Non-universal scaling of thermoelectric efficiency in 3D and 2D thermoelectric semiconductors

We performed the first-principles calculation on common thermoelectric semiconductors Bi 2 Te 3 , Bi 2 Se 3 , SiGe, and PbTe in bulk three-dimension (3D) and two-dimension (2D). We found that miniaturisation of materials does not generally increase the thermoelectric figure of merit ( ZT ) according...

Full description

Saved in:
Bibliographic Details
Published inAdvances in natural sciences. Nanoscience and nanotechnology Vol. 12; no. 1; p. 15017
Main Authors Octavian, Kevin, Hasdeo, Eddwi H
Format Journal Article
LanguageEnglish
Published Hanoi IOP Publishing 01.03.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We performed the first-principles calculation on common thermoelectric semiconductors Bi 2 Te 3 , Bi 2 Se 3 , SiGe, and PbTe in bulk three-dimension (3D) and two-dimension (2D). We found that miniaturisation of materials does not generally increase the thermoelectric figure of merit ( ZT ) according to the Hicks and Dresselhaus (HD) theory. For example, ZT values of 2D PbTe (0.32) and 2D SiGe (0.04) are smaller than their 3D counterparts (0.49 and 0.09, respectively). Meanwhile, the ZT values of 2D Bi 2 Te 3 (0.57) and 2D Bi 2 Se 3 (0.43) are larger than the bulks (0.54 and 0.18, respectively), which agrees with HD theory. The HD theory breakdown occurs because the band gap and band flatness of the materials change upon dimensional reduction. We found that flat bands give a larger electrical conductivity ( σ ) and electronic thermal conductivity ( κ el ) in 3D materials, and smaller values in 2D materials. In all cases, maximum ZT values increase proportionally with the band gap and saturate for the band gap above 10 k B T . The 2D Bi 2 Te 3 and Bi 2 Se 3 obtain a higher ZT due to the flat corrugated bands and narrow peaks in their DOS. Meanwhile, the 2D PbTe violates HD theory due to the flatter bands it exhibits, while 2D SiGe possesses a small gap Dirac-cone band.
AbstractList We performed the first-principles calculation on common thermoelectric semiconductors Bi2Te3, Bi2Se3, SiGe, and PbTe in bulk three-dimension (3D) and two-dimension (2D). We found that miniaturisation of materials does not generally increase the thermoelectric figure of merit (ZT) according to the Hicks and Dresselhaus (HD) theory. For example, ZT values of 2D PbTe (0.32) and 2D SiGe (0.04) are smaller than their 3D counterparts (0.49 and 0.09, respectively). Meanwhile, the ZT values of 2D Bi2Te3 (0.57) and 2D Bi2Se3 (0.43) are larger than the bulks (0.54 and 0.18, respectively), which agrees with HD theory. The HD theory breakdown occurs because the band gap and band flatness of the materials change upon dimensional reduction. We found that flat bands give a larger electrical conductivity (σ) and electronic thermal conductivity (κel) in 3D materials, and smaller values in 2D materials. In all cases, maximum ZT values increase proportionally with the band gap and saturate for the band gap above 10 kBT. The 2D Bi2Te3 and Bi2Se3 obtain a higher ZT due to the flat corrugated bands and narrow peaks in their DOS. Meanwhile, the 2D PbTe violates HD theory due to the flatter bands it exhibits, while 2D SiGe possesses a small gap Dirac-cone band.
We performed the first-principles calculation on common thermoelectric semiconductors Bi 2 Te 3 , Bi 2 Se 3 , SiGe, and PbTe in bulk three-dimension (3D) and two-dimension (2D). We found that miniaturisation of materials does not generally increase the thermoelectric figure of merit ( ZT ) according to the Hicks and Dresselhaus (HD) theory. For example, ZT values of 2D PbTe (0.32) and 2D SiGe (0.04) are smaller than their 3D counterparts (0.49 and 0.09, respectively). Meanwhile, the ZT values of 2D Bi 2 Te 3 (0.57) and 2D Bi 2 Se 3 (0.43) are larger than the bulks (0.54 and 0.18, respectively), which agrees with HD theory. The HD theory breakdown occurs because the band gap and band flatness of the materials change upon dimensional reduction. We found that flat bands give a larger electrical conductivity ( σ ) and electronic thermal conductivity ( κ el ) in 3D materials, and smaller values in 2D materials. In all cases, maximum ZT values increase proportionally with the band gap and saturate for the band gap above 10 k B T . The 2D Bi 2 Te 3 and Bi 2 Se 3 obtain a higher ZT due to the flat corrugated bands and narrow peaks in their DOS. Meanwhile, the 2D PbTe violates HD theory due to the flatter bands it exhibits, while 2D SiGe possesses a small gap Dirac-cone band.
Author Octavian, Kevin
Hasdeo, Eddwi H
Author_xml – sequence: 1
  givenname: Kevin
  surname: Octavian
  fullname: Octavian, Kevin
– sequence: 2
  givenname: Eddwi H
  surname: Hasdeo
  fullname: Hasdeo, Eddwi H
BookMark eNp1kE1LAzEQhoNUsNbePQY8r83HbjY5SusXFL3oUUI2m2jKNqlJVui_d5eKSMG5zDA87ww852DigzcAXGJ0jRHnC4JKWjDCyEI1RlB9Aqa_q8mf-QzMU9qgoSgXjKIpeHsKvui9-zIxqQ4mrTrn32GwMH-YuA2mMzpHp6Gx1mlnvN5D5yFdQeVbSFbHWDJbp4Nve51DTBfg1KoumflPn4HXu9uX5UOxfr5_XN6sC03rMhdM25IL3lpsSVVRhrmtMLWqxapsGkJ5rUXd1EwQoRomLGtZgxHiiDEjWlLRGbg63N3F8NmblOUm9NEPLyWpMBaMVYgNFDtQOoaUorFSu6yyCz5H5TqJkRxtylGXHHXJg80hiI6Cu-i2Ku7_j3wDk7x51g
CitedBy_id crossref_primary_10_1063_5_0137862
Cites_doi 10.1103/PhysRevLett.107.226601
10.1126/science.1156446
10.1103/PhysRevMaterials.3.095401
10.1080/14786430410001678226
10.3938/jkps.69.1683
10.1016/j.jallcom.2011.10.036
10.1016/j.commatsci.2019.04.039
10.1063/1.4759007
10.1088/0953-8984/21/39/395502
10.1103/PhysRevB.76.155127
10.2320/matertrans1989.41.1196
10.1038/nature06381
10.1021/nl903590b
10.1063/1.4768297
10.1088/2053-1591/2/1/016301
10.1063/1.3514252
10.9734/JSRR/2015/14076
10.1103/PhysRevLett.117.036602
10.1063/1.5100985
10.1002/aelm.201800904
10.1038/nature11439
10.1021/acs.nanolett.5b00308
10.4191/kcers.2016.53.3.273
10.1021/ja3102049
10.1103/PhysRevB.59.1758
10.1016/j.jssc.2012.03.042
10.1063/1.4966138
10.1002/aelm.201500025
10.1088/1674-1056/25/12/127101
10.1016/j.jallcom.2007.05.072
10.1039/C7CP04679K
10.1063/1.3027060
10.1016/j.cpc.2006.03.007
10.1016/0022-3697(91)90151-O
10.1021/acs.nanolett.5b01491
10.1080/15421406.2016.1277890
10.1088/2043-6254/ab7225
10.1063/1.4727855
10.1002/crat.200800615
10.1007/s11664-013-2645-5
10.1103/PhysRevB.79.195208
10.1073/pnas.93.15.7436
ContentType Journal Article
Copyright Copyright IOP Publishing Mar 2021
Copyright_xml – notice: Copyright IOP Publishing Mar 2021
DBID AAYXX
CITATION
7QO
7U5
8FD
FR3
L7M
P64
DOI 10.1088/2043-6262/abe93c
DatabaseName CrossRef
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Engineering Research Database
Advanced Technologies Database with Aerospace
Biotechnology and BioEngineering Abstracts
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Biotechnology and BioEngineering Abstracts
DatabaseTitleList Solid State and Superconductivity Abstracts
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 2043-6262
ExternalDocumentID 10_1088_2043_6262_abe93c
GroupedDBID 1JI
4.4
5VS
AAGCD
AAJIO
AATNI
AAYXX
ABHWH
ABJNI
ACAFW
ACHIP
ADEQX
AEFHF
AEJGL
AFYNE
AIYBF
AKPSB
ALMA_UNASSIGNED_HOLDINGS
AOAED
ASPBG
ATQHT
AVWKF
AZFZN
CEBXE
CITATION
CJUJL
EBS
EDWGO
EQZZN
GX1
HH5
IJHAN
IOP
IZVLO
KOT
KQ8
M45
M48
N5L
O3W
PJBAE
RIN
RNS
RPA
SY9
T37
W28
7QO
7U5
8FD
AEINN
FR3
L7M
P64
ID FETCH-LOGICAL-c374t-6cf4898df1f2553618f513fad1a4bb2387c97b76929ab69f6d6b1008066e9d253
IEDL.DBID M48
ISSN 2043-6262
2043-6254
IngestDate Fri Jul 25 21:09:53 EDT 2025
Tue Jul 01 02:45:52 EDT 2025
Thu Apr 24 22:51:13 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c374t-6cf4898df1f2553618f513fad1a4bb2387c97b76929ab69f6d6b1008066e9d253
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2511966506
PQPubID 4562432
ParticipantIDs proquest_journals_2511966506
crossref_citationtrail_10_1088_2043_6262_abe93c
crossref_primary_10_1088_2043_6262_abe93c
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-03-01
PublicationDateYYYYMMDD 2021-03-01
PublicationDate_xml – month: 03
  year: 2021
  text: 2021-03-01
  day: 01
PublicationDecade 2020
PublicationPlace Hanoi
PublicationPlace_xml – name: Hanoi
PublicationTitle Advances in natural sciences. Nanoscience and nanotechnology
PublicationYear 2021
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References Kulbachinskii (ansnabe93cbib40) 2012; 193
Tayebi (ansnabe93cbib37) 2012
Nurhuda (ansnabe93cbib31) 2020; 11
Witting (ansnabe93cbib22) 2019; 5
Mahan (ansnabe93cbib29) 1996; 93
Hochbaum (ansnabe93cbib7) 2008; 451
Hung (ansnabe93cbib9) 2016; 117
Basu (ansnabe93cbib44) 2013; 42
Jeong (ansnabe93cbib30) 2012; 111
Liu (ansnabe93cbib35) 2017; 7
Jeon (ansnabe93cbib38) 1991; 52
Zhao (ansnabe93cbib27) 2016; 25
Ryu (ansnabe93cbib24) 2016; 53
Qiu (ansnabe93cbib34) 2010; 97
Bathula (ansnabe93cbib48) 2012; 101
Jamdagni (ansnabe93cbib13) 2015; 2
Hicks (ansnabe93cbib5) 1993
Biswas (ansnabe93cbib6) 2012; 489
Wang (ansnabe93cbib47) 2008; 93
Pei (ansnabe93cbib45) 2012; 514
Markov (ansnabe93cbib28) 2019; 3
Zhou (ansnabe93cbib23) 2015; 5
Orihashi (ansnabe93cbib36) 2000; 41
Giannozzi (ansnabe93cbib15) 2009; 21
Hasdeo (ansnabe93cbib1) 2019; 126
Kresse (ansnabe93cbib16) 1999; 59
Hong (ansnabe93cbib41) 2015; 1
Hicks (ansnabe93cbib4) 1993
McGuire (ansnabe93cbib43) 2008; 460
Sofo (ansnabe93cbib2) 1994
Monkhorst (ansnabe93cbib18) 1976
Sun (ansnabe93cbib11) 2012; 134
Teweldebrhan (ansnabe93cbib10) 2010; 10
Wang (ansnabe93cbib26) 2007; 76
Plecháček (ansnabe93cbib39) 2004; 84
Nozariasbmarz (ansnabe93cbib46) 2016; 4
Jia (ansnabe93cbib20) 2017; 19
Mi (ansnabe93cbib32) 2015; 15
Ding (ansnabe93cbib33) 2019
Mori (ansnabe93cbib14) 2012; 2
Zhou (ansnabe93cbib3) 2011; 107
Liu (ansnabe93cbib12) 2015; 15
Hor (ansnabe93cbib42) 2009; 79
Sannyal (ansnabe93cbib21) 2019; 165
Perdew (ansnabe93cbib17) 1992
Madsen (ansnabe93cbib19) 2006; 175
Janíček (ansnabe93cbib49) 2009; 44
Park (ansnabe93cbib25) 2016; 69
Poudel (ansnabe93cbib8) 2008; 320
References_xml – volume: 107
  year: 2011
  ident: ansnabe93cbib3
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.107.226601
– year: 1992
  ident: ansnabe93cbib17
  publication-title: Phys. Rev. B
– volume: 320
  start-page: 634
  year: 2008
  ident: ansnabe93cbib8
  publication-title: Science
  doi: 10.1126/science.1156446
– volume: 3
  year: 2019
  ident: ansnabe93cbib28
  publication-title: Physical Review Materials
  doi: 10.1103/PhysRevMaterials.3.095401
– volume: 84
  start-page: 2217
  year: 2004
  ident: ansnabe93cbib39
  publication-title: Philosophical Magazine
  doi: 10.1080/14786430410001678226
– volume: 69
  start-page: 1683
  year: 2016
  ident: ansnabe93cbib25
  publication-title: Journal of the Korean Physical Society
  doi: 10.3938/jkps.69.1683
– volume: 514
  start-page: 40
  year: 2012
  ident: ansnabe93cbib45
  publication-title: Journal of Alloys and Compounds
  doi: 10.1016/j.jallcom.2011.10.036
– volume: 165
  start-page: 121
  year: 2019
  ident: ansnabe93cbib21
  publication-title: Computational Materials Science
  doi: 10.1016/j.commatsci.2019.04.039
– volume: 2
  year: 2012
  ident: ansnabe93cbib14
  publication-title: AIP Advances
  doi: 10.1063/1.4759007
– volume: 21
  year: 2009
  ident: ansnabe93cbib15
  publication-title: Journal of Physics: Condensed Matter
  doi: 10.1088/0953-8984/21/39/395502
– volume: 76
  year: 2007
  ident: ansnabe93cbib26
  publication-title: Physical Review B: Condensed Matter and Materials Physics
  doi: 10.1103/PhysRevB.76.155127
– volume: 41
  start-page: 1196
  year: 2000
  ident: ansnabe93cbib36
  publication-title: Materials Transactions, JIM
  doi: 10.2320/matertrans1989.41.1196
– volume: 451
  start-page: 163
  year: 2008
  ident: ansnabe93cbib7
  publication-title: Nature
  doi: 10.1038/nature06381
– volume: 10
  start-page: 1209
  year: 2010
  ident: ansnabe93cbib10
  publication-title: Nano Letters
  doi: 10.1021/nl903590b
– volume: 101
  year: 2012
  ident: ansnabe93cbib48
  publication-title: Applied Physics Letters
  doi: 10.1063/1.4768297
– volume: 2
  start-page: 16301
  year: 2015
  ident: ansnabe93cbib13
  publication-title: Materials Research Express
  doi: 10.1088/2053-1591/2/1/016301
– start-page: 1
  year: 2012
  ident: ansnabe93cbib37
– volume: 97
  year: 2010
  ident: ansnabe93cbib34
  publication-title: Applied Physics Letters
  doi: 10.1063/1.3514252
– volume: 5
  start-page: 1
  year: 2015
  ident: ansnabe93cbib23
  publication-title: Scientific Reports
  doi: 10.9734/JSRR/2015/14076
– volume: 117
  year: 2016
  ident: ansnabe93cbib9
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.117.036602
– volume: 126
  year: 2019
  ident: ansnabe93cbib1
  publication-title: Journal of Applied Physics
  doi: 10.1063/1.5100985
– volume: 5
  year: 2019
  ident: ansnabe93cbib22
  publication-title: Advanced Electronic Materials
  doi: 10.1002/aelm.201800904
– year: 1976
  ident: ansnabe93cbib18
  publication-title: Phys. Rev. B
– volume: 489
  start-page: 414
  year: 2012
  ident: ansnabe93cbib6
  publication-title: Nature
  doi: 10.1038/nature11439
– volume: 15
  start-page: 2657
  year: 2015
  ident: ansnabe93cbib12
  publication-title: Nano Letters
  doi: 10.1021/acs.nanolett.5b00308
– year: 2019
  ident: ansnabe93cbib33
  publication-title: J. Mater. Chem.
– volume: 53
  start-page: 273
  year: 2016
  ident: ansnabe93cbib24
  publication-title: Journal of the Korean Ceramic Society
  doi: 10.4191/kcers.2016.53.3.273
– volume: 134
  start-page: 20294
  year: 2012
  ident: ansnabe93cbib11
  publication-title: Journal of the American Chemical Society
  doi: 10.1021/ja3102049
– volume: 59
  start-page: 1758
  year: 1999
  ident: ansnabe93cbib16
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.59.1758
– volume: 193
  start-page: 47
  year: 2012
  ident: ansnabe93cbib40
  publication-title: Journal of Solid State Chemistry
  doi: 10.1016/j.jssc.2012.03.042
– volume: 4
  year: 2016
  ident: ansnabe93cbib46
  publication-title: APL Materials
  doi: 10.1063/1.4966138
– volume: 1
  year: 2015
  ident: ansnabe93cbib41
  publication-title: Advanced Electronic Materials
  doi: 10.1002/aelm.201500025
– volume: 25
  year: 2016
  ident: ansnabe93cbib27
  publication-title: Chinese Physics B
  doi: 10.1088/1674-1056/25/12/127101
– year: 1993
  ident: ansnabe93cbib5
  publication-title: Phys. Rev. B
– volume: 460
  start-page: 8
  year: 2008
  ident: ansnabe93cbib43
  publication-title: Journal of Alloys and Compounds
  doi: 10.1016/j.jallcom.2007.05.072
– volume: 19
  start-page: 29647
  year: 2017
  ident: ansnabe93cbib20
  publication-title: Physical Chemistry Chemical Physics
  doi: 10.1039/C7CP04679K
– year: 1994
  ident: ansnabe93cbib2
  publication-title: Phys. Rev. B
– volume: 93
  year: 2008
  ident: ansnabe93cbib47
  publication-title: Applied Physics Letters
  doi: 10.1063/1.3027060
– volume: 175
  start-page: 67
  year: 2006
  ident: ansnabe93cbib19
  publication-title: Computer Physics Communications
  doi: 10.1016/j.cpc.2006.03.007
– volume: 52
  start-page: 579
  year: 1991
  ident: ansnabe93cbib38
  publication-title: Journal of Physics and Chemistry of Solids
  doi: 10.1016/0022-3697(91)90151-O
– volume: 15
  start-page: 5229
  year: 2015
  ident: ansnabe93cbib32
  publication-title: Nano Letters
  doi: 10.1021/acs.nanolett.5b01491
– volume: 7
  start-page: 257
  year: 2017
  ident: ansnabe93cbib35
  publication-title: Crystals
  doi: 10.1080/15421406.2016.1277890
– volume: 11
  year: 2020
  ident: ansnabe93cbib31
  publication-title: Advances in Natural Sciences: Nanoscience and Nanotechnology
  doi: 10.1088/2043-6254/ab7225
– volume: 111
  year: 2012
  ident: ansnabe93cbib30
  publication-title: Journal of Applied Physics
  doi: 10.1063/1.4727855
– volume: 44
  start-page: 505
  year: 2009
  ident: ansnabe93cbib49
  publication-title: Crystal Research and Technolog
  doi: 10.1002/crat.200800615
– year: 1993
  ident: ansnabe93cbib4
  publication-title: Phys. Rev. B
– volume: 42
  start-page: 2292
  year: 2013
  ident: ansnabe93cbib44
  publication-title: Journal of Electronic Materials
  doi: 10.1007/s11664-013-2645-5
– volume: 79
  year: 2009
  ident: ansnabe93cbib42
  publication-title: Physical Review B: Condensed Matter and Materials Physics
  doi: 10.1103/PhysRevB.79.195208
– volume: 93
  start-page: 7436
  year: 1996
  ident: ansnabe93cbib29
  publication-title: Proceedings of the National Academy of Sciences
  doi: 10.1073/pnas.93.15.7436
SSID ssj0000389630
Score 2.198788
Snippet We performed the first-principles calculation on common thermoelectric semiconductors Bi 2 Te 3 , Bi 2 Se 3 , SiGe, and PbTe in bulk three-dimension (3D) and...
We performed the first-principles calculation on common thermoelectric semiconductors Bi2Te3, Bi2Se3, SiGe, and PbTe in bulk three-dimension (3D) and...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 15017
SubjectTerms Band theory
Bismuth tellurides
Dimensional changes
Electrical conductivity
Electrical resistivity
Energy gap
Figure of merit
First principles
Intermetallic compounds
Miniaturization
Semiconductors
Silicon germanides
Thermal conductivity
Thermoelectricity
Two dimensional materials
Title Non-universal scaling of thermoelectric efficiency in 3D and 2D thermoelectric semiconductors
URI https://www.proquest.com/docview/2511966506
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8NAEF5sRdCDaFWsj7IHLx7WNtlks3sQEWstQnuy0IuEfWShUBNtWtB_72ySqpVScsxMDjO7O99kZ75B6MoG8AjpExYaSQIZ-URK1iGcMgDnimlm3A_9wZD1R8HzOBz_tkdXBszXpnZuntRoNr35_Pi6gw1_W1bI8bZr7yQAzP22VImguoa2IS5FbpsOKrBfnMsQm1kxfKRSCIPq3nLdR1bj1OoxXcSe3gHar0Ajvi-9fIi2krSB9v5QCTbQTlHKqfMj9DrMUrIo6y1AKQcngATOLHZY7y0rB99MNE4K9gjXeoknKaZdLFOD_e5_sdyVz2ep44XNZvkxGvUeXx76pBqiQDSNgjlh2gZccGM9C9kDeIDb0KNWGk8GSkHAjrSIVMQAJknFhGWGKUf4A1AkEcYP6Qmqp1manCIsaBI6ujuAPDoQvuIdrT1qtBZGREbbJmovTRbrimHcDbqYxsVNN-exM3LsjByXRm6i6x-N95JdY4PsxdIL8XKZxC5BgoQt7LCzza_P0a7vqlGK6rELVJ_PFsklwIm5aqHa09hrFWvlG5SbxxQ
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Non-universal+scaling+of+thermoelectric+efficiency+in+3D+and+2D+thermoelectric+semiconductors&rft.jtitle=Advances+in+natural+sciences.+Nanoscience+and+nanotechnology&rft.au=Octavian%2C+Kevin&rft.au=Hasdeo%2C+Eddwi+H&rft.date=2021-03-01&rft.pub=IOP+Publishing&rft.issn=2043-6254&rft.eissn=2043-6262&rft.volume=12&rft.issue=1&rft_id=info:doi/10.1088%2F2043-6262%2Fabe93c&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2043-6262&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2043-6262&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2043-6262&client=summon