Non-universal scaling of thermoelectric efficiency in 3D and 2D thermoelectric semiconductors
We performed the first-principles calculation on common thermoelectric semiconductors Bi 2 Te 3 , Bi 2 Se 3 , SiGe, and PbTe in bulk three-dimension (3D) and two-dimension (2D). We found that miniaturisation of materials does not generally increase the thermoelectric figure of merit ( ZT ) according...
Saved in:
Published in | Advances in natural sciences. Nanoscience and nanotechnology Vol. 12; no. 1; p. 15017 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Hanoi
IOP Publishing
01.03.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We performed the first-principles calculation on common thermoelectric semiconductors Bi
2
Te
3
, Bi
2
Se
3
, SiGe, and PbTe in bulk three-dimension (3D) and two-dimension (2D). We found that miniaturisation of materials does not generally increase the thermoelectric figure of merit (
ZT
) according to the Hicks and Dresselhaus (HD) theory. For example,
ZT
values of 2D PbTe (0.32) and 2D SiGe (0.04) are smaller than their 3D counterparts (0.49 and 0.09, respectively). Meanwhile, the
ZT
values of 2D Bi
2
Te
3
(0.57) and 2D Bi
2
Se
3
(0.43) are larger than the bulks (0.54 and 0.18, respectively), which agrees with HD theory. The HD theory breakdown occurs because the band gap and band flatness of the materials change upon dimensional reduction. We found that flat bands give a larger electrical conductivity (
σ
) and electronic thermal conductivity (
κ
el
) in 3D materials, and smaller values in 2D materials. In all cases, maximum
ZT
values increase proportionally with the band gap and saturate for the band gap above 10
k
B
T
. The 2D Bi
2
Te
3
and Bi
2
Se
3
obtain a higher
ZT
due to the flat corrugated bands and narrow peaks in their DOS. Meanwhile, the 2D PbTe violates HD theory due to the flatter bands it exhibits, while 2D SiGe possesses a small gap Dirac-cone band. |
---|---|
AbstractList | We performed the first-principles calculation on common thermoelectric semiconductors Bi2Te3, Bi2Se3, SiGe, and PbTe in bulk three-dimension (3D) and two-dimension (2D). We found that miniaturisation of materials does not generally increase the thermoelectric figure of merit (ZT) according to the Hicks and Dresselhaus (HD) theory. For example, ZT values of 2D PbTe (0.32) and 2D SiGe (0.04) are smaller than their 3D counterparts (0.49 and 0.09, respectively). Meanwhile, the ZT values of 2D Bi2Te3 (0.57) and 2D Bi2Se3 (0.43) are larger than the bulks (0.54 and 0.18, respectively), which agrees with HD theory. The HD theory breakdown occurs because the band gap and band flatness of the materials change upon dimensional reduction. We found that flat bands give a larger electrical conductivity (σ) and electronic thermal conductivity (κel) in 3D materials, and smaller values in 2D materials. In all cases, maximum ZT values increase proportionally with the band gap and saturate for the band gap above 10 kBT. The 2D Bi2Te3 and Bi2Se3 obtain a higher ZT due to the flat corrugated bands and narrow peaks in their DOS. Meanwhile, the 2D PbTe violates HD theory due to the flatter bands it exhibits, while 2D SiGe possesses a small gap Dirac-cone band. We performed the first-principles calculation on common thermoelectric semiconductors Bi 2 Te 3 , Bi 2 Se 3 , SiGe, and PbTe in bulk three-dimension (3D) and two-dimension (2D). We found that miniaturisation of materials does not generally increase the thermoelectric figure of merit ( ZT ) according to the Hicks and Dresselhaus (HD) theory. For example, ZT values of 2D PbTe (0.32) and 2D SiGe (0.04) are smaller than their 3D counterparts (0.49 and 0.09, respectively). Meanwhile, the ZT values of 2D Bi 2 Te 3 (0.57) and 2D Bi 2 Se 3 (0.43) are larger than the bulks (0.54 and 0.18, respectively), which agrees with HD theory. The HD theory breakdown occurs because the band gap and band flatness of the materials change upon dimensional reduction. We found that flat bands give a larger electrical conductivity ( σ ) and electronic thermal conductivity ( κ el ) in 3D materials, and smaller values in 2D materials. In all cases, maximum ZT values increase proportionally with the band gap and saturate for the band gap above 10 k B T . The 2D Bi 2 Te 3 and Bi 2 Se 3 obtain a higher ZT due to the flat corrugated bands and narrow peaks in their DOS. Meanwhile, the 2D PbTe violates HD theory due to the flatter bands it exhibits, while 2D SiGe possesses a small gap Dirac-cone band. |
Author | Octavian, Kevin Hasdeo, Eddwi H |
Author_xml | – sequence: 1 givenname: Kevin surname: Octavian fullname: Octavian, Kevin – sequence: 2 givenname: Eddwi H surname: Hasdeo fullname: Hasdeo, Eddwi H |
BookMark | eNp1kE1LAzEQhoNUsNbePQY8r83HbjY5SusXFL3oUUI2m2jKNqlJVui_d5eKSMG5zDA87ww852DigzcAXGJ0jRHnC4JKWjDCyEI1RlB9Aqa_q8mf-QzMU9qgoSgXjKIpeHsKvui9-zIxqQ4mrTrn32GwMH-YuA2mMzpHp6Gx1mlnvN5D5yFdQeVbSFbHWDJbp4Nve51DTBfg1KoumflPn4HXu9uX5UOxfr5_XN6sC03rMhdM25IL3lpsSVVRhrmtMLWqxapsGkJ5rUXd1EwQoRomLGtZgxHiiDEjWlLRGbg63N3F8NmblOUm9NEPLyWpMBaMVYgNFDtQOoaUorFSu6yyCz5H5TqJkRxtylGXHHXJg80hiI6Cu-i2Ku7_j3wDk7x51g |
CitedBy_id | crossref_primary_10_1063_5_0137862 |
Cites_doi | 10.1103/PhysRevLett.107.226601 10.1126/science.1156446 10.1103/PhysRevMaterials.3.095401 10.1080/14786430410001678226 10.3938/jkps.69.1683 10.1016/j.jallcom.2011.10.036 10.1016/j.commatsci.2019.04.039 10.1063/1.4759007 10.1088/0953-8984/21/39/395502 10.1103/PhysRevB.76.155127 10.2320/matertrans1989.41.1196 10.1038/nature06381 10.1021/nl903590b 10.1063/1.4768297 10.1088/2053-1591/2/1/016301 10.1063/1.3514252 10.9734/JSRR/2015/14076 10.1103/PhysRevLett.117.036602 10.1063/1.5100985 10.1002/aelm.201800904 10.1038/nature11439 10.1021/acs.nanolett.5b00308 10.4191/kcers.2016.53.3.273 10.1021/ja3102049 10.1103/PhysRevB.59.1758 10.1016/j.jssc.2012.03.042 10.1063/1.4966138 10.1002/aelm.201500025 10.1088/1674-1056/25/12/127101 10.1016/j.jallcom.2007.05.072 10.1039/C7CP04679K 10.1063/1.3027060 10.1016/j.cpc.2006.03.007 10.1016/0022-3697(91)90151-O 10.1021/acs.nanolett.5b01491 10.1080/15421406.2016.1277890 10.1088/2043-6254/ab7225 10.1063/1.4727855 10.1002/crat.200800615 10.1007/s11664-013-2645-5 10.1103/PhysRevB.79.195208 10.1073/pnas.93.15.7436 |
ContentType | Journal Article |
Copyright | Copyright IOP Publishing Mar 2021 |
Copyright_xml | – notice: Copyright IOP Publishing Mar 2021 |
DBID | AAYXX CITATION 7QO 7U5 8FD FR3 L7M P64 |
DOI | 10.1088/2043-6262/abe93c |
DatabaseName | CrossRef Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Technology Research Database Engineering Research Database Advanced Technologies Database with Aerospace Biotechnology and BioEngineering Abstracts |
DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Engineering Research Database Biotechnology Research Abstracts Technology Research Database Advanced Technologies Database with Aerospace Biotechnology and BioEngineering Abstracts |
DatabaseTitleList | Solid State and Superconductivity Abstracts CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 2043-6262 |
ExternalDocumentID | 10_1088_2043_6262_abe93c |
GroupedDBID | 1JI 4.4 5VS AAGCD AAJIO AATNI AAYXX ABHWH ABJNI ACAFW ACHIP ADEQX AEFHF AEJGL AFYNE AIYBF AKPSB ALMA_UNASSIGNED_HOLDINGS AOAED ASPBG ATQHT AVWKF AZFZN CEBXE CITATION CJUJL EBS EDWGO EQZZN GX1 HH5 IJHAN IOP IZVLO KOT KQ8 M45 M48 N5L O3W PJBAE RIN RNS RPA SY9 T37 W28 7QO 7U5 8FD AEINN FR3 L7M P64 |
ID | FETCH-LOGICAL-c374t-6cf4898df1f2553618f513fad1a4bb2387c97b76929ab69f6d6b1008066e9d253 |
IEDL.DBID | M48 |
ISSN | 2043-6262 2043-6254 |
IngestDate | Fri Jul 25 21:09:53 EDT 2025 Tue Jul 01 02:45:52 EDT 2025 Thu Apr 24 22:51:13 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c374t-6cf4898df1f2553618f513fad1a4bb2387c97b76929ab69f6d6b1008066e9d253 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2511966506 |
PQPubID | 4562432 |
ParticipantIDs | proquest_journals_2511966506 crossref_citationtrail_10_1088_2043_6262_abe93c crossref_primary_10_1088_2043_6262_abe93c |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-03-01 |
PublicationDateYYYYMMDD | 2021-03-01 |
PublicationDate_xml | – month: 03 year: 2021 text: 2021-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Hanoi |
PublicationPlace_xml | – name: Hanoi |
PublicationTitle | Advances in natural sciences. Nanoscience and nanotechnology |
PublicationYear | 2021 |
Publisher | IOP Publishing |
Publisher_xml | – name: IOP Publishing |
References | Kulbachinskii (ansnabe93cbib40) 2012; 193 Tayebi (ansnabe93cbib37) 2012 Nurhuda (ansnabe93cbib31) 2020; 11 Witting (ansnabe93cbib22) 2019; 5 Mahan (ansnabe93cbib29) 1996; 93 Hochbaum (ansnabe93cbib7) 2008; 451 Hung (ansnabe93cbib9) 2016; 117 Basu (ansnabe93cbib44) 2013; 42 Jeong (ansnabe93cbib30) 2012; 111 Liu (ansnabe93cbib35) 2017; 7 Jeon (ansnabe93cbib38) 1991; 52 Zhao (ansnabe93cbib27) 2016; 25 Ryu (ansnabe93cbib24) 2016; 53 Qiu (ansnabe93cbib34) 2010; 97 Bathula (ansnabe93cbib48) 2012; 101 Jamdagni (ansnabe93cbib13) 2015; 2 Hicks (ansnabe93cbib5) 1993 Biswas (ansnabe93cbib6) 2012; 489 Wang (ansnabe93cbib47) 2008; 93 Pei (ansnabe93cbib45) 2012; 514 Markov (ansnabe93cbib28) 2019; 3 Zhou (ansnabe93cbib23) 2015; 5 Orihashi (ansnabe93cbib36) 2000; 41 Giannozzi (ansnabe93cbib15) 2009; 21 Hasdeo (ansnabe93cbib1) 2019; 126 Kresse (ansnabe93cbib16) 1999; 59 Hong (ansnabe93cbib41) 2015; 1 Hicks (ansnabe93cbib4) 1993 McGuire (ansnabe93cbib43) 2008; 460 Sofo (ansnabe93cbib2) 1994 Monkhorst (ansnabe93cbib18) 1976 Sun (ansnabe93cbib11) 2012; 134 Teweldebrhan (ansnabe93cbib10) 2010; 10 Wang (ansnabe93cbib26) 2007; 76 Plecháček (ansnabe93cbib39) 2004; 84 Nozariasbmarz (ansnabe93cbib46) 2016; 4 Jia (ansnabe93cbib20) 2017; 19 Mi (ansnabe93cbib32) 2015; 15 Ding (ansnabe93cbib33) 2019 Mori (ansnabe93cbib14) 2012; 2 Zhou (ansnabe93cbib3) 2011; 107 Liu (ansnabe93cbib12) 2015; 15 Hor (ansnabe93cbib42) 2009; 79 Sannyal (ansnabe93cbib21) 2019; 165 Perdew (ansnabe93cbib17) 1992 Madsen (ansnabe93cbib19) 2006; 175 Janíček (ansnabe93cbib49) 2009; 44 Park (ansnabe93cbib25) 2016; 69 Poudel (ansnabe93cbib8) 2008; 320 |
References_xml | – volume: 107 year: 2011 ident: ansnabe93cbib3 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.107.226601 – year: 1992 ident: ansnabe93cbib17 publication-title: Phys. Rev. B – volume: 320 start-page: 634 year: 2008 ident: ansnabe93cbib8 publication-title: Science doi: 10.1126/science.1156446 – volume: 3 year: 2019 ident: ansnabe93cbib28 publication-title: Physical Review Materials doi: 10.1103/PhysRevMaterials.3.095401 – volume: 84 start-page: 2217 year: 2004 ident: ansnabe93cbib39 publication-title: Philosophical Magazine doi: 10.1080/14786430410001678226 – volume: 69 start-page: 1683 year: 2016 ident: ansnabe93cbib25 publication-title: Journal of the Korean Physical Society doi: 10.3938/jkps.69.1683 – volume: 514 start-page: 40 year: 2012 ident: ansnabe93cbib45 publication-title: Journal of Alloys and Compounds doi: 10.1016/j.jallcom.2011.10.036 – volume: 165 start-page: 121 year: 2019 ident: ansnabe93cbib21 publication-title: Computational Materials Science doi: 10.1016/j.commatsci.2019.04.039 – volume: 2 year: 2012 ident: ansnabe93cbib14 publication-title: AIP Advances doi: 10.1063/1.4759007 – volume: 21 year: 2009 ident: ansnabe93cbib15 publication-title: Journal of Physics: Condensed Matter doi: 10.1088/0953-8984/21/39/395502 – volume: 76 year: 2007 ident: ansnabe93cbib26 publication-title: Physical Review B: Condensed Matter and Materials Physics doi: 10.1103/PhysRevB.76.155127 – volume: 41 start-page: 1196 year: 2000 ident: ansnabe93cbib36 publication-title: Materials Transactions, JIM doi: 10.2320/matertrans1989.41.1196 – volume: 451 start-page: 163 year: 2008 ident: ansnabe93cbib7 publication-title: Nature doi: 10.1038/nature06381 – volume: 10 start-page: 1209 year: 2010 ident: ansnabe93cbib10 publication-title: Nano Letters doi: 10.1021/nl903590b – volume: 101 year: 2012 ident: ansnabe93cbib48 publication-title: Applied Physics Letters doi: 10.1063/1.4768297 – volume: 2 start-page: 16301 year: 2015 ident: ansnabe93cbib13 publication-title: Materials Research Express doi: 10.1088/2053-1591/2/1/016301 – start-page: 1 year: 2012 ident: ansnabe93cbib37 – volume: 97 year: 2010 ident: ansnabe93cbib34 publication-title: Applied Physics Letters doi: 10.1063/1.3514252 – volume: 5 start-page: 1 year: 2015 ident: ansnabe93cbib23 publication-title: Scientific Reports doi: 10.9734/JSRR/2015/14076 – volume: 117 year: 2016 ident: ansnabe93cbib9 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.117.036602 – volume: 126 year: 2019 ident: ansnabe93cbib1 publication-title: Journal of Applied Physics doi: 10.1063/1.5100985 – volume: 5 year: 2019 ident: ansnabe93cbib22 publication-title: Advanced Electronic Materials doi: 10.1002/aelm.201800904 – year: 1976 ident: ansnabe93cbib18 publication-title: Phys. Rev. B – volume: 489 start-page: 414 year: 2012 ident: ansnabe93cbib6 publication-title: Nature doi: 10.1038/nature11439 – volume: 15 start-page: 2657 year: 2015 ident: ansnabe93cbib12 publication-title: Nano Letters doi: 10.1021/acs.nanolett.5b00308 – year: 2019 ident: ansnabe93cbib33 publication-title: J. Mater. Chem. – volume: 53 start-page: 273 year: 2016 ident: ansnabe93cbib24 publication-title: Journal of the Korean Ceramic Society doi: 10.4191/kcers.2016.53.3.273 – volume: 134 start-page: 20294 year: 2012 ident: ansnabe93cbib11 publication-title: Journal of the American Chemical Society doi: 10.1021/ja3102049 – volume: 59 start-page: 1758 year: 1999 ident: ansnabe93cbib16 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.59.1758 – volume: 193 start-page: 47 year: 2012 ident: ansnabe93cbib40 publication-title: Journal of Solid State Chemistry doi: 10.1016/j.jssc.2012.03.042 – volume: 4 year: 2016 ident: ansnabe93cbib46 publication-title: APL Materials doi: 10.1063/1.4966138 – volume: 1 year: 2015 ident: ansnabe93cbib41 publication-title: Advanced Electronic Materials doi: 10.1002/aelm.201500025 – volume: 25 year: 2016 ident: ansnabe93cbib27 publication-title: Chinese Physics B doi: 10.1088/1674-1056/25/12/127101 – year: 1993 ident: ansnabe93cbib5 publication-title: Phys. Rev. B – volume: 460 start-page: 8 year: 2008 ident: ansnabe93cbib43 publication-title: Journal of Alloys and Compounds doi: 10.1016/j.jallcom.2007.05.072 – volume: 19 start-page: 29647 year: 2017 ident: ansnabe93cbib20 publication-title: Physical Chemistry Chemical Physics doi: 10.1039/C7CP04679K – year: 1994 ident: ansnabe93cbib2 publication-title: Phys. Rev. B – volume: 93 year: 2008 ident: ansnabe93cbib47 publication-title: Applied Physics Letters doi: 10.1063/1.3027060 – volume: 175 start-page: 67 year: 2006 ident: ansnabe93cbib19 publication-title: Computer Physics Communications doi: 10.1016/j.cpc.2006.03.007 – volume: 52 start-page: 579 year: 1991 ident: ansnabe93cbib38 publication-title: Journal of Physics and Chemistry of Solids doi: 10.1016/0022-3697(91)90151-O – volume: 15 start-page: 5229 year: 2015 ident: ansnabe93cbib32 publication-title: Nano Letters doi: 10.1021/acs.nanolett.5b01491 – volume: 7 start-page: 257 year: 2017 ident: ansnabe93cbib35 publication-title: Crystals doi: 10.1080/15421406.2016.1277890 – volume: 11 year: 2020 ident: ansnabe93cbib31 publication-title: Advances in Natural Sciences: Nanoscience and Nanotechnology doi: 10.1088/2043-6254/ab7225 – volume: 111 year: 2012 ident: ansnabe93cbib30 publication-title: Journal of Applied Physics doi: 10.1063/1.4727855 – volume: 44 start-page: 505 year: 2009 ident: ansnabe93cbib49 publication-title: Crystal Research and Technolog doi: 10.1002/crat.200800615 – year: 1993 ident: ansnabe93cbib4 publication-title: Phys. Rev. B – volume: 42 start-page: 2292 year: 2013 ident: ansnabe93cbib44 publication-title: Journal of Electronic Materials doi: 10.1007/s11664-013-2645-5 – volume: 79 year: 2009 ident: ansnabe93cbib42 publication-title: Physical Review B: Condensed Matter and Materials Physics doi: 10.1103/PhysRevB.79.195208 – volume: 93 start-page: 7436 year: 1996 ident: ansnabe93cbib29 publication-title: Proceedings of the National Academy of Sciences doi: 10.1073/pnas.93.15.7436 |
SSID | ssj0000389630 |
Score | 2.198788 |
Snippet | We performed the first-principles calculation on common thermoelectric semiconductors Bi
2
Te
3
, Bi
2
Se
3
, SiGe, and PbTe in bulk three-dimension (3D) and... We performed the first-principles calculation on common thermoelectric semiconductors Bi2Te3, Bi2Se3, SiGe, and PbTe in bulk three-dimension (3D) and... |
SourceID | proquest crossref |
SourceType | Aggregation Database Enrichment Source Index Database |
StartPage | 15017 |
SubjectTerms | Band theory Bismuth tellurides Dimensional changes Electrical conductivity Electrical resistivity Energy gap Figure of merit First principles Intermetallic compounds Miniaturization Semiconductors Silicon germanides Thermal conductivity Thermoelectricity Two dimensional materials |
Title | Non-universal scaling of thermoelectric efficiency in 3D and 2D thermoelectric semiconductors |
URI | https://www.proquest.com/docview/2511966506 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8NAEF5sRdCDaFWsj7IHLx7WNtlks3sQEWstQnuy0IuEfWShUBNtWtB_72ySqpVScsxMDjO7O99kZ75B6MoG8AjpExYaSQIZ-URK1iGcMgDnimlm3A_9wZD1R8HzOBz_tkdXBszXpnZuntRoNr35_Pi6gw1_W1bI8bZr7yQAzP22VImguoa2IS5FbpsOKrBfnMsQm1kxfKRSCIPq3nLdR1bj1OoxXcSe3gHar0Ajvi-9fIi2krSB9v5QCTbQTlHKqfMj9DrMUrIo6y1AKQcngATOLHZY7y0rB99MNE4K9gjXeoknKaZdLFOD_e5_sdyVz2ep44XNZvkxGvUeXx76pBqiQDSNgjlh2gZccGM9C9kDeIDb0KNWGk8GSkHAjrSIVMQAJknFhGWGKUf4A1AkEcYP6Qmqp1manCIsaBI6ujuAPDoQvuIdrT1qtBZGREbbJmovTRbrimHcDbqYxsVNN-exM3LsjByXRm6i6x-N95JdY4PsxdIL8XKZxC5BgoQt7LCzza_P0a7vqlGK6rELVJ_PFsklwIm5aqHa09hrFWvlG5SbxxQ |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Non-universal+scaling+of+thermoelectric+efficiency+in+3D+and+2D+thermoelectric+semiconductors&rft.jtitle=Advances+in+natural+sciences.+Nanoscience+and+nanotechnology&rft.au=Octavian%2C+Kevin&rft.au=Hasdeo%2C+Eddwi+H&rft.date=2021-03-01&rft.pub=IOP+Publishing&rft.issn=2043-6254&rft.eissn=2043-6262&rft.volume=12&rft.issue=1&rft_id=info:doi/10.1088%2F2043-6262%2Fabe93c&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2043-6262&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2043-6262&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2043-6262&client=summon |