Domain Adaptation for the Classification of Remote Sensing Data: An Overview of Recent Advances
The success of the supervised classification of remotely sensed images acquired over large geographical areas or at short time intervals strongly depends on the representativity of the samples used to train the classification algorithm and to define the model. When training samples are collected fro...
Saved in:
Published in | IEEE geoscience and remote sensing magazine Vol. 4; no. 2; pp. 41 - 57 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
IEEE
01.06.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The success of the supervised classification of remotely sensed images acquired over large geographical areas or at short time intervals strongly depends on the representativity of the samples used to train the classification algorithm and to define the model. When training samples are collected from an image or a spatial region that is different from the one used for mapping, spectral shifts between the two distributions are likely to make the model fail. Such shifts are generally due to differences in acquisition and atmospheric conditions or to changes in the nature of the object observed. To design classification methods that are robust to data set shifts, recent remote sensing literature has considered solutions based on domain adaptation (DA) approaches. Inspired by machine-learning literature, several DA methods have been proposed to solve specific problems in remote sensing data classification. This article provides a critical review of the recent advances in DA approaches for remote sensing and presents an overview of DA methods divided into four categories: 1) invariant feature selection, 2) representation matching, 3) adaptation of classifiers, and 4) selective sampling. We provide an overview of recent methodologies, examples of applications of the considered techniques to real remote sensing images characterized by very high spatial and spectral resolution as well as possible guidelines for the selection of the method to use in real application scenarios. |
---|---|
AbstractList | The success of the supervised classification of remotely sensed images acquired over large geographical areas or at short time intervals strongly depends on the representativity of the samples used to train the classification algorithm and to define the model. When training samples are collected from an image or a spatial region that is different from the one used for mapping, spectral shifts between the two distributions are likely to make the model fail. Such shifts are generally due to differences in acquisition and atmospheric conditions or to changes in the nature of the object observed. To design classification methods that are robust to data set shifts, recent remote sensing literature has considered solutions based on domain adaptation (DA) approaches. Inspired by machine-learning literature, several DA methods have been proposed to solve specific problems in remote sensing data classification. This article provides a critical review of the recent advances in DA approaches for remote sensing and presents an overview of DA methods divided into four categories: 1) invariant feature selection, 2) representation matching, 3) adaptation of classifiers, and 4) selective sampling. We provide an overview of recent methodologies, examples of applications of the considered techniques to real remote sensing images characterized by very high spatial and spectral resolution as well as possible guidelines for the selection of the method to use in real application scenarios. |
Author | Tuia, Devis Bruzzone, Lorenzo Persello, Claudio |
Author_xml | – sequence: 1 givenname: Devis surname: Tuia fullname: Tuia, Devis email: devis.tuia@geo.uzh.ch organization: Dept. of Geogr., Univ. of Zurich, Zurich, Switzerland – sequence: 2 givenname: Claudio surname: Persello fullname: Persello, Claudio email: c.persello@utwente.nl organization: Fac. Geo-Inf. Sci. & Earth Obs., Univ. of Twente, Enschede, Netherlands – sequence: 3 givenname: Lorenzo surname: Bruzzone fullname: Bruzzone, Lorenzo email: lorenzo.bruzzone@disi.unitn.it organization: Univ. of Genoa, Genoa, Italy |
BookMark | eNp9kE9LAzEQxYNUsNZ-APGSL7A1s9k_s95Kq1WoFFo9L2l2opE2KZtQ8du7ZcWDB-cyw-O9B_O7ZAPnHTF2DWICIKrb58V6M0kFFJM0zzAX2RkbplBgUqCEQXdnpUxSWZUXbBzCh-gGc6gAh6ye-72yjk8bdYgqWu-48S2P78RnOxWCNVb3sjd8TXsfiW_IBeve-FxFdcenjq-O1B4tffYeTS52fUflNIUrdm7ULtD4Z4_Y68P9y-wxWa4WT7PpMtGyzGKCWEjcUlUAGDBoRNOAkASVKokQKd-iITCqSdOtarB7mkAaaQSJTtRajljZ9-rWh9CSqbXt_4mtsrsaRH1CVZ9Q1SdU9Q-qLgl_kofW7lX79W_mps9YIvr1lxkWgJn8BjDyd6c |
CODEN | IGRSCZ |
CitedBy_id | crossref_primary_10_1080_22797254_2024_2341414 crossref_primary_10_1109_LGRS_2023_3303084 crossref_primary_10_1016_j_scs_2022_104059 crossref_primary_10_1109_LSP_2019_2940926 crossref_primary_10_3390_rs14184639 crossref_primary_10_1109_LGRS_2019_2902615 crossref_primary_10_1016_j_agrformet_2023_109652 crossref_primary_10_1016_j_isprsjprs_2024_01_015 crossref_primary_10_1016_j_cviu_2019_07_002 crossref_primary_10_1016_j_isprsjprs_2024_01_016 crossref_primary_10_1111_agec_12531 crossref_primary_10_1109_TGRS_2024_3424553 crossref_primary_10_1109_TGRS_2023_3285747 crossref_primary_10_1109_TGRS_2024_3403727 crossref_primary_10_1007_s00500_023_09355_7 crossref_primary_10_1109_JSTARS_2021_3078631 crossref_primary_10_1109_TGRS_2017_2698503 crossref_primary_10_1186_s40537_023_00735_2 crossref_primary_10_1109_TAES_2023_3297569 crossref_primary_10_1016_j_rse_2025_114711 crossref_primary_10_1109_TGRS_2024_3434484 crossref_primary_10_1038_s42949_024_00188_3 crossref_primary_10_1016_j_jag_2022_103013 crossref_primary_10_3390_rs10040610 crossref_primary_10_1007_s12145_023_01190_6 crossref_primary_10_1109_JSTARS_2021_3103585 crossref_primary_10_1109_JSTARS_2022_3233125 crossref_primary_10_1016_j_jag_2023_103635 crossref_primary_10_3390_rs14215455 crossref_primary_10_1109_JSTARS_2020_2999386 crossref_primary_10_1109_JSTARS_2023_3263755 crossref_primary_10_1364_BOE_455208 crossref_primary_10_1016_j_jag_2017_07_016 crossref_primary_10_1117_1_JRS_18_026505 crossref_primary_10_1016_j_jenvman_2023_118594 crossref_primary_10_1080_10095020_2024_2416897 crossref_primary_10_1016_j_isprsjprs_2024_08_018 crossref_primary_10_1109_TGRS_2023_3297077 crossref_primary_10_1038_s41598_023_34436_w crossref_primary_10_3390_rs11040399 crossref_primary_10_1016_j_isprsjprs_2016_07_004 crossref_primary_10_1109_TGRS_2017_2754648 crossref_primary_10_5194_tc_15_3949_2021 crossref_primary_10_1109_JSTARS_2021_3049527 crossref_primary_10_1007_s12046_020_01423_0 crossref_primary_10_11834_jig_220763 crossref_primary_10_3390_app10207272 crossref_primary_10_3390_app13084812 crossref_primary_10_1080_01431161_2021_1880663 crossref_primary_10_1109_JSTARS_2024_3502253 crossref_primary_10_1109_TGRS_2019_2937204 crossref_primary_10_1007_s10994_020_05942_z crossref_primary_10_1016_j_isprsjprs_2020_04_008 crossref_primary_10_14358_PERS_21_00012R2 crossref_primary_10_3390_rs11101153 crossref_primary_10_1016_j_rse_2017_08_026 crossref_primary_10_1109_JSTARS_2017_2732682 crossref_primary_10_1109_JSTARS_2022_3179050 crossref_primary_10_1109_JSTARS_2020_3035382 crossref_primary_10_1109_JSTARS_2021_3134766 crossref_primary_10_1109_TGRS_2022_3222449 crossref_primary_10_2166_wst_2024_387 crossref_primary_10_1016_j_neucom_2020_02_049 crossref_primary_10_1016_j_rse_2022_113203 crossref_primary_10_1109_JSTARS_2020_3000743 crossref_primary_10_1109_TGRS_2020_3006161 crossref_primary_10_1007_s12518_022_00472_w crossref_primary_10_1109_JSTARS_2020_3026316 crossref_primary_10_1126_sciadv_adj7250 crossref_primary_10_1109_TGRS_2022_3232129 crossref_primary_10_1109_TGRS_2024_3425672 crossref_primary_10_1109_JSTARS_2021_3129177 crossref_primary_10_1109_JSTARS_2024_3412369 crossref_primary_10_3390_rs16071224 crossref_primary_10_1109_JSTARS_2021_3105421 crossref_primary_10_1109_LGRS_2021_3073738 crossref_primary_10_3390_rs15235498 crossref_primary_10_1109_TGRS_2024_3358869 crossref_primary_10_3390_rs11091047 crossref_primary_10_1109_TGRS_2021_3105302 crossref_primary_10_1109_JSTARS_2022_3230625 crossref_primary_10_1109_TGRS_2020_2987907 crossref_primary_10_1109_TGRS_2023_3323579 crossref_primary_10_1007_s41066_019_00161_x crossref_primary_10_1016_j_rsase_2023_101101 crossref_primary_10_1109_JSTARS_2016_2646138 crossref_primary_10_2139_ssrn_4122021 crossref_primary_10_1109_TGRS_2024_3466309 crossref_primary_10_1155_2018_6714520 crossref_primary_10_1109_JSTARS_2022_3181744 crossref_primary_10_1109_LGRS_2020_2969970 crossref_primary_10_1016_j_isprsjprs_2021_04_022 crossref_primary_10_1080_15481603_2022_2083791 crossref_primary_10_1016_j_jenvman_2025_124969 crossref_primary_10_1007_s12145_017_0318_2 crossref_primary_10_1016_j_isprsjprs_2020_10_018 crossref_primary_10_34133_remotesensing_0439 crossref_primary_10_26833_ijeg_681312 crossref_primary_10_1109_TGRS_2019_2958123 crossref_primary_10_1109_TGRS_2022_3203040 crossref_primary_10_1186_s13634_023_01008_z crossref_primary_10_1016_j_rse_2023_113545 crossref_primary_10_2478_ijanmc_2022_0031 crossref_primary_10_1016_j_rsase_2025_101510 crossref_primary_10_3390_rs16193568 crossref_primary_10_1080_15481603_2022_2096184 crossref_primary_10_3390_rs10091425 crossref_primary_10_1016_j_isprsjprs_2023_07_009 crossref_primary_10_1017_eds_2023_33 crossref_primary_10_1080_01431161_2020_1750735 crossref_primary_10_1109_ACCESS_2020_2969812 crossref_primary_10_1016_j_isprsjprs_2022_12_011 crossref_primary_10_1016_j_isprsjprs_2021_10_005 crossref_primary_10_1109_TGRS_2020_2988782 crossref_primary_10_3390_rs16142653 crossref_primary_10_3390_rs11242916 crossref_primary_10_1016_j_isprsjprs_2018_10_006 crossref_primary_10_1016_j_isprsjprs_2024_12_017 crossref_primary_10_3390_rs17020330 crossref_primary_10_1109_TEM_2024_3369231 crossref_primary_10_1016_j_rse_2024_114241 crossref_primary_10_1109_JSTARS_2018_2799698 crossref_primary_10_1109_JSTARS_2016_2624303 crossref_primary_10_1109_JSTARS_2023_3329773 crossref_primary_10_1109_JSTARS_2024_3421284 crossref_primary_10_1111_2041_210X_13489 crossref_primary_10_1016_j_knosys_2023_110851 crossref_primary_10_3390_rs12244094 crossref_primary_10_1126_scirobotics_abf3320 crossref_primary_10_3390_rs13132564 crossref_primary_10_1016_j_geomorph_2020_107039 crossref_primary_10_1109_TGRS_2024_3407952 crossref_primary_10_3390_ijgi12080332 crossref_primary_10_3390_rs11192289 crossref_primary_10_1109_JSTARS_2023_3340412 crossref_primary_10_1117_1_JRS_11_042612 crossref_primary_10_1016_j_jag_2024_104313 crossref_primary_10_3390_ijgi7050182 crossref_primary_10_1016_j_eswa_2025_127070 crossref_primary_10_1016_j_jag_2021_102603 crossref_primary_10_1007_s10712_018_9478_y crossref_primary_10_1016_j_trpro_2021_07_113 crossref_primary_10_3390_seeds2030026 crossref_primary_10_1109_TGRS_2020_3015357 crossref_primary_10_1109_JSTARS_2021_3127754 crossref_primary_10_1016_j_isprsjprs_2020_07_002 crossref_primary_10_1109_JSTARS_2017_2684085 crossref_primary_10_3390_agriculture14091511 crossref_primary_10_3390_rs14174380 crossref_primary_10_3390_rs13245035 crossref_primary_10_1016_j_compag_2022_107480 crossref_primary_10_1109_LGRS_2019_2931063 crossref_primary_10_1109_JSTARS_2024_3399741 crossref_primary_10_1016_j_ecoinf_2021_101547 crossref_primary_10_1117_1_JRS_11_042609 crossref_primary_10_1080_13658816_2022_2120996 crossref_primary_10_1080_15481603_2024_2437252 crossref_primary_10_1109_TGRS_2022_3200246 crossref_primary_10_1109_LGRS_2021_3065982 crossref_primary_10_3390_rs11030298 crossref_primary_10_3390_rs9040337 crossref_primary_10_1109_TCI_2017_2752150 crossref_primary_10_1007_s11432_020_3084_1 crossref_primary_10_3390_rs14235911 crossref_primary_10_1109_JSTARS_2020_3030304 crossref_primary_10_1109_TIP_2018_2808767 crossref_primary_10_1016_j_isprsjprs_2021_01_008 crossref_primary_10_1016_j_jag_2021_102399 crossref_primary_10_1109_TASE_2024_3407130 crossref_primary_10_1109_TGRS_2025_3530614 crossref_primary_10_1007_s11227_022_04961_y crossref_primary_10_1016_j_rsase_2023_101031 crossref_primary_10_1016_j_isprsjprs_2023_01_003 crossref_primary_10_1016_j_isprsjprs_2021_08_004 crossref_primary_10_1109_TGRS_2018_2888618 crossref_primary_10_3390_electronics13245022 crossref_primary_10_1080_01431161_2020_1797221 crossref_primary_10_1109_JSTARS_2020_3042887 crossref_primary_10_1109_TGRS_2019_2906689 crossref_primary_10_1109_JSTARS_2023_3336929 crossref_primary_10_1109_TGRS_2022_3208897 crossref_primary_10_1109_TGRS_2023_3334294 crossref_primary_10_1016_j_jag_2023_103358 crossref_primary_10_1016_j_array_2022_100233 crossref_primary_10_1109_TGRS_2023_3345179 crossref_primary_10_3390_rs13245054 crossref_primary_10_1016_j_srs_2022_100059 crossref_primary_10_1109_LGRS_2018_2889789 crossref_primary_10_1016_j_measurement_2020_108071 crossref_primary_10_1109_TGRS_2019_2914967 crossref_primary_10_3390_rs9070663 crossref_primary_10_1109_JSTARS_2022_3187757 crossref_primary_10_1016_j_rse_2022_113192 crossref_primary_10_1109_TGRS_2019_2927393 crossref_primary_10_1109_TGRS_2019_2926069 crossref_primary_10_3390_data9110136 crossref_primary_10_1109_TCYB_2020_3004263 crossref_primary_10_1016_j_compag_2023_107766 crossref_primary_10_1016_j_rse_2023_113573 crossref_primary_10_1109_JSTARS_2020_3040218 crossref_primary_10_1016_j_enggeo_2021_106344 crossref_primary_10_1016_j_rse_2023_113695 crossref_primary_10_1109_MGRS_2022_3145854 crossref_primary_10_1016_j_rse_2023_113924 crossref_primary_10_1109_TGRS_2022_3227626 crossref_primary_10_1109_JSTARS_2021_3094973 crossref_primary_10_1016_j_asoc_2017_12_018 crossref_primary_10_1109_TGRS_2023_3302430 crossref_primary_10_1016_j_ins_2019_02_008 crossref_primary_10_1007_s41064_020_00129_6 crossref_primary_10_1109_TGRS_2018_2872850 crossref_primary_10_3389_fpls_2024_1435016 crossref_primary_10_3390_rs15174180 crossref_primary_10_3390_rs15215138 crossref_primary_10_1109_LGRS_2021_3100294 crossref_primary_10_1109_MGRS_2024_3494673 crossref_primary_10_1109_ACCESS_2018_2789932 crossref_primary_10_1109_LGRS_2022_3163575 crossref_primary_10_1016_j_rse_2019_111322 crossref_primary_10_1016_j_isprsjprs_2021_08_026 crossref_primary_10_1109_JSTARS_2020_3031741 crossref_primary_10_3390_rs12182888 crossref_primary_10_1007_s41207_020_00226_3 crossref_primary_10_1016_j_isprsjprs_2024_06_015 crossref_primary_10_1016_j_rse_2021_112590 crossref_primary_10_3390_rs14071527 crossref_primary_10_1109_LGRS_2018_2792683 crossref_primary_10_1016_j_isprsjprs_2022_07_011 crossref_primary_10_1109_TGRS_2024_3452631 crossref_primary_10_1109_LGRS_2019_2931305 crossref_primary_10_1016_j_isprsjprs_2023_09_013 crossref_primary_10_1109_MGRS_2016_2645380 crossref_primary_10_3390_rs14092222 crossref_primary_10_1109_TGRS_2022_3140324 crossref_primary_10_3390_rs14010190 crossref_primary_10_1109_JSTARS_2018_2849073 crossref_primary_10_1109_JSTARS_2024_3503756 crossref_primary_10_1109_TGRS_2022_3162333 crossref_primary_10_1080_15481603_2022_2142727 crossref_primary_10_1109_TGRS_2018_2847724 crossref_primary_10_1109_TGRS_2024_3502659 crossref_primary_10_1109_ACCESS_2019_2911890 crossref_primary_10_1109_TGRS_2024_3370576 crossref_primary_10_1109_JSTARS_2024_3523346 crossref_primary_10_1109_LGRS_2023_3281458 crossref_primary_10_1007_s10489_024_06139_w crossref_primary_10_1016_j_isprsjprs_2020_10_004 crossref_primary_10_1016_j_isprsjprs_2025_01_006 crossref_primary_10_1109_TGRS_2022_3166817 crossref_primary_10_1109_JSTARS_2022_3163423 crossref_primary_10_1109_JPROC_2017_2684300 crossref_primary_10_1109_JSTARS_2019_2950406 crossref_primary_10_1016_j_neunet_2024_106241 crossref_primary_10_3390_ijgi9020067 crossref_primary_10_1109_TGRS_2023_3267149 crossref_primary_10_3390_rs10091457 crossref_primary_10_1016_j_patcog_2017_10_007 crossref_primary_10_1016_j_isprsjprs_2019_07_001 crossref_primary_10_1109_TGRS_2018_2882420 crossref_primary_10_1109_TGRS_2024_3433564 crossref_primary_10_3390_rs15133414 crossref_primary_10_1109_JSTARS_2021_3099805 crossref_primary_10_1109_TGRS_2020_3012575 crossref_primary_10_1109_TGRS_2021_3110060 crossref_primary_10_1109_TGRS_2023_3295357 crossref_primary_10_1109_MGRS_2023_3272825 crossref_primary_10_3390_rs14051227 crossref_primary_10_3390_rs14030646 crossref_primary_10_1109_TGRS_2018_2889195 crossref_primary_10_1109_TGRS_2017_2761839 crossref_primary_10_3390_drones6030073 crossref_primary_10_1016_j_ecoinf_2024_102576 crossref_primary_10_3390_rs12071054 crossref_primary_10_1109_TGRS_2018_2827308 crossref_primary_10_1109_JSTARS_2021_3109012 crossref_primary_10_1109_TGRS_2020_2971716 crossref_primary_10_3390_rs11212560 crossref_primary_10_3390_ijgi10080523 crossref_primary_10_3390_rs16193728 crossref_primary_10_1016_j_isprsjprs_2020_12_010 crossref_primary_10_1109_JSTARS_2020_3001198 crossref_primary_10_1109_JSTARS_2017_2711360 crossref_primary_10_1109_TGRS_2022_3229039 crossref_primary_10_1111_phor_12531 crossref_primary_10_1109_TGRS_2024_3518502 crossref_primary_10_1109_JSTARS_2021_3063460 crossref_primary_10_3390_rs9111151 crossref_primary_10_1109_MGRS_2017_2762307 crossref_primary_10_1016_j_jag_2022_103054 crossref_primary_10_1109_TSMC_2019_2945808 crossref_primary_10_1109_JSTARS_2018_2859836 crossref_primary_10_1109_ACCESS_2021_3057165 crossref_primary_10_3390_rs9040368 crossref_primary_10_1109_JSTARS_2022_3181577 crossref_primary_10_3390_rs11121397 crossref_primary_10_1109_TGRS_2020_3028906 crossref_primary_10_1016_j_jag_2021_102469 crossref_primary_10_1109_TGRS_2022_3215677 crossref_primary_10_1007_s10812_020_01001_6 crossref_primary_10_1109_TGRS_2024_3387990 crossref_primary_10_1109_LGRS_2024_3388384 crossref_primary_10_1109_TGRS_2020_2980417 crossref_primary_10_1109_TGRS_2020_3024796 crossref_primary_10_1109_TGRS_2022_3175387 crossref_primary_10_1007_s10518_019_00648_7 crossref_primary_10_1109_JSTARS_2023_3268176 crossref_primary_10_1109_TGRS_2024_3442171 crossref_primary_10_1007_s11119_022_09975_3 crossref_primary_10_1016_j_isprsjprs_2022_09_010 crossref_primary_10_1038_s41597_023_01951_4 crossref_primary_10_1109_JSTARS_2020_3000677 crossref_primary_10_1109_TGRS_2022_3184691 crossref_primary_10_1080_01431161_2021_1939907 crossref_primary_10_1016_j_rse_2020_111780 crossref_primary_10_1016_j_scs_2024_105809 crossref_primary_10_1016_j_jag_2024_103867 crossref_primary_10_1109_TGRS_2017_2755773 crossref_primary_10_1080_15481603_2021_2006433 crossref_primary_10_1109_TGRS_2023_3276853 crossref_primary_10_1109_TGRS_2023_3348953 crossref_primary_10_1016_j_jag_2021_102456 crossref_primary_10_3390_rs14061493 crossref_primary_10_1109_TGRS_2020_3001584 crossref_primary_10_1016_j_isprsjprs_2020_01_028 crossref_primary_10_1109_LGRS_2019_2909543 crossref_primary_10_1080_01431161_2019_1711239 crossref_primary_10_1109_LGRS_2019_2907139 crossref_primary_10_1016_j_apenergy_2022_119876 crossref_primary_10_1016_j_isprsjprs_2022_04_012 crossref_primary_10_1109_JSTARS_2023_3316733 crossref_primary_10_1109_TGRS_2024_3449145 crossref_primary_10_3390_rs11091116 crossref_primary_10_1007_s41064_022_00217_9 crossref_primary_10_3390_rs12050843 crossref_primary_10_3390_rs15184439 crossref_primary_10_1016_j_cviu_2024_104254 crossref_primary_10_1109_TGRS_2023_3274781 crossref_primary_10_1109_LGRS_2018_2889967 crossref_primary_10_1007_s12524_019_01036_z crossref_primary_10_3390_rs15184562 crossref_primary_10_1109_TAI_2020_3043724 crossref_primary_10_1109_LGRS_2021_3128590 crossref_primary_10_3390_rs15245760 crossref_primary_10_1080_2150704X_2021_1976868 crossref_primary_10_1109_MCI_2020_2998231 crossref_primary_10_1080_2150704X_2019_1606470 crossref_primary_10_1109_TGRS_2023_3317301 crossref_primary_10_1016_j_isprsjprs_2022_04_018 crossref_primary_10_1109_TGRS_2021_3128162 crossref_primary_10_1109_JSTARS_2022_3175200 crossref_primary_10_1109_TGRS_2020_2997863 crossref_primary_10_1016_j_isprsjprs_2021_02_009 crossref_primary_10_1109_LGRS_2021_3061726 crossref_primary_10_1145_3649448 |
Cites_doi | 10.1109/TGRS.2012.2198654 10.1080/13658816.2013.865189 10.1109/TGRS.2012.2195727 10.1016/j.isprsjprs.2014.03.016 10.1016/S1566-2535(02)00091-X 10.1109/TKDE.2009.191 10.1109/JPROC.2012.2231951 10.1109/TGRS.2012.2192740 10.1109/MSP.2014.2347059 10.1109/TGRS.2012.2200043 10.1109/TGRS.2015.2449736 10.1109/JSTSP.2011.2139193 10.1016/j.jag.2012.12.004 10.1109/TGRS.2006.878442 10.1109/JSTARS.2015.2420582 10.1109/LGRS.2012.2236818 10.1007/978-3-642-15561-1_16 10.1109/JSTARS.2012.2202881 10.1109/JSTARS.2015.2500961 10.1109/LGRS.2013.2255258 10.1109/TGRS.2009.2019636 10.1109/LGRS.2015.2391297 10.1016/j.isprsjprs.2015.05.004 10.1109/LGRS.2012.2227297 10.1109/JSTARS.2014.2302333 10.2307/1912352 10.1109/TGRS.2014.2317499 10.1016/j.isprsjprs.2015.02.005 10.1109/TGRS.2013.2295819 10.1109/TGRS.2006.877950 10.1016/j.rse.2004.12.015 10.1109/TIP.2006.888195 10.1109/TGRS.2007.894550 10.1109/JPROC.2015.2449668 10.1109/LGRS.2015.2512999 10.1016/S0167-8655(02)00053-3 10.1016/j.rse.2011.04.022 10.1109/IGARSS.2008.4778790 10.1109/TGRS.2011.2105490 10.1109/LGRS.2012.2220516 10.1145/1015330.1015425 10.1109/TGRS.2012.2200045 10.1109/JSTARS.2012.2222356 10.1201/b11656-18 10.1109/TGRS.2013.2249522 10.1109/JSTARS.2015.2449738 10.1109/TGRS.2014.2377785 10.1109/TGRS.2014.2305805 10.1109/TGRS.2007.912445 10.1109/TPAMI.2009.57 10.1109/WACV.2013.6475043 10.1109/TGRS.2002.803794 10.1371/journal.pone.0148655 10.1109/TGRS.2007.910220 10.1109/TGRS.2013.2246837 10.1109/TGRS.2004.842481 10.1109/TGRS.2014.2300189 10.1109/TGRS.2011.2174154 10.1016/j.rse.2012.03.013 10.1016/j.rse.2010.10.011 10.7551/mitpress/9780262170055.001.0001 10.1016/j.rse.2011.10.014 10.1016/j.patcog.2010.09.013 10.1007/978-3-031-01560-1 10.1109/IGARSS.2011.6049404 10.1109/TGRS.2015.2503885 10.7551/mitpress/9780262017091.001.0001 10.1117/12.829645 10.1109/36.905255 10.1109/TGRS.2010.2076287 10.1109/TGRS.2011.2168534 10.1109/LGRS.2008.916070 10.1109/LGRS.2015.2491605 |
ContentType | Journal Article |
DBID | 97E RIA RIE AAYXX CITATION |
DOI | 10.1109/MGRS.2016.2548504 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography Geology |
EISSN | 2168-6831 |
EndPage | 57 |
ExternalDocumentID | 10_1109_MGRS_2016_2548504 7486184 |
Genre | orig-research |
GroupedDBID | 0R~ 4.4 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG ACGFS AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD HZ~ IFIPE IPLJI JAVBF M43 O9- OCL RIA RIE AAYXX CITATION RIG |
ID | FETCH-LOGICAL-c374t-88638be9611f1f8f0dd103e19a7ee88e5b8fe1fad22bad8109e13f3f0e0fadcc3 |
IEDL.DBID | RIE |
ISSN | 2473-2397 2168-6831 |
IngestDate | Tue Jul 01 03:47:23 EDT 2025 Thu Apr 24 23:04:20 EDT 2025 Wed Aug 27 03:07:54 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c374t-88638be9611f1f8f0dd103e19a7ee88e5b8fe1fad22bad8109e13f3f0e0fadcc3 |
ORCID | 0000-0003-0374-2459 |
OpenAccessLink | https://infoscience.epfl.ch/handle/20.500.14299/133838 |
PageCount | 17 |
ParticipantIDs | crossref_citationtrail_10_1109_MGRS_2016_2548504 crossref_primary_10_1109_MGRS_2016_2548504 ieee_primary_7486184 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-June 2016-6-00 |
PublicationDateYYYYMMDD | 2016-06-01 |
PublicationDate_xml | – month: 06 year: 2016 text: 2016-June |
PublicationDecade | 2010 |
PublicationTitle | IEEE geoscience and remote sensing magazine |
PublicationTitleAbbrev | GRSM |
PublicationYear | 2016 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
References | ref57 ref13 ref56 ref12 ref59 ref15 ref58 marcos gonzalez (ref40) 0 ref14 ref53 ref52 ref55 ref54 ref10 ref17 ref16 ref19 ref18 ref51 settles (ref68) 2012 ref50 sun (ref60) 2013; 10 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 stumpf (ref73) 0 zhang (ref46) 2014 ref35 ref78 ref34 ref37 ref36 ref75 ref31 ref74 ref30 ref77 ref33 ref76 ref32 ref2 ref1 ref39 ref38 ref71 ref70 ref72 luo (ref79) 2005; 6 fleming (ref11) 1975 ref24 ref67 ref23 ref26 ref69 ref64 ref20 ref63 ref66 ref22 ref65 ref21 ref28 ref27 ref29 huang (ref25) 0 ref62 ref61 |
References_xml | – ident: ref22 doi: 10.1109/TGRS.2012.2198654 – ident: ref6 doi: 10.1080/13658816.2013.865189 – ident: ref21 doi: 10.1109/TGRS.2012.2195727 – start-page: 2588 year: 0 ident: ref40 article-title: Weakly supervised alignment of multisensor images publication-title: Proc IEEE Int Geosci Remote Sens Symp (IGARSS) – ident: ref9 doi: 10.1016/j.isprsjprs.2014.03.016 – year: 0 ident: ref73 article-title: Active learning in the spatial-domain for landslide mapping in remote sensing images publication-title: Proc Euro Conf Machine Learn (ECML) Active Learning in Real-World Applications Workshop – ident: ref56 doi: 10.1016/S1566-2535(02)00091-X – ident: ref14 doi: 10.1109/TKDE.2009.191 – ident: ref70 doi: 10.1109/JPROC.2012.2231951 – ident: ref27 doi: 10.1109/TGRS.2012.2192740 – ident: ref16 doi: 10.1109/MSP.2014.2347059 – ident: ref61 doi: 10.1109/TGRS.2012.2200043 – ident: ref42 doi: 10.1109/TGRS.2015.2449736 – ident: ref69 doi: 10.1109/JSTSP.2011.2139193 – ident: ref5 doi: 10.1016/j.jag.2012.12.004 – ident: ref57 doi: 10.1109/TGRS.2006.878442 – ident: ref4 doi: 10.1109/JSTARS.2015.2420582 – volume: 10 start-page: 1224 year: 2013 ident: ref60 article-title: Learn multiple-kernel SVMs for domain adaptation in hyperspectral data publication-title: IEEE Geosci Remote Sens Lett doi: 10.1109/LGRS.2012.2236818 – volume: 6 start-page: 589 year: 2005 ident: ref79 article-title: Active learning to recognize multiple types of plankton publication-title: J Mach Learn Res – year: 1975 ident: ref11 article-title: Computer-aided analysis of LANDSAT-I MSS data: A comparison of three approaches, including a 'modified clustering' approach publication-title: Lab Applicat Remote Sensing Inform Note 072475 – ident: ref15 doi: 10.1007/978-3-642-15561-1_16 – ident: ref67 doi: 10.1109/JSTARS.2012.2202881 – ident: ref45 doi: 10.1109/JSTARS.2015.2500961 – ident: ref75 doi: 10.1109/LGRS.2013.2255258 – ident: ref30 doi: 10.1109/TGRS.2009.2019636 – ident: ref74 doi: 10.1109/LGRS.2015.2391297 – ident: ref18 doi: 10.1016/j.isprsjprs.2015.05.004 – ident: ref29 doi: 10.1109/LGRS.2012.2227297 – ident: ref76 doi: 10.1109/JSTARS.2014.2302333 – year: 2014 ident: ref46 article-title: Single-source domain adaptation with target and conditional shift publication-title: Regularization Optimization Kernels and Support Vector Machines – ident: ref23 doi: 10.2307/1912352 – ident: ref38 doi: 10.1109/TGRS.2014.2317499 – start-page: 601 year: 0 ident: ref25 article-title: Correcting sample selection bias by unlabeled data publication-title: Proc 21st Annu Conf Neural Inform Proc Syst – ident: ref37 doi: 10.1016/j.isprsjprs.2015.02.005 – ident: ref2 doi: 10.1109/TGRS.2013.2295819 – ident: ref58 doi: 10.1109/TGRS.2006.877950 – ident: ref12 doi: 10.1016/j.rse.2004.12.015 – ident: ref36 doi: 10.1109/TIP.2006.888195 – ident: ref59 doi: 10.1109/TGRS.2007.894550 – ident: ref7 doi: 10.1109/JPROC.2015.2449668 – ident: ref51 doi: 10.1109/LGRS.2015.2512999 – ident: ref54 doi: 10.1016/S0167-8655(02)00053-3 – ident: ref19 doi: 10.1016/j.rse.2011.04.022 – ident: ref65 doi: 10.1109/IGARSS.2008.4778790 – ident: ref48 doi: 10.1109/TGRS.2011.2105490 – ident: ref28 doi: 10.1109/LGRS.2012.2220516 – ident: ref24 doi: 10.1145/1015330.1015425 – ident: ref50 doi: 10.1109/TGRS.2012.2200045 – ident: ref8 doi: 10.1109/JSTARS.2012.2222356 – ident: ref71 doi: 10.1201/b11656-18 – ident: ref77 doi: 10.1109/TGRS.2013.2249522 – ident: ref43 doi: 10.1109/JSTARS.2015.2449738 – ident: ref35 doi: 10.1109/TGRS.2014.2377785 – ident: ref26 doi: 10.1109/TGRS.2014.2305805 – ident: ref33 doi: 10.1109/TGRS.2007.912445 – ident: ref64 doi: 10.1109/TPAMI.2009.57 – ident: ref41 doi: 10.1109/WACV.2013.6475043 – ident: ref55 doi: 10.1109/TGRS.2002.803794 – ident: ref39 doi: 10.1371/journal.pone.0148655 – ident: ref66 doi: 10.1109/TGRS.2007.910220 – ident: ref49 doi: 10.1109/TGRS.2013.2246837 – ident: ref32 doi: 10.1109/TGRS.2004.842481 – ident: ref78 doi: 10.1109/TGRS.2014.2300189 – ident: ref20 doi: 10.1109/TGRS.2011.2174154 – ident: ref10 doi: 10.1016/j.rse.2012.03.013 – ident: ref1 doi: 10.1016/j.rse.2010.10.011 – ident: ref13 doi: 10.7551/mitpress/9780262170055.001.0001 – ident: ref3 doi: 10.1016/j.rse.2011.10.014 – ident: ref47 doi: 10.1016/j.patcog.2010.09.013 – year: 2012 ident: ref68 publication-title: Active Learning doi: 10.1007/978-3-031-01560-1 – ident: ref52 doi: 10.1109/IGARSS.2011.6049404 – ident: ref31 doi: 10.1109/TGRS.2015.2503885 – ident: ref17 doi: 10.7551/mitpress/9780262017091.001.0001 – ident: ref34 doi: 10.1117/12.829645 – ident: ref53 doi: 10.1109/36.905255 – ident: ref63 doi: 10.1109/TGRS.2010.2076287 – ident: ref72 doi: 10.1109/TGRS.2011.2168534 – ident: ref62 doi: 10.1109/LGRS.2008.916070 – ident: ref44 doi: 10.1109/LGRS.2015.2491605 |
SSID | ssj0000851918 |
Score | 2.5261388 |
SecondaryResourceType | review_article |
Snippet | The success of the supervised classification of remotely sensed images acquired over large geographical areas or at short time intervals strongly depends on... |
SourceID | crossref ieee |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 41 |
SubjectTerms | Adaptation models Data models Image sensors Remote sensing Sensors Supervised learning Training |
Title | Domain Adaptation for the Classification of Remote Sensing Data: An Overview of Recent Advances |
URI | https://ieeexplore.ieee.org/document/7486184 |
Volume | 4 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bSxwxFD6oIO1L66XFtSp58EmcNZlkZpK-LV4R1oIX8G3I5aQttbPSzlrsr28ymV2KiPg2HBII-ZI5J-d8yQewyysrhbA0o5b7TOSeZsY4m2mrFZYud0LF28jji_LsRpzfFrcLsD-_C4OIHfkMh_Gzq-W7iZ3GVNlBJWTUJ1mExXBwS3e15vmUGDqoLp2Xi4pnefCzfRGTUXUwPr28ijyuchgORLLoZdlmbug_XZXOrZy8h_FsQIlN8mM4bc3Q_n3yVuNrR7wC7_r4kozSgliFBWzW4E0vdf7tcQ2WTzst38d1qI8mP_X3hoycvk8FeRIiWBIiQtJJZUYSUTJPPLnEgCmSq8h3b76SI93qz2TUkC8P8WeDf1KbSPUko0Qr-P0Bbk6Orw_Psl5vIbO8Em0mZdiMBlXJmGdeeuocoxyZ0hWilFgY6ZF57fLcaCfDvCLjnnuKNBit5R9hqZk0uAFEFKbiAnMlHROFLI1RokTjWSU5VrkdAJ1Nf237x8ijJsZd3R1KqKojYnVErO4RG8DevMt9eonjpcbrEYx5wx6HzefNn-Bt7JwYYFuw1P6a4naINVqz0y2yf0ZC0EU |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9QwEB6VIlQuPFoQ5ekDXJCy9SuJjcRhxdJuabdIfUi9hdgeAwKyFc1SLb-Fv8J_w46zK4QQt0rcopEzUjyfMjP2Z38AT0VplZSWZtQKn0nuaWaMs1lta42F407qeBp5clCMT-Sb0_x0BX4sz8IgYkc-w0F87Pby3dTO4lLZVilV1CfpKZR7OL8IDdr5y91RiOYzzrdfH78aZ72GQGZFKdtMqQAwg7pgzDOvPHWOUYFM1yWiUpgb5ZH52nFuaqcY1ciEF54iDUZrRfB7Ba6GOiPn6XTYcgUnFiu6W0DkshQZD5m93zYNXrYmO4dHkTlWDEILpvJeCG6R-H5TcukS2fZN-LmYgsRf-TSYtWZgv_9xO-T_Oke34EZfQZNhgvxtWMFmHdZ6MfcP83W4ttOpFc83oBpNv9QfGzJ09VmiHJBQo5NQ85JODDTSpJJ56skhBtQiOYqM_uY9GdVt_YIMG_L2W_yd4kUaE8msZJiIE-d34ORSvvQurDbTBu8BkbkphUSulWMyV4UxWhZoPCuVwJLbTaCLcFe2v249qn58rrq2i-oqIqSKCKl6hGzC8-UrZ-mukX8N3ojBXw7s437_7-YnsDY-nuxX-7sHew_genSU-G4PYbX9OsNHobJqzeMO4ATeXTZafgGs9TDr |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Domain+Adaptation+for+the+Classification+of+Remote+Sensing+Data%3A+An+Overview+of+Recent+Advances&rft.jtitle=IEEE+geoscience+and+remote+sensing+magazine&rft.au=Tuia%2C+Devis&rft.au=Persello%2C+Claudio&rft.au=Bruzzone%2C+Lorenzo&rft.date=2016-06-01&rft.pub=IEEE&rft.issn=2473-2397&rft.volume=4&rft.issue=2&rft.spage=41&rft.epage=57&rft_id=info:doi/10.1109%2FMGRS.2016.2548504&rft.externalDocID=7486184 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2473-2397&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2473-2397&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2473-2397&client=summon |