Radar automatic target recognition based on feature extraction for complex HRRP

Radar high-resolution range profile (HRRP) has received intensive attention from the radar automatic target recognition (RATR) community. Usually, since the initial phase of a complex HRRP is strongly sensitive to target position variation, which is referred to as the initial phase sensitivity in th...

Full description

Saved in:
Bibliographic Details
Published inScience China. Information sciences Vol. 51; no. 8; pp. 1138 - 1153
Main Authors Du, Lan, Liu, HongWei, Bao, Zheng, Zhang, JunYing
Format Journal Article
LanguageEnglish
Published Heidelberg SP Science in China Press 01.08.2008
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1009-2757
1674-733X
1862-2836
1869-1919
DOI10.1007/s11432-008-0087-0

Cover

Abstract Radar high-resolution range profile (HRRP) has received intensive attention from the radar automatic target recognition (RATR) community. Usually, since the initial phase of a complex HRRP is strongly sensitive to target position variation, which is referred to as the initial phase sensitivity in this paper, only the amplitude information in the complex HRRP, called the real HRRP in this paper, is used for RATR, whereas the phase information is discarded. However, the remaining phase information except for initial phases in the complex HRRP also contains valuable target discriminant information. This paper proposes a novel feature extraction method for the complex HRRP. The extracted complex feature vector, referred to as the complex feature vector with difference phases, contains the difference phase information between range cells but no initial phase information in the complex HRRR According to the scattering center model, the physical mechanism of the proposed complex feature vector is similar to that of the real HRRP, except for reserving some phase information independent of the initial phase in the complex HRRP. The recognition algorithms, frame-template establishment methods and preprocessing methods used in the real HRRP-based RATR can also be applied to the proposed complex feature vector-based RATR. Moreover, the components in the complex feature vector with difference phases approximate to follow Gaussian distribution, which make it simple to perform the statistical recognition by such complex feature vector. The recognition experiments based on measured data show that the proposed complex feature vector can obtain better recognition performance than the real HRRP if only the cell interval parameters are properly selected.
AbstractList Radar high-resolution range profile (HRRP) has received intensive attention from the radar automatic target recognition (RATR) community. Usually, since the initial phase of a complex HRRP is strongly sensitive to target position variation, which is referred to as the initial phase sensitivity in this paper, only the amplitude information in the complex HRRP, called the real HRRP in this paper, is used for RATR, whereas the phase information is discarded. However, the remaining phase information except for initial phases in the complex HRRP also contains valuable target discriminant information. This paper proposes a novel feature extraction method for the complex HRRP. The extracted complex feature vector, referred to as the complex feature vector with difference phases, contains the difference phase information between range cells but no initial phase information in the complex HRRP. According to the scattering center model, the physical mechanism of the proposed complex feature vector is similar to that of the real HRRP, except for reserving some phase information independent of the initial phase in the complex HRRP. The recognition algorithms, frame-template establishment methods and preprocessing methods used in the real HRRP-based RATR can also be applied to the proposed complex feature vector-based RATR. Moreover, the components in the complex feature vector with difference phases approximate to follow Gaussian distribution, which make it simple to perform the statistical recognition by such complex feature vector. The recognition experiments based on measured data show that the proposed complex feature vector can obtain better recognition performance than the real HRRP if only the cell interval parameters are properly selected.
Radar high-resolution range profile (HRRP) has received intensive attention from the radar automatic target recognition (RATR) community. Usually, since the initial phase of a complex HRRP is strongly sensitive to target position variation, which is referred to as the initial phase sensitivity in this paper, only the amplitude information in the complex HRRP, called the real HRRP in this paper, is used for RATR, whereas the phase information is discarded. However, the remaining phase information except for initial phases in the complex HRRP also contains valuable target discriminant information. This paper proposes a novel feature extraction method for the complex HRRP. The extracted complex feature vector, referred to as the complex feature vector with difference phases, contains the difference phase information between range cells but no initial phase information in the complex HRRR According to the scattering center model, the physical mechanism of the proposed complex feature vector is similar to that of the real HRRP, except for reserving some phase information independent of the initial phase in the complex HRRP. The recognition algorithms, frame-template establishment methods and preprocessing methods used in the real HRRP-based RATR can also be applied to the proposed complex feature vector-based RATR. Moreover, the components in the complex feature vector with difference phases approximate to follow Gaussian distribution, which make it simple to perform the statistical recognition by such complex feature vector. The recognition experiments based on measured data show that the proposed complex feature vector can obtain better recognition performance than the real HRRP if only the cell interval parameters are properly selected.
Author DU Lan LIU HongWei BAO Zheng ZHANG JunYing
AuthorAffiliation National Laboratory of Radar Signal Processing, Xidian University, Xi'an 710071, China
Author_xml – sequence: 1
  givenname: Lan
  surname: Du
  fullname: Du, Lan
  organization: National Laboratory of Radar Signal Processing, Xidian University
– sequence: 2
  givenname: HongWei
  surname: Liu
  fullname: Liu, HongWei
  email: hwliu@xidian.edu.cn
  organization: National Laboratory of Radar Signal Processing, Xidian University
– sequence: 3
  givenname: Zheng
  surname: Bao
  fullname: Bao, Zheng
  organization: National Laboratory of Radar Signal Processing, Xidian University
– sequence: 4
  givenname: JunYing
  surname: Zhang
  fullname: Zhang, JunYing
  organization: National Laboratory of Radar Signal Processing, Xidian University
BookMark eNp9kEFr3DAQhUVJIZu0PyA3k0BvTmck25KOITRJYSFlac9C1o633nitjSRD8u8jdwOFPeQwaGDeN5r3ztjJ6Edi7ALhGgHk94hYCV4CqLlkCZ_YAlXDS65Ec5J7AF1yWctTdhbjFqDiXOCCPa7s2obCTsnvbOpdkWzYUCoCOb8Z-9T7sWhtpHWRm45smgIV9JKCdf9mnQ-F87v9QC_Fw2r16wv73Nkh0tf395z9ufvx-_ahXD7e_7y9WZZOyCqVjZZIKBslK4Vd3XLZiXWLooI8sLIjzuu6cRZd06KTGiSq2laVE43mqtHinH077N0H_zxRTGbXR0fDYEfyUzSiBq00yiy8OhJu_RTGfJvhOi9VCHJWyYPKBR9joM64PtnZYXbaDwbBzDGbQ8wmRzyXNJBJPCL3od_Z8Pohww9MzNpxQ-H_TR9Bl-8f_fXj5jlzprXuqesHyk4gZyK0eAMt65qH
CitedBy_id crossref_primary_10_1016_j_eswa_2015_03_029
crossref_primary_10_1049_iet_rsn_2015_0540
crossref_primary_10_1007_s11431_010_4207_x
crossref_primary_10_1109_LAWP_2022_3163910
crossref_primary_10_1080_01431161_2012_668622
crossref_primary_10_1109_TMTT_2024_3385421
crossref_primary_10_1007_s11432_010_4080_z
crossref_primary_10_1007_s11432_011_4527_x
crossref_primary_10_1049_joe_2019_0741
Cites_doi 10.1016/S0031-3203(96)00077-5
10.1109/TAES.2003.1261122
10.1049/iet-rsn:20050119
10.1109/8.999623
10.1109/TAES.2002.1145746
10.1109/TSP.2006.873534
10.1360/04yf0301
10.1109/62.839633
10.1007/b98796
10.1109/TSP.2005.849161
ContentType Journal Article
Copyright Science in China Press and Springer-Verlag GmbH 2008
Science in China Press and Springer-Verlag GmbH 2008.
Copyright_xml – notice: Science in China Press and Springer-Verlag GmbH 2008
– notice: Science in China Press and Springer-Verlag GmbH 2008.
DBID 2RA
92L
CQIGP
W92
~WA
AAYXX
CITATION
8FE
8FG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7SC
8FD
L7M
L~C
L~D
DOI 10.1007/s11432-008-0087-0
DatabaseName 维普期刊资源整合服务平台
中文科技期刊数据库-CALIS站点
维普中文期刊数据库
中文科技期刊数据库-工程技术
中文科技期刊数据库- 镜像站点
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials - QC
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Computer and Information Systems Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Advanced Technologies & Aerospace Collection

Computer and Information Systems Abstracts

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
DocumentTitleAlternate Radar automatic target recognition based on feature extraction for complex HRRP
EISSN 1862-2836
1869-1919
EndPage 1153
ExternalDocumentID 10_1007_s11432_008_0087_0
29069339
GroupedDBID .86
06D
0R~
123
2JN
2LR
2RA
4.4
406
408
40E
6NX
8UJ
92L
95-
95.
96X
AABHQ
ABFTV
ABKCH
ABTMW
ADHHG
ADURQ
ADYFF
AEGNC
AEOHA
AEXYK
AFGCZ
AGDGC
AGQMX
AJRNO
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMYQR
B-.
BA0
BGNMA
CAG
COF
CQIGP
CS3
CW9
EBS
EJD
FNLPD
HF~
HZ~
IHE
IPNFZ
I~X
I~Z
J9A
KOV
M4Y
MA-
N2Q
NB0
NQJWS
NU0
O9-
PF0
PT4
QOS
RIG
ROL
RPX
RSV
S27
SAP
SCO
SDH
SNX
SOJ
T13
U2A
UG4
VC2
W48
W92
~A9
~WA
ABQSL
CJPJV
DPUIP
AAYXX
ADHKG
AGQPQ
CITATION
-SI
-S~
-Y2
.VR
0VY
2J2
2JY
2KG
2KM
30V
5VR
5VS
8FE
8FG
8TC
AAAVM
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBRH
ABDBE
ABDZT
ABECU
ABHQN
ABJNI
ABJOX
ABKTR
ABMQK
ABNWP
ABQBU
ABRTQ
ABSXP
ABTEG
ABTHY
ABTKH
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACREN
ACSNA
ACZOJ
ADHIR
ADKNI
ADKPE
ADRFC
ADTPH
ADYOE
ADZKW
AEBTG
AEFQL
AEGAL
AEJHL
AEJRE
AEMSY
AEPYU
AESKC
AETLH
AEVLU
AFDZB
AFKRA
AFLOW
AFQWF
AFUIB
AFWTZ
AFYQB
AFZKB
AGAYW
AGJBK
AGMZJ
AGQEE
AGRTI
AGWZB
AGYKE
AHBYD
AHPBZ
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJZVZ
ALWAN
AMTXH
AMXSW
AMYLF
AOCGG
ARAPS
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AYFIA
AZFZN
AZQEC
BDATZ
BENPR
BGLVJ
BSONS
CAJEI
CCEZO
CCPQU
CHBEP
CSCUP
CUBFJ
DDRTE
DNIVK
DWQXO
EBLON
EIOEI
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ7
HCIFZ
HG6
HMJXF
HRMNR
HVGLF
IJ-
IKXTQ
IWAJR
IXD
J-C
JBSCW
JQ2
JZLTJ
K7-
LLZTM
NPVJJ
O9J
P62
P9O
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q--
R89
S16
S3B
SCL
SHX
SISQX
SJYHP
SNE
SNPRN
SOHCF
SPISZ
SRMVM
SSLCW
SZN
TR2
TSG
TUC
U1G
U5S
UOJIU
UTJUX
UZXMN
VFIZW
W23
YLTOR
ZMTXR
7SC
8FD
L7M
L~C
L~D
ID FETCH-LOGICAL-c374t-6971e17687481f5b27f3db1340971a7fe22556ca1c6b1c7907185a44c36928693
IEDL.DBID U2A
ISSN 1009-2757
1674-733X
IngestDate Fri Sep 05 15:00:18 EDT 2025
Fri Jul 25 23:31:55 EDT 2025
Tue Jul 01 02:26:16 EDT 2025
Thu Apr 24 23:01:36 EDT 2025
Fri Feb 21 02:33:12 EST 2025
Thu Nov 24 20:29:19 EST 2022
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords minimum Euclidean distance classifier
adaptive Gaussian classifier (AGC)
complex high-resolution range profile (HRRP)
feature extraction
radar automatic target recognition (RATR)
Language English
License http://www.springer.com/tdm
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c374t-6971e17687481f5b27f3db1340971a7fe22556ca1c6b1c7907185a44c36928693
Notes TN95
complex high-resolution range profile (HRRP), radar automatic target recognition (RATR), feature extraction, minimum Euclidean distance classifier, adaptive Gaussian classifier (AGC)
11-4426/N
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
PQID 2918581077
PQPubID 2043626
PageCount 16
ParticipantIDs proquest_miscellaneous_35098917
proquest_journals_2918581077
crossref_citationtrail_10_1007_s11432_008_0087_0
crossref_primary_10_1007_s11432_008_0087_0
springer_journals_10_1007_s11432_008_0087_0
chongqing_backfile_29069339
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2008-08-01
PublicationDateYYYYMMDD 2008-08-01
PublicationDate_xml – month: 08
  year: 2008
  text: 2008-08-01
  day: 01
PublicationDecade 2000
PublicationPlace Heidelberg
PublicationPlace_xml – name: Heidelberg
PublicationTitle Science China. Information sciences
PublicationTitleAbbrev Sci. China Ser. F-Inf. Sci
PublicationTitleAlternate Science in China(Series F)
PublicationYear 2008
Publisher SP Science in China Press
Springer Nature B.V
Publisher_xml – name: SP Science in China Press
– name: Springer Nature B.V
References Williams, Westerkamp, Gross (CR1) 2000; 15
Liu, Ma, Bao, Qu, Yi, Su (CR9) 2004
Ye (CR11) 1996
Xu, Yang, Peng (CR13) 2005; 48
Du, Liu, Bao (CR12) 2007; 1
Du, Liu, Bao (CR7) 2005; 537
Kim, Seo, Kim (CR2) 2002; 50
Liao, Runkle, Carin (CR3) 2002; 38
Copsey, Webb (CR4) 2003; 39
Van der Heiden, Groen (CR5) 1997; 30
Liu, Bao, Yin, Wang, Guo (CR10) 2004
Du, Liu, Bao (CR8) 2006; 54
Jacobs (CR6) 1999
H. W. Liu (87_CR10) 2004
K. T. Kim (87_CR2) 2002; 50
L. Du (87_CR7) 2005; 537
X. J. Liao (87_CR3) 2002; 38
R. Van der Heiden (87_CR5) 1997; 30
L. Du (87_CR12) 2007; 1
W. Ye (87_CR11) 1996
L. Du (87_CR8) 2006; 54
S. P. Jacobs (87_CR6) 1999
J. Y. Xu (87_CR13) 2005; 48
K. Copsey (87_CR4) 2003; 39
R. Williams (87_CR1) 2000; 15
H. W. Liu (87_CR9) 2004
References_xml – volume: 30
  start-page: 273
  issue: 2
  year: 1997
  end-page: 279
  ident: CR5
  article-title: The Box-Cox metric for nearest neighbour classification improvement
  publication-title: Pattern Recog
  doi: 10.1016/S0031-3203(96)00077-5
– volume: 39
  start-page: 1201
  issue: 4
  year: 2003
  end-page: 1217
  ident: CR4
  article-title: Bayesian Gamma mixture model approach to radar target recognition
  publication-title: IEEE Trans Aerosp Electron Syst
  doi: 10.1109/TAES.2003.1261122
– start-page: 354
  year: 2004
  end-page: 357
  ident: CR9
  article-title: Analysis of physical mechanism of BOX-COX transformation on improving radar HRRP recognition performance
  publication-title: Proceeding of the 9th national radar conference
– volume: 1
  start-page: 18
  issue: 1
  year: 2007
  end-page: 26
  ident: CR12
  article-title: Radar automatic target recognition using complex high-resolution range profiles
  publication-title: IET Radar, Sonar & Navigation
  doi: 10.1049/iet-rsn:20050119
– volume: 537
  start-page: 2359
  year: 2005
  end-page: 2368
  ident: CR7
  article-title: Radar HRRP target recognition based on higher-order spectra
  publication-title: IEEE Trans Signal Process
– start-page: 35
  year: 1999
  end-page: 83
  ident: CR6
  article-title: Automatic target recognition using high-resolution radar range profiles
  publication-title: Ph. D. Dissertation
– volume: 50
  start-page: 325
  issue: 3
  year: 2002
  end-page: 337
  ident: CR2
  article-title: Efficient radar target recognition using the MUSIC algorithm and invariant feature
  publication-title: IEEE Trans Antennas Propag
  doi: 10.1109/8.999623
– volume: 38
  start-page: 1230
  issue: 4
  year: 2002
  end-page: 1242
  ident: CR3
  article-title: Identification of ground targets from sequential high-range-resolution radar signatures
  publication-title: IEEE Trans Aerosp Electron Syst
  doi: 10.1109/TAES.2002.1145746
– volume: 54
  start-page: 2226
  issue: 6
  year: 2006
  end-page: 2238
  ident: CR8
  article-title: A two-distribution compounded statistical model for radar HRRP target recognition
  publication-title: IEEE Trans Signal Process
  doi: 10.1109/TSP.2006.873534
– start-page: 531
  year: 2004
  end-page: 536
  ident: CR10
  publication-title: Radar HRR profiles recognition based on SVM with power-transformed-correlation kernel
– volume: 48
  start-page: 747
  issue: 6
  year: 2005
  end-page: 760
  ident: CR13
  article-title: A new approach to dual-band polarimetric radar remote sensing image classification
  publication-title: Sci China Ser F-Inf Sci
  doi: 10.1360/04yf0301
– start-page: 12
  year: 1996
  end-page: 37
  ident: CR11
  article-title: Study of the inverse synthetic aperture radar imaging and motion compensation (in Chinese)
  publication-title: Ph. D. Dissertation
– volume: 15
  start-page: 37
  issue: 4
  year: 2000
  end-page: 43
  ident: CR1
  article-title: Automatic target recognition of time critical moving targets 1D high range resolution (HRR) radar
  publication-title: IEEE Aerosp Electron Syst Mag
  doi: 10.1109/62.839633
– volume: 38
  start-page: 1230
  issue: 4
  year: 2002
  ident: 87_CR3
  publication-title: IEEE Trans Aerosp Electron Syst
  doi: 10.1109/TAES.2002.1145746
– volume: 50
  start-page: 325
  issue: 3
  year: 2002
  ident: 87_CR2
  publication-title: IEEE Trans Antennas Propag
  doi: 10.1109/8.999623
– start-page: 354
  volume-title: Proceeding of the 9th national radar conference
  year: 2004
  ident: 87_CR9
– volume: 39
  start-page: 1201
  issue: 4
  year: 2003
  ident: 87_CR4
  publication-title: IEEE Trans Aerosp Electron Syst
  doi: 10.1109/TAES.2003.1261122
– volume: 54
  start-page: 2226
  issue: 6
  year: 2006
  ident: 87_CR8
  publication-title: IEEE Trans Signal Process
  doi: 10.1109/TSP.2006.873534
– start-page: 531
  volume-title: Radar HRR profiles recognition based on SVM with power-transformed-correlation kernel
  year: 2004
  ident: 87_CR10
  doi: 10.1007/b98796
– volume: 1
  start-page: 18
  issue: 1
  year: 2007
  ident: 87_CR12
  publication-title: IET Radar, Sonar & Navigation
  doi: 10.1049/iet-rsn:20050119
– start-page: 12
  volume-title: Ph. D. Dissertation
  year: 1996
  ident: 87_CR11
– volume: 48
  start-page: 747
  issue: 6
  year: 2005
  ident: 87_CR13
  publication-title: Sci China Ser F-Inf Sci
  doi: 10.1360/04yf0301
– start-page: 35
  volume-title: Ph. D. Dissertation
  year: 1999
  ident: 87_CR6
– volume: 15
  start-page: 37
  issue: 4
  year: 2000
  ident: 87_CR1
  publication-title: IEEE Aerosp Electron Syst Mag
  doi: 10.1109/62.839633
– volume: 30
  start-page: 273
  issue: 2
  year: 1997
  ident: 87_CR5
  publication-title: Pattern Recog
  doi: 10.1016/S0031-3203(96)00077-5
– volume: 537
  start-page: 2359
  year: 2005
  ident: 87_CR7
  publication-title: IEEE Trans Signal Process
  doi: 10.1109/TSP.2005.849161
SSID ssj0042231
ssj0000330278
Score 1.8009988
Snippet Radar high-resolution range profile (HRRP) has received intensive attention from the radar automatic target recognition (RATR) community. Usually, since the...
Radar high-resolution range profile (HRRP) has received intensive attention from the radar automatic target recognition (RATR) community. Usually, since the...
SourceID proquest
crossref
springer
chongqing
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1138
SubjectTerms Algorithms
Automatic target recognition
Computer Science
Feature extraction
Feature recognition
Information Systems and Communication Service
Normal distribution
Phases
Radar
Statistical analysis
Target recognition
特征提取
自动靶点识别
高分辨率
SummonAdditionalLinks – databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB6V9gIHBAVEaAs-cAJZxLEbxyeEUJcVh7ZaUWlvkV8BiSpp9yH153fGeSwg0VukxLHksf3NeD5_A_A-COJTiIpjoBa4UtFzVyjHpXKNVYYSuonle17Or9T35elyOHBbD7TKcU9MG3XoPJ2RfyoMIkuFwYr-fHPLqWoUZVeHEhqP4EAg0tA8r2bfpjOWXFJWLt2GK4l2KOVyTGym23PoKxQ85f9zXGo5ySv86tqftwgaf8PUzvf8J12aUGj2DJ4O7iP70tv7OezF9hCe_CEq-AIuFjbYFbPbTZfkWFlP9mYTVahrGWFXYPjQxCTsyXCLXvVXHBh6sSwRzeMdmy8Wly_hanb24-ucD2UTuJdabXhptIgCwwitKtGcukI3MjghSdlKWN3EgmTHvBW-dMJrjI5xZK1SXpamqEojX8F-27XxNbBShGh0bjEmMsr74GIogtYm2MK6pqkyOJpGDGHX_yYxqZoU5I2UJoN8HMPaD4rjVPjiut5pJZMJ6lQJE01Q5xl8mJrc9HIbD318PBqmHlbeut7NkwzeTa9xzVAixLax265riV5ShXFqBh9Hc-5-8N_u3jzc3RE87rkkRA48hv3NahtP0GHZuLdpVt4DSY_j4A
  priority: 102
  providerName: ProQuest
Title Radar automatic target recognition based on feature extraction for complex HRRP
URI http://lib.cqvip.com/qk/84009X/20088/29069339.html
https://link.springer.com/article/10.1007/s11432-008-0087-0
https://www.proquest.com/docview/2918581077
https://www.proquest.com/docview/35098917
Volume 51
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEB6a5JIc0jYP6m661SGnFMPqsZZ13JbdLC2kYclCejJ6OYEUu90H5Od3JNu7TUkLPdlg2cIaj2Y-z6dPAOeOBj4FzVMEai4VwtvUMGFSLkyphQoF3cjyvcqmc_H5dnjbruNedmz3riQZZ-rtYjcM7SyN5foBegbi9L0hQvfgjXM26qZfgfEuoqzw15_JoexKmc89Iggq3NfV3U_s7mlg2mabfxRIY9yZvILDNmEko8bCr-GFr47gZbcZA2l98wgOflMWPIavM-30guj1qo6arKRhfJMNX6iuSAhgjuBJ6aO6J8F5etGscyCYypLINvePZDqbXZ_AfDK--TRN270TUsulWKWZktRTxBJS5LQcGiZL7gzlQd6Kall6FrTHrKY2M9RKhMgYuLUQlmeK5Znip7Bb1ZV_AySjzis50AiMlLDWGe-Yk1I5zbQpyzyB3mYQMfbah6AoVQQZecW5SmDQDWthW9nxsPvF92IrmBysUsTtMNEqxSCBi80tPxrNjX81PutsVbTut8TO8W1yRLYygfeby-g4oRqiK1-vlwXHVClHsJrAh87C2wf8tbu3_9W6B_sNvyQQBs9gd7VY-3eYxKxMH3byyWUf9kaX376M8fhxfHU968dP-ReI--nf
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9RADLaq7QE4oPISoYXOAS6giMyjmeSAEI9WW1qWatVKewuTmQlIoKTdhwp_it-IPXksINFbb5HyGGlsj-3482eAp44TnoJnMSZqLlbK27gUqoylKiujciroBpTvJB2fqQ-zvdkG_Op7YQhW2Z-J4aB2jaV_5C9Fjp4lw2RFvz6_iGlqFFVX-xEarVoc-Z-XmLItXh2-R_k-E-Jg__TdOO6mCsRWarWM01xzzzHK1irj1V4pdCVdySURP3GjKy-IlcsabtOSW43JIy5slLIyzUWWEvkSHvmbijpaR7D5dn9yMh3-6iSS6oCh_y4loKOUs76UGvr1MDoRcUAcJGjcCRE6fG3qLxfopv52jOto958CbfB7B1twuwtY2ZtWw-7Ahq_vwq0_aAzvwaepcWbOzGrZBAJY1sLL2QBOampG3tIxvKh8oBJl6BTmbVMFw7iZBWi7_8HG0-nJfTi7li19AKO6qf1DYCl3PteJwSwsV9a60jvhtM6dEaasqiyC7WHH0NHbb0RfVRBnfS5lHkHS72FhO45zGrXxvVizM5MIijB7E0VQJBE8H145bwk-rnp4pxdM0dn6olhrZgS7w220Uiq9mNo3q0UhMS7LMDOO4EUvzvUH_rvco6uX24Ub49OPx8Xx4eRoG262SBaCJu7AaDlf-ccYLi3LJ52OMvh83WbxG63qHzg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEB5KAiU5NG0e1E3a6JBTgsnqsZZ1DG2X7YM0LFnIzejlFhLs7a4X-vM7ku3dJDSF3AyWJayRNPMxn74BOHE08CloniJQc6kQ3qaGCZNyYUotVEjoRpbvZTaeiq83w5uuzumiZ7v3Kcn2TkNQaaqa85krz9cX39DNszSm7ge4SxCzb-JpTMNCn7KL_igW6Psi4goZACaHsk9r_quLIK7wq65-_sahHzqpdeT5KFkafdDoNbzqgkdy0Vr7Dbzw1S7s9IUZSLdPd2H7nsrgHvyYaKfnRC-bOuqzkpb9TVbcoboiwZk5gg-lj0qfBM_seXvngWBYSyLz3P8h48nkah-mo8_XH8dpV0chtVyKJs2UpJ4irpAip-XQMFlyZygPUldUy9KzoENmNbWZoVYiXEYnroWwPFMszxQ_gI2qrvxbIBl1XsmBRpCkhLXOeMeclMpppk1Z5gkcriYR_bC9DepSRZCUV5yrBAb9tBa2kyAPlTDuirV4crBKEUtjolWKQQKnq09mrf7G_xof9bYquq24wMHxb3JEuTKB49Vr3EQhM6IrXy8XBcewKUfgmsBZb-F1B08O9-5ZrY_h5dWnUfH9y-W3Q9hqaSeBR3gEG8186d9jbNOYD3H9_gUwNez6
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Radar+automatic+target+recognition+based+on+feature+extraction+for+complex+HRRP&rft.jtitle=Science+in+China.+Series+F%2C+Information+sciences&rft.au=Du%2C+Lan&rft.au=Liu%2C+Hongwei&rft.au=Bao%2C+Zheng&rft.au=Zhang%2C+Junying&rft.date=2008-08-01&rft.issn=1009-2757&rft.volume=51&rft.issue=8&rft.spage=1138&rft.epage=1153&rft_id=info:doi/10.1007%2Fs11432-008-0087-0&rft.externalDBID=NO_FULL_TEXT
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F84009X%2F84009X.jpg