Radar automatic target recognition based on feature extraction for complex HRRP
Radar high-resolution range profile (HRRP) has received intensive attention from the radar automatic target recognition (RATR) community. Usually, since the initial phase of a complex HRRP is strongly sensitive to target position variation, which is referred to as the initial phase sensitivity in th...
Saved in:
Published in | Science China. Information sciences Vol. 51; no. 8; pp. 1138 - 1153 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Heidelberg
SP Science in China Press
01.08.2008
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 1009-2757 1674-733X 1862-2836 1869-1919 |
DOI | 10.1007/s11432-008-0087-0 |
Cover
Abstract | Radar high-resolution range profile (HRRP) has received intensive attention from the radar automatic target recognition (RATR) community. Usually, since the initial phase of a complex HRRP is strongly sensitive to target position variation, which is referred to as the initial phase sensitivity in this paper, only the amplitude information in the complex HRRP, called the real HRRP in this paper, is used for RATR, whereas the phase information is discarded. However, the remaining phase information except for initial phases in the complex HRRP also contains valuable target discriminant information. This paper proposes a novel feature extraction method for the complex HRRP. The extracted complex feature vector, referred to as the complex feature vector with difference phases, contains the difference phase information between range cells but no initial phase information in the complex HRRR According to the scattering center model, the physical mechanism of the proposed complex feature vector is similar to that of the real HRRP, except for reserving some phase information independent of the initial phase in the complex HRRP. The recognition algorithms, frame-template establishment methods and preprocessing methods used in the real HRRP-based RATR can also be applied to the proposed complex feature vector-based RATR. Moreover, the components in the complex feature vector with difference phases approximate to follow Gaussian distribution, which make it simple to perform the statistical recognition by such complex feature vector. The recognition experiments based on measured data show that the proposed complex feature vector can obtain better recognition performance than the real HRRP if only the cell interval parameters are properly selected. |
---|---|
AbstractList | Radar high-resolution range profile (HRRP) has received intensive attention from the radar automatic target recognition (RATR) community. Usually, since the initial phase of a complex HRRP is strongly sensitive to target position variation, which is referred to as the initial phase sensitivity in this paper, only the amplitude information in the complex HRRP, called the real HRRP in this paper, is used for RATR, whereas the phase information is discarded. However, the remaining phase information except for initial phases in the complex HRRP also contains valuable target discriminant information. This paper proposes a novel feature extraction method for the complex HRRP. The extracted complex feature vector, referred to as the complex feature vector with difference phases, contains the difference phase information between range cells but no initial phase information in the complex HRRP. According to the scattering center model, the physical mechanism of the proposed complex feature vector is similar to that of the real HRRP, except for reserving some phase information independent of the initial phase in the complex HRRP. The recognition algorithms, frame-template establishment methods and preprocessing methods used in the real HRRP-based RATR can also be applied to the proposed complex feature vector-based RATR. Moreover, the components in the complex feature vector with difference phases approximate to follow Gaussian distribution, which make it simple to perform the statistical recognition by such complex feature vector. The recognition experiments based on measured data show that the proposed complex feature vector can obtain better recognition performance than the real HRRP if only the cell interval parameters are properly selected. Radar high-resolution range profile (HRRP) has received intensive attention from the radar automatic target recognition (RATR) community. Usually, since the initial phase of a complex HRRP is strongly sensitive to target position variation, which is referred to as the initial phase sensitivity in this paper, only the amplitude information in the complex HRRP, called the real HRRP in this paper, is used for RATR, whereas the phase information is discarded. However, the remaining phase information except for initial phases in the complex HRRP also contains valuable target discriminant information. This paper proposes a novel feature extraction method for the complex HRRP. The extracted complex feature vector, referred to as the complex feature vector with difference phases, contains the difference phase information between range cells but no initial phase information in the complex HRRR According to the scattering center model, the physical mechanism of the proposed complex feature vector is similar to that of the real HRRP, except for reserving some phase information independent of the initial phase in the complex HRRP. The recognition algorithms, frame-template establishment methods and preprocessing methods used in the real HRRP-based RATR can also be applied to the proposed complex feature vector-based RATR. Moreover, the components in the complex feature vector with difference phases approximate to follow Gaussian distribution, which make it simple to perform the statistical recognition by such complex feature vector. The recognition experiments based on measured data show that the proposed complex feature vector can obtain better recognition performance than the real HRRP if only the cell interval parameters are properly selected. |
Author | DU Lan LIU HongWei BAO Zheng ZHANG JunYing |
AuthorAffiliation | National Laboratory of Radar Signal Processing, Xidian University, Xi'an 710071, China |
Author_xml | – sequence: 1 givenname: Lan surname: Du fullname: Du, Lan organization: National Laboratory of Radar Signal Processing, Xidian University – sequence: 2 givenname: HongWei surname: Liu fullname: Liu, HongWei email: hwliu@xidian.edu.cn organization: National Laboratory of Radar Signal Processing, Xidian University – sequence: 3 givenname: Zheng surname: Bao fullname: Bao, Zheng organization: National Laboratory of Radar Signal Processing, Xidian University – sequence: 4 givenname: JunYing surname: Zhang fullname: Zhang, JunYing organization: National Laboratory of Radar Signal Processing, Xidian University |
BookMark | eNp9kEFr3DAQhUVJIZu0PyA3k0BvTmck25KOITRJYSFlac9C1o633nitjSRD8u8jdwOFPeQwaGDeN5r3ztjJ6Edi7ALhGgHk94hYCV4CqLlkCZ_YAlXDS65Ec5J7AF1yWctTdhbjFqDiXOCCPa7s2obCTsnvbOpdkWzYUCoCOb8Z-9T7sWhtpHWRm45smgIV9JKCdf9mnQ-F87v9QC_Fw2r16wv73Nkh0tf395z9ufvx-_ahXD7e_7y9WZZOyCqVjZZIKBslK4Vd3XLZiXWLooI8sLIjzuu6cRZd06KTGiSq2laVE43mqtHinH077N0H_zxRTGbXR0fDYEfyUzSiBq00yiy8OhJu_RTGfJvhOi9VCHJWyYPKBR9joM64PtnZYXbaDwbBzDGbQ8wmRzyXNJBJPCL3od_Z8Pohww9MzNpxQ-H_TR9Bl-8f_fXj5jlzprXuqesHyk4gZyK0eAMt65qH |
CitedBy_id | crossref_primary_10_1016_j_eswa_2015_03_029 crossref_primary_10_1049_iet_rsn_2015_0540 crossref_primary_10_1007_s11431_010_4207_x crossref_primary_10_1109_LAWP_2022_3163910 crossref_primary_10_1080_01431161_2012_668622 crossref_primary_10_1109_TMTT_2024_3385421 crossref_primary_10_1007_s11432_010_4080_z crossref_primary_10_1007_s11432_011_4527_x crossref_primary_10_1049_joe_2019_0741 |
Cites_doi | 10.1016/S0031-3203(96)00077-5 10.1109/TAES.2003.1261122 10.1049/iet-rsn:20050119 10.1109/8.999623 10.1109/TAES.2002.1145746 10.1109/TSP.2006.873534 10.1360/04yf0301 10.1109/62.839633 10.1007/b98796 10.1109/TSP.2005.849161 |
ContentType | Journal Article |
Copyright | Science in China Press and Springer-Verlag GmbH 2008 Science in China Press and Springer-Verlag GmbH 2008. |
Copyright_xml | – notice: Science in China Press and Springer-Verlag GmbH 2008 – notice: Science in China Press and Springer-Verlag GmbH 2008. |
DBID | 2RA 92L CQIGP W92 ~WA AAYXX CITATION 8FE 8FG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7SC 8FD L7M L~C L~D |
DOI | 10.1007/s11432-008-0087-0 |
DatabaseName | 维普期刊资源整合服务平台 中文科技期刊数据库-CALIS站点 维普中文期刊数据库 中文科技期刊数据库-工程技术 中文科技期刊数据库- 镜像站点 CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials - QC ProQuest Central Technology Collection ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Computer and Information Systems Abstracts Technology Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Advanced Technologies & Aerospace Collection Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Advanced Technologies & Aerospace Collection Computer and Information Systems Abstracts |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
DocumentTitleAlternate | Radar automatic target recognition based on feature extraction for complex HRRP |
EISSN | 1862-2836 1869-1919 |
EndPage | 1153 |
ExternalDocumentID | 10_1007_s11432_008_0087_0 29069339 |
GroupedDBID | .86 06D 0R~ 123 2JN 2LR 2RA 4.4 406 408 40E 6NX 8UJ 92L 95- 95. 96X AABHQ ABFTV ABKCH ABTMW ADHHG ADURQ ADYFF AEGNC AEOHA AEXYK AFGCZ AGDGC AGQMX AJRNO ALMA_UNASSIGNED_HOLDINGS AMKLP AMYQR B-. BA0 BGNMA CAG COF CQIGP CS3 CW9 EBS EJD FNLPD HF~ HZ~ IHE IPNFZ I~X I~Z J9A KOV M4Y MA- N2Q NB0 NQJWS NU0 O9- PF0 PT4 QOS RIG ROL RPX RSV S27 SAP SCO SDH SNX SOJ T13 U2A UG4 VC2 W48 W92 ~A9 ~WA ABQSL CJPJV DPUIP AAYXX ADHKG AGQPQ CITATION -SI -S~ -Y2 .VR 0VY 2J2 2JY 2KG 2KM 30V 5VR 5VS 8FE 8FG 8TC AAAVM AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBRH ABDBE ABDZT ABECU ABHQN ABJNI ABJOX ABKTR ABMQK ABNWP ABQBU ABRTQ ABSXP ABTEG ABTHY ABTKH ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACREN ACSNA ACZOJ ADHIR ADKNI ADKPE ADRFC ADTPH ADYOE ADZKW AEBTG AEFQL AEGAL AEJHL AEJRE AEMSY AEPYU AESKC AETLH AEVLU AFDZB AFKRA AFLOW AFQWF AFUIB AFWTZ AFYQB AFZKB AGAYW AGJBK AGMZJ AGQEE AGRTI AGWZB AGYKE AHBYD AHPBZ AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJZVZ ALWAN AMTXH AMXSW AMYLF AOCGG ARAPS ARMRJ ASPBG ATHPR AVWKF AXYYD AYFIA AZFZN AZQEC BDATZ BENPR BGLVJ BSONS CAJEI CCEZO CCPQU CHBEP CSCUP CUBFJ DDRTE DNIVK DWQXO EBLON EIOEI ESBYG FEDTE FERAY FFXSO FIGPU FINBP FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ7 HCIFZ HG6 HMJXF HRMNR HVGLF IJ- IKXTQ IWAJR IXD J-C JBSCW JQ2 JZLTJ K7- LLZTM NPVJJ O9J P62 P9O PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q-- R89 S16 S3B SCL SHX SISQX SJYHP SNE SNPRN SOHCF SPISZ SRMVM SSLCW SZN TR2 TSG TUC U1G U5S UOJIU UTJUX UZXMN VFIZW W23 YLTOR ZMTXR 7SC 8FD L7M L~C L~D |
ID | FETCH-LOGICAL-c374t-6971e17687481f5b27f3db1340971a7fe22556ca1c6b1c7907185a44c36928693 |
IEDL.DBID | U2A |
ISSN | 1009-2757 1674-733X |
IngestDate | Fri Sep 05 15:00:18 EDT 2025 Fri Jul 25 23:31:55 EDT 2025 Tue Jul 01 02:26:16 EDT 2025 Thu Apr 24 23:01:36 EDT 2025 Fri Feb 21 02:33:12 EST 2025 Thu Nov 24 20:29:19 EST 2022 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Keywords | minimum Euclidean distance classifier adaptive Gaussian classifier (AGC) complex high-resolution range profile (HRRP) feature extraction radar automatic target recognition (RATR) |
Language | English |
License | http://www.springer.com/tdm |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c374t-6971e17687481f5b27f3db1340971a7fe22556ca1c6b1c7907185a44c36928693 |
Notes | TN95 complex high-resolution range profile (HRRP), radar automatic target recognition (RATR), feature extraction, minimum Euclidean distance classifier, adaptive Gaussian classifier (AGC) 11-4426/N ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 content type line 23 |
PQID | 2918581077 |
PQPubID | 2043626 |
PageCount | 16 |
ParticipantIDs | proquest_miscellaneous_35098917 proquest_journals_2918581077 crossref_citationtrail_10_1007_s11432_008_0087_0 crossref_primary_10_1007_s11432_008_0087_0 springer_journals_10_1007_s11432_008_0087_0 chongqing_backfile_29069339 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2008-08-01 |
PublicationDateYYYYMMDD | 2008-08-01 |
PublicationDate_xml | – month: 08 year: 2008 text: 2008-08-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | Heidelberg |
PublicationPlace_xml | – name: Heidelberg |
PublicationTitle | Science China. Information sciences |
PublicationTitleAbbrev | Sci. China Ser. F-Inf. Sci |
PublicationTitleAlternate | Science in China(Series F) |
PublicationYear | 2008 |
Publisher | SP Science in China Press Springer Nature B.V |
Publisher_xml | – name: SP Science in China Press – name: Springer Nature B.V |
References | Williams, Westerkamp, Gross (CR1) 2000; 15 Liu, Ma, Bao, Qu, Yi, Su (CR9) 2004 Ye (CR11) 1996 Xu, Yang, Peng (CR13) 2005; 48 Du, Liu, Bao (CR12) 2007; 1 Du, Liu, Bao (CR7) 2005; 537 Kim, Seo, Kim (CR2) 2002; 50 Liao, Runkle, Carin (CR3) 2002; 38 Copsey, Webb (CR4) 2003; 39 Van der Heiden, Groen (CR5) 1997; 30 Liu, Bao, Yin, Wang, Guo (CR10) 2004 Du, Liu, Bao (CR8) 2006; 54 Jacobs (CR6) 1999 H. W. Liu (87_CR10) 2004 K. T. Kim (87_CR2) 2002; 50 L. Du (87_CR7) 2005; 537 X. J. Liao (87_CR3) 2002; 38 R. Van der Heiden (87_CR5) 1997; 30 L. Du (87_CR12) 2007; 1 W. Ye (87_CR11) 1996 L. Du (87_CR8) 2006; 54 S. P. Jacobs (87_CR6) 1999 J. Y. Xu (87_CR13) 2005; 48 K. Copsey (87_CR4) 2003; 39 R. Williams (87_CR1) 2000; 15 H. W. Liu (87_CR9) 2004 |
References_xml | – volume: 30 start-page: 273 issue: 2 year: 1997 end-page: 279 ident: CR5 article-title: The Box-Cox metric for nearest neighbour classification improvement publication-title: Pattern Recog doi: 10.1016/S0031-3203(96)00077-5 – volume: 39 start-page: 1201 issue: 4 year: 2003 end-page: 1217 ident: CR4 article-title: Bayesian Gamma mixture model approach to radar target recognition publication-title: IEEE Trans Aerosp Electron Syst doi: 10.1109/TAES.2003.1261122 – start-page: 354 year: 2004 end-page: 357 ident: CR9 article-title: Analysis of physical mechanism of BOX-COX transformation on improving radar HRRP recognition performance publication-title: Proceeding of the 9th national radar conference – volume: 1 start-page: 18 issue: 1 year: 2007 end-page: 26 ident: CR12 article-title: Radar automatic target recognition using complex high-resolution range profiles publication-title: IET Radar, Sonar & Navigation doi: 10.1049/iet-rsn:20050119 – volume: 537 start-page: 2359 year: 2005 end-page: 2368 ident: CR7 article-title: Radar HRRP target recognition based on higher-order spectra publication-title: IEEE Trans Signal Process – start-page: 35 year: 1999 end-page: 83 ident: CR6 article-title: Automatic target recognition using high-resolution radar range profiles publication-title: Ph. D. Dissertation – volume: 50 start-page: 325 issue: 3 year: 2002 end-page: 337 ident: CR2 article-title: Efficient radar target recognition using the MUSIC algorithm and invariant feature publication-title: IEEE Trans Antennas Propag doi: 10.1109/8.999623 – volume: 38 start-page: 1230 issue: 4 year: 2002 end-page: 1242 ident: CR3 article-title: Identification of ground targets from sequential high-range-resolution radar signatures publication-title: IEEE Trans Aerosp Electron Syst doi: 10.1109/TAES.2002.1145746 – volume: 54 start-page: 2226 issue: 6 year: 2006 end-page: 2238 ident: CR8 article-title: A two-distribution compounded statistical model for radar HRRP target recognition publication-title: IEEE Trans Signal Process doi: 10.1109/TSP.2006.873534 – start-page: 531 year: 2004 end-page: 536 ident: CR10 publication-title: Radar HRR profiles recognition based on SVM with power-transformed-correlation kernel – volume: 48 start-page: 747 issue: 6 year: 2005 end-page: 760 ident: CR13 article-title: A new approach to dual-band polarimetric radar remote sensing image classification publication-title: Sci China Ser F-Inf Sci doi: 10.1360/04yf0301 – start-page: 12 year: 1996 end-page: 37 ident: CR11 article-title: Study of the inverse synthetic aperture radar imaging and motion compensation (in Chinese) publication-title: Ph. D. Dissertation – volume: 15 start-page: 37 issue: 4 year: 2000 end-page: 43 ident: CR1 article-title: Automatic target recognition of time critical moving targets 1D high range resolution (HRR) radar publication-title: IEEE Aerosp Electron Syst Mag doi: 10.1109/62.839633 – volume: 38 start-page: 1230 issue: 4 year: 2002 ident: 87_CR3 publication-title: IEEE Trans Aerosp Electron Syst doi: 10.1109/TAES.2002.1145746 – volume: 50 start-page: 325 issue: 3 year: 2002 ident: 87_CR2 publication-title: IEEE Trans Antennas Propag doi: 10.1109/8.999623 – start-page: 354 volume-title: Proceeding of the 9th national radar conference year: 2004 ident: 87_CR9 – volume: 39 start-page: 1201 issue: 4 year: 2003 ident: 87_CR4 publication-title: IEEE Trans Aerosp Electron Syst doi: 10.1109/TAES.2003.1261122 – volume: 54 start-page: 2226 issue: 6 year: 2006 ident: 87_CR8 publication-title: IEEE Trans Signal Process doi: 10.1109/TSP.2006.873534 – start-page: 531 volume-title: Radar HRR profiles recognition based on SVM with power-transformed-correlation kernel year: 2004 ident: 87_CR10 doi: 10.1007/b98796 – volume: 1 start-page: 18 issue: 1 year: 2007 ident: 87_CR12 publication-title: IET Radar, Sonar & Navigation doi: 10.1049/iet-rsn:20050119 – start-page: 12 volume-title: Ph. D. Dissertation year: 1996 ident: 87_CR11 – volume: 48 start-page: 747 issue: 6 year: 2005 ident: 87_CR13 publication-title: Sci China Ser F-Inf Sci doi: 10.1360/04yf0301 – start-page: 35 volume-title: Ph. D. Dissertation year: 1999 ident: 87_CR6 – volume: 15 start-page: 37 issue: 4 year: 2000 ident: 87_CR1 publication-title: IEEE Aerosp Electron Syst Mag doi: 10.1109/62.839633 – volume: 30 start-page: 273 issue: 2 year: 1997 ident: 87_CR5 publication-title: Pattern Recog doi: 10.1016/S0031-3203(96)00077-5 – volume: 537 start-page: 2359 year: 2005 ident: 87_CR7 publication-title: IEEE Trans Signal Process doi: 10.1109/TSP.2005.849161 |
SSID | ssj0042231 ssj0000330278 |
Score | 1.8009988 |
Snippet | Radar high-resolution range profile (HRRP) has received intensive attention from the radar automatic target recognition (RATR) community. Usually, since the... Radar high-resolution range profile (HRRP) has received intensive attention from the radar automatic target recognition (RATR) community. Usually, since the... |
SourceID | proquest crossref springer chongqing |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1138 |
SubjectTerms | Algorithms Automatic target recognition Computer Science Feature extraction Feature recognition Information Systems and Communication Service Normal distribution Phases Radar Statistical analysis Target recognition 特征提取 自动靶点识别 高分辨率 |
SummonAdditionalLinks | – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB6V9gIHBAVEaAs-cAJZxLEbxyeEUJcVh7ZaUWlvkV8BiSpp9yH153fGeSwg0VukxLHksf3NeD5_A_A-COJTiIpjoBa4UtFzVyjHpXKNVYYSuonle17Or9T35elyOHBbD7TKcU9MG3XoPJ2RfyoMIkuFwYr-fHPLqWoUZVeHEhqP4EAg0tA8r2bfpjOWXFJWLt2GK4l2KOVyTGym23PoKxQ85f9zXGo5ySv86tqftwgaf8PUzvf8J12aUGj2DJ4O7iP70tv7OezF9hCe_CEq-AIuFjbYFbPbTZfkWFlP9mYTVahrGWFXYPjQxCTsyXCLXvVXHBh6sSwRzeMdmy8Wly_hanb24-ucD2UTuJdabXhptIgCwwitKtGcukI3MjghSdlKWN3EgmTHvBW-dMJrjI5xZK1SXpamqEojX8F-27XxNbBShGh0bjEmMsr74GIogtYm2MK6pqkyOJpGDGHX_yYxqZoU5I2UJoN8HMPaD4rjVPjiut5pJZMJ6lQJE01Q5xl8mJrc9HIbD318PBqmHlbeut7NkwzeTa9xzVAixLax265riV5ShXFqBh9Hc-5-8N_u3jzc3RE87rkkRA48hv3NahtP0GHZuLdpVt4DSY_j4A priority: 102 providerName: ProQuest |
Title | Radar automatic target recognition based on feature extraction for complex HRRP |
URI | http://lib.cqvip.com/qk/84009X/20088/29069339.html https://link.springer.com/article/10.1007/s11432-008-0087-0 https://www.proquest.com/docview/2918581077 https://www.proquest.com/docview/35098917 |
Volume | 51 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEB6a5JIc0jYP6m661SGnFMPqsZZ13JbdLC2kYclCejJ6OYEUu90H5Od3JNu7TUkLPdlg2cIaj2Y-z6dPAOeOBj4FzVMEai4VwtvUMGFSLkyphQoF3cjyvcqmc_H5dnjbruNedmz3riQZZ-rtYjcM7SyN5foBegbi9L0hQvfgjXM26qZfgfEuoqzw15_JoexKmc89Iggq3NfV3U_s7mlg2mabfxRIY9yZvILDNmEko8bCr-GFr47gZbcZA2l98wgOflMWPIavM-30guj1qo6arKRhfJMNX6iuSAhgjuBJ6aO6J8F5etGscyCYypLINvePZDqbXZ_AfDK--TRN270TUsulWKWZktRTxBJS5LQcGiZL7gzlQd6Kall6FrTHrKY2M9RKhMgYuLUQlmeK5Znip7Bb1ZV_AySjzis50AiMlLDWGe-Yk1I5zbQpyzyB3mYQMfbah6AoVQQZecW5SmDQDWthW9nxsPvF92IrmBysUsTtMNEqxSCBi80tPxrNjX81PutsVbTut8TO8W1yRLYygfeby-g4oRqiK1-vlwXHVClHsJrAh87C2wf8tbu3_9W6B_sNvyQQBs9gd7VY-3eYxKxMH3byyWUf9kaX376M8fhxfHU968dP-ReI--nf |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9RADLaq7QE4oPISoYXOAS6giMyjmeSAEI9WW1qWatVKewuTmQlIoKTdhwp_it-IPXksINFbb5HyGGlsj-3482eAp44TnoJnMSZqLlbK27gUqoylKiujciroBpTvJB2fqQ-zvdkG_Op7YQhW2Z-J4aB2jaV_5C9Fjp4lw2RFvz6_iGlqFFVX-xEarVoc-Z-XmLItXh2-R_k-E-Jg__TdOO6mCsRWarWM01xzzzHK1irj1V4pdCVdySURP3GjKy-IlcsabtOSW43JIy5slLIyzUWWEvkSHvmbijpaR7D5dn9yMh3-6iSS6oCh_y4loKOUs76UGvr1MDoRcUAcJGjcCRE6fG3qLxfopv52jOto958CbfB7B1twuwtY2ZtWw-7Ahq_vwq0_aAzvwaepcWbOzGrZBAJY1sLL2QBOampG3tIxvKh8oBJl6BTmbVMFw7iZBWi7_8HG0-nJfTi7li19AKO6qf1DYCl3PteJwSwsV9a60jvhtM6dEaasqiyC7WHH0NHbb0RfVRBnfS5lHkHS72FhO45zGrXxvVizM5MIijB7E0VQJBE8H145bwk-rnp4pxdM0dn6olhrZgS7w220Uiq9mNo3q0UhMS7LMDOO4EUvzvUH_rvco6uX24Ub49OPx8Xx4eRoG262SBaCJu7AaDlf-ccYLi3LJ52OMvh83WbxG63qHzg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEB5KAiU5NG0e1E3a6JBTgsnqsZZ1DG2X7YM0LFnIzejlFhLs7a4X-vM7ku3dJDSF3AyWJayRNPMxn74BOHE08CloniJQc6kQ3qaGCZNyYUotVEjoRpbvZTaeiq83w5uuzumiZ7v3Kcn2TkNQaaqa85krz9cX39DNszSm7ge4SxCzb-JpTMNCn7KL_igW6Psi4goZACaHsk9r_quLIK7wq65-_sahHzqpdeT5KFkafdDoNbzqgkdy0Vr7Dbzw1S7s9IUZSLdPd2H7nsrgHvyYaKfnRC-bOuqzkpb9TVbcoboiwZk5gg-lj0qfBM_seXvngWBYSyLz3P8h48nkah-mo8_XH8dpV0chtVyKJs2UpJ4irpAip-XQMFlyZygPUldUy9KzoENmNbWZoVYiXEYnroWwPFMszxQ_gI2qrvxbIBl1XsmBRpCkhLXOeMeclMpppk1Z5gkcriYR_bC9DepSRZCUV5yrBAb9tBa2kyAPlTDuirV4crBKEUtjolWKQQKnq09mrf7G_xof9bYquq24wMHxb3JEuTKB49Vr3EQhM6IrXy8XBcewKUfgmsBZb-F1B08O9-5ZrY_h5dWnUfH9y-W3Q9hqaSeBR3gEG8186d9jbNOYD3H9_gUwNez6 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Radar+automatic+target+recognition+based+on+feature+extraction+for+complex+HRRP&rft.jtitle=Science+in+China.+Series+F%2C+Information+sciences&rft.au=Du%2C+Lan&rft.au=Liu%2C+Hongwei&rft.au=Bao%2C+Zheng&rft.au=Zhang%2C+Junying&rft.date=2008-08-01&rft.issn=1009-2757&rft.volume=51&rft.issue=8&rft.spage=1138&rft.epage=1153&rft_id=info:doi/10.1007%2Fs11432-008-0087-0&rft.externalDBID=NO_FULL_TEXT |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F84009X%2F84009X.jpg |