Data-driven approaches to the modelling of bioprocesses
Bioprocess modelling presents a challenging subject, which requires a meticulous modelling strategy. During the modelling process, experimental data form a key ingredient during structure characterization and parameter estimation. Accurate system identification can only be guaranteed if the experime...
Saved in:
Published in | Transactions of the Institute of Measurement and Control Vol. 26; no. 5; pp. 349 - 372 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Thousand Oaks, CA
SAGE Publications
01.12.2004
Sage Publications Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Bioprocess modelling presents a challenging subject, which requires a meticulous modelling strategy. During the modelling process, experimental data form a key ingredient during structure characterization and parameter estimation. Accurate system identification can only be guaranteed if the experimental data contain sufficient information on the process dynamics. In this respect, sufficient effort should be spent on optimal experiment design in order to maximize the information that can be extracted from data, particularly because experimental data generation for bioprocesses is usually a time-consuming, labour-intensive and costly job. This paper reviews the modelling cycle of bioprocesses, emphasizing the need for careful experimental data collection. The concepts of optimal experiment design for parameter estimation are outlined in particular. Application of this methodology is illustrated for a case study involving the optimal estimation of two model parameters describing temperature dependence of microbial growth kinetics. |
---|---|
AbstractList | Bioprocess modelling presents a challenging subject, which requires a meticulous modelling strategy. During the modelling process, experimental data form a key ingredient during structure characterization and parameter estimation. Accurate system identification can only be guaranteed if the experimental data contain sufficient information on the process dynamics. In this respect, sufficient effort should be spent on optimal experiment design in order to maximize the information that can be extracted from data, particularly because experimental data generation for bioprocesses is usually a time-consuming, labour-intensive and costly job. This paper reviews the modelling cycle of bioprocesses, emphasizing the need for careful experimental data collection. The concepts of optimal experiment design for parameter estimation are outlined in particular. Application of this methodology is illustrated for a case study involving the optimal estimation of two model parameters describing temperature dependence of microbial growth kinetics. |
Author | Bernaerts, Kristel Van Impe, Jan F. |
Author_xml | – sequence: 1 givenname: Kristel surname: Bernaerts fullname: Bernaerts, Kristel organization: BioTeC-Bioprocess Technology and Control, Department of Chemical Engineering, Katholieke Universiteit Leuven, W. de Croylaan 46, B-3001 Leuven, Belgium – sequence: 2 givenname: Jan F. surname: Van Impe fullname: Van Impe, Jan F. organization: BioTeC-Bioprocess Technology and Control, Department of Chemical Engineering, Katholieke Universiteit Leuven, W. de Croylaan 46, B-3001 Leuven, Belgium |
BookMark | eNp9kE1LAzEURYNUsK3-AHeDC11NffmYZLKU-gkFN7oeMplMmzKd1CQV_PdmqCBU7Oot7jl5N2-CRr3rDUKXGGYYS3wLmBFKMQEWN5gIp07QGDMhcqBcjtB4yPMBOEOTENYAwBhnYyTuVVR54-2n6TO13Xqn9MqELLosrky2cY3pOtsvM9dmtXUp1yYEE87Raau6YC5-5hS9Pz68zZ_zxevTy_xukWsqWMwLwluhJZGa80aSGmRjJBACuhB1isqCGFqAlolOhJIMSCl4KevUj5KSTtHN_t20-WNnQqw2NujUSfXG7UIlGMVCFjCQ10dJUmKGSUESeHUArt3O9-kXFREFMC45JEjsIe1dCN60lbZRRev66JXtKgzVcPfqz92TiQ_Mrbcb5b-OOrO9E9TS_Nb5X_gGEtOSwQ |
CitedBy_id | crossref_primary_10_1002_aic_11607 crossref_primary_10_1016_j_bej_2022_108499 crossref_primary_10_1002_aic_11429 crossref_primary_10_1016_j_ces_2007_11_034 crossref_primary_10_1016_j_jfoodeng_2011_03_037 crossref_primary_10_1021_ie071053t crossref_primary_10_1016_j_ijfoodmicro_2008_07_007 crossref_primary_10_3182_20060402_4_BR_2902_00535 |
Cites_doi | 10.1021/ie010183d 10.1016/0005-1098(82)90107-8 10.1002/9783527620852.ch8 10.1002/(SICI)1097-0290(19971205)56:5<564::AID-BIT10>3.0.CO;2-C 10.1016/S1474-6670(17)50331-6 10.1016/S0098-1354(00)00328-8 10.1016/0025-5564(90)90055-4 10.1080/00401706.1967.10490441 10.1016/S0168-1605(99)00140-3 10.1016/S0924-2244(03)00048-7 10.1080/00401706.1970.10488698 10.1016/S0168-1605(99)00093-8 10.1021/ie970738y 10.1016/S1474-6670(17)52458-1 10.1002/aic.690350206 10.1007/BF02431915 10.1002/047134608X.W1046 10.1016/0025-5564(78)90063-9 10.1002/9780470316757 10.1080/00401706.1971.10488845 10.1021/bp00029a005 10.1109/TAC.1974.1100701 10.1016/S1474-6670(17)60544-5 10.1016/0025-5564(94)00023-S 10.1016/0043-1354(95)00105-T 10.1007/978-94-009-1141-3_21 10.1016/0043-1354(95)00106-U 10.1007/978-94-015-9111-9_10 10.1016/0168-1605(94)90157-0 10.1080/00401706.1984.10487928 10.2166/wst.1996.0575 10.1128/JB.149.1.1-5.1982 |
ContentType | Journal Article |
Copyright | 2004 Arnold |
Copyright_xml | – notice: 2004 Arnold |
DBID | AAYXX CITATION 3V. 7SP 7U5 7XB 88I 8FD 8FE 8FG 8FK ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO F28 FR3 GNUQQ HCIFZ L6V L7M M2P M7S P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U S0W |
DOI | 10.1191/0142331204tm127oa |
DatabaseName | CrossRef ProQuest Central (Corporate) Electronics & Communications Abstracts Solid State and Superconductivity Abstracts ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One ProQuest Central Korea ANTE: Abstracts in New Technology & Engineering Engineering Research Database ProQuest Central Student SciTech Premium Collection ProQuest Engineering Collection Advanced Technologies Database with Aerospace Science Database Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic DELNET Engineering & Technology Collection |
DatabaseTitle | CrossRef ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection ANTE: Abstracts in New Technology & Engineering Advanced Technologies & Aerospace Collection Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest DELNET Engineering and Technology Collection Materials Science & Engineering Collection Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) |
DatabaseTitleList | Technology Research Database ProQuest Central Student CrossRef Engineering Research Database |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1477-0369 |
EndPage | 372 |
ExternalDocumentID | 790743391 10_1191_0142331204tm127oa 10.1191_0142331204tm127oa |
GroupedDBID | -TM -TN -~X .2G .2N .4S .DC 01A 0R~ 123 1~K 29Q 31S 31X 31Y 31Z 4.4 54M 5VS 6TJ 88I 8FE 8FG 8R4 8R5 AACKU AACTG AADUE AAGGD AAGLT AAJOX AANSI AAPEO AAQDB AAQXI AARIX AATAA AATBZ AAYTG ABAWP ABCCA ABCJG ABDBF ABDWY ABEIX ABFWQ ABHKI ABHQH ABIDT ABJCF ABJNI ABKRH ABLUO ABPNF ABQKF ABQXT ABRHV ABUJY ABUWG ABYTW ACDXX ACGBL ACGFS ACGOD ACIWK ACJER ACLZU ACOFE ACOXC ACROE ACRPL ACSIQ ACUAV ACUHS ACUIR ACXKE ADDLC ADEBD ADEIA ADNMO ADNON ADRRZ ADSTG ADTBJ ADUKL ADVBO ADYCS AEDFJ AENEX AEPTA AEQLS AESZF AEUHG AEWDL AEWHI AEXNY AFEET AFKBI AFKRA AFKRG AFMOU AFQAA AFUIA AFWMB AGKLV AGNHF AGQPQ AGWFA AGWNL AHDMH AHHFK AIZZC AJEFB AJUZI ALFTD ALMA_UNASSIGNED_HOLDINGS ANDLU ARAPS ARCSS ARTOV ASPBG AUTPY AUVAJ AVWKF AYAKG AZFZN AZQEC B8O B8Z B93 B94 BBRGL BDDNI BENPR BGLVJ BPACV BPHCQ CAG CBRKF CCPQU CFDXU COF CORYS CS3 DD0 DE- DH. DO- DOPDO DU5 DV7 DWQXO D~Y EAD EAP EBS ECS EDO EJD EMK EPL EST ESX FEDTE FHBDP GNUQQ GROUPED_SAGE_PREMIER_JOURNAL_COLLECTION H13 HCIFZ HF~ HVGLF HZ~ I-F J8X K.F L6V M2P M7S MK~ N9A O9- P.B P62 PHGZM PHGZT PQQKQ PROAC PTHSS Q1R Q2X Q7X Q82 Q83 ROL S01 S0W SASJQ SAUOL SCNPE SFC SFK SFT SGP SGQ SGV SGX SGZ SPJ SPV SQCSI STM TUS ZPPRI ZRKOI ZY4 AAYXX AJGYC CITATION 3V. 7SP 7U5 7XB 8FD 8FK AAPII AJHME AJVBE F28 FR3 L7M PKEHL PQEST PQGLB PQUKI PRINS Q9U |
ID | FETCH-LOGICAL-c374t-526f7c929c66d92b09de90220c57b6f7852e350c937466da940287689b0443283 |
IEDL.DBID | BENPR |
ISSN | 0142-3312 |
IngestDate | Tue Aug 05 10:34:04 EDT 2025 Wed Jul 30 11:00:48 EDT 2025 Wed Aug 20 23:40:20 EDT 2025 Thu Apr 24 22:59:11 EDT 2025 Tue Jul 01 05:24:04 EDT 2025 Tue Jun 17 22:45:49 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | parameter estimation optimal experiment design system identification data collection bioprocess modelling Fisher information matrix |
Language | English |
License | https://journals.sagepub.com/page/policies/text-and-data-mining-license |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c374t-526f7c929c66d92b09de90220c57b6f7852e350c937466da940287689b0443283 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 content type line 23 |
PQID | 275046960 |
PQPubID | 23500 |
PageCount | 24 |
ParticipantIDs | proquest_miscellaneous_743179508 proquest_miscellaneous_28141252 proquest_journals_275046960 crossref_citationtrail_10_1191_0142331204tm127oa crossref_primary_10_1191_0142331204tm127oa sage_journals_10_1191_0142331204tm127oa |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20041200 |
PublicationDateYYYYMMDD | 2004-12-01 |
PublicationDate_xml | – month: 12 year: 2004 text: 20041200 |
PublicationDecade | 2000 |
PublicationPlace | Thousand Oaks, CA |
PublicationPlace_xml | – name: Thousand Oaks, CA – name: London |
PublicationTitle | Transactions of the Institute of Measurement and Control |
PublicationYear | 2004 |
Publisher | SAGE Publications Sage Publications Ltd |
Publisher_xml | – name: SAGE Publications – name: Sage Publications Ltd |
References | Baranyi, J., Roberts, T. A. 1994; 23 Box, M. 1970; 12 Box, M., Draper, N. R. 1971; 13 Holmberg, A., Ranta, J. 1982; 18 Box, G. E. P., Hill, W. J. 1976; 9 Takors, R., Wiechert, W., Weuster-Botz, D. D. 1997; 56 Vanrolleghem, P. A., Van Daele, M., Dochain D. 1995; 29 Pohjanpalo, H. 1978; 4 Baltes, M., Schneider, R., Sturm, C., Reuss, M. 1994; 10 Espie, D., Machietto, S. 1989; 35 Chappell, M. J. 1995; 125 Bernaerts, K., Versyck, K. J., Van Impe, J. F. 2000; 54 Mehra, R. K. 1974; 19 Banga, J. R., Balsa-Canto, E., Moles, C. G., Alonso, A. A. 2003; 14 Steinberg, D. M., Hunter, W. G. 1984; 26 Ejiofor, A. O., Posten, C. H., Solomon, B. O., Deckwer, W.-D. 1994; 11 Chapell, M. J., Godfrey, K. F., Vadja, S. 1990; 102 Ratkowsky, D. A., Olley, J., McMeekin, T. A., Ball, A. 1982; 149 Merkel, W., Schwarz A., Fritz, S., Reuss, M., Krauth, K. 1996; 34 Banga, J. R., Versyck, K. J., Van Impe, J. F. 2002; 41 Asprey, S. P., Macchietto S. 2000; 24 Versyck, K. J., Bernaerts, K., Geeraerd, A. H., Van Impe, J. F. 1999; 51 Bernaerts, K., Servaes, R. D., Kooyman, S., Versyck, K. J., Van Impe, J. F. 2002; 73 Barton, P. I., Allgor, R. J., Feehery, W. F., Galaan, S. 1998; 37 Dochain, D., Vanrolleghem, P. A., Van Daele, M. 1995; 29 Cooney, M. J., McDonald, K. A. 1995; 43 atypb9 atypb8 McMeekin, T. A. (atypb29) 1993 Bailey, J. E. (atypb2) 1986 Neter, J. (atypb36) 1990 Bernaerts, K. (atypb12) Bernaerts, K. (atypb10) atypb19 Balsa-Canto, E. (atypb3) atypb26 atypb28 atypb44 atypb23 atypb45 atypb24 Sydall, M. T. (atypb41) atypb40 atypb20 atypb42 atypb21 Goodwin, G. C. (atypb25) 1977 atypb43 Munack, A. (atypb35) Bernaerts, K. (atypb13) 2002; 73 Walter, E. (atypb46) 1997 atypb15 Körkel, S. (atypb27) atypb37 atypb16 atypb38 atypb17 atypb39 atypb18 atypb11 atypb33 atypb34 atypb14 atypb1 Ejiofor, A. O. (atypb22) 1994; 11 atypb30 atypb31 atypb32 atypb5 atypb4 atypb7 atypb6 |
References_xml | – volume: 13 start-page: 731 year: 1971 end-page: 742 article-title: Factorial designs, the X’X criterion, and some related matters publication-title: Technometrics – volume: 43 start-page: 826 year: 1995 end-page: 837 article-title: Optimal dynamic experiments for bioreactor model discrimination publication-title: Applied Microbiology Biotechnology – volume: 14 start-page: 131 year: 2003 end-page: 144 article-title: Improving food processing using modern optimization methods publication-title: Trends in Food Science and Technology – volume: 24 start-page: 1261 year: 2000 end-page: 1267 article-title: Statistical tools for optimal dynamic model building publication-title: Computers and Chemical Engineering – volume: 102 start-page: 41 year: 1990 end-page: 73 article-title: Global identifiability of the parameters of nonlinear systems with specified inputs: a comparison of methods publication-title: Biosciences – volume: 37 start-page: 966 year: 1998 end-page: 981 article-title: Dynamic optimisation of a discontinuous world publication-title: Industrial and Engineering Chemistry Research – volume: 149 start-page: 1 year: 1982 end-page: 5 article-title: Relationship between temperature and growth rate of bacterial cultures publication-title: Journal of Bacteriology – volume: 34 start-page: 393 year: 1996 end-page: 401 article-title: New strategies for estimating kinetic parameters in anaerobic wastewater treatment plants publication-title: Water Science and Technology – volume: 4 start-page: 21 year: 1978 end-page: 33 article-title: System identifiability based on the power series expansion of the solution publication-title: Mathematical Biosciences – volume: 26 start-page: 71 year: 1984 end-page: 97 article-title: Experimental design: review and comment publication-title: Technometrics – volume: 10 start-page: 480 year: 1994 end-page: 488 article-title: Optimal experimental design for parameter estimation in unstructured growth models publication-title: Biotechnological Progress – volume: 18 start-page: 181 year: 1982 end-page: 193 article-title: Procedures for parameter and state estimation of microbial growth process models publication-title: Automatica – volume: 51 start-page: 39 year: 1999 end-page: 51 article-title: Introducing optimal experimental design in predictive microbiology: a motivating example publication-title: International Journal of Food Microbiology – volume: 11 start-page: 135 year: 1994 end-page: 144 article-title: A robust fed-batch feeding strategy for optimal parameter estimation for baker’s yeast production publication-title: Bioprocess Engineering – volume: 23 start-page: 277 year: 1994 end-page: 294 article-title: A dynamic approach to predicting bacterial growth in food publication-title: International Journal of Food Microbiology – volume: 19 start-page: 753 year: 1974 end-page: 768 article-title: Optimal input signals for parameter estimation in dynamic systems survey and new results publication-title: IEEE Transactions on Automatic Control – volume: 29 start-page: 2561 year: 1995 end-page: 2570 article-title: Practical identifiability of a bio-kinetic model of activated sludge respiration publication-title: Water Research – volume: 54 start-page: 27 year: 2000 end-page: 38 article-title: On the design of optimal dynamic experiments for parameter estimation of a ratkowsky-type growth kinetics at suboptimal temperatures publication-title: International Journal of Food Microbiology – volume: 9 start-page: 57 year: 1976 end-page: 71 article-title: Discrimination among mechanistic models publication-title: Technometrics – volume: 12 start-page: 569 year: 1970 end-page: 589 article-title: Some experiences with a nonlinear experimental design criterion publication-title: Techno-metrics – volume: 56 start-page: 564 year: 1997 end-page: 576 article-title: Experimental design for the identification of macrokinetic models and model discrimination publication-title: Biotechnology and Bioengineering – volume: 35 start-page: 223 year: 1989 end-page: 229 article-title: The optimal design of dynamic experiments publication-title: AIChE Journal – volume: 125 start-page: 61 year: 1995 end-page: 81 article-title: Structural identifiability and indistinguishability of certain two-compartment models incorporating nonlinear efflux from the peripheral compartment publication-title: Mathematical Biosciences – volume: 29 start-page: 2571 year: 1995 end-page: 2578 article-title: Structural identifiability of biokinetic models of activated sludge respiration publication-title: Water Research – volume: 41 start-page: 2425 year: 2002 end-page: 2430 article-title: Computation of optimal identification experiments for nonlinear dynamic process models: a stochastic global optimization approach publication-title: Industrial and Engineering Chemistry Research – volume: 73 start-page: 147 year: 2002 end-page: 159 article-title: Optimal temperature input design for estimation of the Square Root model parameters: parameter accuracy and model validity restrictions publication-title: International Journal of Food Microbiology, Special issue – ident: atypb5 doi: 10.1021/ie010183d – start-page: 338 volume-title: Proceedings of the international workshop on scientific computing in chemical engineering ident: atypb27 – ident: atypb26 doi: 10.1016/0005-1098(82)90107-8 – volume-title: Dynamic system identification: experiment design and data analysis year: 1977 ident: atypb25 – start-page: 23 volume-title: Preprints of the 7th International Conference on Computer applications in biotechnology ident: atypb41 – ident: atypb33 doi: 10.1002/9783527620852.ch8 – start-page: 212 volume-title: Proceedings of the Second International Conference on Simulation in food and bio-industry ident: atypb10 – ident: atypb42 doi: 10.1002/(SICI)1097-0290(19971205)56:5<564::AID-BIT10>3.0.CO;2-C – volume-title: Predictive microbiology: Ko theory and application year: 1993 ident: atypb29 – ident: atypb34 doi: 10.1016/S1474-6670(17)50331-6 – ident: atypb1 doi: 10.1016/S0098-1354(00)00328-8 – volume: 73 start-page: 147 year: 2002 ident: atypb13 publication-title: International Journal of Food Microbiology, Special issue – ident: atypb19 doi: 10.1016/0025-5564(90)90055-4 – volume-title: Biochemical engineering fundamentals year: 1986 ident: atypb2 – ident: atypb14 doi: 10.1080/00401706.1967.10490441 – ident: atypb11 doi: 10.1016/S0168-1605(99)00140-3 – ident: atypb6 doi: 10.1016/S0924-2244(03)00048-7 – volume-title: Identification of parametric models from experimental data year: 1997 ident: atypb46 – ident: atypb15 doi: 10.1080/00401706.1970.10488698 – ident: atypb45 doi: 10.1016/S0168-1605(99)00093-8 – ident: atypb8 doi: 10.1021/ie970738y – ident: atypb18 doi: 10.1016/S1474-6670(17)52458-1 – ident: atypb23 doi: 10.1002/aic.690350206 – ident: atypb20 doi: 10.1007/BF02431915 – ident: atypb28 doi: 10.1002/047134608X.W1046 – ident: atypb37 doi: 10.1016/0025-5564(78)90063-9 – volume: 11 start-page: 135 year: 1994 ident: atypb22 publication-title: Bioprocess Engineering – ident: atypb9 doi: 10.1002/9780470316757 – ident: atypb16 doi: 10.1080/00401706.1971.10488845 – ident: atypb4 doi: 10.1021/bp00029a005 – ident: atypb30 doi: 10.1109/TAC.1974.1100701 – volume-title: Applied linear statistical models year: 1990 ident: atypb36 – ident: atypb24 doi: 10.1016/S1474-6670(17)60544-5 – ident: atypb17 doi: 10.1016/0025-5564(94)00023-S – ident: atypb44 doi: 10.1016/0043-1354(95)00105-T – ident: atypb39 – ident: atypb32 doi: 10.1007/978-94-009-1141-3_21 – start-page: 2010 volume-title: Proceedings of the American Control Conference ident: atypb35 – ident: atypb21 doi: 10.1016/0043-1354(95)00106-U – ident: atypb43 doi: 10.1007/978-94-015-9111-9_10 – ident: atypb7 doi: 10.1016/0168-1605(94)90157-0 – ident: atypb40 doi: 10.1080/00401706.1984.10487928 – start-page: 19 volume-title: 8th International Conference on Computer Applications in Biotechnology ident: atypb12 – start-page: 271 volume-title: Proceedings of ACoFoP IV Automatic control of food and biological processes ident: atypb3 – ident: atypb31 doi: 10.2166/wst.1996.0575 – ident: atypb38 doi: 10.1128/JB.149.1.1-5.1982 |
SSID | ssj0004464 |
Score | 1.6987624 |
Snippet | Bioprocess modelling presents a challenging subject, which requires a meticulous modelling strategy. During the modelling process, experimental data form a key... |
SourceID | proquest crossref sage |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 349 |
Title | Data-driven approaches to the modelling of bioprocesses |
URI | https://journals.sagepub.com/doi/full/10.1191/0142331204tm127oa https://www.proquest.com/docview/275046960 https://www.proquest.com/docview/28141252 https://www.proquest.com/docview/743179508 |
Volume | 26 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fS8MwED50Q9AH0alYpzMPgiAU2zRtkyfxx-YQFBEF30qapiDoOtfu__fSpdtQ5mtyKeGSXL5r7r4DONOGdTxVyg00niYWyNyVvqddPBwxz2SQ65qB7_EpGr6xh_fw3cbmlDassrGJtaHOCmX-kV_WPOQR4u2r8bdrikaZx1VbQWMd2miBOfpe7Zv-0_PLIjGSzfijfEbdIPCpfdZEH-XStJkmj1VfPo2LXxfTAm0uBXjVd85gB7YtWCTXs9XdhTU96sDWEoVgBzbqEE5V7kF8JyvpZhNjvkhDFa5LUhUEQR6pS96Y3HNS5CT9KMazDAFd7sPboP96O3RtWQRXBTGr0HWM8lghrFFRlAmaeiLTwiTMqjBOsYuHVAehpxB4MJSQAl1EtHlcpKiPAOHEAbRGxUgfAhGMiRQvaF-KlPEs5nkUR2EYacql4JQ54DU6SZTlDDelKz6T2ncQfvJHjQ5czIeMZ4QZ_wl3G0Un9uyUyXylHTid9-KmNy8ZcqSLKYpwnDMNqQNkhUQNjEyFWwfOzQIuPr9yMkf_TqYLmw3Ho-cfQ6uaTPUJ4pEq7cE6H9z37N77AbU22UQ |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB4BFaI9oPJSAxR8ACEhRSS2k9gHhKouy8IunEDiFhzHkSq1my0JQv1R_Y8dO8nuigpuXO2JZY3nGXu-ATgwFnU809pnBrWJM1X4KgyMj8qRiFyxwjgEvuubeHDHr-6j-wX429XC2GeVnU10hjovtf1HfuJwyGOMt88mv33bNMpernYdNBqpGJo_z5ixVaeXPTzeQ0r757ffB37bVMDXLOE1Jl5xkWgMCnQc55JmgcyNtOWmOkoynBIRNSwKNLptjhRKYoKFFkPILOCcoTPGdRfhA2dMWoUS_YtZGSZv0KpCTn3GQtpeomJGdGLH7FDA618hTcoXbnAW2849J3Merv8ZVtvQlHxrZGkNFsx4HT7NARauw7J7MKqrDUh6qlZ-_miNJemAyU1F6pJgSElcgx1b6U7KgmQ_yklTj2CqTbh7F35twdK4HJsvQCTnMsNwIFQy4yJPRBEncRTFhgolBeUeBB1PUt0ilNtGGT9Tl6nIMP2PjR4cTz-ZNPAcbxHvdIxOW02t0qlcebA_nUUVs_cmamzKJyQRuGcaUQ_IKxQuDLP9dD04sgc4W_7VzWy_uZl9WBncXo_S0eXNcAc-duiSQbgLS_Xjk_mKkVCd7Tn5I_Dw3gL_D2DCEJs |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Data-driven+approaches+to+the+modelling+of+bioprocesses&rft.jtitle=Transactions+of+the+Institute+of+Measurement+and+Control&rft.au=Bernaerts%2C+Kristel&rft.au=Van+Impe%2C+Jan+F.&rft.date=2004-12-01&rft.issn=0142-3312&rft.eissn=1477-0369&rft.volume=26&rft.issue=5&rft.spage=349&rft.epage=372&rft_id=info:doi/10.1191%2F0142331204tm127oa&rft.externalDBID=n%2Fa&rft.externalDocID=10_1191_0142331204tm127oa |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0142-3312&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0142-3312&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0142-3312&client=summon |