In vitro cell stretching technology (IsoStretcher) as an approach to unravel Piezo1-mediated cardiac mechanotransduction
The transformation of electrical signals into mechanical action of the heart underlying blood circulation results in mechanical stimuli during active contraction or passive filling distention, which conversely modulate electrical signals. This feedback mechanism is known as cardiac mechano-electric...
Saved in:
Published in | Progress in biophysics and molecular biology Vol. 159; pp. 22 - 33 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Ltd
01.01.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 0079-6107 1873-1732 1873-1732 |
DOI | 10.1016/j.pbiomolbio.2020.07.003 |
Cover
Loading…
Abstract | The transformation of electrical signals into mechanical action of the heart underlying blood circulation results in mechanical stimuli during active contraction or passive filling distention, which conversely modulate electrical signals. This feedback mechanism is known as cardiac mechano-electric coupling (MEC). The cardiac MEC involves complex activation of mechanical biosensors initiating short-term and long-term effects through Ca2+ signals in cardiomyocytes in acute and chronic pressure overload scenarios (e.g. cardiac hypertrophy). Although it is largely still unknown how mechanical forces alter cardiac function at the molecular level, mechanosensitive channels, including the recently discovered family of Piezo channels, have been thought to play a major role in the cardiac MEC and are also suspected to contribute to development of cardiac hypertrophy and heart failure. The earliest reports of mechanosensitive channel activity recognized that their gating could be controlled by membrane stretch. In this article, we provide an overview of the stretch devices, which have been employed for studies of the effects of mechanical stimuli on muscle and heart cells. We also describe novel experiments examining the activity of Piezo1 channels under multiaxial stretch applied using polydimethylsiloxane (PDMS) stretch chambers and IsoStretcher technology to achieve isotropic stretching stimulation to cultured HL-1 cardiac muscle cells which express an appreciable amount of Piezo1. |
---|---|
AbstractList | The transformation of electrical signals into mechanical action of the heart underlying blood circulation results in mechanical stimuli during active contraction or passive filling distention, which conversely modulate electrical signals. This feedback mechanism is known as cardiac mechano-electric coupling (MEC). The cardiac MEC involves complex activation of mechanical biosensors initiating short-term and long-term effects through Ca2+ signals in cardiomyocytes in acute and chronic pressure overload scenarios (e.g. cardiac hypertrophy). Although it is largely still unknown how mechanical forces alter cardiac function at the molecular level, mechanosensitive channels, including the recently discovered family of Piezo channels, have been thought to play a major role in the cardiac MEC and are also suspected to contribute to development of cardiac hypertrophy and heart failure. The earliest reports of mechanosensitive channel activity recognized that their gating could be controlled by membrane stretch. In this article, we provide an overview of the stretch devices, which have been employed for studies of the effects of mechanical stimuli on muscle and heart cells. We also describe novel experiments examining the activity of Piezo1 channels under multiaxial stretch applied using polydimethylsiloxane (PDMS) stretch chambers and IsoStretcher technology to achieve isotropic stretching stimulation to cultured HL-1 cardiac muscle cells which express an appreciable amount of Piezo1.The transformation of electrical signals into mechanical action of the heart underlying blood circulation results in mechanical stimuli during active contraction or passive filling distention, which conversely modulate electrical signals. This feedback mechanism is known as cardiac mechano-electric coupling (MEC). The cardiac MEC involves complex activation of mechanical biosensors initiating short-term and long-term effects through Ca2+ signals in cardiomyocytes in acute and chronic pressure overload scenarios (e.g. cardiac hypertrophy). Although it is largely still unknown how mechanical forces alter cardiac function at the molecular level, mechanosensitive channels, including the recently discovered family of Piezo channels, have been thought to play a major role in the cardiac MEC and are also suspected to contribute to development of cardiac hypertrophy and heart failure. The earliest reports of mechanosensitive channel activity recognized that their gating could be controlled by membrane stretch. In this article, we provide an overview of the stretch devices, which have been employed for studies of the effects of mechanical stimuli on muscle and heart cells. We also describe novel experiments examining the activity of Piezo1 channels under multiaxial stretch applied using polydimethylsiloxane (PDMS) stretch chambers and IsoStretcher technology to achieve isotropic stretching stimulation to cultured HL-1 cardiac muscle cells which express an appreciable amount of Piezo1. The transformation of electrical signals into mechanical action of the heart underlying blood circulation results in mechanical stimuli during active contraction or passive filling distention, which conversely modulate electrical signals. This feedback mechanism is known as cardiac mechano-electric coupling (MEC). The cardiac MEC involves complex activation of mechanical biosensors initiating short-term and long-term effects through Ca2+ signals in cardiomyocytes in acute and chronic pressure overload scenarios (e.g. cardiac hypertrophy). Although it is largely still unknown how mechanical forces alter cardiac function at the molecular level, mechanosensitive channels, including the recently discovered family of Piezo channels, have been thought to play a major role in the cardiac MEC and are also suspected to contribute to development of cardiac hypertrophy and heart failure. The earliest reports of mechanosensitive channel activity recognized that their gating could be controlled by membrane stretch. In this article, we provide an overview of the stretch devices, which have been employed for studies of the effects of mechanical stimuli on muscle and heart cells. We also describe novel experiments examining the activity of Piezo1 channels under multiaxial stretch applied using polydimethylsiloxane (PDMS) stretch chambers and IsoStretcher technology to achieve isotropic stretching stimulation to cultured HL-1 cardiac muscle cells which express an appreciable amount of Piezo1. The transformation of electrical signals into mechanical action of the heart underlying blood circulation results in mechanical stimuli during active contraction or passive filling distention, which conversely modulate electrical signals. This feedback mechanism is known as cardiac mechano-electric coupling (MEC). The cardiac MEC involves complex activation of mechanical biosensors initiating short-term and long-term effects through Ca signals in cardiomyocytes in acute and chronic pressure overload scenarios (e.g. cardiac hypertrophy). Although it is largely still unknown how mechanical forces alter cardiac function at the molecular level, mechanosensitive channels, including the recently discovered family of Piezo channels, have been thought to play a major role in the cardiac MEC and are also suspected to contribute to development of cardiac hypertrophy and heart failure. The earliest reports of mechanosensitive channel activity recognized that their gating could be controlled by membrane stretch. In this article, we provide an overview of the stretch devices, which have been employed for studies of the effects of mechanical stimuli on muscle and heart cells. We also describe novel experiments examining the activity of Piezo1 channels under multiaxial stretch applied using polydimethylsiloxane (PDMS) stretch chambers and IsoStretcher technology to achieve isotropic stretching stimulation to cultured HL-1 cardiac muscle cells which express an appreciable amount of Piezo1. |
Author | Schöler, Ulrike Yu, Ze-Yan Guo, Yang Feneley, Michael P. Martinac, Boris Friedrich, Oliver Merten, Anna-Lena Cvetkovska, Jasmina Fatkin, Diane |
Author_xml | – sequence: 1 givenname: Yang surname: Guo fullname: Guo, Yang organization: Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales, Australia – sequence: 2 givenname: Anna-Lena orcidid: 0000-0001-6588-0684 surname: Merten fullname: Merten, Anna-Lena organization: Institute of Medical Biotechnology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany – sequence: 3 givenname: Ulrike orcidid: 0000-0001-5374-1492 surname: Schöler fullname: Schöler, Ulrike organization: Institute of Medical Biotechnology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany – sequence: 4 givenname: Ze-Yan surname: Yu fullname: Yu, Ze-Yan organization: Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales, Australia – sequence: 5 givenname: Jasmina surname: Cvetkovska fullname: Cvetkovska, Jasmina organization: Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales, Australia – sequence: 6 givenname: Diane surname: Fatkin fullname: Fatkin, Diane organization: Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales, Australia – sequence: 7 givenname: Michael P. orcidid: 0000-0002-6650-8865 surname: Feneley fullname: Feneley, Michael P. organization: Cardiac Physiology and Transplantation Division, Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales, Australia – sequence: 8 givenname: Boris orcidid: 0000-0001-8422-7082 surname: Martinac fullname: Martinac, Boris email: b.martinac@victorchang.edu.au organization: Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales, Australia – sequence: 9 givenname: Oliver orcidid: 0000-0003-2238-2049 surname: Friedrich fullname: Friedrich, Oliver organization: Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales, Australia |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32763257$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkd9qFDEYxYNU7Lb6CpLLejFj_sxMJjeCFq0LBQX1OmQyX7pZZpI1ySxsn8Zn8cmaZVsEb_QmCeR8v-Scc4HOfPCAEKakpoR2b7f1bnBhDlNZa0YYqYmoCeHP0Ir2gldUcHaGVoQIWXWUiHN0kdKWEMKo6F6gc85Ex1krVuiw9r9_7V2OARuYJpxyhGw2zt_hDGbjwxTuDvhqncK30w3EN1gnrD3Wu10M2mxwDnjxUe9hwl8d3AdazTA6nWHERsdyMnguLO1DjtqncTHZBf8SPbd6SvDqcb9EPz59_H79ubr9crO-fn9bGS6aXEnOpBnBEsqJ5Y1pGRskGVrbSSuN7K2VwHVLuqFvh25sLUDTSGIs7-Q4asEv0dWJW377c4GU1ezS0av2EJakWMNpTzvRN0X6-lG6DMWC2kU363hQT3EVwbuTwMSQUgSrjMv66KY4c5OiRB37UVv1px917EcRoUo_BdD_BXh64z9GP5xGoYS1dxBVMg68KVFHMFmNwf0b8gDN3rRR |
CitedBy_id | crossref_primary_10_1016_j_bone_2021_115970 crossref_primary_10_1016_j_pbiomolbio_2020_11_003 crossref_primary_10_1098_rsos_240284 crossref_primary_10_1088_2516_1091_ad9699 crossref_primary_10_1093_cvr_cvae024 crossref_primary_10_3390_ijms241612953 crossref_primary_10_3389_fcell_2021_750775 crossref_primary_10_1016_j_jare_2024_12_024 crossref_primary_10_1007_s00018_024_05159_6 crossref_primary_10_1016_j_engreg_2024_03_001 crossref_primary_10_3390_cimb45070369 crossref_primary_10_1152_ajpcell_00583_2023 crossref_primary_10_3390_cells10050990 crossref_primary_10_1016_j_cbi_2022_110011 crossref_primary_10_1063_5_0074317 crossref_primary_10_3389_fcvm_2022_842885 crossref_primary_10_7554_eLife_74519 |
Cites_doi | 10.1016/j.ceca.2008.06.003 10.1096/fj.05-5424rev 10.1111/bph.14188 10.1038/nature02743 10.1002/bit.22236 10.3389/fbioe.2019.00055 10.1038/ncomms10366 10.1073/pnas.95.6.2979 10.1038/nature13701 10.1016/j.neuron.2006.03.042 10.1056/NEJMoa1602812 10.1152/japplphysiol.00012.2009 10.1074/jbc.M110.143370 10.1038/nature20793 10.1088/1478-3967/1/1/001 10.1016/j.pbiomolbio.2017.06.011 10.1073/pnas.0606894103 10.1182/blood-2017-05-786004 10.1007/BF00656997 10.1084/jem.20180483 10.1016/j.pbiomolbio.2017.06.010 10.1016/j.celrep.2019.08.075 10.1038/s41467-017-00429-3 10.1254/jphs.FP0061332 10.1007/s00424-007-0359-3 10.3324/haematol.2013.086090 10.1172/JCI87343 10.1038/nature13251 10.1242/jcs.01232 10.1038/srep19352 10.1021/bi200770q 10.1126/science.1193270 10.1016/j.celrep.2019.01.056 10.1074/jbc.RA119.009167 10.1152/ajpheart.00103.2018 10.1126/scitranslmed.aat9897 10.1038/nature25453 10.1038/s41467-019-09055-7 10.7554/eLife.33660 10.1016/j.celrep.2016.10.033 10.1073/pnas.1902165116 10.1016/j.bpj.2016.11.013 10.1016/j.yjmcc.2016.03.008 10.1073/pnas.84.8.2297 10.1007/s10544-016-0071-1 10.1016/j.cell.2018.02.047 10.1242/jcs.238360 10.1002/jcb.27683 10.7554/eLife.12088 10.1074/jbc.M113.528638 10.1016/j.bios.2016.03.015 10.1126/scitranslmed.aat9892 10.1038/embor.2013.170 10.1073/pnas.1409233111 10.1038/nature10801 10.1016/j.celrep.2015.09.072 10.1038/nature13980 10.1165/rcmb.2018-0197OC 10.1038/nature21407 10.1073/pnas.1409802111 10.1152/ajpheart.00986.2003 10.1093/molehr/gay033 10.1152/physrev.2001.81.2.685 10.1038/nn.4162 10.1152/ajpcell.00346.2018 10.1007/s10529-013-1381-5 10.1080/19336950.2019.1586046 10.1126/science.aau6324 10.1152/ajpcell.00095.2013 |
ContentType | Journal Article |
Copyright | 2020 Elsevier Ltd Copyright © 2020 Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: 2020 Elsevier Ltd – notice: Copyright © 2020 Elsevier Ltd. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1016/j.pbiomolbio.2020.07.003 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1873-1732 |
EndPage | 33 |
ExternalDocumentID | 32763257 10_1016_j_pbiomolbio_2020_07_003 S0079610720300675 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K --M -~X .GJ .~1 0R~ 123 1B1 1RT 1~. 1~5 29P 3O- 4.4 457 4G. 53G 5RE 5VS 7-5 71M 8P~ 9JM AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABEFU ABFNM ABFRF ABGSF ABJNI ABLJU ABMAC ABTAH ABUDA ABXDB ABYKQ ACDAQ ACGFO ACGFS ACIUM ACRLP ADBBV ADEZE ADMUD ADUVX AEBSH AEFWE AEHWI AEKER AENEX AFFNX AFKWA AFTJW AFXIZ AGHFR AGRDE AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DOVZS DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F20 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA HLW HVGLF HX~ HZ~ IHE J1W KOM LX3 M41 MO0 MVM N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBG SDF SDG SDP SES SEW SPCBC SPD SSU SSZ T5K UNMZH UQL VQP WUQ XFK ZGI ZY4 ~G- AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH CGR CUY CVF ECM EIF NPM 7X8 EFKBS |
ID | FETCH-LOGICAL-c374t-9329cdef0130f34c522b90b5f69f9c98ff9e3a506b85b6d5fee4490cf369dda73 |
IEDL.DBID | .~1 |
ISSN | 0079-6107 1873-1732 |
IngestDate | Tue Aug 05 11:35:04 EDT 2025 Thu Apr 03 07:06:46 EDT 2025 Tue Jul 01 00:42:40 EDT 2025 Thu Apr 24 22:50:43 EDT 2025 Tue Feb 13 08:07:48 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | HL-1 Mechanotransduction Piezo1 Mechanosensitive ion channel Cell stretching device Polydimethylsiloxane (PDMS) |
Language | English |
License | Copyright © 2020 Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c374t-9329cdef0130f34c522b90b5f69f9c98ff9e3a506b85b6d5fee4490cf369dda73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-8422-7082 0000-0001-6588-0684 0000-0001-5374-1492 0000-0002-6650-8865 0000-0003-2238-2049 |
PMID | 32763257 |
PQID | 2431816784 |
PQPubID | 23479 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_2431816784 pubmed_primary_32763257 crossref_citationtrail_10_1016_j_pbiomolbio_2020_07_003 crossref_primary_10_1016_j_pbiomolbio_2020_07_003 elsevier_sciencedirect_doi_10_1016_j_pbiomolbio_2020_07_003 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2021 2021-01-00 20210101 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – month: 01 year: 2021 text: January 2021 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Progress in biophysics and molecular biology |
PublicationTitleAlternate | Prog Biophys Mol Biol |
PublicationYear | 2021 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Kang, Hong, Zhong, Klomp, Bayless, Mehta, Karginov, Hu, Malik (bib34) 2019; 316 Liang, Huang, Yuan, Chen, Liang, Zeng, Zheng, Cao, Geng, Zhou (bib41) 2017; 9 Ma, Cahalan, LaMonte, Grubaugh, Zeng, Murthy, Paytas, Gamini, Lukacs, Whitwam, Loud, Lohia, Berry, Khan, Janse, Bandell, Schmedt, Wengelnik, Su, Honore, Winzeler, Andersen, Patapoutian (bib43) 2018; 173 Guo, MacKinnon (bib26) 2017; 6 Szczot, Liljencrantz, Ghitani, Barik, Lam, Thompson, Bharucha-Goebel, Saade, Necaise, Donkervoort, Foley, Gordon, Case, Bushnell, Bonnemann, Chesler (bib70) 2018; 10 Albuisson, Murthy, Bandell, Coste, Louis-Dit-Picard, Mathur, Feneant-Thibault, Tertian, de Jaureguiberry, Syfuss, Cahalan, Garcon, Toutain, Rohrlich, Delaunay, Picard, Jeunemaitre, Patapoutian (bib2) 2013; 4 Murthy, Loud, Daou, Marshall, Schwaller, Kuhnemund, Francisco, Keenan, Dubin, Lewin, Patapoutian (bib50) 2018; 10 Hecht, Knittel, Felder, Dietl, Mizaikoff, Kranz (bib31) 2012; 137 Woo, Ranade, Weyer, Dubin, Baba, Qiu, Petrus, Miyamoto, Reddy, Lumpkin, Stucky, Patapoutian (bib77) 2014; 509 Syeda, Florendo, Cox, Kefauver, Santos, Martinac, Patapoutian (bib68) 2016; 17 Nikolaev, Cox, Ridone, Rohde, Cordero-Morales, Vasquez, Laver, Martinac (bib53) 2019; 132 Nonomura, Woo, Chang, Gillich, Qiu, Francisco, Ranade, Liberles, Patapoutian (bib54) 2017; 541 Loukin, Zhou, Su, Saimi, Kung (bib42) 2010; 285 Gnanasambandam, Ghatak, Yasmann, Nishizawa, Sachs, Ladokhin, Sukharev, Suchyna (bib23) 2017; 112 Gottlieb, Folgering, Maroto, Raso, Wood, Kurosky, Bowman, Bichet, Patel, Sachs, Martinac, Hamill, Honore (bib24) 2008; 455 Peyronnet, Martins, Duprat, Demolombe, Arhatte, Jodar, Tauc, Duranton, Paulais, Teulon, Honore, Patel (bib56) 2013; 14 Bae, Sachs, Gottlieb (bib4) 2011; 50 Suchyna, Tape, Koeppe, Andersen, Sachs, Gottlieb (bib67) 2004; 430 Coste, Mathur, Schmidt, Earley, Ranade, Petrus, Dubin, Patapoutian (bib11) 2010; 330 Ranade, Woo, Dubin, Moshourab, Wetzel, Petrus, Mathur, Begay, Coste, Mainquist, Wilson, Francisco, Reddy, Qiu, Wood, Lewin, Patapoutian (bib58) 2014; 516 Ranade, Qiu, Woo, Hur, Murthy, Cahalan, Xu, Mathur, Bandell, Coste, Li, Chien, Patapoutian (bib57) 2014; 111 Cox, Bae, Ziegler, Hartley, Nikolova-Krstevski, Rohde, Ng, Sachs, Gottlieb, Martinac (bib12) 2016; 7 Harshad, Jun, Park, Barton, Vadivelu, John, Nguyen (bib30) 2016; 18 Pathak, Nourse, Tran, Hwe, Arulmoli, Le, Bernardis, Flanagan, Tombola (bib55) 2014; 111 Cox, Bavi, Martinac (bib13) 2019; 29 Friedrich, Merten, Schneidereit, Guo, Schürmann, Martinac (bib19) 2019; 7 Hamill, Martinac (bib27) 2001; 81 Ingber (bib32) 2006; 20 Woo, Lukacs, de Nooij, Zaytseva, Criddle, Francisco, Jessell, Wilkinson, Patapoutian (bib76) 2015; 18 Zeigler, Richardson, Holmes, Saucerman (bib81) 2016; 94 Nguyen, Biet, Simard, Béliveau, Francoeur, Guillemette, Dumaine, Grandbois, Boulay (bib52) 2013 Broitman (bib6) 2016; 65 Saotome, Murthy, Kefauver, Whitwam, Patapoutian, Ward (bib62) 2018; 554 Miyamoto, Mochizuki, Nakagomi, Kira, Watanabe, Takayama, Suzuki, Koizumi, Takeda, Tominaga (bib47) 2014; 289 Syeda, Xu, Dubin, Coste, Mathur, Huynh, Matzen, Lao, Tully, Engels, Petrassi, Schumacher, Montal, Bandell, Patapoutian (bib69) 2015 Rode, Shi, Endesh, Drinkhill, Webster, Lotteau, Bailey, Yuldasheva, Ludlow, Cubbon, Li, Futers, Morley, Gaunt, Marszalek, Viswambharan, Cuthbertson, Baxter, Foster, Sukumar, Weightman, Calaghan, Wheatcroft, Kearney, Beech (bib60) 2017; 8 Constantine, Liew, Lo, Macmillan, Cranfield, Sunde, Whan, Graham, Martinac (bib10) 2016; 6 White, Constantin, Claycomb (bib74) 2004; 286 Kwan, Allchorne, Vollrath, Christensen, Zhang, Woolf, Corey (bib36) 2006; 50 Evans, Cuthbertson, Endesh, Rode, Blythe, Hyman, Hall, Gaunt, Ludlow, Foster, Beech (bib16) 2018; 175 Dyachenko, Husse, Rückschloss, Isenberg (bib15) 2009; 45 Kim, Coste, Chadha, Cook, Patapoutian (bib35) 2012; 483 Yang, Zhou, Wang, Fu, Li (bib79) 2019; 120 Zeng, Marshall, Min, Daou, Chapleau, Abboud, Liberles, Patapoutian (bib82) 2018; 362 Lhomme, Gilbert, Pele, Deweirdt, Henrion, Baudrimont, Campagnac, Marthan, Guibert, Ducret, Savineau, Quignard (bib39) 2019; 60 Schürmann, Wagner, Herlitze, Fischer, Gumbrecht, Wirth-Hücking, Prölß, Lautscham, Fabry, Goldmann, Nikolova-Krstevski, Martinac, Friedrich (bib63) 2016; 81 Tomei, Boschetti, Gervaso, Swartz (bib71) 2009; 103 Wong, Juang, Tsai, Tseng, Lee, Chang, Cheng (bib75) 2018; 7 Nava, Miroshnikova, Biggs, Whitefield, Metge, Boucas, Vihinen, Jokitalo, Li, Arcos, Hoffmann, Merkel, Niessen, Dahl, Wickström (bib51) 2020 Retailleau, Duprat, Arhatte, Ranade, Peyronnet, Martins, Jodar, Moro, Offermanns, Feng, Demolombe, Patel, Honore (bib59) 2015; 13 Duchemin, Vignes, Vermot (bib14) 2019 Faucherre, Kissa, Nargeot, Mangoni, Jopling (bib17) 2014; 99 Gudipaty, Lindblom, Loftus, Redd, Edes, Davey, Krishnegowda, Rosenblatt (bib25) 2017; 543 Martinac (bib44) 2004; 117 Albarran-Juarez, Iring, Wang, Joseph, Grimm, Strilic, Wettschureck, Althoff, Offermanns (bib1) 2018; 215 Zhang, Wang, Geng, Zhou, Xiao (bib83) 2019; 26 Suchyna, Besch, Sachs (bib66) 2004; 1 John, Ko, Gokin, Gokina, Mandala, Osol (bib33) 2018; 315 Cahalan, Lukacs, Ranade, Chien, Bandell, Patapoutian (bib7) 2015; 4 Lewis, Grandl (bib38) 2015; 4 Jaggers, Ridone, Martinac, Baker (bib85) 2019; 13 Martinac, Buechner, Delcour, Adler, Kung (bib45) 1987; 84 Hamill, McBride (bib29) 1996; 48 Claycomb, Lanson, Stallworth, Egeland, Delcarpio, Bahinski, Izzo (bib9) 1998; 95 Li, Hou, Tumova, Muraki, Bruns, Ludlow, Sedo, Hyman, McKeown, Young, Yuldasheva, Majeed, Wilson, Rode, Bailey, Kim, Fu, Carter, Bilton, Imrie, Ajuh, Dear, Cubbon, Kearney, Prasad, Evans, Ainscough, Beech (bib40) 2014; 515 Martinac, Cox (bib46) 2017 Glogowska, Schneider, Maksimova, Schulz, Lezon-Geyda, Wu, Radhakrishnan, Keel, Mahoney, Freidmann, Altura, Gracheva, Bagriantsev, Kalfa, Gallagher (bib22) 2017; 130 Romero, Massey, Mata-Daboin, Sierra-Valdez, Chauhan, Morales, Vasquez (bib61) 2019; 10 Anderson, Kim, Hagmann, Benzing, Dryer (bib3) 2013; 305 Friedrich, Hong, Xiong, Zhong, Di, Rehman, Komarova, Malik (bib18) 2019; 116 Tremblay, Chagnon-Lessard, Mirzaei, Pelling, Godin (bib72) 2014; 36 Blythe, Muraki, Ludlow, Stylianidis, Gilbert, Evans, Cuthbertson, Foster, Swift, Li, Drinkhill, van Nieuwenhoven, Porter, Beech, Turner (bib5) 2019; 294 Chesler, Szczot, Bharucha-Goebel, Ceko, Donkervoot, Laubacher, Hayes, Alter, Zampieri, Stanley, Innes, Mah, Grosmann, Bradley, Nguyen, Foley, Pichon, Bonnemann (bib8) 2016; 375 Yu, Guo, Friedrich, Feneley, Martinac (bib80) 2019 Gerstmair, Fois, Innerbichler, Dietl, Felder (bib21) 2009; 107 Morley, Shi, Gaunt, Hyman, Webster, Williams, Forbes, Walker, Simpson, Beech (bib49) 2018; 24 Morita, Honda, Inoue, Ito, Abe, Nelson, E.Brayden (bib48) 2007; 103 Hamill, Marty, Neher, Sakmann, Sigworth (bib28) 1981; 391 Lee, Leddy, Chen, Lee, Zelenski, McNulty, Wu, Beicker, Coles, Zauscher, Grandl, Sachs, Guilak, Liedtke (bib37) 2014 Friedrich, Schneidereit, Nikolaev, Nikolova-Krstevski, Schürmann, Wirth-Hücking, Merten, Fatkin, Martinac (bib20) 2017; 130 Yamaguchi, Iribe, Nishida, Naruse (bib78) 2017; 130 Wang, Chennupati, Kaur, Iring, Wettschureck, Offermanns (bib73) 2016; 126 Servin-Vences, Moroni, Lewin, Poole (bib64) 2017; 6 Spassova, Hewavitharana, Xu, Soboloff, Gill (bib65) 2006; 103 Kang (10.1016/j.pbiomolbio.2020.07.003_bib34) 2019; 316 Nikolaev (10.1016/j.pbiomolbio.2020.07.003_bib53) 2019; 132 Kim (10.1016/j.pbiomolbio.2020.07.003_bib35) 2012; 483 Ranade (10.1016/j.pbiomolbio.2020.07.003_bib58) 2014; 516 Wong (10.1016/j.pbiomolbio.2020.07.003_bib75) 2018; 7 Faucherre (10.1016/j.pbiomolbio.2020.07.003_bib17) 2014; 99 Hecht (10.1016/j.pbiomolbio.2020.07.003_bib31) 2012; 137 White (10.1016/j.pbiomolbio.2020.07.003_bib74) 2004; 286 Zeigler (10.1016/j.pbiomolbio.2020.07.003_bib81) 2016; 94 Friedrich (10.1016/j.pbiomolbio.2020.07.003_bib19) 2019; 7 Cox (10.1016/j.pbiomolbio.2020.07.003_bib13) 2019; 29 Duchemin (10.1016/j.pbiomolbio.2020.07.003_bib14) 2019 Saotome (10.1016/j.pbiomolbio.2020.07.003_bib62) 2018; 554 Murthy (10.1016/j.pbiomolbio.2020.07.003_bib50) 2018; 10 Pathak (10.1016/j.pbiomolbio.2020.07.003_bib55) 2014; 111 Schürmann (10.1016/j.pbiomolbio.2020.07.003_bib63) 2016; 81 Constantine (10.1016/j.pbiomolbio.2020.07.003_bib10) 2016; 6 Peyronnet (10.1016/j.pbiomolbio.2020.07.003_bib56) 2013; 14 Martinac (10.1016/j.pbiomolbio.2020.07.003_bib44) 2004; 117 Suchyna (10.1016/j.pbiomolbio.2020.07.003_bib66) 2004; 1 Servin-Vences (10.1016/j.pbiomolbio.2020.07.003_bib64) 2017; 6 Szczot (10.1016/j.pbiomolbio.2020.07.003_bib70) 2018; 10 Yang (10.1016/j.pbiomolbio.2020.07.003_bib79) 2019; 120 Glogowska (10.1016/j.pbiomolbio.2020.07.003_bib22) 2017; 130 Martinac (10.1016/j.pbiomolbio.2020.07.003_bib46) 2017 Hamill (10.1016/j.pbiomolbio.2020.07.003_bib29) 1996; 48 Lhomme (10.1016/j.pbiomolbio.2020.07.003_bib39) 2019; 60 Cox (10.1016/j.pbiomolbio.2020.07.003_bib12) 2016; 7 Jaggers (10.1016/j.pbiomolbio.2020.07.003_bib85) 2019; 13 Yu (10.1016/j.pbiomolbio.2020.07.003_bib80) 2019 Liang (10.1016/j.pbiomolbio.2020.07.003_bib41) 2017; 9 Gerstmair (10.1016/j.pbiomolbio.2020.07.003_bib21) 2009; 107 Ingber (10.1016/j.pbiomolbio.2020.07.003_bib32) 2006; 20 Zhang (10.1016/j.pbiomolbio.2020.07.003_bib83) 2019; 26 Morley (10.1016/j.pbiomolbio.2020.07.003_bib49) 2018; 24 Bae (10.1016/j.pbiomolbio.2020.07.003_bib4) 2011; 50 Anderson (10.1016/j.pbiomolbio.2020.07.003_bib3) 2013; 305 Dyachenko (10.1016/j.pbiomolbio.2020.07.003_bib15) 2009; 45 Albarran-Juarez (10.1016/j.pbiomolbio.2020.07.003_bib1) 2018; 215 Chesler (10.1016/j.pbiomolbio.2020.07.003_bib8) 2016; 375 Gnanasambandam (10.1016/j.pbiomolbio.2020.07.003_bib23) 2017; 112 Spassova (10.1016/j.pbiomolbio.2020.07.003_bib65) 2006; 103 Nava (10.1016/j.pbiomolbio.2020.07.003_bib51) Syeda (10.1016/j.pbiomolbio.2020.07.003_bib69) Li (10.1016/j.pbiomolbio.2020.07.003_bib40) 2014; 515 Loukin (10.1016/j.pbiomolbio.2020.07.003_bib42) 2010; 285 Wang (10.1016/j.pbiomolbio.2020.07.003_bib73) 2016; 126 Syeda (10.1016/j.pbiomolbio.2020.07.003_bib68) 2016; 17 Woo (10.1016/j.pbiomolbio.2020.07.003_bib76) 2015; 18 Suchyna (10.1016/j.pbiomolbio.2020.07.003_bib67) 2004; 430 Retailleau (10.1016/j.pbiomolbio.2020.07.003_bib59) 2015; 13 Miyamoto (10.1016/j.pbiomolbio.2020.07.003_bib47) 2014; 289 Coste (10.1016/j.pbiomolbio.2020.07.003_bib11) 2010; 330 Martinac (10.1016/j.pbiomolbio.2020.07.003_bib45) 1987; 84 John (10.1016/j.pbiomolbio.2020.07.003_bib33) 2018; 315 Tremblay (10.1016/j.pbiomolbio.2020.07.003_bib72) 2014; 36 Zeng (10.1016/j.pbiomolbio.2020.07.003_bib82) 2018; 362 Hamill (10.1016/j.pbiomolbio.2020.07.003_bib28) 1981; 391 Evans (10.1016/j.pbiomolbio.2020.07.003_bib16) 2018; 175 Yamaguchi (10.1016/j.pbiomolbio.2020.07.003_bib78) 2017; 130 Ma (10.1016/j.pbiomolbio.2020.07.003_bib43) 2018; 173 Broitman (10.1016/j.pbiomolbio.2020.07.003_bib6) 2016; 65 Tomei (10.1016/j.pbiomolbio.2020.07.003_bib71) 2009; 103 Cahalan (10.1016/j.pbiomolbio.2020.07.003_bib7) 2015; 4 Harshad (10.1016/j.pbiomolbio.2020.07.003_bib30) 2016; 18 Claycomb (10.1016/j.pbiomolbio.2020.07.003_bib9) 1998; 95 Romero (10.1016/j.pbiomolbio.2020.07.003_bib61) 2019; 10 Guo (10.1016/j.pbiomolbio.2020.07.003_bib26) 2017; 6 Nguyen (10.1016/j.pbiomolbio.2020.07.003_bib52) 2013 Blythe (10.1016/j.pbiomolbio.2020.07.003_bib5) 2019; 294 Friedrich (10.1016/j.pbiomolbio.2020.07.003_bib18) 2019; 116 Gudipaty (10.1016/j.pbiomolbio.2020.07.003_bib25) 2017; 543 Woo (10.1016/j.pbiomolbio.2020.07.003_bib77) 2014; 509 Morita (10.1016/j.pbiomolbio.2020.07.003_bib48) 2007; 103 Kwan (10.1016/j.pbiomolbio.2020.07.003_bib36) 2006; 50 Rode (10.1016/j.pbiomolbio.2020.07.003_bib60) 2017; 8 Albuisson (10.1016/j.pbiomolbio.2020.07.003_bib2) 2013; 4 Nonomura (10.1016/j.pbiomolbio.2020.07.003_bib54) 2017; 541 Ranade (10.1016/j.pbiomolbio.2020.07.003_bib57) 2014; 111 Lewis (10.1016/j.pbiomolbio.2020.07.003_bib38) 2015; 4 Lee (10.1016/j.pbiomolbio.2020.07.003_bib37) 2014 Hamill (10.1016/j.pbiomolbio.2020.07.003_bib27) 2001; 81 Friedrich (10.1016/j.pbiomolbio.2020.07.003_bib20) 2017; 130 Gottlieb (10.1016/j.pbiomolbio.2020.07.003_bib24) 2008; 455 |
References_xml | – volume: 455 start-page: 1097 year: 2008 end-page: 1103 ident: bib24 article-title: Revisiting trpc1 and trpc6 mechanosensitivity publication-title: Pflügers Archiv. – volume: 173 start-page: 443 year: 2018 end-page: 455 ident: bib43 article-title: Common piezo1 allele in african populations causes rbc dehydration and attenuates plasmodium infection publication-title: Cell – volume: 45 start-page: 38 year: 2009 end-page: 54 ident: bib15 article-title: Mechanical deformation of ventricular myocytes modulates both trpc6 and kir2.3 channels publication-title: Cell Calcium – year: 2019 ident: bib14 article-title: Mechanically Activated Piezo Channels Modulate Outflow Tract Valve Development through the Yap1 and Klf2-Notch Signaling axis – volume: 137 start-page: 5208 year: 2012 end-page: 5214 ident: bib31 article-title: Combining atomic force-fluorescence microscopy with a stretching device for analyzing mechanotransduction processes in living cells publication-title: The Royal Society of Chemistry – volume: 130 start-page: 264 year: 2017 end-page: 272 ident: bib78 article-title: Role of trpc3 and trpc6 channels in the myocardial response to stretch: linking physiology and pathophysiology publication-title: Prog. Biophys. Mol. Biol. – volume: 316 start-page: C92 year: 2019 end-page: C103 ident: bib34 article-title: Piezo1 mediates angiogenesis through activation of mt1-mmp signaling publication-title: Am. J. Physiol. Cell Physiol. – volume: 94 start-page: 72 year: 2016 end-page: 81 ident: bib81 article-title: A computational model of cardiac fibroblast signaling predicts context-dependent drivers of myofibroblast differentiation publication-title: J. Mol. Cell. Cardiol. – year: 2020 ident: bib51 article-title: Heterochromatin-driven nuclear softening protects the genome against mechanical stress-induced damage – volume: 130 start-page: 1845 year: 2017 end-page: 1856 ident: bib22 article-title: Novel mechanisms of piezo1 dysfunction in hereditary xerocytosis publication-title: Blood – volume: 315 start-page: H1019 year: 2018 end-page: H1026 ident: bib33 article-title: The piezo1 cation channel mediates uterine artery shear stress mechanotransduction and vasodilation during rat pregnancy publication-title: Am. J. Physiol. Heart Circ. Physiol. – volume: 60 start-page: 650 year: 2019 end-page: 658 ident: bib39 article-title: Stretch-activated piezo1 channel in endothelial cells relaxes mouse intrapulmonary arteries publication-title: Am. J. Respir. Cell Mol. Biol. – volume: 17 start-page: 1739 year: 2016 end-page: 1746 ident: bib68 article-title: Piezo1 channels are inherently mechanosensitive publication-title: Cell Rep. – volume: 330 start-page: 55 year: 2010 end-page: 60 ident: bib11 article-title: Piezo1 and piezo2 are essential components of distinct mechanically activated cation channels publication-title: Science – volume: 4 year: 2015 ident: bib38 article-title: Mechanical sensitivity of piezo1 ion channels can be tuned by cellular membrane tension publication-title: Elife – volume: 285 start-page: 27176 year: 2010 end-page: 27181 ident: bib42 article-title: Wild-type and brachylomia-causing mutant trpv4 channels respond directly to stretch force publication-title: J. Biol. Chem. – volume: 541 start-page: 176 year: 2017 end-page: 181 ident: bib54 article-title: Piezo2 senses airway stretch and mediates lung inflation-induced apnoea publication-title: Nature – volume: 1 start-page: 1 year: 2004 end-page: 18 ident: bib66 article-title: Dynamic regulation of mechanosensitive channels: capacitance used to monitor patch tension in real time publication-title: Phys. Biol. – volume: 286 start-page: H823 year: 2004 end-page: H829 ident: bib74 article-title: Cardiac physiology at the cellular level: use of cultured hl-1 cardiomyocytes for studies of cardiac muscle cell structure and function publication-title: Am. J. Physiol. Heart Circ. Physiol. – volume: 4 start-page: 2 year: 2015 end-page: 12 ident: bib7 article-title: Piezo1 links mechanical forces to red blood cell volume publication-title: eLIFE Cell Biology, Neuroscience – volume: 18 start-page: 1756 year: 2015 end-page: 1762 ident: bib76 article-title: Piezo2 is the principal mechanotransduction channel for proprioception publication-title: Nat. Neurosci. – volume: 6 start-page: 19352 year: 2016 ident: bib10 article-title: Heterologously-expressed and liposome-reconstituted human transient receptor potential melastatin 4 channel (trpm4) is a functional tetramer publication-title: Sci. Rep. – volume: 543 start-page: 118 year: 2017 end-page: 121 ident: bib25 article-title: Mechanical stretch triggers rapid epithelial cell division through piezo1 publication-title: Nature – volume: 24 start-page: 510 year: 2018 end-page: 520 ident: bib49 article-title: Piezo1 channels are mechanosensors in human fetoplacental endothelial cells publication-title: Mol. Hum. Reprod. – volume: 50 start-page: 6295 year: 2011 end-page: 6300 ident: bib4 article-title: The mechanosensitive ion channel piezo1 is inhibited by the peptide gsmtx4 publication-title: Biochemistry – volume: 10 year: 2018 ident: bib70 article-title: Piezo2 mediates injury-induced tactile pain in mice and humans publication-title: Sci. Transl. Med. – volume: 48 start-page: 231 year: 1996 end-page: 252 ident: bib29 article-title: The pharmacology of mechanogated membrane ion channels publication-title: Pharmacol. Rev. – volume: 29 start-page: 1 year: 2019 end-page: 12 ident: bib13 article-title: Biophysical principles of ion-channel-mediated mechanosensory transduction publication-title: Cell Rep. – volume: 103 start-page: 417 year: 2007 end-page: 426 ident: bib48 article-title: Membrane stretch-induced activation of a trpm4-like nonselective cation channel in cerebral artery myocytes publication-title: J. Pharmacol. Sci. – volume: 391 start-page: 85 year: 1981 end-page: 100 ident: bib28 article-title: Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches publication-title: Pflügers Archiv. – volume: 20 start-page: 811 year: 2006 end-page: 827 ident: bib32 article-title: Cellular mechanotransduction: putting all the pieces together again publication-title: Faseb. J. – volume: 50 start-page: 277 year: 2006 end-page: 289 ident: bib36 article-title: Trpa1 contributes to cold, mechanical, and chemical nociception but is not essential for hair-cell transduction publication-title: Neuron – volume: 116 start-page: 12980 year: 2019 end-page: 12985 ident: bib18 article-title: Endothelial cell piezo1 mediates pressure-induced lung vascular hyperpermeability via disruption of adherens junctions publication-title: Proc. Natl. Acad. Sci. U.S.A – volume: 7 start-page: 10366 year: 2016 ident: bib12 article-title: Removal of the mechanoprotective influence of the cytoskeleton reveals piezo1 is gated by bilayer tension publication-title: Nat. Commun. – volume: 483 start-page: 209 year: 2012 end-page: 212 ident: bib35 article-title: The role of drosophila piezo in mechanical nociception publication-title: Nature – volume: 4 start-page: 1 year: 2013 end-page: 8 ident: bib2 article-title: Dehydrated hereditary stomatocytosis linked to gain-of-function mutations in mechanically activated piezo1 ion channels publication-title: Nat. Commun. – volume: 289 start-page: 16565 year: 2014 end-page: 16575 ident: bib47 article-title: Functional role for piezo1 in stretch-evoked ca(2)(+) influx and atp release in urothelial cell cultures publication-title: J. Biol. Chem. – volume: 7 start-page: 1 year: 2019 end-page: 9 ident: bib19 article-title: : 2d inplane cell stretch system for studies of cardiac mechano-signaling publication-title: Frontiers in Bioengineering and Biotechnology – volume: 13 start-page: 102 year: 2019 end-page: 109 ident: bib85 article-title: Fluorescence microscopy of Piezo1 in droplet hydrogel bilayers. publication-title: Channels – volume: 9 start-page: 2945 year: 2017 end-page: 2955 ident: bib41 article-title: Stretch-activated channel piezo1 is up-regulated in failure heart and cardiomyocyte stimulated by angii publication-title: Am. J. Tourism Res. – volume: 65 start-page: 1 year: 2016 end-page: 18 ident: bib6 article-title: Indentation hardness measurements at macro-, micro-, and nanoscale: a critical overview publication-title: Tribol. Lett. – volume: 8 start-page: 350 year: 2017 ident: bib60 article-title: Piezo1 channels sense whole body physical activity to reset cardiovascular homeostasis and enhance performance publication-title: Nat. Commun. – volume: 112 start-page: 31 year: 2017 end-page: 45 ident: bib23 article-title: Gsmtx4: mechanism of inhibiting mechanosensitive ion channels publication-title: Biophys. J. – volume: 294 start-page: 17395 year: 2019 end-page: 17408 ident: bib5 article-title: Mechanically activated piezo1 channels of cardiac fibroblasts stimulate p38 mitogen-activated protein kinase activity and interleukin-6 secretion publication-title: J. Biol. Chem. – volume: 18 start-page: 1 year: 2016 end-page: 10 ident: bib30 article-title: An electromagnetic cell-stretching device for mechanotransduction studies of olfactory ensheathing cells publication-title: Biomed. Microdevices – volume: 554 start-page: 481 year: 2018 end-page: 486 ident: bib62 article-title: Structure of the mechanically activated ion channel piezo1 publication-title: Nature – start-page: 1 year: 2017 end-page: 4 ident: bib46 article-title: Mechanosensory transduction: focus on ion channels publication-title: Reference Module in Life Sciences: Comprehensive Biophysics – volume: 13 start-page: 1161 year: 2015 end-page: 1171 ident: bib59 article-title: Piezo1 in smooth muscle cells is involved in hypertension-dependent arterial remodeling publication-title: Cell Rep. – volume: 26 start-page: 1419 year: 2019 end-page: 1431 ident: bib83 article-title: Mechanically activated piezo channels mediate touch and suppress acute mechanical pain response in mice publication-title: Cell Rep. – volume: 36 start-page: 657 year: 2014 end-page: 665 ident: bib72 article-title: A microscale anisotropic biaxial cell stretching device for applications in mechanobiology publication-title: Biotechnol. Lett. – volume: 6 year: 2017 ident: bib64 article-title: Direct measurement of trpv4 and piezo1 activity reveals multiple mechanotransduction pathways in chondrocytes publication-title: Elife – volume: 515 start-page: 279 year: 2014 end-page: 282 ident: bib40 article-title: Piezo1 integration of vascular architecture with physiological force publication-title: Nature – volume: 375 start-page: 1355 year: 2016 end-page: 1364 ident: bib8 article-title: The role of piezo2 in human mechanosensation publication-title: N. Engl. J. Med. – volume: 95 start-page: 2979 year: 1998 end-page: 2984 ident: bib9 article-title: HL-1 cells: a cardiac muscle cell line that contracts and retains phenotypic characteristics of the adult cardiomyocyte publication-title: Proc. Natl. Acad. Sci. U.S.A – volume: 107 start-page: 613 year: 2009 end-page: 620 ident: bib21 article-title: A device for simultaneous live cell imaging during uni-axial mechanical strain or compression publication-title: J. Appl. Physiol. – volume: 132 year: 2019 ident: bib53 article-title: Mammalian trp ion channels are insensitive to membrane stretch publication-title: J. Cell Sci. – volume: 6 year: 2017 ident: bib26 article-title: Structure-based membrane dome mechanism for piezo mechanosensitivity publication-title: Elife – year: 2015 ident: bib69 article-title: Chemical activation of the mechanotransduction channel piezo1 – volume: 103 start-page: 217 year: 2009 end-page: 225 ident: bib71 article-title: 3d collagen cultures under well-defined dynamic strain: a novel strain device with a porous elastomeric support publication-title: Biotechnol. Bioeng. – volume: 103 start-page: 16586 year: 2006 end-page: 16591 ident: bib65 article-title: A common mechanism underlies stretch activation and receptor activation of trpc6 channels publication-title: Proc. Natl. Acad. Sci. U.S.A – volume: 14 start-page: 1143 year: 2013 end-page: 1148 ident: bib56 article-title: Piezo1-dependent stretch-activated channels are inhibited by polycystin-2 in renal tubular epithelial cells publication-title: EMBO Rep. – volume: 7 year: 2018 ident: bib75 article-title: Mechanical stretching simulates cardiac physiology and pathology through mechanosensor piezo1 publication-title: J. Clin. Med. – volume: 175 start-page: 1744 year: 2018 end-page: 1759 ident: bib16 article-title: Yoda1 analogue (dooku1) which antagonizes yoda1-evoked activation of piezo1 and aortic relaxation publication-title: Br. J. Pharmacol. – volume: 84 start-page: 2297 year: 1987 end-page: 2301 ident: bib45 article-title: Pressure-sensitive ion channel in escherichia coli publication-title: Proc. Natl. Acad. Sci. U.S.A – volume: 10 year: 2018 ident: bib50 article-title: The mechanosensitive ion channel piezo2 mediates sensitivity to mechanical pain in mice publication-title: Sci. Transl. Med. – volume: 305 start-page: C276 year: 2013 end-page: C289 ident: bib3 article-title: Opposing effects of podocin on the gating of podocyte trpc6 channels evoked by membrane stretch or diacylglycerol publication-title: Am. J. Physiol. Cell Physiol. – volume: 215 start-page: 2655 year: 2018 end-page: 2672 ident: bib1 article-title: Piezo1 and gq/g11 promote endothelial inflammation depending on flow pattern and integrin activation publication-title: J. Exp. Med. – volume: 120 start-page: 3989 year: 2019 end-page: 3997 ident: bib79 article-title: Study on the mechanism of excessive apoptosis of nucleus pulposus cells induced by shrna-piezo1 under abnormal mechanical stretch stress publication-title: J. Cell. Biochem. – volume: 130 start-page: 170 year: 2017 end-page: 191 ident: bib20 article-title: Adding dimension to cellular mechanotransduction: advances in biomedical engineering of multiaxial cell-stretch systems and their application to cardiovascular biomechanics and mechano-signaling publication-title: Prog. Biophys. Mol. Biol. – volume: 81 start-page: 685 year: 2001 end-page: 740 ident: bib27 article-title: Molecular basis of mechanotransduction in living cells publication-title: Physiol. Rev. – volume: 10 start-page: 1200 year: 2019 ident: bib61 article-title: Dietary fatty acids fine-tune piezo1 mechanical response publication-title: Nat. Commun. – volume: 430 start-page: 235 year: 2004 end-page: 240 ident: bib67 article-title: Bilayer-dependent inhibition of mechanosensitive channels by neuroactive peptide enantiomers publication-title: Nature – volume: 81 start-page: 363 year: 2016 end-page: 372 ident: bib63 article-title: The publication-title: Biosens. Bioelectron. – volume: 117 start-page: 2449 year: 2004 end-page: 2460 ident: bib44 article-title: Mechanosensitive ion channels: molecules of mechanotransduction publication-title: J. Cell Sci. – volume: 111 start-page: 10347 year: 2014 end-page: 10352 ident: bib57 article-title: piezo1, a mechanically activated ion channel, is required for vascular development in mice publication-title: Proc. Natl. Acad. Sci. U.S.A. – start-page: E5114 year: 2014 end-page: E5122 ident: bib37 article-title: Synergy between piezo1 and piezo2 channels confers high-strain mechanosensitivity to articular cartilage publication-title: Proceedings of the National Academy of Sciences of the United States of America 111 – volume: 126 start-page: 4527 year: 2016 end-page: 4536 ident: bib73 article-title: Endothelial cation channel piezo1 controls blood pressure by mediating flow-induced atp release publication-title: J. Clin. Invest. – volume: 509 start-page: 622 year: 2014 end-page: 626 ident: bib77 article-title: Piezo2 is required for merkel-cell mechanotransduction publication-title: Nature – volume: 99 start-page: 70 year: 2014 end-page: 75 ident: bib17 article-title: Piezo1 plays a role in erythrocyte volume homeostasis publication-title: Haematologica – volume: 362 start-page: 464 year: 2018 end-page: 467 ident: bib82 article-title: Piezos mediate neuronal sensing of blood pressure and the baroreceptor reflex publication-title: Science – start-page: 1294 year: 2013 end-page: 1303 ident: bib52 article-title: STIM1 participates in the contractile rhythmicity of HL-1 cells by moderating T-type Ca2+ channel activity publication-title: Biochimica et Biophysica Acta (BBA) - Molecular Cell Research 1833 – start-page: 13 year: 2019 end-page: 14 ident: bib80 article-title: The role of piezo1 in cardiac hypertrophy publication-title: Proceedings of the 8th International Workshop Cardiac Mechano-Electric Coupling and Arrhythmias – volume: 516 start-page: 121 year: 2014 end-page: U330 ident: bib58 article-title: piezo2 is the major transducer of mechanical forces for touch sensation in mice publication-title: Nature – volume: 111 start-page: 16148 year: 2014 end-page: 16153 ident: bib55 article-title: Stretch-activated ion channel piezo1 directs lineage choice in human neural stem cells publication-title: Proc. Natl. Acad. Sci. U.S.A – volume: 45 start-page: 38 year: 2009 ident: 10.1016/j.pbiomolbio.2020.07.003_bib15 article-title: Mechanical deformation of ventricular myocytes modulates both trpc6 and kir2.3 channels publication-title: Cell Calcium doi: 10.1016/j.ceca.2008.06.003 – start-page: 13 year: 2019 ident: 10.1016/j.pbiomolbio.2020.07.003_bib80 article-title: The role of piezo1 in cardiac hypertrophy – volume: 20 start-page: 811 year: 2006 ident: 10.1016/j.pbiomolbio.2020.07.003_bib32 article-title: Cellular mechanotransduction: putting all the pieces together again publication-title: Faseb. J. doi: 10.1096/fj.05-5424rev – volume: 175 start-page: 1744 year: 2018 ident: 10.1016/j.pbiomolbio.2020.07.003_bib16 article-title: Yoda1 analogue (dooku1) which antagonizes yoda1-evoked activation of piezo1 and aortic relaxation publication-title: Br. J. Pharmacol. doi: 10.1111/bph.14188 – volume: 430 start-page: 235 year: 2004 ident: 10.1016/j.pbiomolbio.2020.07.003_bib67 article-title: Bilayer-dependent inhibition of mechanosensitive channels by neuroactive peptide enantiomers publication-title: Nature doi: 10.1038/nature02743 – volume: 103 start-page: 217 year: 2009 ident: 10.1016/j.pbiomolbio.2020.07.003_bib71 article-title: 3d collagen cultures under well-defined dynamic strain: a novel strain device with a porous elastomeric support publication-title: Biotechnol. Bioeng. doi: 10.1002/bit.22236 – volume: 7 start-page: 1 year: 2019 ident: 10.1016/j.pbiomolbio.2020.07.003_bib19 article-title: Stretch in Focus: 2d inplane cell stretch system for studies of cardiac mechano-signaling publication-title: Frontiers in Bioengineering and Biotechnology doi: 10.3389/fbioe.2019.00055 – volume: 7 start-page: 10366 year: 2016 ident: 10.1016/j.pbiomolbio.2020.07.003_bib12 article-title: Removal of the mechanoprotective influence of the cytoskeleton reveals piezo1 is gated by bilayer tension publication-title: Nat. Commun. doi: 10.1038/ncomms10366 – volume: 95 start-page: 2979 year: 1998 ident: 10.1016/j.pbiomolbio.2020.07.003_bib9 article-title: HL-1 cells: a cardiac muscle cell line that contracts and retains phenotypic characteristics of the adult cardiomyocyte publication-title: Proc. Natl. Acad. Sci. U.S.A doi: 10.1073/pnas.95.6.2979 – volume: 515 start-page: 279 year: 2014 ident: 10.1016/j.pbiomolbio.2020.07.003_bib40 article-title: Piezo1 integration of vascular architecture with physiological force publication-title: Nature doi: 10.1038/nature13701 – volume: 4 start-page: 1 year: 2013 ident: 10.1016/j.pbiomolbio.2020.07.003_bib2 article-title: Dehydrated hereditary stomatocytosis linked to gain-of-function mutations in mechanically activated piezo1 ion channels publication-title: Nat. Commun. – volume: 50 start-page: 277 year: 2006 ident: 10.1016/j.pbiomolbio.2020.07.003_bib36 article-title: Trpa1 contributes to cold, mechanical, and chemical nociception but is not essential for hair-cell transduction publication-title: Neuron doi: 10.1016/j.neuron.2006.03.042 – volume: 375 start-page: 1355 year: 2016 ident: 10.1016/j.pbiomolbio.2020.07.003_bib8 article-title: The role of piezo2 in human mechanosensation publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa1602812 – volume: 107 start-page: 613 year: 2009 ident: 10.1016/j.pbiomolbio.2020.07.003_bib21 article-title: A device for simultaneous live cell imaging during uni-axial mechanical strain or compression publication-title: J. Appl. Physiol. doi: 10.1152/japplphysiol.00012.2009 – volume: 285 start-page: 27176 year: 2010 ident: 10.1016/j.pbiomolbio.2020.07.003_bib42 article-title: Wild-type and brachylomia-causing mutant trpv4 channels respond directly to stretch force publication-title: J. Biol. Chem. doi: 10.1074/jbc.M110.143370 – volume: 541 start-page: 176 year: 2017 ident: 10.1016/j.pbiomolbio.2020.07.003_bib54 article-title: Piezo2 senses airway stretch and mediates lung inflation-induced apnoea publication-title: Nature doi: 10.1038/nature20793 – start-page: E5114 year: 2014 ident: 10.1016/j.pbiomolbio.2020.07.003_bib37 article-title: Synergy between piezo1 and piezo2 channels confers high-strain mechanosensitivity to articular cartilage – ident: 10.1016/j.pbiomolbio.2020.07.003_bib69 – volume: 1 start-page: 1 year: 2004 ident: 10.1016/j.pbiomolbio.2020.07.003_bib66 article-title: Dynamic regulation of mechanosensitive channels: capacitance used to monitor patch tension in real time publication-title: Phys. Biol. doi: 10.1088/1478-3967/1/1/001 – volume: 130 start-page: 170 year: 2017 ident: 10.1016/j.pbiomolbio.2020.07.003_bib20 article-title: Adding dimension to cellular mechanotransduction: advances in biomedical engineering of multiaxial cell-stretch systems and their application to cardiovascular biomechanics and mechano-signaling publication-title: Prog. Biophys. Mol. Biol. doi: 10.1016/j.pbiomolbio.2017.06.011 – volume: 137 start-page: 5208 year: 2012 ident: 10.1016/j.pbiomolbio.2020.07.003_bib31 article-title: Combining atomic force-fluorescence microscopy with a stretching device for analyzing mechanotransduction processes in living cells publication-title: The Royal Society of Chemistry – volume: 103 start-page: 16586 year: 2006 ident: 10.1016/j.pbiomolbio.2020.07.003_bib65 article-title: A common mechanism underlies stretch activation and receptor activation of trpc6 channels publication-title: Proc. Natl. Acad. Sci. U.S.A doi: 10.1073/pnas.0606894103 – volume: 4 start-page: 2 year: 2015 ident: 10.1016/j.pbiomolbio.2020.07.003_bib7 article-title: Piezo1 links mechanical forces to red blood cell volume publication-title: eLIFE Cell Biology, Neuroscience – volume: 130 start-page: 1845 year: 2017 ident: 10.1016/j.pbiomolbio.2020.07.003_bib22 article-title: Novel mechanisms of piezo1 dysfunction in hereditary xerocytosis publication-title: Blood doi: 10.1182/blood-2017-05-786004 – volume: 391 start-page: 85 year: 1981 ident: 10.1016/j.pbiomolbio.2020.07.003_bib28 article-title: Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches publication-title: Pflügers Archiv. doi: 10.1007/BF00656997 – volume: 215 start-page: 2655 year: 2018 ident: 10.1016/j.pbiomolbio.2020.07.003_bib1 article-title: Piezo1 and gq/g11 promote endothelial inflammation depending on flow pattern and integrin activation publication-title: J. Exp. Med. doi: 10.1084/jem.20180483 – volume: 130 start-page: 264 year: 2017 ident: 10.1016/j.pbiomolbio.2020.07.003_bib78 article-title: Role of trpc3 and trpc6 channels in the myocardial response to stretch: linking physiology and pathophysiology publication-title: Prog. Biophys. Mol. Biol. doi: 10.1016/j.pbiomolbio.2017.06.010 – volume: 29 start-page: 1 year: 2019 ident: 10.1016/j.pbiomolbio.2020.07.003_bib13 article-title: Biophysical principles of ion-channel-mediated mechanosensory transduction publication-title: Cell Rep. doi: 10.1016/j.celrep.2019.08.075 – volume: 8 start-page: 350 year: 2017 ident: 10.1016/j.pbiomolbio.2020.07.003_bib60 article-title: Piezo1 channels sense whole body physical activity to reset cardiovascular homeostasis and enhance performance publication-title: Nat. Commun. doi: 10.1038/s41467-017-00429-3 – volume: 9 start-page: 2945 year: 2017 ident: 10.1016/j.pbiomolbio.2020.07.003_bib41 article-title: Stretch-activated channel piezo1 is up-regulated in failure heart and cardiomyocyte stimulated by angii publication-title: Am. J. Tourism Res. – volume: 65 start-page: 1 year: 2016 ident: 10.1016/j.pbiomolbio.2020.07.003_bib6 article-title: Indentation hardness measurements at macro-, micro-, and nanoscale: a critical overview publication-title: Tribol. Lett. – volume: 103 start-page: 417 year: 2007 ident: 10.1016/j.pbiomolbio.2020.07.003_bib48 article-title: Membrane stretch-induced activation of a trpm4-like nonselective cation channel in cerebral artery myocytes publication-title: J. Pharmacol. Sci. doi: 10.1254/jphs.FP0061332 – volume: 455 start-page: 1097 year: 2008 ident: 10.1016/j.pbiomolbio.2020.07.003_bib24 article-title: Revisiting trpc1 and trpc6 mechanosensitivity publication-title: Pflügers Archiv. doi: 10.1007/s00424-007-0359-3 – start-page: 1294 year: 2013 ident: 10.1016/j.pbiomolbio.2020.07.003_bib52 article-title: STIM1 participates in the contractile rhythmicity of HL-1 cells by moderating T-type Ca2+ channel activity – volume: 99 start-page: 70 year: 2014 ident: 10.1016/j.pbiomolbio.2020.07.003_bib17 article-title: Piezo1 plays a role in erythrocyte volume homeostasis publication-title: Haematologica doi: 10.3324/haematol.2013.086090 – volume: 126 start-page: 4527 year: 2016 ident: 10.1016/j.pbiomolbio.2020.07.003_bib73 article-title: Endothelial cation channel piezo1 controls blood pressure by mediating flow-induced atp release publication-title: J. Clin. Invest. doi: 10.1172/JCI87343 – volume: 509 start-page: 622 year: 2014 ident: 10.1016/j.pbiomolbio.2020.07.003_bib77 article-title: Piezo2 is required for merkel-cell mechanotransduction publication-title: Nature doi: 10.1038/nature13251 – volume: 117 start-page: 2449 year: 2004 ident: 10.1016/j.pbiomolbio.2020.07.003_bib44 article-title: Mechanosensitive ion channels: molecules of mechanotransduction publication-title: J. Cell Sci. doi: 10.1242/jcs.01232 – volume: 6 start-page: 19352 year: 2016 ident: 10.1016/j.pbiomolbio.2020.07.003_bib10 article-title: Heterologously-expressed and liposome-reconstituted human transient receptor potential melastatin 4 channel (trpm4) is a functional tetramer publication-title: Sci. Rep. doi: 10.1038/srep19352 – volume: 50 start-page: 6295 year: 2011 ident: 10.1016/j.pbiomolbio.2020.07.003_bib4 article-title: The mechanosensitive ion channel piezo1 is inhibited by the peptide gsmtx4 publication-title: Biochemistry doi: 10.1021/bi200770q – volume: 330 start-page: 55 year: 2010 ident: 10.1016/j.pbiomolbio.2020.07.003_bib11 article-title: Piezo1 and piezo2 are essential components of distinct mechanically activated cation channels publication-title: Science doi: 10.1126/science.1193270 – volume: 26 start-page: 1419 year: 2019 ident: 10.1016/j.pbiomolbio.2020.07.003_bib83 article-title: Mechanically activated piezo channels mediate touch and suppress acute mechanical pain response in mice publication-title: Cell Rep. doi: 10.1016/j.celrep.2019.01.056 – volume: 294 start-page: 17395 year: 2019 ident: 10.1016/j.pbiomolbio.2020.07.003_bib5 article-title: Mechanically activated piezo1 channels of cardiac fibroblasts stimulate p38 mitogen-activated protein kinase activity and interleukin-6 secretion publication-title: J. Biol. Chem. doi: 10.1074/jbc.RA119.009167 – volume: 315 start-page: H1019 year: 2018 ident: 10.1016/j.pbiomolbio.2020.07.003_bib33 article-title: The piezo1 cation channel mediates uterine artery shear stress mechanotransduction and vasodilation during rat pregnancy publication-title: Am. J. Physiol. Heart Circ. Physiol. doi: 10.1152/ajpheart.00103.2018 – volume: 10 year: 2018 ident: 10.1016/j.pbiomolbio.2020.07.003_bib50 article-title: The mechanosensitive ion channel piezo2 mediates sensitivity to mechanical pain in mice publication-title: Sci. Transl. Med. doi: 10.1126/scitranslmed.aat9897 – volume: 554 start-page: 481 year: 2018 ident: 10.1016/j.pbiomolbio.2020.07.003_bib62 article-title: Structure of the mechanically activated ion channel piezo1 publication-title: Nature doi: 10.1038/nature25453 – volume: 10 start-page: 1200 year: 2019 ident: 10.1016/j.pbiomolbio.2020.07.003_bib61 article-title: Dietary fatty acids fine-tune piezo1 mechanical response publication-title: Nat. Commun. doi: 10.1038/s41467-019-09055-7 – volume: 6 year: 2017 ident: 10.1016/j.pbiomolbio.2020.07.003_bib26 article-title: Structure-based membrane dome mechanism for piezo mechanosensitivity publication-title: Elife doi: 10.7554/eLife.33660 – volume: 17 start-page: 1739 year: 2016 ident: 10.1016/j.pbiomolbio.2020.07.003_bib68 article-title: Piezo1 channels are inherently mechanosensitive publication-title: Cell Rep. doi: 10.1016/j.celrep.2016.10.033 – volume: 116 start-page: 12980 year: 2019 ident: 10.1016/j.pbiomolbio.2020.07.003_bib18 article-title: Endothelial cell piezo1 mediates pressure-induced lung vascular hyperpermeability via disruption of adherens junctions publication-title: Proc. Natl. Acad. Sci. U.S.A doi: 10.1073/pnas.1902165116 – volume: 112 start-page: 31 year: 2017 ident: 10.1016/j.pbiomolbio.2020.07.003_bib23 article-title: Gsmtx4: mechanism of inhibiting mechanosensitive ion channels publication-title: Biophys. J. doi: 10.1016/j.bpj.2016.11.013 – ident: 10.1016/j.pbiomolbio.2020.07.003_bib51 – volume: 94 start-page: 72 year: 2016 ident: 10.1016/j.pbiomolbio.2020.07.003_bib81 article-title: A computational model of cardiac fibroblast signaling predicts context-dependent drivers of myofibroblast differentiation publication-title: J. Mol. Cell. Cardiol. doi: 10.1016/j.yjmcc.2016.03.008 – volume: 84 start-page: 2297 year: 1987 ident: 10.1016/j.pbiomolbio.2020.07.003_bib45 article-title: Pressure-sensitive ion channel in escherichia coli publication-title: Proc. Natl. Acad. Sci. U.S.A doi: 10.1073/pnas.84.8.2297 – volume: 18 start-page: 1 year: 2016 ident: 10.1016/j.pbiomolbio.2020.07.003_bib30 article-title: An electromagnetic cell-stretching device for mechanotransduction studies of olfactory ensheathing cells publication-title: Biomed. Microdevices doi: 10.1007/s10544-016-0071-1 – volume: 173 start-page: 443 year: 2018 ident: 10.1016/j.pbiomolbio.2020.07.003_bib43 article-title: Common piezo1 allele in african populations causes rbc dehydration and attenuates plasmodium infection publication-title: Cell doi: 10.1016/j.cell.2018.02.047 – volume: 7 year: 2018 ident: 10.1016/j.pbiomolbio.2020.07.003_bib75 article-title: Mechanical stretching simulates cardiac physiology and pathology through mechanosensor piezo1 publication-title: J. Clin. Med. – volume: 132 year: 2019 ident: 10.1016/j.pbiomolbio.2020.07.003_bib53 article-title: Mammalian trp ion channels are insensitive to membrane stretch publication-title: J. Cell Sci. doi: 10.1242/jcs.238360 – volume: 120 start-page: 3989 year: 2019 ident: 10.1016/j.pbiomolbio.2020.07.003_bib79 article-title: Study on the mechanism of excessive apoptosis of nucleus pulposus cells induced by shrna-piezo1 under abnormal mechanical stretch stress publication-title: J. Cell. Biochem. doi: 10.1002/jcb.27683 – volume: 4 year: 2015 ident: 10.1016/j.pbiomolbio.2020.07.003_bib38 article-title: Mechanical sensitivity of piezo1 ion channels can be tuned by cellular membrane tension publication-title: Elife doi: 10.7554/eLife.12088 – volume: 289 start-page: 16565 year: 2014 ident: 10.1016/j.pbiomolbio.2020.07.003_bib47 article-title: Functional role for piezo1 in stretch-evoked ca(2)(+) influx and atp release in urothelial cell cultures publication-title: J. Biol. Chem. doi: 10.1074/jbc.M113.528638 – start-page: 1 year: 2017 ident: 10.1016/j.pbiomolbio.2020.07.003_bib46 article-title: Mechanosensory transduction: focus on ion channels – volume: 81 start-page: 363 year: 2016 ident: 10.1016/j.pbiomolbio.2020.07.003_bib63 article-title: The IsoStretcher: an isotropic cell stretch device to study mechanical biosensor pathways in living cells publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2016.03.015 – volume: 48 start-page: 231 year: 1996 ident: 10.1016/j.pbiomolbio.2020.07.003_bib29 article-title: The pharmacology of mechanogated membrane ion channels publication-title: Pharmacol. Rev. – volume: 10 year: 2018 ident: 10.1016/j.pbiomolbio.2020.07.003_bib70 article-title: Piezo2 mediates injury-induced tactile pain in mice and humans publication-title: Sci. Transl. Med. doi: 10.1126/scitranslmed.aat9892 – volume: 14 start-page: 1143 year: 2013 ident: 10.1016/j.pbiomolbio.2020.07.003_bib56 article-title: Piezo1-dependent stretch-activated channels are inhibited by polycystin-2 in renal tubular epithelial cells publication-title: EMBO Rep. doi: 10.1038/embor.2013.170 – volume: 111 start-page: 10347 year: 2014 ident: 10.1016/j.pbiomolbio.2020.07.003_bib57 article-title: piezo1, a mechanically activated ion channel, is required for vascular development in mice publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1409233111 – volume: 483 start-page: 209 year: 2012 ident: 10.1016/j.pbiomolbio.2020.07.003_bib35 article-title: The role of drosophila piezo in mechanical nociception publication-title: Nature doi: 10.1038/nature10801 – volume: 13 start-page: 1161 year: 2015 ident: 10.1016/j.pbiomolbio.2020.07.003_bib59 article-title: Piezo1 in smooth muscle cells is involved in hypertension-dependent arterial remodeling publication-title: Cell Rep. doi: 10.1016/j.celrep.2015.09.072 – volume: 516 start-page: 121 year: 2014 ident: 10.1016/j.pbiomolbio.2020.07.003_bib58 article-title: piezo2 is the major transducer of mechanical forces for touch sensation in mice publication-title: Nature doi: 10.1038/nature13980 – volume: 60 start-page: 650 year: 2019 ident: 10.1016/j.pbiomolbio.2020.07.003_bib39 article-title: Stretch-activated piezo1 channel in endothelial cells relaxes mouse intrapulmonary arteries publication-title: Am. J. Respir. Cell Mol. Biol. doi: 10.1165/rcmb.2018-0197OC – volume: 543 start-page: 118 year: 2017 ident: 10.1016/j.pbiomolbio.2020.07.003_bib25 article-title: Mechanical stretch triggers rapid epithelial cell division through piezo1 publication-title: Nature doi: 10.1038/nature21407 – volume: 111 start-page: 16148 year: 2014 ident: 10.1016/j.pbiomolbio.2020.07.003_bib55 article-title: Stretch-activated ion channel piezo1 directs lineage choice in human neural stem cells publication-title: Proc. Natl. Acad. Sci. U.S.A doi: 10.1073/pnas.1409802111 – volume: 6 year: 2017 ident: 10.1016/j.pbiomolbio.2020.07.003_bib64 article-title: Direct measurement of trpv4 and piezo1 activity reveals multiple mechanotransduction pathways in chondrocytes publication-title: Elife – volume: 286 start-page: H823 year: 2004 ident: 10.1016/j.pbiomolbio.2020.07.003_bib74 article-title: Cardiac physiology at the cellular level: use of cultured hl-1 cardiomyocytes for studies of cardiac muscle cell structure and function publication-title: Am. J. Physiol. Heart Circ. Physiol. doi: 10.1152/ajpheart.00986.2003 – volume: 24 start-page: 510 year: 2018 ident: 10.1016/j.pbiomolbio.2020.07.003_bib49 article-title: Piezo1 channels are mechanosensors in human fetoplacental endothelial cells publication-title: Mol. Hum. Reprod. doi: 10.1093/molehr/gay033 – volume: 81 start-page: 685 year: 2001 ident: 10.1016/j.pbiomolbio.2020.07.003_bib27 article-title: Molecular basis of mechanotransduction in living cells publication-title: Physiol. Rev. doi: 10.1152/physrev.2001.81.2.685 – volume: 18 start-page: 1756 year: 2015 ident: 10.1016/j.pbiomolbio.2020.07.003_bib76 article-title: Piezo2 is the principal mechanotransduction channel for proprioception publication-title: Nat. Neurosci. doi: 10.1038/nn.4162 – volume: 316 start-page: C92 year: 2019 ident: 10.1016/j.pbiomolbio.2020.07.003_bib34 article-title: Piezo1 mediates angiogenesis through activation of mt1-mmp signaling publication-title: Am. J. Physiol. Cell Physiol. doi: 10.1152/ajpcell.00346.2018 – year: 2019 ident: 10.1016/j.pbiomolbio.2020.07.003_bib14 – volume: 36 start-page: 657 year: 2014 ident: 10.1016/j.pbiomolbio.2020.07.003_bib72 article-title: A microscale anisotropic biaxial cell stretching device for applications in mechanobiology publication-title: Biotechnol. Lett. doi: 10.1007/s10529-013-1381-5 – volume: 13 start-page: 102 issue: 1 year: 2019 ident: 10.1016/j.pbiomolbio.2020.07.003_bib85 article-title: Fluorescence microscopy of Piezo1 in droplet hydrogel bilayers. publication-title: Channels doi: 10.1080/19336950.2019.1586046 – volume: 362 start-page: 464 year: 2018 ident: 10.1016/j.pbiomolbio.2020.07.003_bib82 article-title: Piezos mediate neuronal sensing of blood pressure and the baroreceptor reflex publication-title: Science doi: 10.1126/science.aau6324 – volume: 305 start-page: C276 year: 2013 ident: 10.1016/j.pbiomolbio.2020.07.003_bib3 article-title: Opposing effects of podocin on the gating of podocyte trpc6 channels evoked by membrane stretch or diacylglycerol publication-title: Am. J. Physiol. Cell Physiol. doi: 10.1152/ajpcell.00095.2013 |
SSID | ssj0002176 |
Score | 2.3760436 |
Snippet | The transformation of electrical signals into mechanical action of the heart underlying blood circulation results in mechanical stimuli during active... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 22 |
SubjectTerms | Animals Biosensing Techniques - instrumentation Biosensing Techniques - methods Calcium - metabolism Cell Line Cell stretching device Cells, Cultured Dimethylpolysiloxanes - metabolism HL-1 Humans Ion Channels - metabolism Male Mechanosensitive ion channel Mechanotransduction Mechanotransduction, Cellular - physiology Mice Mice, Inbred C57BL Models, Biological Myocardium - cytology Myocardium - metabolism Myocytes, Cardiac - metabolism Piezo1 Polydimethylsiloxane (PDMS) Stress, Mechanical |
Title | In vitro cell stretching technology (IsoStretcher) as an approach to unravel Piezo1-mediated cardiac mechanotransduction |
URI | https://dx.doi.org/10.1016/j.pbiomolbio.2020.07.003 https://www.ncbi.nlm.nih.gov/pubmed/32763257 https://www.proquest.com/docview/2431816784 |
Volume | 159 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PS-QwFA6iCHtZ1P01qytZ2IMesraTNG3wJLIyo6wIq-AtNGkCI7PtMNMR9ODf4t_iX-Z7aTsiIgheemgbWvJe3_c1ed97hPziSa6ABQiW2ihigouCZdZzBv8S0grrnY9QO_z3VA4uxPFlcrlEDjstDKZVtrG_iekhWrdn9trZ3JuMRqjxTRWAP-4jYsxFobkQKXr577unNA-g3GG_Em5meHebzdPkeE1Q416N4Qh_iv0olPHs2me9hKjXKGiAoqM18rHlkPSgec11suTKDbLadJW8-URuhuXD_fWonlYUl-UpykHqkDJJ68VCOt0Zzqp_zRU33aX5jOYl7SqM07qi8xI7E43p2cjdVjELEhOgp9QGn7L0v0PRcFUj2BVNDdrP5OLoz_nhgLUdFpjlqagZkDdlC7AHIJnnwgIZMyoyiZfKK6sy75XjeRJJkyVGFol3TggVgTGlKoo85V_IclmV7huhCsAfTGuTzEiRFsakUsQQO42NrVRx3iNpN6natuXHsQvGWHd5Zlf6yRwazaEj3BvnPRIvRk6aEhxvGLPf2U0_cycNSPGG0T87U2v42tBWeemq-Uz3gW9lMQC86JGvjQ8s3on3IVZDBPz-rmdvkg99TJsJqzxbZLmezt0P4D212Q6OvU1WDoYng9NHdAoGuw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Li9RAEC7WWUQv4tvx2YIHPTSbTD-SxtOyuMy4u4PgLuytSXe6YWRMhpmMsP4af4u_zKo8RkSEBS85JCnS9Fep-rq7HgBvhCoMsgDJM58kXApZ8txHwXEtob30McSEcofP5np6IT9eqss9OBpyYSissrf9nU1vrXV_56CfzYPVYkE5vplB50_niGRz1Q3Yp-pUagT7h7OT6XxnkJF1t0eW-D4ngT6gpwvzWlGae73EKy4WJ0lbyXPooPW3l_oXC2290fFduNPTSHbYjfQe7IXqPtzsGktePYCrWfXzx7dFs64Z7cwzyghp2qhJ1uz20tnb2ab-3D0J63es2LCiYkORcdbUbFtRc6Il-7QI3-uUt1kmyFCZb9XKs6-B8obrhvxd2ZWhfQgXxx_Oj6a8b7LAvchkw5G_GV8iJOjMopAe-ZgziVNRm2i8yWM0QRQq0S5XTpcqhiClSRBPbcqyyMQjGFV1FZ4AM-j_EV2vcqdlVjqXaZmi-XQ-9dqkxRiyYVKt7yuQUyOMpR1Czb7Y33BYgsMmdDwuxpDuJFddFY5ryLwfcLN_aJRFZ3EN6dcD1BZ_OMKqqEK93dgJUq48RR8vx_C404HdmMQEzTUawaf_9e1XcGt6fnZqT2fzk2dwe0JRNO2mz3MYNetteIE0qHEvezX_BWFqCWw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=In%C2%A0vitro+cell+stretching+technology+%28IsoStretcher%29+as+an+approach+to+unravel+Piezo1-mediated+cardiac+mechanotransduction&rft.jtitle=Progress+in+biophysics+and+molecular+biology&rft.au=Guo%2C+Yang&rft.au=Merten%2C+Anna-Lena&rft.au=Sch%C3%B6ler%2C+Ulrike&rft.au=Yu%2C+Ze-Yan&rft.date=2021-01-01&rft.issn=0079-6107&rft.volume=159&rft.spage=22&rft.epage=33&rft_id=info:doi/10.1016%2Fj.pbiomolbio.2020.07.003&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_pbiomolbio_2020_07_003 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0079-6107&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0079-6107&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0079-6107&client=summon |