Fractal Analysis of Electrodermal Activity for Emotion Recognition: A Novel Approach Using Detrended Fluctuation Analysis and Wavelet Entropy

The field of emotion recognition from physiological signals is a growing area of research with significant implications for both mental health monitoring and human–computer interaction. This study introduces a novel approach to detecting emotional states based on fractal analysis of electrodermal ac...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 24; no. 24; p. 8130
Main Authors Mercado-Diaz, Luis R., Veeranki, Yedukondala Rao, Large, Edward W., Posada-Quintero, Hugo F.
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 19.12.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The field of emotion recognition from physiological signals is a growing area of research with significant implications for both mental health monitoring and human–computer interaction. This study introduces a novel approach to detecting emotional states based on fractal analysis of electrodermal activity (EDA) signals. We employed detrended fluctuation analysis (DFA), Hurst exponent estimation, and wavelet entropy calculation to extract fractal features from EDA signals obtained from the CASE dataset, which contains physiological recordings and continuous emotion annotations from 30 participants. The analysis revealed significant differences in fractal features across five emotional states (neutral, amused, bored, relaxed, and scared), particularly those derived from wavelet entropy. A cross-correlation analysis showed robust correlations between fractal features and both the arousal and valence dimensions of emotion, challenging the conventional view of EDA as a predominantly arousal-indicating measure. The application of machine learning for emotion classification using fractal features achieved a leave-one-subject-out accuracy of 84.3% and an F1 score of 0.802, surpassing the performance of previous methods on the same dataset. This study demonstrates the potential of fractal analysis in capturing the intricate, multi-scale dynamics of EDA signals for emotion recognition, opening new avenues for advancing emotion-aware systems and affective computing applications.
AbstractList The field of emotion recognition from physiological signals is a growing area of research with significant implications for both mental health monitoring and human–computer interaction. This study introduces a novel approach to detecting emotional states based on fractal analysis of electrodermal activity (EDA) signals. We employed detrended fluctuation analysis (DFA), Hurst exponent estimation, and wavelet entropy calculation to extract fractal features from EDA signals obtained from the CASE dataset, which contains physiological recordings and continuous emotion annotations from 30 participants. The analysis revealed significant differences in fractal features across five emotional states (neutral, amused, bored, relaxed, and scared), particularly those derived from wavelet entropy. A cross-correlation analysis showed robust correlations between fractal features and both the arousal and valence dimensions of emotion, challenging the conventional view of EDA as a predominantly arousal-indicating measure. The application of machine learning for emotion classification using fractal features achieved a leave-one-subject-out accuracy of 84.3% and an F1 score of 0.802, surpassing the performance of previous methods on the same dataset. This study demonstrates the potential of fractal analysis in capturing the intricate, multi-scale dynamics of EDA signals for emotion recognition, opening new avenues for advancing emotion-aware systems and affective computing applications.
The field of emotion recognition from physiological signals is a growing area of research with significant implications for both mental health monitoring and human-computer interaction. This study introduces a novel approach to detecting emotional states based on fractal analysis of electrodermal activity (EDA) signals. We employed detrended fluctuation analysis (DFA), Hurst exponent estimation, and wavelet entropy calculation to extract fractal features from EDA signals obtained from the CASE dataset, which contains physiological recordings and continuous emotion annotations from 30 participants. The analysis revealed significant differences in fractal features across five emotional states (neutral, amused, bored, relaxed, and scared), particularly those derived from wavelet entropy. A cross-correlation analysis showed robust correlations between fractal features and both the arousal and valence dimensions of emotion, challenging the conventional view of EDA as a predominantly arousal-indicating measure. The application of machine learning for emotion classification using fractal features achieved a leave-one-subject-out accuracy of 84.3% and an F1 score of 0.802, surpassing the performance of previous methods on the same dataset. This study demonstrates the potential of fractal analysis in capturing the intricate, multi-scale dynamics of EDA signals for emotion recognition, opening new avenues for advancing emotion-aware systems and affective computing applications.The field of emotion recognition from physiological signals is a growing area of research with significant implications for both mental health monitoring and human-computer interaction. This study introduces a novel approach to detecting emotional states based on fractal analysis of electrodermal activity (EDA) signals. We employed detrended fluctuation analysis (DFA), Hurst exponent estimation, and wavelet entropy calculation to extract fractal features from EDA signals obtained from the CASE dataset, which contains physiological recordings and continuous emotion annotations from 30 participants. The analysis revealed significant differences in fractal features across five emotional states (neutral, amused, bored, relaxed, and scared), particularly those derived from wavelet entropy. A cross-correlation analysis showed robust correlations between fractal features and both the arousal and valence dimensions of emotion, challenging the conventional view of EDA as a predominantly arousal-indicating measure. The application of machine learning for emotion classification using fractal features achieved a leave-one-subject-out accuracy of 84.3% and an F1 score of 0.802, surpassing the performance of previous methods on the same dataset. This study demonstrates the potential of fractal analysis in capturing the intricate, multi-scale dynamics of EDA signals for emotion recognition, opening new avenues for advancing emotion-aware systems and affective computing applications.
Author Mercado-Diaz, Luis R.
Large, Edward W.
Posada-Quintero, Hugo F.
Veeranki, Yedukondala Rao
Author_xml – sequence: 1
  givenname: Luis R.
  orcidid: 0000-0003-3543-3677
  surname: Mercado-Diaz
  fullname: Mercado-Diaz, Luis R.
– sequence: 2
  givenname: Yedukondala Rao
  orcidid: 0000-0002-7904-7543
  surname: Veeranki
  fullname: Veeranki, Yedukondala Rao
– sequence: 3
  givenname: Edward W.
  surname: Large
  fullname: Large, Edward W.
– sequence: 4
  givenname: Hugo F.
  orcidid: 0000-0003-4514-4772
  surname: Posada-Quintero
  fullname: Posada-Quintero, Hugo F.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39771865$$D View this record in MEDLINE/PubMed
BookMark eNpdks9uEzEQxi1URNvAgRdAlrjQQ8DrP2svt6gkpVIFEqLiuPLa4-BoYwfbWykPwTvjNCVCnPzJ_s1845m5RGchBkDodUPeM9aRD5lyylXDyDN00VQ5V5SSs3_0ObrMeUMIZYypF-icdVI2qhUX6PcqaVP0iBdBj_vsM44OL0cwJUULaXt4McU_-LLHLia83MbiY8DfwMR18Af9ES_wl_gAldztUtTmJ77PPqzxJygJggWLV-NkyqQfI09GOlj8Q9c4KHgZqt9u_xI9d3rM8OrpnKH71fL79ef53deb2-vF3dwwycu87ZggIJQj0nXSUc6tlg0Y0jqrRaPE4BxTzCqqbcdbxo0S1DAFHLgVZmAzdHvMa6Pe9Lvktzrt-6h9_3gR07rXqXgzQs8GRrqO0HagmlOtFJdUUGlr36Gz1WeG3h1z1b__miCXfuuzgXHUAeKUe9YIpmSdD6_o2__QTZxS7ceB4p0UlEtVqTdP1DRswZ7K-zu0ClwdAZNizgncCWlIf1iI_rQQ7A8JhabQ
Cites_doi 10.1177/107385840200800209
10.1177/1754073914565517
10.1007/978-3-319-02639-8
10.3390/bioengineering11050467
10.3390/s20020479
10.1109/TITS.2005.848368
10.1109/T-AFFC.2011.28
10.3233/WEB-190399
10.1007/s42761-022-00101-0
10.1103/PhysRevE.64.011114
10.3389/fphys.2012.00450
10.1109/TAFFC.2017.2772882
10.1016/j.biopsycho.2010.03.010
10.1016/j.compbiomed.2022.106144
10.1007/978-1-4614-1126-0
10.1109/TAFFC.2018.2884461
10.1038/s41597-024-03676-4
10.1016/j.jmp.2006.07.004
10.1007/s10916-020-01676-6
10.1038/s41562-017-0189-z
10.1098/rsta.2014.0097
10.1109/T-AFFC.2010.1
10.1109/JSEN.2024.3354553
10.1073/pnas.012579499
10.3389/fphys.2012.00141
10.1007/s004249900135
10.1515/cdbme-2023-1176
10.1109/T-AFFC.2011.15
10.1016/j.physa.2015.09.094
10.20944/preprints202404.1829.v1
10.1177/23780231211064009
10.3390/s20144037
10.36227/techrxiv.24311716
10.1038/s41597-019-0209-0
10.1017/9781107415782
10.3390/s20040969
10.1103/PhysRevE.71.021906
10.3390/s18072074
10.32598/bcn.2021.632.3
10.1109/T-AFFC.2010.10
10.1186/s12938-023-01100-3
10.1109/TPAMI.2008.26
10.1016/S0140-6736(20)30925-9
10.1103/PhysRevE.49.1685
10.1037/h0077714
10.1017/S0954579405050340
10.1016/j.ins.2021.11.072
10.1155/2017/8317357
10.1038/srep04998
10.1109/JPROC.2003.817122
10.1109/TMM.2022.3165715
10.1016/j.jneumeth.2010.04.028
10.1016/j.biopsycho.2010.01.017
10.1016/S0378-4371(01)00144-3
ContentType Journal Article
Copyright 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
DOA
DOI 10.3390/s24248130
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
ProQuest Central
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database
MEDLINE
CrossRef
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_3b3099026b2a42a88472527d390e9dff
39771865
10_3390_s24248130
Genre Journal Article
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
CGR
CUY
CVF
ECM
EIF
NPM
PJZUB
PPXIY
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
PUEGO
ID FETCH-LOGICAL-c374t-69350e58f07f97f244da71ec06fda5185bff383d82ad94634c852c38e4e4d5cb3
IEDL.DBID M48
ISSN 1424-8220
IngestDate Wed Aug 27 01:26:17 EDT 2025
Fri Jul 11 08:43:36 EDT 2025
Fri Jul 25 23:04:38 EDT 2025
Mon Jul 21 05:46:55 EDT 2025
Tue Jul 01 02:10:08 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 24
Keywords electrodermal activity
fractal analysis
machine learning
emotional states
detrended fluctuation analysis
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c374t-69350e58f07f97f244da71ec06fda5185bff383d82ad94634c852c38e4e4d5cb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-4514-4772
0000-0002-7904-7543
0000-0003-3543-3677
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s24248130
PMID 39771865
PQID 3149752478
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_3b3099026b2a42a88472527d390e9dff
proquest_miscellaneous_3153872484
proquest_journals_3149752478
pubmed_primary_39771865
crossref_primary_10_3390_s24248130
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-Dec-19
PublicationDateYYYYMMDD 2024-12-19
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-Dec-19
  day: 19
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2024
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Veeranki (ref_22) 2024; 24
ref_14
ref_13
ref_12
ref_11
ref_55
ref_10
ref_54
ref_53
ref_52
Russell (ref_34) 1980; 39
Picard (ref_1) 2010; 1
Hu (ref_28) 2001; 64
Zhang (ref_37) 2023; 25
ref_59
Zhang (ref_51) 2021; 7
Calvo (ref_2) 2010; 1
Critchley (ref_7) 2002; 8
ref_61
Benjamin (ref_47) 2017; 2
Eke (ref_29) 2000; 439
Costa (ref_43) 2005; 71
ref_24
Wilhelm (ref_60) 2010; 84
ref_23
Vos (ref_5) 2020; 396
ref_21
ref_20
ref_64
Kreibig (ref_8) 2010; 84
Posner (ref_35) 2005; 17
Abadi (ref_63) 2021; 12
Peng (ref_26) 1994; 49
ref_27
Delignieres (ref_40) 2006; 50
Anandan (ref_58) 2023; 9
Agrafioti (ref_19) 2012; 3
Picard (ref_57) 2016; 8
ref_30
Braithwaite (ref_16) 2013; 2
Kim (ref_18) 2008; 30
Razali (ref_45) 2011; 2
Pantic (ref_3) 2003; 91
Healey (ref_17) 2005; 6
Goldberger (ref_25) 2002; 99
Kuppens (ref_36) 2022; 3
Goshvarpour (ref_50) 2022; 13
Sharma (ref_33) 2020; 11
Campanharo (ref_39) 2016; 444
ref_46
Sharma (ref_31) 2019; 6
ref_42
Kantelhardt (ref_41) 2001; 295
Wang (ref_44) 2022; 586
Ganapathy (ref_38) 2021; 45
ref_49
ref_48
Koelstra (ref_62) 2012; 3
Yang (ref_65) 2024; 11
ref_9
Baumert (ref_56) 2015; 373
ref_4
Benedek (ref_15) 2010; 190
Sharma (ref_32) 2019; Volume 17
ref_6
References_xml – volume: 8
  start-page: 132
  year: 2002
  ident: ref_7
  article-title: Review: Electrodermal Responses: What Happens in the Brain
  publication-title: Neuroscientist
  doi: 10.1177/107385840200800209
– volume: 8
  start-page: 62
  year: 2016
  ident: ref_57
  article-title: Multiple Arousal Theory and Daily-Life Electrodermal Activity Asymmetry
  publication-title: Emot. Rev.
  doi: 10.1177/1754073914565517
– ident: ref_9
  doi: 10.1007/978-3-319-02639-8
– volume: 2
  start-page: 21
  year: 2011
  ident: ref_45
  article-title: Power Comparisons of Shapiro-Wilk, Kolmogorov-Smirnov, Lilliefors and Anderson-Darling Tests
  publication-title: Stat. Model. Anal.
– ident: ref_54
  doi: 10.3390/bioengineering11050467
– ident: ref_6
  doi: 10.3390/s20020479
– volume: 6
  start-page: 156
  year: 2005
  ident: ref_17
  article-title: Detecting Stress During Real-World Driving Tasks Using Physiological Sensors
  publication-title: IEEE Trans. Intell. Transport. Syst.
  doi: 10.1109/TITS.2005.848368
– volume: 3
  start-page: 102
  year: 2012
  ident: ref_19
  article-title: ECG Pattern Analysis for Emotion Detection
  publication-title: IEEE Trans. Affect. Comput.
  doi: 10.1109/T-AFFC.2011.28
– volume: Volume 17
  start-page: 41
  year: 2019
  ident: ref_32
  article-title: A Functional Data Analysis Approach for Continuous 2-D Emotion Annotations
  publication-title: Web Intelligence
  doi: 10.3233/WEB-190399
– volume: 3
  start-page: 505
  year: 2022
  ident: ref_36
  article-title: Some Recommendations on the Use of Daily Life Methods in Affective Science
  publication-title: Affect. Sci.
  doi: 10.1007/s42761-022-00101-0
– volume: 64
  start-page: 011114
  year: 2001
  ident: ref_28
  article-title: Effect of Trends on Detrended Fluctuation Analysis
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.64.011114
– ident: ref_30
  doi: 10.3389/fphys.2012.00450
– volume: 11
  start-page: 78
  year: 2020
  ident: ref_33
  article-title: Continuous, Real-Time Emotion Annotation: A Novel Joystick-Based Analysis Framework
  publication-title: IEEE Trans. Affect. Comput.
  doi: 10.1109/TAFFC.2017.2772882
– volume: 84
  start-page: 394
  year: 2010
  ident: ref_8
  article-title: Autonomic Nervous System Activity in Emotion: A Review
  publication-title: Biol. Psychol.
  doi: 10.1016/j.biopsycho.2010.03.010
– ident: ref_4
– ident: ref_21
  doi: 10.1016/j.compbiomed.2022.106144
– ident: ref_12
  doi: 10.1007/978-1-4614-1126-0
– ident: ref_48
– volume: 12
  start-page: 479
  year: 2021
  ident: ref_63
  article-title: AMIGOS: A Dataset for Affect, Personality and Mood Research on Individuals and Groups
  publication-title: IEEE Trans. Affect. Comput.
  doi: 10.1109/TAFFC.2018.2884461
– volume: 11
  start-page: 847
  year: 2024
  ident: ref_65
  article-title: A Multimodal Dataset for Mixed Emotion Recognition
  publication-title: Sci. Data
  doi: 10.1038/s41597-024-03676-4
– volume: 50
  start-page: 525
  year: 2006
  ident: ref_40
  article-title: Fractal Analyses for ‘Short’ Time Series: A Re-Assessment of Classical Methods
  publication-title: J. Math. Psychol.
  doi: 10.1016/j.jmp.2006.07.004
– volume: 45
  start-page: 49
  year: 2021
  ident: ref_38
  article-title: Emotion Recognition Using Electrodermal Activity Signals and Multiscale Deep Convolutional Neural Network
  publication-title: J. Med. Syst.
  doi: 10.1007/s10916-020-01676-6
– volume: 2
  start-page: 6
  year: 2017
  ident: ref_47
  article-title: Redefine Statistical Significance
  publication-title: Nat. Hum. Behav.
  doi: 10.1038/s41562-017-0189-z
– volume: 373
  start-page: 20140097
  year: 2015
  ident: ref_56
  article-title: Joint Symbolic Dynamics for the Assessment of Cardiovascular and Cardiorespiratory Interactions
  publication-title: Philos. Trans. R. Soc. A
  doi: 10.1098/rsta.2014.0097
– volume: 1
  start-page: 18
  year: 2010
  ident: ref_2
  article-title: Affect Detection: An Interdisciplinary Review of Models, Methods, and Their Applications
  publication-title: IEEE Trans. Affect. Comput.
  doi: 10.1109/T-AFFC.2010.1
– volume: 24
  start-page: 8079
  year: 2024
  ident: ref_22
  article-title: Non-Linear Signal Processing Methods for Automatic Emotion Recognition Using Electrodermal Activity
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2024.3354553
– volume: 99
  start-page: 2466
  year: 2002
  ident: ref_25
  article-title: Fractal Dynamics in Physiology: Alterations with Disease and Aging
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.012579499
– ident: ref_27
  doi: 10.3389/fphys.2012.00141
– volume: 439
  start-page: 403
  year: 2000
  ident: ref_29
  article-title: Physiological Time Series: Distinguishing Fractal Noises from Motions
  publication-title: Pflug. Arch.-Eur. J. Physiol.
  doi: 10.1007/s004249900135
– volume: 9
  start-page: 702
  year: 2023
  ident: ref_58
  article-title: Quantitative ECG Based Emotion State Recognition Using Detrended Fluctuation Analysis
  publication-title: Curr. Dir. Biomed. Eng.
  doi: 10.1515/cdbme-2023-1176
– volume: 3
  start-page: 18
  year: 2012
  ident: ref_62
  article-title: DEAP: A Database for Emotion Analysis; Using Physiological Signals
  publication-title: IEEE Trans. Affect. Comput.
  doi: 10.1109/T-AFFC.2011.15
– volume: 444
  start-page: 43
  year: 2016
  ident: ref_39
  article-title: Hurst Exponent Estimation of Self-Affine Time Series Using Quantile Graphs
  publication-title: Phys. A Stat. Mech. Its Appl.
  doi: 10.1016/j.physa.2015.09.094
– ident: ref_20
– ident: ref_52
  doi: 10.20944/preprints202404.1829.v1
– volume: 7
  start-page: 237802312110640
  year: 2021
  ident: ref_51
  article-title: In the Flow of Life: Capturing Affective Socializing Dynamics Using a Wearable Sensor and Intensive Daily Diaries
  publication-title: Socius
  doi: 10.1177/23780231211064009
– ident: ref_53
– ident: ref_10
  doi: 10.3390/s20144037
– ident: ref_24
– volume: 2
  start-page: 6
  year: 2013
  ident: ref_16
  article-title: Guide for Analysing Electrodermal Activity & Skin Conductance Responses for Psychological Experiments
  publication-title: CTIT Tech. Rep. Ser.
– ident: ref_23
  doi: 10.36227/techrxiv.24311716
– ident: ref_11
– volume: 6
  start-page: 196
  year: 2019
  ident: ref_31
  article-title: A Dataset of Continuous Affect Annotations and Physiological Signals for Emotion Analysis
  publication-title: Sci. Data
  doi: 10.1038/s41597-019-0209-0
– ident: ref_13
  doi: 10.1017/9781107415782
– ident: ref_59
  doi: 10.3390/s20040969
– volume: 71
  start-page: 021906
  year: 2005
  ident: ref_43
  article-title: Multiscale Entropy Analysis of Biological Signals
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.71.021906
– ident: ref_61
  doi: 10.3390/s18072074
– volume: 13
  start-page: 285
  year: 2022
  ident: ref_50
  article-title: A Predictive Model for Emotion Recognition Based on Individual Characteristics and Autonomic Changes
  publication-title: Basic Clin. Neurosci.
  doi: 10.32598/bcn.2021.632.3
– ident: ref_14
– volume: 1
  start-page: 11
  year: 2010
  ident: ref_1
  article-title: Affective Computing: From Laughter to IEEE
  publication-title: IEEE Trans. Affect. Comput.
  doi: 10.1109/T-AFFC.2010.10
– ident: ref_55
  doi: 10.1186/s12938-023-01100-3
– volume: 30
  start-page: 2067
  year: 2008
  ident: ref_18
  article-title: Emotion Recognition Based on Physiological Changes in Music Listening
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2008.26
– volume: 396
  start-page: 1204
  year: 2020
  ident: ref_5
  article-title: Global Burden of 369 Diseases and Injuries in 204 Countries and Territories, 1990–2019: A Systematic Analysis for the Global Burden of Disease Study 2019
  publication-title: Lancet
  doi: 10.1016/S0140-6736(20)30925-9
– volume: 49
  start-page: 1685
  year: 1994
  ident: ref_26
  article-title: Mosaic Organization of DNA Nucleotides
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.49.1685
– ident: ref_46
– volume: 39
  start-page: 1161
  year: 1980
  ident: ref_34
  article-title: A Circumplex Model of Affect
  publication-title: J. Personal. Soc. Psychol.
  doi: 10.1037/h0077714
– volume: 17
  start-page: 715
  year: 2005
  ident: ref_35
  article-title: The Circumplex Model of Affect: An Integrative Approach to Affective Neuroscience, Cognitive Development, and Psychopathology
  publication-title: Dev. Psychopathol.
  doi: 10.1017/S0954579405050340
– volume: 586
  start-page: 279
  year: 2022
  ident: ref_44
  article-title: Multiscale Increment Entropy: An Approach for Quantifying the Physiological Complexity of Biomedical Time Series
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2021.11.072
– ident: ref_64
– ident: ref_42
  doi: 10.1155/2017/8317357
– ident: ref_49
  doi: 10.1038/srep04998
– volume: 91
  start-page: 1370
  year: 2003
  ident: ref_3
  article-title: Toward an Affect-Sensitive Multimodal Human-Computer Interaction
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.2003.817122
– volume: 25
  start-page: 3773
  year: 2023
  ident: ref_37
  article-title: Few-Shot Learning for Fine-Grained Emotion Recognition Using Physiological Signals
  publication-title: IEEE Trans. Multimed.
  doi: 10.1109/TMM.2022.3165715
– volume: 190
  start-page: 80
  year: 2010
  ident: ref_15
  article-title: A Continuous Measure of Phasic Electrodermal Activity
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2010.04.028
– volume: 84
  start-page: 552
  year: 2010
  ident: ref_60
  article-title: Emotions beyond the Laboratory: Theoretical Fundaments, Study Design, and Analytic Strategies for Advanced Ambulatory Assessment
  publication-title: Biol. Psychol.
  doi: 10.1016/j.biopsycho.2010.01.017
– volume: 295
  start-page: 441
  year: 2001
  ident: ref_41
  article-title: Detecting Long-Range Correlations with Detrended Fluctuation Analysis
  publication-title: Phys. A Stat. Mech. Its Appl.
  doi: 10.1016/S0378-4371(01)00144-3
SSID ssj0023338
Score 2.4473655
Snippet The field of emotion recognition from physiological signals is a growing area of research with significant implications for both mental health monitoring and...
SourceID doaj
proquest
pubmed
crossref
SourceType Open Website
Aggregation Database
Index Database
StartPage 8130
SubjectTerms Adult
Algorithms
Arousal - physiology
Datasets
detrended fluctuation analysis
electrodermal activity
emotional states
Emotions
Emotions - physiology
Entropy
Female
Fourier transforms
fractal analysis
Fractals
Galvanic Skin Response - physiology
Humans
Machine Learning
Male
Mental health
Nervous system
Physiology
Signal processing
Signal Processing, Computer-Assisted
Time series
Trends
Wavelet Analysis
Wavelet transforms
Young Adult
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELbQnuihKlDawILcqteIjR-xww3aXaFK5YCK4Bb5eULJajeLxI_gPzMTZ6O9VFx6jSfKyDOeRzzzDSE_nOVBBUQAYN7lQhiXV4LFXGkvrYuFMQ77nf_cljf34vejfNwZ9YU1YQkeOG3cBbcc725YaZkRzGiwpkwy5SFXD5WPEa0v-LxtMjWkWhwyr4QjxIHwYo1NELrAUucd79OD9P87suw9zOIT-TiEhvQqsXRA9kJzSD7sAAYekdcFNjUh0YAlQttI52mSjUcbCysuzYOgEI3SeRrSQ--2ZUJtc0mv6G37HIBygBOnfdkA_RW6Vf8_nC6eNthW0r85fsg0nj4YHFPR0TmWty9fPpP7xfzvz5t8GKiQO65El5cVl7MgdZypWKkInt0bVQQ3K6M3Ejy3jREyVq-Z8ZUouXBaMsd1EEF4CWI9JpOmbcJXQrXQpjJKWLxnddxYK7xgnilTFDFEn5Hv242ulwk3o4Z8A6VRj9LIyDWKYCRAqOv-AShAPShA_Z4CZGS6FWA9nL91zSHxU5IJpTPybVyGk4PXIaYJ7QZpwNgr4ERk5EsS_MgJhsWFLuXJ_-DwlOwzCIWwCKaopmTSrTbhDEKZzp73WvsGEcryvQ
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lj9QwDLZgucAB8aawoIC4VjvNo0m5oAWmrJDYA2LF3qo8uaB2mOkg8SP4z9htpuwFro2bRnXiR2x_BnjlnYg6EgIAD76U0vqykTyV2gTlfKqs9VTv_Om8PruQHy_VZb5w2-W0yoNMnAR1GDzdkZ8INOW14lKbN5sfJXWNouhqbqFxHW5UqGkopcu0HxaHS6D_NaMJCXTtT3ZUCmEqSni-ooMmqP5_25eTnmnvwO1sILLTmaN34Vrs78GtK7CB9-F3S6VNRJQRRdiQ2HruZxNI0uKIn7tCMLRJ2Xpu1cM-H5KFhv41O2Xnw8-IlBlUnE3JA-x9HLfTrThrv--puGR6c_mQ7QP7aqlZxcjWlOS--fUALtr1l3dnZW6rUHqh5VjWjVCrqExa6dTohPo9WF1Fv6pTsAr1t0sJ_dZguA2NrIX0RnEvTJRRBoXMfQhH_dDHx8CMNLaxWjqKtnphnZNB8sC1raoUUyjg5eFHd5sZPaNDr4O40S3cKOAtsWAhIMDr6cGw_dbl89MJJyiEx2vHreTWoFLliuuAM8UmpFTA8YGBXT6Fu-7vningxTKM54eCIraPw55oUORrXIks4NHM-GUlZBxXplZP_j_5U7jJ0dShJJeqOYajcbuPz9BUGd3zaT_-AXy060s
  priority: 102
  providerName: ProQuest
Title Fractal Analysis of Electrodermal Activity for Emotion Recognition: A Novel Approach Using Detrended Fluctuation Analysis and Wavelet Entropy
URI https://www.ncbi.nlm.nih.gov/pubmed/39771865
https://www.proquest.com/docview/3149752478
https://www.proquest.com/docview/3153872484
https://doaj.org/article/3b3099026b2a42a88472527d390e9dff
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB71cYED4k2grAziGtjYTuwgIdRCQoXUFapYsbfI8aOXKinbbNX-CP4zM0k2ohJIXHJIxonjsT0znscH8MbWwitPFQC4s7GUxsa55CFW2qW1DYkxlvKdTxbZ8VJ-XaWrHdhibI4DePlX047wpJbr87fXP28-4oL_QBYnmuzvLinFQeNmvAv7KJAUARmcyMmZwIXoAa0ppytGeTgfCgzdbnpLLPXV-_-tcvaip7wP90adkR0OTH4AO755CHf_qCT4CH6VlO1ERGOREdYGVgwQN442X3xiB6AIhmoqKwb0Hna6jR9qm_fskC3aK4-UY51x1scTsM--W_cH5aw831C-Sd9y-pBpHPthCL-iYwXFvV_cPIZlWXz_dByPSAuxFUp2cZaLdO5THeYq5CqgyHdGJd7Os-BMiiK9DgFNWae5cbnMhLQ65VZoL710KfL7Cew1beOfAdNSm9woWZMD1gpT19JJ7rgySRJ8cBG83g50dTEU1KjQECFuVBM3IjgiFkwEVAO7v9Guz6pxSVWiFuTV41nNjeRGo5zlKVcO3-RzF0IEB1sGVtt5VQm0CFXKpdIRvJoe45IiP4lpfLshGpQCCnsiI3g6MH7qCenLic7S5__zGy_gDkcdiKJfkvwA9rr1xr9EHaarZ7CrVgqvuvwyg_2jYvHtdNafB8z6ufsbKmP0Pg
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtQwcFTKATgg3iwUMAiOUTe2EztICBW6YUvbPaBW9BYcP7igZNnNgvoR_ArfyExe9AK3XuOJ43hmPDOeF8BLWwqvPFUA4M5GUhobZZKHSGmXlDbExljKdz5epPNT-fEsOduC30MuDIVVDmdie1C72tId-a5AVV4lXCr9dvk9oq5R5F0dWmh0ZHHoz3-iybZ-c7CP-H3FeT47eT-P-q4CkRVKNlGaiWTqEx2mKmQqoHhzRsXeTtPgTILiqwwBzTanuXGZTIW0OuFWaC-9dAn-G857Ba5KgZKcMtPzD6OBJ9De66oX4eB0d02pFzqmAOsLMq9tDfBvfbaVa_ktuNkrpGyvo6DbsOWrO3DjQpnCu_Arp1QqAuormLA6sFnXP8fRyY4jtutCwVAHZrOuNRD7NAQn1dVrtscW9Q-PkH0Rc9YGK7B936zaW3iWf9tQMkv75vghUzn22VBzjIbNKKh-eX4PTi9lw-_DdlVX_iEwLbXJjJIleXetMGUpneSOKxPHwQc3gRfDRhfLrlpHgVYOYaMYsTGBd4SCEYAKbLcP6tXXoufXQpSCXIY8LbmR3GgU4jzhyuFMPnMhTGBnQGDRc_26-EujE3g-DiO_khPGVL7eEAyKGIUrkRN40CF-XAkp47FOk0f_n_wZXJufHB8VRweLw8dwnaOaRQE2cbYD281q45-gmtSUT1vaZPDlspnhD8huKDw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3JbtQw9KlMJQQHxM5AAYPgGM3EdmIHCaGWmVFLYVRVVPSWOl64VMl0FlA_gh_i63gvG73ArdfYcRy_3W8DeGML4ZWnCgDc2UhKY6NM8hAp7ZLChtgYS_nOX-bp_on8dJqcbsHvLheGwio7nlgzaldZuiMfCVTlVcKl0qPQhkUcTWYfFhcRdZAiT2vXTqNBkUN_-RPNt9X7gwnC-i3ns-nXj_tR22EgskLJdZRmIhn7RIexCpkKKOqcUbG34zQ4k6AoK0JAE85pblwmUyGtTrgV2ksvXYL_ievegG1FVtEAtvem86Pj3twTaP01tYyEyMajFSVi6JjCra9IwLpRwL-121rKze7CnVY9ZbsNPt2DLV_eh9tXihY-gF8zSqyiSW09E1YFNm266Tji8zhim54UDDViNm0aBbHjLlSpKt-xXTavfnic2ZY0Z3XoApv49bK-k2ez8w2lttRv9h8ypWPfDLXKWLMphdgvLh_CybUc-SMYlFXpnwDTUpvMKFmQr9cKUxTSSe64MnEcfHBDeN0ddL5oanfkaPMQNPIeGkPYIxD0E6jcdv2gWn7PW-rNRSHIgcjTghvJjUaRzhOuHK7kMxfCEHY6AOYtD1jlfzF2CK_6YaRecsmY0lcbmoMCR-FO5BAeN4Dvd0KqeazT5On_F38JN5EQ8s8H88NncIujzkXRNnG2A4P1cuOfo860Ll60yMng7Lrp4Q9GAS3O
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fractal+Analysis+of+Electrodermal+Activity+for+Emotion+Recognition%3A+A+Novel+Approach+Using+Detrended+Fluctuation+Analysis+and+Wavelet+Entropy&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Mercado-Diaz%2C+Luis+R.&rft.au=Veeranki%2C+Yedukondala+Rao&rft.au=Large%2C+Edward+W.&rft.au=Posada-Quintero%2C+Hugo+F.&rft.date=2024-12-19&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=24&rft.issue=24&rft.spage=8130&rft_id=info:doi/10.3390%2Fs24248130&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_s24248130
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon