.100
– ident: S0022112020006151_ref29
  doi: 10.1017/S0022112064000210
– ident: S0022112020006151_ref43
  doi: 10.1007/978-3-662-03490-3
– ident: S0022112020006151_ref23
  doi: 10.1016/S0009-2509(02)00237-3
– ident: S0022112020006151_ref2
  doi: 10.1017/S0022112088003246
– ident: S0022112020006151_ref22
  doi: 10.1017/CBO9781139016599
– ident: S0022112020006151_ref19
  doi: 10.1260/1757-482X.3.3.177
– volume: 32
  start-page: 35
  year: 1954
  ident: S0022112020006151_ref34
  article-title: Sedimentation and fluidization: part I
  publication-title: Trans. Inst. Chem. Engrs
  contributor:
    fullname: Richardson
– ident: S0022112020006151_ref17
  doi: 10.1017/jfm.2015.728
– ident: S0022112020006151_ref33
  doi: 10.1016/j.ces.2019.06.054
– ident: S0022112020006151_ref36
  doi: 10.1063/1.857838
– ident: S0022112020006151_ref14
  doi: 10.4236/jmp.2011.29120
– volume-title: Theory of Multicomponent Fluids
  year: 1998
  ident: S0022112020006151_ref10
  contributor:
    fullname: Drew
– ident: S0022112020006151_ref50
  doi: 10.1016/0009-2509(64)85067-3
– ident: S0022112020006151_ref25
  doi: 10.1090/conm/368/06790
– ident: S0022112020006151_ref12
  doi: 10.1017/jfm.2018.856
– ident: S0022112020006151_ref32
  doi: 10.1016/j.apm.2018.01.011
– ident: S0022112020006151_ref1
  doi: 10.1002/aic.12192
– ident: S0022112020006151_ref35
  doi: 10.1146/annurev-fluid-122316-045003
– ident: S0022112020006151_ref11
  doi: 10.1017/jfm.2019.608
– ident: S0022112020006151_ref21
  doi: 10.1017/jfm.2013.380
– ident: S0022112020006151_ref3
  doi: 10.1017/S002211208800206X
– ident: S0022112020006151_ref27
  doi: 10.1103/PhysRevFluids.4.114301
– ident: S0022112020006151_ref5
  doi: 10.1137/16M109209X
– ident: S0022112020006151_ref37
  doi: 10.1137/S1064827597323749
– ident: S0022112020006151_ref40
  doi: 10.1016/j.ces.2011.02.051
SSID ssj0013097
Score 2.4994245
Snippet A hyperbolic two-fluid model for gas–particle flow derived using the Boltzmann–Enskog kinetic theory is generalized to include added mass. In place of the...
Abstract A hyperbolic two-fluid model for gas–particle flow derived using the Boltzmann–Enskog kinetic theory is generalized to include added mass. In place of...
A hyperbolic two-fluid model for gas-particle flow derived using the Boltzmann-Enskog kinetic theory is generalized to include added mass. In place of the...
SourceID hal
proquest
crossref
cambridge
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
SubjectTerms Compressible flow
Computational fluid dynamics
Density
Energy balance
Equations of state
Fluid flow
Incompressible flow
JFM Papers
Kinetic energy
Kinetic theory
Mass
Mathematical models
Mathematics
Momentum
Numerical Analysis
One dimensional models
Orbital velocity
Physics
Ratios
Reynolds number
Tensors
Two fluid models
Velocity
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9tAEB7ihEJ7yMNtidMkLCWlh7KtHivJewpOcDChMaHUYHoR2hdJMFZqKQn5952R13ZbcK7SgMTs7M7r228ATkIKekWS8BSTZC4SHXMpC8ETY1U3swV6KKp3XA3TwUhcjpOxL7hVHla5OBObg9qUmmrk39ANxV3qEaan9785TY2i7qofodGCrSgU1KbdOusPr3-s-giBzBZ84RhZBB76TqTRd44uokfB15RG4q6IFf5xUK0bgkf-d0o3rudiF7Z9zMh680Xegw07bcOOjx-Z351VG978RS7YhlcNuFNXb-FXj91gujlTxAHM6qeSu8nDrWHNFByGUSsjYHkDiFUTy9ykfKoYFWhZMVO3zb18hoFtY6vcEOK9fmaN5VTvYHTR_3k-4H6mAtdxJmouMb8woYtk4AIlA2mMDLVRsdHSSKO1FF1nw8ilXRVHJraZDh06MUw7wiKliul72JyWU7sPDFMTIa1OLEoJXWRKKklEt0JnVjqXduDzUqm53xlVPkeVZTmqPyf156j-DnxZqDzXnpqcJmRM1kh_Wkrfzyk51sh9xNVbihCP9qD3PadnmIvLNAqyx6gDh4vFXf3jytYOXn79AV7T1-huYpQcwmY9e7BHGKTU6thb4h8oseRn
  priority: 102
  providerName: ProQuest
Title A hyperbolic two-fluid model for compressible flows with arbitrary material-density ratios
URI https://www.cambridge.org/core/product/identifier/S0022112020006151/type/journal_article
https://www.proquest.com/docview/2443829646
https://hal.science/hal-02796207
Volume 903
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3da9tADBdNw2B76LZsZdnacIyNPQwv9vn8cY9paZp9hTFWCHsxvi-aEZISuy377yfZl6QbFPZmjDBnSbaku59-AngTUdIrkiRIsUgORKLjQMpSBImxKs9siRGK9ju-TtPJhfg0S2Z7MNv0whCscstx0JzkN_PRrlr60-HctBgau6YeX47VCxbvPi4PadNy6E1QeMV3oMvjWKDvdz9-np1PdycMocw2TOL0FA-KJzrpX45a1Hn4IaVhuTvKhb9CV-eSgJP__L-boDR-Agc-m2SjdhVPYc8ue_DYZ5bMf7dVDx7doR3swYMG9qmrZ_BzxC7xddaK2IFZfbsK3OJ6blgzH4dhPssIct5AZdXCMrdY3VaMtm5ZuVbzpmOfYcrbeHFgCAtf_2aNT1XP4WJ89uN0EvhpC4GOM1EHEisPEzkuQxcqGUpjZKSNio2WRhqtpcidjbhLcxVzE9tMRw7DGxYkUZnSXuoh7C9XS_sCGBYtQlqdWJQSusyUVJIocIXOrHQu7cO7rVILb7CqaPFmWYHqL0j9Baq_D-83Ki-0Jy2n2RmLe6TfbqWvWrKOe-Reo_W2IsSwPRl9KegeVuky5WF2w_twtDHubo2YDMU5nVSnL__7HV7BQ7qkBkaeHMF-vb62x5jJ1GoAnXx8PoDuydn02_eBd9E_T4fy-Q
link.rule.ids 230,315,786,790,891,12792,21416,23346,27955,27956,33406,33777,43633,43838,56157
linkProvider Cambridge University Press
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dSxtBEB9qpLR9sJpajNp2kZY-lNX72PvYJ0mLEjUGEQXpy3H7hUpIbO5U-t935rJJbMG-3g3cMTu787G_-Q3A55CCXpEkPMUkmYtEx1zKUvDEWJVntkQPRfWO00HauxTHV8mVL7hVHlY5OxObg9qMNdXI99ANxTndEab7d784TY2i21U_QmMJlolyM2_B8veDwdn54h4hkNmMLxwji8BD34k0-tZRI3oU7KY0EndBrPCXg1q6JnjkP6d043oOV2HFx4ysO13kNXhhR2146-NH5ndn1YY3T8gF2_CyAXfq6h387LJrTDcnijiAWf045m54f2NYMwWHYdTKCFjeAGLV0DI3HD9WjAq0rJyom6Yvn2Fg29gqN4R4r3-zxnKqdbg8PLj40eN-pgLXcSZqLjG_MKGLZOACJQNpjAy1UbHR0kijtRS5s2Hk0lzFkYltpkOHTgzTjrBMqWL6Hlqj8chuAMPUREirE4tSQpeZkkoS0a3QmZXOpR34Oldq4XdGVUxRZVmB6i9I_QWqvwPfZiovtKcmpwkZw2ekv8yl76aUHM_I7eDqzUWIR7vX7Rf0DHNxmUZB9hB1YHu2uIt_XNja5v9ff4JXvYvTftE_GpxswWv6MvUpRsk2tOrJvf2AAUutPnqr_AMdJOdd
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+hyperbolic+two-fluid+model+for+compressible+flows+with+arbitrary+material-density+ratios&rft.jtitle=Journal+of+fluid+mechanics&rft.au=Fox%2C+Rodney+O.&rft.au=Laurent%2C+Fr%C3%A9d%C3%A9rique&rft.au=Vi%C3%A9%2C+Aymeric&rft.date=2020-11-25&rft.pub=Cambridge+University+Press&rft.issn=0022-1120&rft.eissn=1469-7645&rft.volume=903&rft_id=info:doi/10.1017%2Fjfm.2020.615&rft.externalDocID=10_1017_jfm_2020_615
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1120&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1120&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1120&client=summon