Domain Adaptation for the Classification of Remote Sensing Data: An Overview of Recent Advances

The success of the supervised classification of remotely sensed images acquired over large geographical areas or at short time intervals strongly depends on the representativity of the samples used to train the classification algorithm and to define the model. When training samples are collected fro...

Full description

Saved in:
Bibliographic Details
Published inIEEE geoscience and remote sensing magazine Vol. 4; no. 2; pp. 41 - 57
Main Authors Tuia, Devis, Persello, Claudio, Bruzzone, Lorenzo
Format Journal Article
LanguageEnglish
Published IEEE 01.06.2016
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The success of the supervised classification of remotely sensed images acquired over large geographical areas or at short time intervals strongly depends on the representativity of the samples used to train the classification algorithm and to define the model. When training samples are collected from an image or a spatial region that is different from the one used for mapping, spectral shifts between the two distributions are likely to make the model fail. Such shifts are generally due to differences in acquisition and atmospheric conditions or to changes in the nature of the object observed. To design classification methods that are robust to data set shifts, recent remote sensing literature has considered solutions based on domain adaptation (DA) approaches. Inspired by machine-learning literature, several DA methods have been proposed to solve specific problems in remote sensing data classification. This article provides a critical review of the recent advances in DA approaches for remote sensing and presents an overview of DA methods divided into four categories: 1) invariant feature selection, 2) representation matching, 3) adaptation of classifiers, and 4) selective sampling. We provide an overview of recent methodologies, examples of applications of the considered techniques to real remote sensing images characterized by very high spatial and spectral resolution as well as possible guidelines for the selection of the method to use in real application scenarios.
AbstractList The success of the supervised classification of remotely sensed images acquired over large geographical areas or at short time intervals strongly depends on the representativity of the samples used to train the classification algorithm and to define the model. When training samples are collected from an image or a spatial region that is different from the one used for mapping, spectral shifts between the two distributions are likely to make the model fail. Such shifts are generally due to differences in acquisition and atmospheric conditions or to changes in the nature of the object observed. To design classification methods that are robust to data set shifts, recent remote sensing literature has considered solutions based on domain adaptation (DA) approaches. Inspired by machine-learning literature, several DA methods have been proposed to solve specific problems in remote sensing data classification. This article provides a critical review of the recent advances in DA approaches for remote sensing and presents an overview of DA methods divided into four categories: 1) invariant feature selection, 2) representation matching, 3) adaptation of classifiers, and 4) selective sampling. We provide an overview of recent methodologies, examples of applications of the considered techniques to real remote sensing images characterized by very high spatial and spectral resolution as well as possible guidelines for the selection of the method to use in real application scenarios.
Author Tuia, Devis
Bruzzone, Lorenzo
Persello, Claudio
Author_xml – sequence: 1
  givenname: Devis
  surname: Tuia
  fullname: Tuia, Devis
  email: devis.tuia@geo.uzh.ch
  organization: Dept. of Geogr., Univ. of Zurich, Zurich, Switzerland
– sequence: 2
  givenname: Claudio
  surname: Persello
  fullname: Persello, Claudio
  email: c.persello@utwente.nl
  organization: Fac. Geo-Inf. Sci. & Earth Obs., Univ. of Twente, Enschede, Netherlands
– sequence: 3
  givenname: Lorenzo
  surname: Bruzzone
  fullname: Bruzzone, Lorenzo
  email: lorenzo.bruzzone@disi.unitn.it
  organization: Univ. of Genoa, Genoa, Italy
BookMark eNp9kE9LAzEQxYNUsNZ-APGSL7A1s9k_s95Kq1WoFFo9L2l2opE2KZtQ8du7ZcWDB-cyw-O9B_O7ZAPnHTF2DWICIKrb58V6M0kFFJM0zzAX2RkbplBgUqCEQXdnpUxSWZUXbBzCh-gGc6gAh6ye-72yjk8bdYgqWu-48S2P78RnOxWCNVb3sjd8TXsfiW_IBeve-FxFdcenjq-O1B4tffYeTS52fUflNIUrdm7ULtD4Z4_Y68P9y-wxWa4WT7PpMtGyzGKCWEjcUlUAGDBoRNOAkASVKokQKd-iITCqSdOtarB7mkAaaQSJTtRajljZ9-rWh9CSqbXt_4mtsrsaRH1CVZ9Q1SdU9Q-qLgl_kofW7lX79W_mps9YIvr1lxkWgJn8BjDyd6c
CODEN IGRSCZ
CitedBy_id crossref_primary_10_1080_22797254_2024_2341414
crossref_primary_10_1109_LGRS_2023_3303084
crossref_primary_10_1016_j_scs_2022_104059
crossref_primary_10_1109_LSP_2019_2940926
crossref_primary_10_3390_rs14184639
crossref_primary_10_1109_LGRS_2019_2902615
crossref_primary_10_1016_j_agrformet_2023_109652
crossref_primary_10_1016_j_isprsjprs_2024_01_015
crossref_primary_10_1016_j_cviu_2019_07_002
crossref_primary_10_1016_j_isprsjprs_2024_01_016
crossref_primary_10_1111_agec_12531
crossref_primary_10_1109_TGRS_2024_3424553
crossref_primary_10_1109_TGRS_2023_3285747
crossref_primary_10_1109_TGRS_2024_3403727
crossref_primary_10_1007_s00500_023_09355_7
crossref_primary_10_1109_JSTARS_2021_3078631
crossref_primary_10_1109_TGRS_2017_2698503
crossref_primary_10_1186_s40537_023_00735_2
crossref_primary_10_1109_TAES_2023_3297569
crossref_primary_10_1016_j_rse_2025_114711
crossref_primary_10_1109_TGRS_2024_3434484
crossref_primary_10_1038_s42949_024_00188_3
crossref_primary_10_1016_j_jag_2022_103013
crossref_primary_10_3390_rs10040610
crossref_primary_10_1007_s12145_023_01190_6
crossref_primary_10_1109_JSTARS_2021_3103585
crossref_primary_10_1109_JSTARS_2022_3233125
crossref_primary_10_1016_j_jag_2023_103635
crossref_primary_10_3390_rs14215455
crossref_primary_10_1109_JSTARS_2020_2999386
crossref_primary_10_1109_JSTARS_2023_3263755
crossref_primary_10_1364_BOE_455208
crossref_primary_10_1016_j_jag_2017_07_016
crossref_primary_10_1117_1_JRS_18_026505
crossref_primary_10_1016_j_jenvman_2023_118594
crossref_primary_10_1080_10095020_2024_2416897
crossref_primary_10_1016_j_isprsjprs_2024_08_018
crossref_primary_10_1109_TGRS_2023_3297077
crossref_primary_10_1038_s41598_023_34436_w
crossref_primary_10_3390_rs11040399
crossref_primary_10_1016_j_isprsjprs_2016_07_004
crossref_primary_10_1109_TGRS_2017_2754648
crossref_primary_10_5194_tc_15_3949_2021
crossref_primary_10_1109_JSTARS_2021_3049527
crossref_primary_10_1007_s12046_020_01423_0
crossref_primary_10_11834_jig_220763
crossref_primary_10_3390_app10207272
crossref_primary_10_3390_app13084812
crossref_primary_10_1080_01431161_2021_1880663
crossref_primary_10_1109_JSTARS_2024_3502253
crossref_primary_10_1109_TGRS_2019_2937204
crossref_primary_10_1007_s10994_020_05942_z
crossref_primary_10_1016_j_isprsjprs_2020_04_008
crossref_primary_10_14358_PERS_21_00012R2
crossref_primary_10_3390_rs11101153
crossref_primary_10_1016_j_rse_2017_08_026
crossref_primary_10_1109_JSTARS_2017_2732682
crossref_primary_10_1109_JSTARS_2022_3179050
crossref_primary_10_1109_JSTARS_2020_3035382
crossref_primary_10_1109_JSTARS_2021_3134766
crossref_primary_10_1109_TGRS_2022_3222449
crossref_primary_10_2166_wst_2024_387
crossref_primary_10_1016_j_neucom_2020_02_049
crossref_primary_10_1016_j_rse_2022_113203
crossref_primary_10_1109_JSTARS_2020_3000743
crossref_primary_10_1109_TGRS_2020_3006161
crossref_primary_10_1007_s12518_022_00472_w
crossref_primary_10_1109_JSTARS_2020_3026316
crossref_primary_10_1126_sciadv_adj7250
crossref_primary_10_1109_TGRS_2022_3232129
crossref_primary_10_1109_TGRS_2024_3425672
crossref_primary_10_1109_JSTARS_2021_3129177
crossref_primary_10_1109_JSTARS_2024_3412369
crossref_primary_10_3390_rs16071224
crossref_primary_10_1109_JSTARS_2021_3105421
crossref_primary_10_1109_LGRS_2021_3073738
crossref_primary_10_3390_rs15235498
crossref_primary_10_1109_TGRS_2024_3358869
crossref_primary_10_3390_rs11091047
crossref_primary_10_1109_TGRS_2021_3105302
crossref_primary_10_1109_JSTARS_2022_3230625
crossref_primary_10_1109_TGRS_2020_2987907
crossref_primary_10_1109_TGRS_2023_3323579
crossref_primary_10_1007_s41066_019_00161_x
crossref_primary_10_1016_j_rsase_2023_101101
crossref_primary_10_1109_JSTARS_2016_2646138
crossref_primary_10_2139_ssrn_4122021
crossref_primary_10_1109_TGRS_2024_3466309
crossref_primary_10_1155_2018_6714520
crossref_primary_10_1109_JSTARS_2022_3181744
crossref_primary_10_1109_LGRS_2020_2969970
crossref_primary_10_1016_j_isprsjprs_2021_04_022
crossref_primary_10_1080_15481603_2022_2083791
crossref_primary_10_1016_j_jenvman_2025_124969
crossref_primary_10_1007_s12145_017_0318_2
crossref_primary_10_1016_j_isprsjprs_2020_10_018
crossref_primary_10_34133_remotesensing_0439
crossref_primary_10_26833_ijeg_681312
crossref_primary_10_1109_TGRS_2019_2958123
crossref_primary_10_1109_TGRS_2022_3203040
crossref_primary_10_1186_s13634_023_01008_z
crossref_primary_10_1016_j_rse_2023_113545
crossref_primary_10_2478_ijanmc_2022_0031
crossref_primary_10_1016_j_rsase_2025_101510
crossref_primary_10_3390_rs16193568
crossref_primary_10_1080_15481603_2022_2096184
crossref_primary_10_3390_rs10091425
crossref_primary_10_1016_j_isprsjprs_2023_07_009
crossref_primary_10_1017_eds_2023_33
crossref_primary_10_1080_01431161_2020_1750735
crossref_primary_10_1109_ACCESS_2020_2969812
crossref_primary_10_1016_j_isprsjprs_2022_12_011
crossref_primary_10_1016_j_isprsjprs_2021_10_005
crossref_primary_10_1109_TGRS_2020_2988782
crossref_primary_10_3390_rs16142653
crossref_primary_10_3390_rs11242916
crossref_primary_10_1016_j_isprsjprs_2018_10_006
crossref_primary_10_1016_j_isprsjprs_2024_12_017
crossref_primary_10_3390_rs17020330
crossref_primary_10_1109_TEM_2024_3369231
crossref_primary_10_1016_j_rse_2024_114241
crossref_primary_10_1109_JSTARS_2018_2799698
crossref_primary_10_1109_JSTARS_2016_2624303
crossref_primary_10_1109_JSTARS_2023_3329773
crossref_primary_10_1109_JSTARS_2024_3421284
crossref_primary_10_1111_2041_210X_13489
crossref_primary_10_1016_j_knosys_2023_110851
crossref_primary_10_3390_rs12244094
crossref_primary_10_1126_scirobotics_abf3320
crossref_primary_10_3390_rs13132564
crossref_primary_10_1016_j_geomorph_2020_107039
crossref_primary_10_1109_TGRS_2024_3407952
crossref_primary_10_3390_ijgi12080332
crossref_primary_10_3390_rs11192289
crossref_primary_10_1109_JSTARS_2023_3340412
crossref_primary_10_1117_1_JRS_11_042612
crossref_primary_10_1016_j_jag_2024_104313
crossref_primary_10_3390_ijgi7050182
crossref_primary_10_1016_j_eswa_2025_127070
crossref_primary_10_1016_j_jag_2021_102603
crossref_primary_10_1007_s10712_018_9478_y
crossref_primary_10_1016_j_trpro_2021_07_113
crossref_primary_10_3390_seeds2030026
crossref_primary_10_1109_TGRS_2020_3015357
crossref_primary_10_1109_JSTARS_2021_3127754
crossref_primary_10_1016_j_isprsjprs_2020_07_002
crossref_primary_10_1109_JSTARS_2017_2684085
crossref_primary_10_3390_agriculture14091511
crossref_primary_10_3390_rs14174380
crossref_primary_10_3390_rs13245035
crossref_primary_10_1016_j_compag_2022_107480
crossref_primary_10_1109_LGRS_2019_2931063
crossref_primary_10_1109_JSTARS_2024_3399741
crossref_primary_10_1016_j_ecoinf_2021_101547
crossref_primary_10_1117_1_JRS_11_042609
crossref_primary_10_1080_13658816_2022_2120996
crossref_primary_10_1080_15481603_2024_2437252
crossref_primary_10_1109_TGRS_2022_3200246
crossref_primary_10_1109_LGRS_2021_3065982
crossref_primary_10_3390_rs11030298
crossref_primary_10_3390_rs9040337
crossref_primary_10_1109_TCI_2017_2752150
crossref_primary_10_1007_s11432_020_3084_1
crossref_primary_10_3390_rs14235911
crossref_primary_10_1109_JSTARS_2020_3030304
crossref_primary_10_1109_TIP_2018_2808767
crossref_primary_10_1016_j_isprsjprs_2021_01_008
crossref_primary_10_1016_j_jag_2021_102399
crossref_primary_10_1109_TASE_2024_3407130
crossref_primary_10_1109_TGRS_2025_3530614
crossref_primary_10_1007_s11227_022_04961_y
crossref_primary_10_1016_j_rsase_2023_101031
crossref_primary_10_1016_j_isprsjprs_2023_01_003
crossref_primary_10_1016_j_isprsjprs_2021_08_004
crossref_primary_10_1109_TGRS_2018_2888618
crossref_primary_10_3390_electronics13245022
crossref_primary_10_1080_01431161_2020_1797221
crossref_primary_10_1109_JSTARS_2020_3042887
crossref_primary_10_1109_TGRS_2019_2906689
crossref_primary_10_1109_JSTARS_2023_3336929
crossref_primary_10_1109_TGRS_2022_3208897
crossref_primary_10_1109_TGRS_2023_3334294
crossref_primary_10_1016_j_jag_2023_103358
crossref_primary_10_1016_j_array_2022_100233
crossref_primary_10_1109_TGRS_2023_3345179
crossref_primary_10_3390_rs13245054
crossref_primary_10_1016_j_srs_2022_100059
crossref_primary_10_1109_LGRS_2018_2889789
crossref_primary_10_1016_j_measurement_2020_108071
crossref_primary_10_1109_TGRS_2019_2914967
crossref_primary_10_3390_rs9070663
crossref_primary_10_1109_JSTARS_2022_3187757
crossref_primary_10_1016_j_rse_2022_113192
crossref_primary_10_1109_TGRS_2019_2927393
crossref_primary_10_1109_TGRS_2019_2926069
crossref_primary_10_3390_data9110136
crossref_primary_10_1109_TCYB_2020_3004263
crossref_primary_10_1016_j_compag_2023_107766
crossref_primary_10_1016_j_rse_2023_113573
crossref_primary_10_1109_JSTARS_2020_3040218
crossref_primary_10_1016_j_enggeo_2021_106344
crossref_primary_10_1016_j_rse_2023_113695
crossref_primary_10_1109_MGRS_2022_3145854
crossref_primary_10_1016_j_rse_2023_113924
crossref_primary_10_1109_TGRS_2022_3227626
crossref_primary_10_1109_JSTARS_2021_3094973
crossref_primary_10_1016_j_asoc_2017_12_018
crossref_primary_10_1109_TGRS_2023_3302430
crossref_primary_10_1016_j_ins_2019_02_008
crossref_primary_10_1007_s41064_020_00129_6
crossref_primary_10_1109_TGRS_2018_2872850
crossref_primary_10_3389_fpls_2024_1435016
crossref_primary_10_3390_rs15174180
crossref_primary_10_3390_rs15215138
crossref_primary_10_1109_LGRS_2021_3100294
crossref_primary_10_1109_MGRS_2024_3494673
crossref_primary_10_1109_ACCESS_2018_2789932
crossref_primary_10_1109_LGRS_2022_3163575
crossref_primary_10_1016_j_rse_2019_111322
crossref_primary_10_1016_j_isprsjprs_2021_08_026
crossref_primary_10_1109_JSTARS_2020_3031741
crossref_primary_10_3390_rs12182888
crossref_primary_10_1007_s41207_020_00226_3
crossref_primary_10_1016_j_isprsjprs_2024_06_015
crossref_primary_10_1016_j_rse_2021_112590
crossref_primary_10_3390_rs14071527
crossref_primary_10_1109_LGRS_2018_2792683
crossref_primary_10_1016_j_isprsjprs_2022_07_011
crossref_primary_10_1109_TGRS_2024_3452631
crossref_primary_10_1109_LGRS_2019_2931305
crossref_primary_10_1016_j_isprsjprs_2023_09_013
crossref_primary_10_1109_MGRS_2016_2645380
crossref_primary_10_3390_rs14092222
crossref_primary_10_1109_TGRS_2022_3140324
crossref_primary_10_3390_rs14010190
crossref_primary_10_1109_JSTARS_2018_2849073
crossref_primary_10_1109_JSTARS_2024_3503756
crossref_primary_10_1109_TGRS_2022_3162333
crossref_primary_10_1080_15481603_2022_2142727
crossref_primary_10_1109_TGRS_2018_2847724
crossref_primary_10_1109_TGRS_2024_3502659
crossref_primary_10_1109_ACCESS_2019_2911890
crossref_primary_10_1109_TGRS_2024_3370576
crossref_primary_10_1109_JSTARS_2024_3523346
crossref_primary_10_1109_LGRS_2023_3281458
crossref_primary_10_1007_s10489_024_06139_w
crossref_primary_10_1016_j_isprsjprs_2020_10_004
crossref_primary_10_1016_j_isprsjprs_2025_01_006
crossref_primary_10_1109_TGRS_2022_3166817
crossref_primary_10_1109_JSTARS_2022_3163423
crossref_primary_10_1109_JPROC_2017_2684300
crossref_primary_10_1109_JSTARS_2019_2950406
crossref_primary_10_1016_j_neunet_2024_106241
crossref_primary_10_3390_ijgi9020067
crossref_primary_10_1109_TGRS_2023_3267149
crossref_primary_10_3390_rs10091457
crossref_primary_10_1016_j_patcog_2017_10_007
crossref_primary_10_1016_j_isprsjprs_2019_07_001
crossref_primary_10_1109_TGRS_2018_2882420
crossref_primary_10_1109_TGRS_2024_3433564
crossref_primary_10_3390_rs15133414
crossref_primary_10_1109_JSTARS_2021_3099805
crossref_primary_10_1109_TGRS_2020_3012575
crossref_primary_10_1109_TGRS_2021_3110060
crossref_primary_10_1109_TGRS_2023_3295357
crossref_primary_10_1109_MGRS_2023_3272825
crossref_primary_10_3390_rs14051227
crossref_primary_10_3390_rs14030646
crossref_primary_10_1109_TGRS_2018_2889195
crossref_primary_10_1109_TGRS_2017_2761839
crossref_primary_10_3390_drones6030073
crossref_primary_10_1016_j_ecoinf_2024_102576
crossref_primary_10_3390_rs12071054
crossref_primary_10_1109_TGRS_2018_2827308
crossref_primary_10_1109_JSTARS_2021_3109012
crossref_primary_10_1109_TGRS_2020_2971716
crossref_primary_10_3390_rs11212560
crossref_primary_10_3390_ijgi10080523
crossref_primary_10_3390_rs16193728
crossref_primary_10_1016_j_isprsjprs_2020_12_010
crossref_primary_10_1109_JSTARS_2020_3001198
crossref_primary_10_1109_JSTARS_2017_2711360
crossref_primary_10_1109_TGRS_2022_3229039
crossref_primary_10_1111_phor_12531
crossref_primary_10_1109_TGRS_2024_3518502
crossref_primary_10_1109_JSTARS_2021_3063460
crossref_primary_10_3390_rs9111151
crossref_primary_10_1109_MGRS_2017_2762307
crossref_primary_10_1016_j_jag_2022_103054
crossref_primary_10_1109_TSMC_2019_2945808
crossref_primary_10_1109_JSTARS_2018_2859836
crossref_primary_10_1109_ACCESS_2021_3057165
crossref_primary_10_3390_rs9040368
crossref_primary_10_1109_JSTARS_2022_3181577
crossref_primary_10_3390_rs11121397
crossref_primary_10_1109_TGRS_2020_3028906
crossref_primary_10_1016_j_jag_2021_102469
crossref_primary_10_1109_TGRS_2022_3215677
crossref_primary_10_1007_s10812_020_01001_6
crossref_primary_10_1109_TGRS_2024_3387990
crossref_primary_10_1109_LGRS_2024_3388384
crossref_primary_10_1109_TGRS_2020_2980417
crossref_primary_10_1109_TGRS_2020_3024796
crossref_primary_10_1109_TGRS_2022_3175387
crossref_primary_10_1007_s10518_019_00648_7
crossref_primary_10_1109_JSTARS_2023_3268176
crossref_primary_10_1109_TGRS_2024_3442171
crossref_primary_10_1007_s11119_022_09975_3
crossref_primary_10_1016_j_isprsjprs_2022_09_010
crossref_primary_10_1038_s41597_023_01951_4
crossref_primary_10_1109_JSTARS_2020_3000677
crossref_primary_10_1109_TGRS_2022_3184691
crossref_primary_10_1080_01431161_2021_1939907
crossref_primary_10_1016_j_rse_2020_111780
crossref_primary_10_1016_j_scs_2024_105809
crossref_primary_10_1016_j_jag_2024_103867
crossref_primary_10_1109_TGRS_2017_2755773
crossref_primary_10_1080_15481603_2021_2006433
crossref_primary_10_1109_TGRS_2023_3276853
crossref_primary_10_1109_TGRS_2023_3348953
crossref_primary_10_1016_j_jag_2021_102456
crossref_primary_10_3390_rs14061493
crossref_primary_10_1109_TGRS_2020_3001584
crossref_primary_10_1016_j_isprsjprs_2020_01_028
crossref_primary_10_1109_LGRS_2019_2909543
crossref_primary_10_1080_01431161_2019_1711239
crossref_primary_10_1109_LGRS_2019_2907139
crossref_primary_10_1016_j_apenergy_2022_119876
crossref_primary_10_1016_j_isprsjprs_2022_04_012
crossref_primary_10_1109_JSTARS_2023_3316733
crossref_primary_10_1109_TGRS_2024_3449145
crossref_primary_10_3390_rs11091116
crossref_primary_10_1007_s41064_022_00217_9
crossref_primary_10_3390_rs12050843
crossref_primary_10_3390_rs15184439
crossref_primary_10_1016_j_cviu_2024_104254
crossref_primary_10_1109_TGRS_2023_3274781
crossref_primary_10_1109_LGRS_2018_2889967
crossref_primary_10_1007_s12524_019_01036_z
crossref_primary_10_3390_rs15184562
crossref_primary_10_1109_TAI_2020_3043724
crossref_primary_10_1109_LGRS_2021_3128590
crossref_primary_10_3390_rs15245760
crossref_primary_10_1080_2150704X_2021_1976868
crossref_primary_10_1109_MCI_2020_2998231
crossref_primary_10_1080_2150704X_2019_1606470
crossref_primary_10_1109_TGRS_2023_3317301
crossref_primary_10_1016_j_isprsjprs_2022_04_018
crossref_primary_10_1109_TGRS_2021_3128162
crossref_primary_10_1109_JSTARS_2022_3175200
crossref_primary_10_1109_TGRS_2020_2997863
crossref_primary_10_1016_j_isprsjprs_2021_02_009
crossref_primary_10_1109_LGRS_2021_3061726
crossref_primary_10_1145_3649448
Cites_doi 10.1109/TGRS.2012.2198654
10.1080/13658816.2013.865189
10.1109/TGRS.2012.2195727
10.1016/j.isprsjprs.2014.03.016
10.1016/S1566-2535(02)00091-X
10.1109/TKDE.2009.191
10.1109/JPROC.2012.2231951
10.1109/TGRS.2012.2192740
10.1109/MSP.2014.2347059
10.1109/TGRS.2012.2200043
10.1109/TGRS.2015.2449736
10.1109/JSTSP.2011.2139193
10.1016/j.jag.2012.12.004
10.1109/TGRS.2006.878442
10.1109/JSTARS.2015.2420582
10.1109/LGRS.2012.2236818
10.1007/978-3-642-15561-1_16
10.1109/JSTARS.2012.2202881
10.1109/JSTARS.2015.2500961
10.1109/LGRS.2013.2255258
10.1109/TGRS.2009.2019636
10.1109/LGRS.2015.2391297
10.1016/j.isprsjprs.2015.05.004
10.1109/LGRS.2012.2227297
10.1109/JSTARS.2014.2302333
10.2307/1912352
10.1109/TGRS.2014.2317499
10.1016/j.isprsjprs.2015.02.005
10.1109/TGRS.2013.2295819
10.1109/TGRS.2006.877950
10.1016/j.rse.2004.12.015
10.1109/TIP.2006.888195
10.1109/TGRS.2007.894550
10.1109/JPROC.2015.2449668
10.1109/LGRS.2015.2512999
10.1016/S0167-8655(02)00053-3
10.1016/j.rse.2011.04.022
10.1109/IGARSS.2008.4778790
10.1109/TGRS.2011.2105490
10.1109/LGRS.2012.2220516
10.1145/1015330.1015425
10.1109/TGRS.2012.2200045
10.1109/JSTARS.2012.2222356
10.1201/b11656-18
10.1109/TGRS.2013.2249522
10.1109/JSTARS.2015.2449738
10.1109/TGRS.2014.2377785
10.1109/TGRS.2014.2305805
10.1109/TGRS.2007.912445
10.1109/TPAMI.2009.57
10.1109/WACV.2013.6475043
10.1109/TGRS.2002.803794
10.1371/journal.pone.0148655
10.1109/TGRS.2007.910220
10.1109/TGRS.2013.2246837
10.1109/TGRS.2004.842481
10.1109/TGRS.2014.2300189
10.1109/TGRS.2011.2174154
10.1016/j.rse.2012.03.013
10.1016/j.rse.2010.10.011
10.7551/mitpress/9780262170055.001.0001
10.1016/j.rse.2011.10.014
10.1016/j.patcog.2010.09.013
10.1007/978-3-031-01560-1
10.1109/IGARSS.2011.6049404
10.1109/TGRS.2015.2503885
10.7551/mitpress/9780262017091.001.0001
10.1117/12.829645
10.1109/36.905255
10.1109/TGRS.2010.2076287
10.1109/TGRS.2011.2168534
10.1109/LGRS.2008.916070
10.1109/LGRS.2015.2491605
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
DOI 10.1109/MGRS.2016.2548504
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Geology
EISSN 2168-6831
EndPage 57
ExternalDocumentID 10_1109_MGRS_2016_2548504
7486184
Genre orig-research
GroupedDBID 0R~
4.4
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFS
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
RIA
RIE
AAYXX
CITATION
RIG
ID FETCH-LOGICAL-c374t-88638be9611f1f8f0dd103e19a7ee88e5b8fe1fad22bad8109e13f3f0e0fadcc3
IEDL.DBID RIE
ISSN 2473-2397
2168-6831
IngestDate Tue Jul 01 03:47:23 EDT 2025
Thu Apr 24 23:04:20 EDT 2025
Wed Aug 27 03:07:54 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c374t-88638be9611f1f8f0dd103e19a7ee88e5b8fe1fad22bad8109e13f3f0e0fadcc3
ORCID 0000-0003-0374-2459
OpenAccessLink https://infoscience.epfl.ch/handle/20.500.14299/133838
PageCount 17
ParticipantIDs crossref_citationtrail_10_1109_MGRS_2016_2548504
crossref_primary_10_1109_MGRS_2016_2548504
ieee_primary_7486184
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-June
2016-6-00
PublicationDateYYYYMMDD 2016-06-01
PublicationDate_xml – month: 06
  year: 2016
  text: 2016-June
PublicationDecade 2010
PublicationTitle IEEE geoscience and remote sensing magazine
PublicationTitleAbbrev GRSM
PublicationYear 2016
Publisher IEEE
Publisher_xml – name: IEEE
References ref57
ref13
ref56
ref12
ref59
ref15
ref58
marcos gonzalez (ref40) 0
ref14
ref53
ref52
ref55
ref54
ref10
ref17
ref16
ref19
ref18
ref51
settles (ref68) 2012
ref50
sun (ref60) 2013; 10
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
stumpf (ref73) 0
zhang (ref46) 2014
ref35
ref78
ref34
ref37
ref36
ref75
ref31
ref74
ref30
ref77
ref33
ref76
ref32
ref2
ref1
ref39
ref38
ref71
ref70
ref72
luo (ref79) 2005; 6
fleming (ref11) 1975
ref24
ref67
ref23
ref26
ref69
ref64
ref20
ref63
ref66
ref22
ref65
ref21
ref28
ref27
ref29
huang (ref25) 0
ref62
ref61
References_xml – ident: ref22
  doi: 10.1109/TGRS.2012.2198654
– ident: ref6
  doi: 10.1080/13658816.2013.865189
– ident: ref21
  doi: 10.1109/TGRS.2012.2195727
– start-page: 2588
  year: 0
  ident: ref40
  article-title: Weakly supervised alignment of multisensor images
  publication-title: Proc IEEE Int Geosci Remote Sens Symp (IGARSS)
– ident: ref9
  doi: 10.1016/j.isprsjprs.2014.03.016
– year: 0
  ident: ref73
  article-title: Active learning in the spatial-domain for landslide mapping in remote sensing images
  publication-title: Proc Euro Conf Machine Learn (ECML) Active Learning in Real-World Applications Workshop
– ident: ref56
  doi: 10.1016/S1566-2535(02)00091-X
– ident: ref14
  doi: 10.1109/TKDE.2009.191
– ident: ref70
  doi: 10.1109/JPROC.2012.2231951
– ident: ref27
  doi: 10.1109/TGRS.2012.2192740
– ident: ref16
  doi: 10.1109/MSP.2014.2347059
– ident: ref61
  doi: 10.1109/TGRS.2012.2200043
– ident: ref42
  doi: 10.1109/TGRS.2015.2449736
– ident: ref69
  doi: 10.1109/JSTSP.2011.2139193
– ident: ref5
  doi: 10.1016/j.jag.2012.12.004
– ident: ref57
  doi: 10.1109/TGRS.2006.878442
– ident: ref4
  doi: 10.1109/JSTARS.2015.2420582
– volume: 10
  start-page: 1224
  year: 2013
  ident: ref60
  article-title: Learn multiple-kernel SVMs for domain adaptation in hyperspectral data
  publication-title: IEEE Geosci Remote Sens Lett
  doi: 10.1109/LGRS.2012.2236818
– volume: 6
  start-page: 589
  year: 2005
  ident: ref79
  article-title: Active learning to recognize multiple types of plankton
  publication-title: J Mach Learn Res
– year: 1975
  ident: ref11
  article-title: Computer-aided analysis of LANDSAT-I MSS data: A comparison of three approaches, including a 'modified clustering' approach
  publication-title: Lab Applicat Remote Sensing Inform Note 072475
– ident: ref15
  doi: 10.1007/978-3-642-15561-1_16
– ident: ref67
  doi: 10.1109/JSTARS.2012.2202881
– ident: ref45
  doi: 10.1109/JSTARS.2015.2500961
– ident: ref75
  doi: 10.1109/LGRS.2013.2255258
– ident: ref30
  doi: 10.1109/TGRS.2009.2019636
– ident: ref74
  doi: 10.1109/LGRS.2015.2391297
– ident: ref18
  doi: 10.1016/j.isprsjprs.2015.05.004
– ident: ref29
  doi: 10.1109/LGRS.2012.2227297
– ident: ref76
  doi: 10.1109/JSTARS.2014.2302333
– year: 2014
  ident: ref46
  article-title: Single-source domain adaptation with target and conditional shift
  publication-title: Regularization Optimization Kernels and Support Vector Machines
– ident: ref23
  doi: 10.2307/1912352
– ident: ref38
  doi: 10.1109/TGRS.2014.2317499
– start-page: 601
  year: 0
  ident: ref25
  article-title: Correcting sample selection bias by unlabeled data
  publication-title: Proc 21st Annu Conf Neural Inform Proc Syst
– ident: ref37
  doi: 10.1016/j.isprsjprs.2015.02.005
– ident: ref2
  doi: 10.1109/TGRS.2013.2295819
– ident: ref58
  doi: 10.1109/TGRS.2006.877950
– ident: ref12
  doi: 10.1016/j.rse.2004.12.015
– ident: ref36
  doi: 10.1109/TIP.2006.888195
– ident: ref59
  doi: 10.1109/TGRS.2007.894550
– ident: ref7
  doi: 10.1109/JPROC.2015.2449668
– ident: ref51
  doi: 10.1109/LGRS.2015.2512999
– ident: ref54
  doi: 10.1016/S0167-8655(02)00053-3
– ident: ref19
  doi: 10.1016/j.rse.2011.04.022
– ident: ref65
  doi: 10.1109/IGARSS.2008.4778790
– ident: ref48
  doi: 10.1109/TGRS.2011.2105490
– ident: ref28
  doi: 10.1109/LGRS.2012.2220516
– ident: ref24
  doi: 10.1145/1015330.1015425
– ident: ref50
  doi: 10.1109/TGRS.2012.2200045
– ident: ref8
  doi: 10.1109/JSTARS.2012.2222356
– ident: ref71
  doi: 10.1201/b11656-18
– ident: ref77
  doi: 10.1109/TGRS.2013.2249522
– ident: ref43
  doi: 10.1109/JSTARS.2015.2449738
– ident: ref35
  doi: 10.1109/TGRS.2014.2377785
– ident: ref26
  doi: 10.1109/TGRS.2014.2305805
– ident: ref33
  doi: 10.1109/TGRS.2007.912445
– ident: ref64
  doi: 10.1109/TPAMI.2009.57
– ident: ref41
  doi: 10.1109/WACV.2013.6475043
– ident: ref55
  doi: 10.1109/TGRS.2002.803794
– ident: ref39
  doi: 10.1371/journal.pone.0148655
– ident: ref66
  doi: 10.1109/TGRS.2007.910220
– ident: ref49
  doi: 10.1109/TGRS.2013.2246837
– ident: ref32
  doi: 10.1109/TGRS.2004.842481
– ident: ref78
  doi: 10.1109/TGRS.2014.2300189
– ident: ref20
  doi: 10.1109/TGRS.2011.2174154
– ident: ref10
  doi: 10.1016/j.rse.2012.03.013
– ident: ref1
  doi: 10.1016/j.rse.2010.10.011
– ident: ref13
  doi: 10.7551/mitpress/9780262170055.001.0001
– ident: ref3
  doi: 10.1016/j.rse.2011.10.014
– ident: ref47
  doi: 10.1016/j.patcog.2010.09.013
– year: 2012
  ident: ref68
  publication-title: Active Learning
  doi: 10.1007/978-3-031-01560-1
– ident: ref52
  doi: 10.1109/IGARSS.2011.6049404
– ident: ref31
  doi: 10.1109/TGRS.2015.2503885
– ident: ref17
  doi: 10.7551/mitpress/9780262017091.001.0001
– ident: ref34
  doi: 10.1117/12.829645
– ident: ref53
  doi: 10.1109/36.905255
– ident: ref63
  doi: 10.1109/TGRS.2010.2076287
– ident: ref72
  doi: 10.1109/TGRS.2011.2168534
– ident: ref62
  doi: 10.1109/LGRS.2008.916070
– ident: ref44
  doi: 10.1109/LGRS.2015.2491605
SSID ssj0000851918
Score 2.5261388
SecondaryResourceType review_article
Snippet The success of the supervised classification of remotely sensed images acquired over large geographical areas or at short time intervals strongly depends on...
SourceID crossref
ieee
SourceType Enrichment Source
Index Database
Publisher
StartPage 41
SubjectTerms Adaptation models
Data models
Image sensors
Remote sensing
Sensors
Supervised learning
Training
Title Domain Adaptation for the Classification of Remote Sensing Data: An Overview of Recent Advances
URI https://ieeexplore.ieee.org/document/7486184
Volume 4
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bSxwxFD6oIO1L66XFtSp58EmcNZlkZpK-LV4R1oIX8G3I5aQttbPSzlrsr28ymV2KiPg2HBII-ZI5J-d8yQewyysrhbA0o5b7TOSeZsY4m2mrFZYud0LF28jji_LsRpzfFrcLsD-_C4OIHfkMh_Gzq-W7iZ3GVNlBJWTUJ1mExXBwS3e15vmUGDqoLp2Xi4pnefCzfRGTUXUwPr28ijyuchgORLLoZdlmbug_XZXOrZy8h_FsQIlN8mM4bc3Q_n3yVuNrR7wC7_r4kozSgliFBWzW4E0vdf7tcQ2WTzst38d1qI8mP_X3hoycvk8FeRIiWBIiQtJJZUYSUTJPPLnEgCmSq8h3b76SI93qz2TUkC8P8WeDf1KbSPUko0Qr-P0Bbk6Orw_Psl5vIbO8Em0mZdiMBlXJmGdeeuocoxyZ0hWilFgY6ZF57fLcaCfDvCLjnnuKNBit5R9hqZk0uAFEFKbiAnMlHROFLI1RokTjWSU5VrkdAJ1Nf237x8ijJsZd3R1KqKojYnVErO4RG8DevMt9eonjpcbrEYx5wx6HzefNn-Bt7JwYYFuw1P6a4naINVqz0y2yf0ZC0EU
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwzV1Lb9QwEB6VIlQuPFoQ5ekDXJCy9SuJjcRhxdJuabdIfUi9hdgeAwKyFc1SLb-Fv8J_w46zK4QQt0rcopEzUjyfMjP2Z38AT0VplZSWZtQKn0nuaWaMs1lta42F407qeBp5clCMT-Sb0_x0BX4sz8IgYkc-w0F87Pby3dTO4lLZVilV1CfpKZR7OL8IDdr5y91RiOYzzrdfH78aZ72GQGZFKdtMqQAwg7pgzDOvPHWOUYFM1yWiUpgb5ZH52nFuaqcY1ciEF54iDUZrRfB7Ba6GOiPn6XTYcgUnFiu6W0DkshQZD5m93zYNXrYmO4dHkTlWDEILpvJeCG6R-H5TcukS2fZN-LmYgsRf-TSYtWZgv_9xO-T_Oke34EZfQZNhgvxtWMFmHdZ6MfcP83W4ttOpFc83oBpNv9QfGzJ09VmiHJBQo5NQ85JODDTSpJJ56skhBtQiOYqM_uY9GdVt_YIMG_L2W_yd4kUaE8msZJiIE-d34ORSvvQurDbTBu8BkbkphUSulWMyV4UxWhZoPCuVwJLbTaCLcFe2v249qn58rrq2i-oqIqSKCKl6hGzC8-UrZ-mukX8N3ojBXw7s437_7-YnsDY-nuxX-7sHew_genSU-G4PYbX9OsNHobJqzeMO4ATeXTZafgGs9TDr
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Domain+Adaptation+for+the+Classification+of+Remote+Sensing+Data%3A+An+Overview+of+Recent+Advances&rft.jtitle=IEEE+geoscience+and+remote+sensing+magazine&rft.au=Tuia%2C+Devis&rft.au=Persello%2C+Claudio&rft.au=Bruzzone%2C+Lorenzo&rft.date=2016-06-01&rft.pub=IEEE&rft.issn=2473-2397&rft.volume=4&rft.issue=2&rft.spage=41&rft.epage=57&rft_id=info:doi/10.1109%2FMGRS.2016.2548504&rft.externalDocID=7486184
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2473-2397&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2473-2397&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2473-2397&client=summon