Fractal Analysis of Electrodermal Activity for Emotion Recognition: A Novel Approach Using Detrended Fluctuation Analysis and Wavelet Entropy
The field of emotion recognition from physiological signals is a growing area of research with significant implications for both mental health monitoring and human–computer interaction. This study introduces a novel approach to detecting emotional states based on fractal analysis of electrodermal ac...
Saved in:
Published in | Sensors (Basel, Switzerland) Vol. 24; no. 24; p. 8130 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
19.12.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The field of emotion recognition from physiological signals is a growing area of research with significant implications for both mental health monitoring and human–computer interaction. This study introduces a novel approach to detecting emotional states based on fractal analysis of electrodermal activity (EDA) signals. We employed detrended fluctuation analysis (DFA), Hurst exponent estimation, and wavelet entropy calculation to extract fractal features from EDA signals obtained from the CASE dataset, which contains physiological recordings and continuous emotion annotations from 30 participants. The analysis revealed significant differences in fractal features across five emotional states (neutral, amused, bored, relaxed, and scared), particularly those derived from wavelet entropy. A cross-correlation analysis showed robust correlations between fractal features and both the arousal and valence dimensions of emotion, challenging the conventional view of EDA as a predominantly arousal-indicating measure. The application of machine learning for emotion classification using fractal features achieved a leave-one-subject-out accuracy of 84.3% and an F1 score of 0.802, surpassing the performance of previous methods on the same dataset. This study demonstrates the potential of fractal analysis in capturing the intricate, multi-scale dynamics of EDA signals for emotion recognition, opening new avenues for advancing emotion-aware systems and affective computing applications. |
---|---|
AbstractList | The field of emotion recognition from physiological signals is a growing area of research with significant implications for both mental health monitoring and human–computer interaction. This study introduces a novel approach to detecting emotional states based on fractal analysis of electrodermal activity (EDA) signals. We employed detrended fluctuation analysis (DFA), Hurst exponent estimation, and wavelet entropy calculation to extract fractal features from EDA signals obtained from the CASE dataset, which contains physiological recordings and continuous emotion annotations from 30 participants. The analysis revealed significant differences in fractal features across five emotional states (neutral, amused, bored, relaxed, and scared), particularly those derived from wavelet entropy. A cross-correlation analysis showed robust correlations between fractal features and both the arousal and valence dimensions of emotion, challenging the conventional view of EDA as a predominantly arousal-indicating measure. The application of machine learning for emotion classification using fractal features achieved a leave-one-subject-out accuracy of 84.3% and an F1 score of 0.802, surpassing the performance of previous methods on the same dataset. This study demonstrates the potential of fractal analysis in capturing the intricate, multi-scale dynamics of EDA signals for emotion recognition, opening new avenues for advancing emotion-aware systems and affective computing applications. The field of emotion recognition from physiological signals is a growing area of research with significant implications for both mental health monitoring and human-computer interaction. This study introduces a novel approach to detecting emotional states based on fractal analysis of electrodermal activity (EDA) signals. We employed detrended fluctuation analysis (DFA), Hurst exponent estimation, and wavelet entropy calculation to extract fractal features from EDA signals obtained from the CASE dataset, which contains physiological recordings and continuous emotion annotations from 30 participants. The analysis revealed significant differences in fractal features across five emotional states (neutral, amused, bored, relaxed, and scared), particularly those derived from wavelet entropy. A cross-correlation analysis showed robust correlations between fractal features and both the arousal and valence dimensions of emotion, challenging the conventional view of EDA as a predominantly arousal-indicating measure. The application of machine learning for emotion classification using fractal features achieved a leave-one-subject-out accuracy of 84.3% and an F1 score of 0.802, surpassing the performance of previous methods on the same dataset. This study demonstrates the potential of fractal analysis in capturing the intricate, multi-scale dynamics of EDA signals for emotion recognition, opening new avenues for advancing emotion-aware systems and affective computing applications.The field of emotion recognition from physiological signals is a growing area of research with significant implications for both mental health monitoring and human-computer interaction. This study introduces a novel approach to detecting emotional states based on fractal analysis of electrodermal activity (EDA) signals. We employed detrended fluctuation analysis (DFA), Hurst exponent estimation, and wavelet entropy calculation to extract fractal features from EDA signals obtained from the CASE dataset, which contains physiological recordings and continuous emotion annotations from 30 participants. The analysis revealed significant differences in fractal features across five emotional states (neutral, amused, bored, relaxed, and scared), particularly those derived from wavelet entropy. A cross-correlation analysis showed robust correlations between fractal features and both the arousal and valence dimensions of emotion, challenging the conventional view of EDA as a predominantly arousal-indicating measure. The application of machine learning for emotion classification using fractal features achieved a leave-one-subject-out accuracy of 84.3% and an F1 score of 0.802, surpassing the performance of previous methods on the same dataset. This study demonstrates the potential of fractal analysis in capturing the intricate, multi-scale dynamics of EDA signals for emotion recognition, opening new avenues for advancing emotion-aware systems and affective computing applications. |
Author | Mercado-Diaz, Luis R. Large, Edward W. Posada-Quintero, Hugo F. Veeranki, Yedukondala Rao |
Author_xml | – sequence: 1 givenname: Luis R. orcidid: 0000-0003-3543-3677 surname: Mercado-Diaz fullname: Mercado-Diaz, Luis R. – sequence: 2 givenname: Yedukondala Rao orcidid: 0000-0002-7904-7543 surname: Veeranki fullname: Veeranki, Yedukondala Rao – sequence: 3 givenname: Edward W. surname: Large fullname: Large, Edward W. – sequence: 4 givenname: Hugo F. orcidid: 0000-0003-4514-4772 surname: Posada-Quintero fullname: Posada-Quintero, Hugo F. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39771865$$D View this record in MEDLINE/PubMed |
BookMark | eNpdks9uEzEQxi1URNvAgRdAlrjQQ8DrP2svt6gkpVIFEqLiuPLa4-BoYwfbWykPwTvjNCVCnPzJ_s1845m5RGchBkDodUPeM9aRD5lyylXDyDN00VQ5V5SSs3_0ObrMeUMIZYypF-icdVI2qhUX6PcqaVP0iBdBj_vsM44OL0cwJUULaXt4McU_-LLHLia83MbiY8DfwMR18Af9ES_wl_gAldztUtTmJ77PPqzxJygJggWLV-NkyqQfI09GOlj8Q9c4KHgZqt9u_xI9d3rM8OrpnKH71fL79ef53deb2-vF3dwwycu87ZggIJQj0nXSUc6tlg0Y0jqrRaPE4BxTzCqqbcdbxo0S1DAFHLgVZmAzdHvMa6Pe9Lvktzrt-6h9_3gR07rXqXgzQs8GRrqO0HagmlOtFJdUUGlr36Gz1WeG3h1z1b__miCXfuuzgXHUAeKUe9YIpmSdD6_o2__QTZxS7ceB4p0UlEtVqTdP1DRswZ7K-zu0ClwdAZNizgncCWlIf1iI_rQQ7A8JhabQ |
Cites_doi | 10.1177/107385840200800209 10.1177/1754073914565517 10.1007/978-3-319-02639-8 10.3390/bioengineering11050467 10.3390/s20020479 10.1109/TITS.2005.848368 10.1109/T-AFFC.2011.28 10.3233/WEB-190399 10.1007/s42761-022-00101-0 10.1103/PhysRevE.64.011114 10.3389/fphys.2012.00450 10.1109/TAFFC.2017.2772882 10.1016/j.biopsycho.2010.03.010 10.1016/j.compbiomed.2022.106144 10.1007/978-1-4614-1126-0 10.1109/TAFFC.2018.2884461 10.1038/s41597-024-03676-4 10.1016/j.jmp.2006.07.004 10.1007/s10916-020-01676-6 10.1038/s41562-017-0189-z 10.1098/rsta.2014.0097 10.1109/T-AFFC.2010.1 10.1109/JSEN.2024.3354553 10.1073/pnas.012579499 10.3389/fphys.2012.00141 10.1007/s004249900135 10.1515/cdbme-2023-1176 10.1109/T-AFFC.2011.15 10.1016/j.physa.2015.09.094 10.20944/preprints202404.1829.v1 10.1177/23780231211064009 10.3390/s20144037 10.36227/techrxiv.24311716 10.1038/s41597-019-0209-0 10.1017/9781107415782 10.3390/s20040969 10.1103/PhysRevE.71.021906 10.3390/s18072074 10.32598/bcn.2021.632.3 10.1109/T-AFFC.2010.10 10.1186/s12938-023-01100-3 10.1109/TPAMI.2008.26 10.1016/S0140-6736(20)30925-9 10.1103/PhysRevE.49.1685 10.1037/h0077714 10.1017/S0954579405050340 10.1016/j.ins.2021.11.072 10.1155/2017/8317357 10.1038/srep04998 10.1109/JPROC.2003.817122 10.1109/TMM.2022.3165715 10.1016/j.jneumeth.2010.04.028 10.1016/j.biopsycho.2010.01.017 10.1016/S0378-4371(01)00144-3 |
ContentType | Journal Article |
Copyright | 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 DOA |
DOI | 10.3390/s24248130 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials - QC ProQuest Central ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Medical Database ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database MEDLINE CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1424-8220 |
ExternalDocumentID | oai_doaj_org_article_3b3099026b2a42a88472527d390e9dff 39771865 10_3390_s24248130 |
Genre | Journal Article |
GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO ITC KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M CGR CUY CVF ECM EIF NPM PJZUB PPXIY 3V. 7XB 8FK AZQEC DWQXO K9. PKEHL PQEST PQUKI PRINS 7X8 PUEGO |
ID | FETCH-LOGICAL-c374t-69350e58f07f97f244da71ec06fda5185bff383d82ad94634c852c38e4e4d5cb3 |
IEDL.DBID | M48 |
ISSN | 1424-8220 |
IngestDate | Wed Aug 27 01:26:17 EDT 2025 Fri Jul 11 08:43:36 EDT 2025 Fri Jul 25 23:04:38 EDT 2025 Mon Jul 21 05:46:55 EDT 2025 Tue Jul 01 02:10:08 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 24 |
Keywords | electrodermal activity fractal analysis machine learning emotional states detrended fluctuation analysis |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c374t-69350e58f07f97f244da71ec06fda5185bff383d82ad94634c852c38e4e4d5cb3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-4514-4772 0000-0002-7904-7543 0000-0003-3543-3677 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s24248130 |
PMID | 39771865 |
PQID | 3149752478 |
PQPubID | 2032333 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_3b3099026b2a42a88472527d390e9dff proquest_miscellaneous_3153872484 proquest_journals_3149752478 pubmed_primary_39771865 crossref_primary_10_3390_s24248130 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-Dec-19 |
PublicationDateYYYYMMDD | 2024-12-19 |
PublicationDate_xml | – month: 12 year: 2024 text: 2024-Dec-19 day: 19 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Sensors (Basel, Switzerland) |
PublicationTitleAlternate | Sensors (Basel) |
PublicationYear | 2024 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Veeranki (ref_22) 2024; 24 ref_14 ref_13 ref_12 ref_11 ref_55 ref_10 ref_54 ref_53 ref_52 Russell (ref_34) 1980; 39 Picard (ref_1) 2010; 1 Hu (ref_28) 2001; 64 Zhang (ref_37) 2023; 25 ref_59 Zhang (ref_51) 2021; 7 Calvo (ref_2) 2010; 1 Critchley (ref_7) 2002; 8 ref_61 Benjamin (ref_47) 2017; 2 Eke (ref_29) 2000; 439 Costa (ref_43) 2005; 71 ref_24 Wilhelm (ref_60) 2010; 84 ref_23 Vos (ref_5) 2020; 396 ref_21 ref_20 ref_64 Kreibig (ref_8) 2010; 84 Posner (ref_35) 2005; 17 Abadi (ref_63) 2021; 12 Peng (ref_26) 1994; 49 ref_27 Delignieres (ref_40) 2006; 50 Anandan (ref_58) 2023; 9 Agrafioti (ref_19) 2012; 3 Picard (ref_57) 2016; 8 ref_30 Braithwaite (ref_16) 2013; 2 Kim (ref_18) 2008; 30 Razali (ref_45) 2011; 2 Pantic (ref_3) 2003; 91 Healey (ref_17) 2005; 6 Goldberger (ref_25) 2002; 99 Kuppens (ref_36) 2022; 3 Goshvarpour (ref_50) 2022; 13 Sharma (ref_33) 2020; 11 Campanharo (ref_39) 2016; 444 ref_46 Sharma (ref_31) 2019; 6 ref_42 Kantelhardt (ref_41) 2001; 295 Wang (ref_44) 2022; 586 Ganapathy (ref_38) 2021; 45 ref_49 ref_48 Koelstra (ref_62) 2012; 3 Yang (ref_65) 2024; 11 ref_9 Baumert (ref_56) 2015; 373 ref_4 Benedek (ref_15) 2010; 190 Sharma (ref_32) 2019; Volume 17 ref_6 |
References_xml | – volume: 8 start-page: 132 year: 2002 ident: ref_7 article-title: Review: Electrodermal Responses: What Happens in the Brain publication-title: Neuroscientist doi: 10.1177/107385840200800209 – volume: 8 start-page: 62 year: 2016 ident: ref_57 article-title: Multiple Arousal Theory and Daily-Life Electrodermal Activity Asymmetry publication-title: Emot. Rev. doi: 10.1177/1754073914565517 – ident: ref_9 doi: 10.1007/978-3-319-02639-8 – volume: 2 start-page: 21 year: 2011 ident: ref_45 article-title: Power Comparisons of Shapiro-Wilk, Kolmogorov-Smirnov, Lilliefors and Anderson-Darling Tests publication-title: Stat. Model. Anal. – ident: ref_54 doi: 10.3390/bioengineering11050467 – ident: ref_6 doi: 10.3390/s20020479 – volume: 6 start-page: 156 year: 2005 ident: ref_17 article-title: Detecting Stress During Real-World Driving Tasks Using Physiological Sensors publication-title: IEEE Trans. Intell. Transport. Syst. doi: 10.1109/TITS.2005.848368 – volume: 3 start-page: 102 year: 2012 ident: ref_19 article-title: ECG Pattern Analysis for Emotion Detection publication-title: IEEE Trans. Affect. Comput. doi: 10.1109/T-AFFC.2011.28 – volume: Volume 17 start-page: 41 year: 2019 ident: ref_32 article-title: A Functional Data Analysis Approach for Continuous 2-D Emotion Annotations publication-title: Web Intelligence doi: 10.3233/WEB-190399 – volume: 3 start-page: 505 year: 2022 ident: ref_36 article-title: Some Recommendations on the Use of Daily Life Methods in Affective Science publication-title: Affect. Sci. doi: 10.1007/s42761-022-00101-0 – volume: 64 start-page: 011114 year: 2001 ident: ref_28 article-title: Effect of Trends on Detrended Fluctuation Analysis publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.64.011114 – ident: ref_30 doi: 10.3389/fphys.2012.00450 – volume: 11 start-page: 78 year: 2020 ident: ref_33 article-title: Continuous, Real-Time Emotion Annotation: A Novel Joystick-Based Analysis Framework publication-title: IEEE Trans. Affect. Comput. doi: 10.1109/TAFFC.2017.2772882 – volume: 84 start-page: 394 year: 2010 ident: ref_8 article-title: Autonomic Nervous System Activity in Emotion: A Review publication-title: Biol. Psychol. doi: 10.1016/j.biopsycho.2010.03.010 – ident: ref_4 – ident: ref_21 doi: 10.1016/j.compbiomed.2022.106144 – ident: ref_12 doi: 10.1007/978-1-4614-1126-0 – ident: ref_48 – volume: 12 start-page: 479 year: 2021 ident: ref_63 article-title: AMIGOS: A Dataset for Affect, Personality and Mood Research on Individuals and Groups publication-title: IEEE Trans. Affect. Comput. doi: 10.1109/TAFFC.2018.2884461 – volume: 11 start-page: 847 year: 2024 ident: ref_65 article-title: A Multimodal Dataset for Mixed Emotion Recognition publication-title: Sci. Data doi: 10.1038/s41597-024-03676-4 – volume: 50 start-page: 525 year: 2006 ident: ref_40 article-title: Fractal Analyses for ‘Short’ Time Series: A Re-Assessment of Classical Methods publication-title: J. Math. Psychol. doi: 10.1016/j.jmp.2006.07.004 – volume: 45 start-page: 49 year: 2021 ident: ref_38 article-title: Emotion Recognition Using Electrodermal Activity Signals and Multiscale Deep Convolutional Neural Network publication-title: J. Med. Syst. doi: 10.1007/s10916-020-01676-6 – volume: 2 start-page: 6 year: 2017 ident: ref_47 article-title: Redefine Statistical Significance publication-title: Nat. Hum. Behav. doi: 10.1038/s41562-017-0189-z – volume: 373 start-page: 20140097 year: 2015 ident: ref_56 article-title: Joint Symbolic Dynamics for the Assessment of Cardiovascular and Cardiorespiratory Interactions publication-title: Philos. Trans. R. Soc. A doi: 10.1098/rsta.2014.0097 – volume: 1 start-page: 18 year: 2010 ident: ref_2 article-title: Affect Detection: An Interdisciplinary Review of Models, Methods, and Their Applications publication-title: IEEE Trans. Affect. Comput. doi: 10.1109/T-AFFC.2010.1 – volume: 24 start-page: 8079 year: 2024 ident: ref_22 article-title: Non-Linear Signal Processing Methods for Automatic Emotion Recognition Using Electrodermal Activity publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2024.3354553 – volume: 99 start-page: 2466 year: 2002 ident: ref_25 article-title: Fractal Dynamics in Physiology: Alterations with Disease and Aging publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.012579499 – ident: ref_27 doi: 10.3389/fphys.2012.00141 – volume: 439 start-page: 403 year: 2000 ident: ref_29 article-title: Physiological Time Series: Distinguishing Fractal Noises from Motions publication-title: Pflug. Arch.-Eur. J. Physiol. doi: 10.1007/s004249900135 – volume: 9 start-page: 702 year: 2023 ident: ref_58 article-title: Quantitative ECG Based Emotion State Recognition Using Detrended Fluctuation Analysis publication-title: Curr. Dir. Biomed. Eng. doi: 10.1515/cdbme-2023-1176 – volume: 3 start-page: 18 year: 2012 ident: ref_62 article-title: DEAP: A Database for Emotion Analysis; Using Physiological Signals publication-title: IEEE Trans. Affect. Comput. doi: 10.1109/T-AFFC.2011.15 – volume: 444 start-page: 43 year: 2016 ident: ref_39 article-title: Hurst Exponent Estimation of Self-Affine Time Series Using Quantile Graphs publication-title: Phys. A Stat. Mech. Its Appl. doi: 10.1016/j.physa.2015.09.094 – ident: ref_20 – ident: ref_52 doi: 10.20944/preprints202404.1829.v1 – volume: 7 start-page: 237802312110640 year: 2021 ident: ref_51 article-title: In the Flow of Life: Capturing Affective Socializing Dynamics Using a Wearable Sensor and Intensive Daily Diaries publication-title: Socius doi: 10.1177/23780231211064009 – ident: ref_53 – ident: ref_10 doi: 10.3390/s20144037 – ident: ref_24 – volume: 2 start-page: 6 year: 2013 ident: ref_16 article-title: Guide for Analysing Electrodermal Activity & Skin Conductance Responses for Psychological Experiments publication-title: CTIT Tech. Rep. Ser. – ident: ref_23 doi: 10.36227/techrxiv.24311716 – ident: ref_11 – volume: 6 start-page: 196 year: 2019 ident: ref_31 article-title: A Dataset of Continuous Affect Annotations and Physiological Signals for Emotion Analysis publication-title: Sci. Data doi: 10.1038/s41597-019-0209-0 – ident: ref_13 doi: 10.1017/9781107415782 – ident: ref_59 doi: 10.3390/s20040969 – volume: 71 start-page: 021906 year: 2005 ident: ref_43 article-title: Multiscale Entropy Analysis of Biological Signals publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.71.021906 – ident: ref_61 doi: 10.3390/s18072074 – volume: 13 start-page: 285 year: 2022 ident: ref_50 article-title: A Predictive Model for Emotion Recognition Based on Individual Characteristics and Autonomic Changes publication-title: Basic Clin. Neurosci. doi: 10.32598/bcn.2021.632.3 – ident: ref_14 – volume: 1 start-page: 11 year: 2010 ident: ref_1 article-title: Affective Computing: From Laughter to IEEE publication-title: IEEE Trans. Affect. Comput. doi: 10.1109/T-AFFC.2010.10 – ident: ref_55 doi: 10.1186/s12938-023-01100-3 – volume: 30 start-page: 2067 year: 2008 ident: ref_18 article-title: Emotion Recognition Based on Physiological Changes in Music Listening publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2008.26 – volume: 396 start-page: 1204 year: 2020 ident: ref_5 article-title: Global Burden of 369 Diseases and Injuries in 204 Countries and Territories, 1990–2019: A Systematic Analysis for the Global Burden of Disease Study 2019 publication-title: Lancet doi: 10.1016/S0140-6736(20)30925-9 – volume: 49 start-page: 1685 year: 1994 ident: ref_26 article-title: Mosaic Organization of DNA Nucleotides publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.49.1685 – ident: ref_46 – volume: 39 start-page: 1161 year: 1980 ident: ref_34 article-title: A Circumplex Model of Affect publication-title: J. Personal. Soc. Psychol. doi: 10.1037/h0077714 – volume: 17 start-page: 715 year: 2005 ident: ref_35 article-title: The Circumplex Model of Affect: An Integrative Approach to Affective Neuroscience, Cognitive Development, and Psychopathology publication-title: Dev. Psychopathol. doi: 10.1017/S0954579405050340 – volume: 586 start-page: 279 year: 2022 ident: ref_44 article-title: Multiscale Increment Entropy: An Approach for Quantifying the Physiological Complexity of Biomedical Time Series publication-title: Inf. Sci. doi: 10.1016/j.ins.2021.11.072 – ident: ref_64 – ident: ref_42 doi: 10.1155/2017/8317357 – ident: ref_49 doi: 10.1038/srep04998 – volume: 91 start-page: 1370 year: 2003 ident: ref_3 article-title: Toward an Affect-Sensitive Multimodal Human-Computer Interaction publication-title: Proc. IEEE doi: 10.1109/JPROC.2003.817122 – volume: 25 start-page: 3773 year: 2023 ident: ref_37 article-title: Few-Shot Learning for Fine-Grained Emotion Recognition Using Physiological Signals publication-title: IEEE Trans. Multimed. doi: 10.1109/TMM.2022.3165715 – volume: 190 start-page: 80 year: 2010 ident: ref_15 article-title: A Continuous Measure of Phasic Electrodermal Activity publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2010.04.028 – volume: 84 start-page: 552 year: 2010 ident: ref_60 article-title: Emotions beyond the Laboratory: Theoretical Fundaments, Study Design, and Analytic Strategies for Advanced Ambulatory Assessment publication-title: Biol. Psychol. doi: 10.1016/j.biopsycho.2010.01.017 – volume: 295 start-page: 441 year: 2001 ident: ref_41 article-title: Detecting Long-Range Correlations with Detrended Fluctuation Analysis publication-title: Phys. A Stat. Mech. Its Appl. doi: 10.1016/S0378-4371(01)00144-3 |
SSID | ssj0023338 |
Score | 2.4473655 |
Snippet | The field of emotion recognition from physiological signals is a growing area of research with significant implications for both mental health monitoring and... |
SourceID | doaj proquest pubmed crossref |
SourceType | Open Website Aggregation Database Index Database |
StartPage | 8130 |
SubjectTerms | Adult Algorithms Arousal - physiology Datasets detrended fluctuation analysis electrodermal activity emotional states Emotions Emotions - physiology Entropy Female Fourier transforms fractal analysis Fractals Galvanic Skin Response - physiology Humans Machine Learning Male Mental health Nervous system Physiology Signal processing Signal Processing, Computer-Assisted Time series Trends Wavelet Analysis Wavelet transforms Young Adult |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELbQnuihKlDawILcqteIjR-xww3aXaFK5YCK4Bb5eULJajeLxI_gPzMTZ6O9VFx6jSfKyDOeRzzzDSE_nOVBBUQAYN7lQhiXV4LFXGkvrYuFMQ77nf_cljf34vejfNwZ9YU1YQkeOG3cBbcc725YaZkRzGiwpkwy5SFXD5WPEa0v-LxtMjWkWhwyr4QjxIHwYo1NELrAUucd79OD9P87suw9zOIT-TiEhvQqsXRA9kJzSD7sAAYekdcFNjUh0YAlQttI52mSjUcbCysuzYOgEI3SeRrSQ--2ZUJtc0mv6G37HIBygBOnfdkA_RW6Vf8_nC6eNthW0r85fsg0nj4YHFPR0TmWty9fPpP7xfzvz5t8GKiQO65El5cVl7MgdZypWKkInt0bVQQ3K6M3Ejy3jREyVq-Z8ZUouXBaMsd1EEF4CWI9JpOmbcJXQrXQpjJKWLxnddxYK7xgnilTFDFEn5Hv242ulwk3o4Z8A6VRj9LIyDWKYCRAqOv-AShAPShA_Z4CZGS6FWA9nL91zSHxU5IJpTPybVyGk4PXIaYJ7QZpwNgr4ERk5EsS_MgJhsWFLuXJ_-DwlOwzCIWwCKaopmTSrTbhDEKZzp73WvsGEcryvQ priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lj9QwDLZgucAB8aawoIC4VjvNo0m5oAWmrJDYA2LF3qo8uaB2mOkg8SP4z9htpuwFro2bRnXiR2x_BnjlnYg6EgIAD76U0vqykTyV2gTlfKqs9VTv_Om8PruQHy_VZb5w2-W0yoNMnAR1GDzdkZ8INOW14lKbN5sfJXWNouhqbqFxHW5UqGkopcu0HxaHS6D_NaMJCXTtT3ZUCmEqSni-ooMmqP5_25eTnmnvwO1sILLTmaN34Vrs78GtK7CB9-F3S6VNRJQRRdiQ2HruZxNI0uKIn7tCMLRJ2Xpu1cM-H5KFhv41O2Xnw8-IlBlUnE3JA-x9HLfTrThrv--puGR6c_mQ7QP7aqlZxcjWlOS--fUALtr1l3dnZW6rUHqh5VjWjVCrqExa6dTohPo9WF1Fv6pTsAr1t0sJ_dZguA2NrIX0RnEvTJRRBoXMfQhH_dDHx8CMNLaxWjqKtnphnZNB8sC1raoUUyjg5eFHd5sZPaNDr4O40S3cKOAtsWAhIMDr6cGw_dbl89MJJyiEx2vHreTWoFLliuuAM8UmpFTA8YGBXT6Fu-7vningxTKM54eCIraPw55oUORrXIks4NHM-GUlZBxXplZP_j_5U7jJ0dShJJeqOYajcbuPz9BUGd3zaT_-AXy060s priority: 102 providerName: ProQuest |
Title | Fractal Analysis of Electrodermal Activity for Emotion Recognition: A Novel Approach Using Detrended Fluctuation Analysis and Wavelet Entropy |
URI | https://www.ncbi.nlm.nih.gov/pubmed/39771865 https://www.proquest.com/docview/3149752478 https://www.proquest.com/docview/3153872484 https://doaj.org/article/3b3099026b2a42a88472527d390e9dff |
Volume | 24 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB71cYED4k2grAziGtjYTuwgIdRCQoXUFapYsbfI8aOXKinbbNX-CP4zM0k2ohJIXHJIxonjsT0znscH8MbWwitPFQC4s7GUxsa55CFW2qW1DYkxlvKdTxbZ8VJ-XaWrHdhibI4DePlX047wpJbr87fXP28-4oL_QBYnmuzvLinFQeNmvAv7KJAUARmcyMmZwIXoAa0ppytGeTgfCgzdbnpLLPXV-_-tcvaip7wP90adkR0OTH4AO755CHf_qCT4CH6VlO1ERGOREdYGVgwQN442X3xiB6AIhmoqKwb0Hna6jR9qm_fskC3aK4-UY51x1scTsM--W_cH5aw831C-Sd9y-pBpHPthCL-iYwXFvV_cPIZlWXz_dByPSAuxFUp2cZaLdO5THeYq5CqgyHdGJd7Os-BMiiK9DgFNWae5cbnMhLQ65VZoL710KfL7Cew1beOfAdNSm9woWZMD1gpT19JJ7rgySRJ8cBG83g50dTEU1KjQECFuVBM3IjgiFkwEVAO7v9Guz6pxSVWiFuTV41nNjeRGo5zlKVcO3-RzF0IEB1sGVtt5VQm0CFXKpdIRvJoe45IiP4lpfLshGpQCCnsiI3g6MH7qCenLic7S5__zGy_gDkcdiKJfkvwA9rr1xr9EHaarZ7CrVgqvuvwyg_2jYvHtdNafB8z6ufsbKmP0Pg |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtQwcFTKATgg3iwUMAiOUTe2EztICBW6YUvbPaBW9BYcP7igZNnNgvoR_ArfyExe9AK3XuOJ43hmPDOeF8BLWwqvPFUA4M5GUhobZZKHSGmXlDbExljKdz5epPNT-fEsOduC30MuDIVVDmdie1C72tId-a5AVV4lXCr9dvk9oq5R5F0dWmh0ZHHoz3-iybZ-c7CP-H3FeT47eT-P-q4CkRVKNlGaiWTqEx2mKmQqoHhzRsXeTtPgTILiqwwBzTanuXGZTIW0OuFWaC-9dAn-G857Ba5KgZKcMtPzD6OBJ9De66oX4eB0d02pFzqmAOsLMq9tDfBvfbaVa_ktuNkrpGyvo6DbsOWrO3DjQpnCu_Arp1QqAuormLA6sFnXP8fRyY4jtutCwVAHZrOuNRD7NAQn1dVrtscW9Q-PkH0Rc9YGK7B936zaW3iWf9tQMkv75vghUzn22VBzjIbNKKh-eX4PTi9lw-_DdlVX_iEwLbXJjJIleXetMGUpneSOKxPHwQc3gRfDRhfLrlpHgVYOYaMYsTGBd4SCEYAKbLcP6tXXoufXQpSCXIY8LbmR3GgU4jzhyuFMPnMhTGBnQGDRc_26-EujE3g-DiO_khPGVL7eEAyKGIUrkRN40CF-XAkp47FOk0f_n_wZXJufHB8VRweLw8dwnaOaRQE2cbYD281q45-gmtSUT1vaZPDlspnhD8huKDw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3JbtQw9KlMJQQHxM5AAYPgGM3EdmIHCaGWmVFLYVRVVPSWOl64VMl0FlA_gh_i63gvG73ArdfYcRy_3W8DeGML4ZWnCgDc2UhKY6NM8hAp7ZLChtgYS_nOX-bp_on8dJqcbsHvLheGwio7nlgzaldZuiMfCVTlVcKl0qPQhkUcTWYfFhcRdZAiT2vXTqNBkUN_-RPNt9X7gwnC-i3ns-nXj_tR22EgskLJdZRmIhn7RIexCpkKKOqcUbG34zQ4k6AoK0JAE85pblwmUyGtTrgV2ksvXYL_ievegG1FVtEAtvem86Pj3twTaP01tYyEyMajFSVi6JjCra9IwLpRwL-121rKze7CnVY9ZbsNPt2DLV_eh9tXihY-gF8zSqyiSW09E1YFNm266Tji8zhim54UDDViNm0aBbHjLlSpKt-xXTavfnic2ZY0Z3XoApv49bK-k2ez8w2lttRv9h8ypWPfDLXKWLMphdgvLh_CybUc-SMYlFXpnwDTUpvMKFmQr9cKUxTSSe64MnEcfHBDeN0ddL5oanfkaPMQNPIeGkPYIxD0E6jcdv2gWn7PW-rNRSHIgcjTghvJjUaRzhOuHK7kMxfCEHY6AOYtD1jlfzF2CK_6YaRecsmY0lcbmoMCR-FO5BAeN4Dvd0KqeazT5On_F38JN5EQ8s8H88NncIujzkXRNnG2A4P1cuOfo860Ll60yMng7Lrp4Q9GAS3O |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fractal+Analysis+of+Electrodermal+Activity+for+Emotion+Recognition%3A+A+Novel+Approach+Using+Detrended+Fluctuation+Analysis+and+Wavelet+Entropy&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Mercado-Diaz%2C+Luis+R.&rft.au=Veeranki%2C+Yedukondala+Rao&rft.au=Large%2C+Edward+W.&rft.au=Posada-Quintero%2C+Hugo+F.&rft.date=2024-12-19&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=24&rft.issue=24&rft.spage=8130&rft_id=info:doi/10.3390%2Fs24248130&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_s24248130 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |