Synthesis of complementary hierarchical structured Si/C composites with high Si content for lithium-ion batteries

Si/C composites are considered as the most promising anode materials for next-generation lithium-ion batteries (LIBs) due to their high specific capacity and low cost. However, the commercialized Si/C composites cannot maintain a Si content over 10 wt% for sustaining an acceptable cycle life. To ach...

Full description

Saved in:
Bibliographic Details
Published inNanoscale Vol. 1; no. 4; pp. 19195 - 1922
Main Authors Yue, Xin-Yang, Yan, Zhong, Song, Yun, Wu, Xiao-Jing, Zhou, Yong-Ning
Format Journal Article
LanguageEnglish
Published England Royal Society of Chemistry 18.10.2018
Subjects
Online AccessGet full text
ISSN2040-3364
2040-3372
2040-3372
DOI10.1039/c8nr04280b

Cover

Loading…
Abstract Si/C composites are considered as the most promising anode materials for next-generation lithium-ion batteries (LIBs) due to their high specific capacity and low cost. However, the commercialized Si/C composites cannot maintain a Si content over 10 wt% for sustaining an acceptable cycle life. To achieve long-term cycle stability for Si/C composites with high Si content is still very challenging. Here, we report a rationally designed double-morphology Si/graphene (DMSiG) composite with a high Si content of 78 wt%, and prove its feasibility as a high performance anode material for LIBs. DMSiG composes of Si quantum-dot decorated graphene and mesoporous Si spheres with a complementary hierarchical structure. The graphene framework enhances the electronic conductivity, alleviates the aggregation of mesoporous Si spheres and provides space and flexibility to buffer the volume change during cycling. Mesoporous Si spheres contribute to a large reversible capacity and support the hierarchical architecture of DMSiG. The Si quantum-dots help to build firm connections between graphene and mesoporous Si spheres to avoid their separation during cycling. Coupling these features together, the DMSiG anode delivers a high reversible capacity of 1318 mA h g −1 at a current density of 500 mA g −1 and 684 mA h g −1 at 2000 mA g −1 . A double-morphology Si/C composite with a complementary hierarchical structure is reported as a new anode material for lithium batteries.
AbstractList Si/C composites are considered as the most promising anode materials for next-generation lithium-ion batteries (LIBs) due to their high specific capacity and low cost. However, the commercialized Si/C composites cannot maintain a Si content over 10 wt% for sustaining an acceptable cycle life. To achieve long-term cycle stability for Si/C composites with high Si content is still very challenging. Here, we report a rationally designed double-morphology Si/graphene (DMSiG) composite with a high Si content of 78 wt%, and prove its feasibility as a high performance anode material for LIBs. DMSiG composes of Si quantum-dot decorated graphene and mesoporous Si spheres with a complementary hierarchical structure. The graphene framework enhances the electronic conductivity, alleviates the aggregation of mesoporous Si spheres and provides space and flexibility to buffer the volume change during cycling. Mesoporous Si spheres contribute to a large reversible capacity and support the hierarchical architecture of DMSiG. The Si quantum-dots help to build firm connections between graphene and mesoporous Si spheres to avoid their separation during cycling. Coupling these features together, the DMSiG anode delivers a high reversible capacity of 1318 mA h g-1 at a current density of 500 mA g-1 and 684 mA h g-1 at 2000 mA g-1.Si/C composites are considered as the most promising anode materials for next-generation lithium-ion batteries (LIBs) due to their high specific capacity and low cost. However, the commercialized Si/C composites cannot maintain a Si content over 10 wt% for sustaining an acceptable cycle life. To achieve long-term cycle stability for Si/C composites with high Si content is still very challenging. Here, we report a rationally designed double-morphology Si/graphene (DMSiG) composite with a high Si content of 78 wt%, and prove its feasibility as a high performance anode material for LIBs. DMSiG composes of Si quantum-dot decorated graphene and mesoporous Si spheres with a complementary hierarchical structure. The graphene framework enhances the electronic conductivity, alleviates the aggregation of mesoporous Si spheres and provides space and flexibility to buffer the volume change during cycling. Mesoporous Si spheres contribute to a large reversible capacity and support the hierarchical architecture of DMSiG. The Si quantum-dots help to build firm connections between graphene and mesoporous Si spheres to avoid their separation during cycling. Coupling these features together, the DMSiG anode delivers a high reversible capacity of 1318 mA h g-1 at a current density of 500 mA g-1 and 684 mA h g-1 at 2000 mA g-1.
Si/C composites are considered as the most promising anode materials for next-generation lithium-ion batteries (LIBs) due to their high specific capacity and low cost. However, the commercialized Si/C composites cannot maintain a Si content over 10 wt% for sustaining an acceptable cycle life. To achieve long-term cycle stability for Si/C composites with high Si content is still very challenging. Here, we report a rationally designed double-morphology Si/graphene (DMSiG) composite with a high Si content of 78 wt%, and prove its feasibility as a high performance anode material for LIBs. DMSiG composes of Si quantum-dot decorated graphene and mesoporous Si spheres with a complementary hierarchical structure. The graphene framework enhances the electronic conductivity, alleviates the aggregation of mesoporous Si spheres and provides space and flexibility to buffer the volume change during cycling. Mesoporous Si spheres contribute to a large reversible capacity and support the hierarchical architecture of DMSiG. The Si quantum-dots help to build firm connections between graphene and mesoporous Si spheres to avoid their separation during cycling. Coupling these features together, the DMSiG anode delivers a high reversible capacity of 1318 mA h g-1 at a current density of 500 mA g-1 and 684 mA h g-1 at 2000 mA g-1.
Si/C composites are considered as the most promising anode materials for next-generation lithium-ion batteries (LIBs) due to their high specific capacity and low cost. However, the commercialized Si/C composites cannot maintain a Si content over 10 wt% for sustaining an acceptable cycle life. To achieve long-term cycle stability for Si/C composites with high Si content is still very challenging. Here, we report a rationally designed double-morphology Si/graphene (DMSiG) composite with a high Si content of 78 wt%, and prove its feasibility as a high performance anode material for LIBs. DMSiG composes of Si quantum-dot decorated graphene and mesoporous Si spheres with a complementary hierarchical structure. The graphene framework enhances the electronic conductivity, alleviates the aggregation of mesoporous Si spheres and provides space and flexibility to buffer the volume change during cycling. Mesoporous Si spheres contribute to a large reversible capacity and support the hierarchical architecture of DMSiG. The Si quantum-dots help to build firm connections between graphene and mesoporous Si spheres to avoid their separation during cycling. Coupling these features together, the DMSiG anode delivers a high reversible capacity of 1318 mA h g −1 at a current density of 500 mA g −1 and 684 mA h g −1 at 2000 mA g −1 . A double-morphology Si/C composite with a complementary hierarchical structure is reported as a new anode material for lithium batteries.
Si/C composites are considered as the most promising anode materials for next-generation lithium-ion batteries (LIBs) due to their high specific capacity and low cost. However, the commercialized Si/C composites cannot maintain a Si content over 10 wt% for sustaining an acceptable cycle life. To achieve long-term cycle stability for Si/C composites with high Si content is still very challenging. Here, we report a rationally designed double-morphology Si/graphene (DMSiG) composite with a high Si content of 78 wt%, and prove its feasibility as a high performance anode material for LIBs. DMSiG composes of Si quantum-dot decorated graphene and mesoporous Si spheres with a complementary hierarchical structure. The graphene framework enhances the electronic conductivity, alleviates the aggregation of mesoporous Si spheres and provides space and flexibility to buffer the volume change during cycling. Mesoporous Si spheres contribute to a large reversible capacity and support the hierarchical architecture of DMSiG. The Si quantum-dots help to build firm connections between graphene and mesoporous Si spheres to avoid their separation during cycling. Coupling these features together, the DMSiG anode delivers a high reversible capacity of 1318 mA h g −1 at a current density of 500 mA g −1 and 684 mA h g −1 at 2000 mA g −1 .
Si/C composites are considered as the most promising anode materials for next-generation lithium-ion batteries (LIBs) due to their high specific capacity and low cost. However, the commercialized Si/C composites cannot maintain a Si content over 10 wt% for sustaining an acceptable cycle life. To achieve long-term cycle stability for Si/C composites with high Si content is still very challenging. Here, we report a rationally designed double-morphology Si/graphene (DMSiG) composite with a high Si content of 78 wt%, and prove its feasibility as a high performance anode material for LIBs. DMSiG composes of Si quantum-dot decorated graphene and mesoporous Si spheres with a complementary hierarchical structure. The graphene framework enhances the electronic conductivity, alleviates the aggregation of mesoporous Si spheres and provides space and flexibility to buffer the volume change during cycling. Mesoporous Si spheres contribute to a large reversible capacity and support the hierarchical architecture of DMSiG. The Si quantum-dots help to build firm connections between graphene and mesoporous Si spheres to avoid their separation during cycling. Coupling these features together, the DMSiG anode delivers a high reversible capacity of 1318 mA h g−1 at a current density of 500 mA g−1 and 684 mA h g−1 at 2000 mA g−1.
Author Yue, Xin-Yang
Yan, Zhong
Wu, Xiao-Jing
Zhou, Yong-Ning
Song, Yun
AuthorAffiliation Fudan University
Department of Materials Science
AuthorAffiliation_xml – sequence: 0
  name: Fudan University
– sequence: 0
  name: Department of Materials Science
Author_xml – sequence: 1
  givenname: Xin-Yang
  surname: Yue
  fullname: Yue, Xin-Yang
– sequence: 2
  givenname: Zhong
  surname: Yan
  fullname: Yan, Zhong
– sequence: 3
  givenname: Yun
  surname: Song
  fullname: Song, Yun
– sequence: 4
  givenname: Xiao-Jing
  surname: Wu
  fullname: Wu, Xiao-Jing
– sequence: 5
  givenname: Yong-Ning
  surname: Zhou
  fullname: Zhou, Yong-Ning
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30303217$$D View this record in MEDLINE/PubMed
BookMark eNptkd1r2zAUxcXoWNN0L3tvEfRlDNzqw7LsxzZs6yC00GzPRpavZxVbSiSZkv9-atKlUIoeJHR_53A55wQdWWcBoS-UXFLCqytdWk9yVpLmA5oxkpOMc8mODu8iP0YnITwSUlS84J_QMSfpMCpnaLPa2thDMAG7Dms3rgcYwUblt7g34JXXvdFqwCH6ScfJQ4tX5mqxQ10wEQJ-MrFP8N8-TdK_jUmPO-fxkAZmGjPjLG5UjOANhFP0sVNDgM8v9xz9-fH99-I2W97__LW4XmaayzxmueJtrhVrCADTAiqiGtkplou2ESAqITpddLwtZVtUumpaoWQnyrykSkpBGJ-jr3vftXebCUKsRxM0DIOy4KZQM0plyUhBZUIv3qCPbvI2bZcoRgshSvpseP5CTc0Ibb32Zkwx1f_DTMC3PaC9C8FDd0AoqZ-bqhfl3cOuqZsEkzewNlHFFFX0ygzvS872Eh_0wfq1fP4PehygTg
CitedBy_id crossref_primary_10_1016_j_ensm_2019_12_025
crossref_primary_10_1021_acsami_2c11906
crossref_primary_10_1021_acsami_9b13024
crossref_primary_10_1016_j_jpowsour_2021_229709
crossref_primary_10_34133_energymatadv_0113
crossref_primary_10_1016_j_electacta_2020_136222
crossref_primary_10_1016_j_ensm_2022_11_054
crossref_primary_10_1016_j_jallcom_2020_157932
crossref_primary_10_1016_j_jpowsour_2018_11_014
crossref_primary_10_1021_acs_energyfuels_3c01074
crossref_primary_10_1016_j_colsurfa_2024_133877
crossref_primary_10_1016_j_jpowsour_2019_227056
crossref_primary_10_1021_acsaem_1c00737
crossref_primary_10_1016_j_surfcoat_2021_127606
crossref_primary_10_3389_fenrg_2020_00002
crossref_primary_10_1149_1945_7111_ada370
crossref_primary_10_1016_j_nxmate_2024_100371
crossref_primary_10_1002_celc_202000827
crossref_primary_10_1039_C9TA08554H
crossref_primary_10_1002_celc_201901113
crossref_primary_10_1021_acsami_4c09120
crossref_primary_10_3390_ma15124264
crossref_primary_10_1039_D0DT00566E
crossref_primary_10_1021_acsaem_1c00523
crossref_primary_10_1016_j_electacta_2019_135248
crossref_primary_10_1016_j_heliyon_2024_e31482
crossref_primary_10_1039_C9NR01440C
crossref_primary_10_1039_C9QI00488B
crossref_primary_10_1007_s11426_024_2265_9
crossref_primary_10_1016_j_ceramint_2021_11_017
crossref_primary_10_1039_D0TA04389C
Cites_doi 10.1002/smll.201702737
10.1002/aenm.201100485
10.1039/C4TA06249C
10.1039/b919738a
10.1016/j.jpowsour.2016.09.029
10.1002/aenm.201601481
10.1039/C7TA08283E
10.1002/aenm.201100426
10.1038/nnano.2012.35
10.1002/cssc.201100609
10.1016/j.jpowsour.2016.08.104
10.1038/srep09014
10.1002/aenm.201100259
10.1021/nl8036323
10.1149/1.1739217
10.1002/aenm.201401627
10.1002/aenm.201300496
10.1063/1.3000442
10.1002/aenm.201200158
10.1039/c2cc17061b
10.1016/j.carbon.2011.01.002
10.1007/s11434-011-4609-6
10.1016/j.jmst.2018.02.004
10.1039/C5TA04203H
10.1002/ente.200038
10.1039/C4TA01876A
10.1002/aenm.201200857
10.1126/science.1200770
10.1038/srep08781
10.1016/j.elecom.2011.03.006
10.1021/nl902058c
10.1038/ncomms5105
10.1149/1.1613668
10.1016/j.jpowsour.2016.08.087
10.1149/2.0131514jes
10.1002/aenm.201400753
10.1007/s11581-006-0046-y
10.1016/j.jpowsour.2010.02.021
10.1016/j.elecom.2013.09.019
10.1021/acsami.8b00370
10.1038/nenergy.2016.71
10.1016/S0378-7753(99)00139-1
10.1016/j.carbon.2016.06.068
10.1149/1.2409862
10.1016/j.nantod.2012.08.004
10.1039/c3cp51190a
10.1016/j.nanoen.2015.08.025
10.1002/aenm.201300882
10.1149/1.3205485
10.1039/C5NR06278K
10.1007/s10800-018-1234-y
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2018
Copyright_xml – notice: Copyright Royal Society of Chemistry 2018
DBID AAYXX
CITATION
NPM
7SR
7U5
8BQ
8FD
F28
FR3
JG9
L7M
7X8
DOI 10.1039/c8nr04280b
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Solid State and Superconductivity Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
METADEX
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed

CrossRef
Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2040-3372
EndPage 1922
ExternalDocumentID 30303217
10_1039_C8NR04280B
c8nr04280b
Genre Journal Article
GroupedDBID ---
-JG
0-7
0R~
29M
4.4
53G
705
7~J
AAEMU
AAIWI
AAJAE
AANOJ
AARTK
AAWGC
AAXHV
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFS
ACIWK
ACLDK
ADMRA
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRDS
AFVBQ
AGEGJ
AGRSR
AGSTE
AHGCF
AKBGW
ALMA_UNASSIGNED_HOLDINGS
ANUXI
APEMP
ASKNT
AUDPV
AZFZN
BLAPV
BSQNT
C6K
DU5
EBS
ECGLT
EE0
EF-
EJD
F5P
GGIMP
H13
HZ~
H~N
J3I
O-G
O9-
OK1
P2P
RAOCF
RCNCU
RNS
RPMJG
RRC
RSCEA
RVUXY
AAYXX
AFRZK
AKMSF
ALUYA
CITATION
NPM
7SR
7U5
8BQ
8FD
F28
FR3
JG9
L7M
7X8
ID FETCH-LOGICAL-c374t-4a3d4ca2b0ee2c5e90ab7fa245db5e5955fc6f3d87d69c9bd5a7f58481a775023
ISSN 2040-3364
2040-3372
IngestDate Fri Jul 11 07:11:52 EDT 2025
Sun Jun 29 15:35:49 EDT 2025
Wed Feb 19 02:43:09 EST 2025
Tue Jul 01 01:13:29 EDT 2025
Thu Apr 24 23:08:10 EDT 2025
Tue Dec 17 21:00:31 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c374t-4a3d4ca2b0ee2c5e90ab7fa245db5e5955fc6f3d87d69c9bd5a7f58481a775023
Notes 10.1039/c8nr04280b
2
RGO; TEM image of the GN; TGA curves of the DMSiG; SEM images of the DMSiG electrode after cycling; cycling performance of the DMSiG. See DOI
Electronic supplementary information (ESI) available: Photographs of the samples; SEM images of the DMSiO
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-9791-3468
PMID 30303217
PQID 2121655812
PQPubID 2047485
PageCount 8
ParticipantIDs crossref_primary_10_1039_C8NR04280B
pubmed_primary_30303217
crossref_citationtrail_10_1039_C8NR04280B
proquest_miscellaneous_2117820617
rsc_primary_c8nr04280b
proquest_journals_2121655812
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20181018
PublicationDateYYYYMMDD 2018-10-18
PublicationDate_xml – month: 10
  year: 2018
  text: 20181018
  day: 18
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Cambridge
PublicationTitle Nanoscale
PublicationTitleAlternate Nanoscale
PublicationYear 2018
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Liu (C8NR04280B-(cit5)/*[position()=1]) 2015; 8
Li (C8NR04280B-(cit20)/*[position()=1]) 2014; 5
Kim (C8NR04280B-(cit27)/*[position()=1]) 2018; 48
Lee (C8NR04280B-(cit22)/*[position()=1]) 2013; 15
Yi (C8NR04280B-(cit9)/*[position()=1]) 2013; 3
Nguyen (C8NR04280B-(cit16)/*[position()=1]) 2011; 1
Beaulieu (C8NR04280B-(cit14)/*[position()=1]) 2003; 150
Wu (C8NR04280B-(cit19)/*[position()=1]) 2012; 7
Jiang (C8NR04280B-(cit33)/*[position()=1]) 2016; 107
Wang (C8NR04280B-(cit36)/*[position()=1]) 2015; 3
Weydanz (C8NR04280B-(cit12)/*[position()=1]) 1999; 81
Su (C8NR04280B-(cit1)/*[position()=1]) 2014; 4
Zhao (C8NR04280B-(cit52)/*[position()=1]) 2011; 1
Cui (C8NR04280B-(cit18)/*[position()=1]) 2009; 9
Wu (C8NR04280B-(cit21)/*[position()=1]) 2012; 7
Park (C8NR04280B-(cit4)/*[position()=1]) 2009; 9
Zhou (C8NR04280B-(cit40)/*[position()=1]) 2012; 2
Xiang (C8NR04280B-(cit32)/*[position()=1]) 2011; 49
Zhou (C8NR04280B-(cit10)/*[position()=1]) 2011; 13
Xu (C8NR04280B-(cit30)/*[position()=1]) 2015; 5
Zhou (C8NR04280B-(cit35)/*[position()=1]) 2012; 48
Huang (C8NR04280B-(cit23)/*[position()=1]) 2018; 6
Wang (C8NR04280B-(cit37)/*[position()=1]) 2016; 329
Jia (C8NR04280B-(cit42)/*[position()=1]) 2011; 1
Ren (C8NR04280B-(cit39)/*[position()=1]) 2013; 1
Du (C8NR04280B-(cit43)/*[position()=1]) 2013; 36
Sun (C8NR04280B-(cit6)/*[position()=1]) 2016; 1
Mi (C8NR04280B-(cit45)/*[position()=1]) 2014; 2
Xiang (C8NR04280B-(cit51)/*[position()=1]) 2011; 49
Feng (C8NR04280B-(cit15)/*[position()=1]) 2018; 14
Zhu (C8NR04280B-(cit53)/*[position()=1]) 2011; 332
Yi (C8NR04280B-(cit31)/*[position()=1]) 2013; 3
Wang (C8NR04280B-(cit28)/*[position()=1]) 2015; 5
Li (C8NR04280B-(cit8)/*[position()=1]) 2015; 5
Raimann (C8NR04280B-(cit11)/*[position()=1]) 2006; 12
Luo (C8NR04280B-(cit2)/*[position()=1]) 2015; 162
Li (C8NR04280B-(cit47)/*[position()=1]) 2007; 154
Gu (C8NR04280B-(cit3)/*[position()=1]) 2015; 17
Lee (C8NR04280B-(cit34)/*[position()=1]) 2010; 46
Tian (C8NR04280B-(cit50)/*[position()=1]) 2011; 56
Hatchard (C8NR04280B-(cit13)/*[position()=1]) 2004; 151
Xu (C8NR04280B-(cit29)/*[position()=1]) 2016; 7
Tang (C8NR04280B-(cit48)/*[position()=1]) 2012; 5
Yue (C8NR04280B-(cit49)/*[position()=1]) 2016; 331
Yin (C8NR04280B-(cit7)/*[position()=1]) 2018; 34
Huang (C8NR04280B-(cit38)/*[position()=1]) 2018; 10
Li (C8NR04280B-(cit46)/*[position()=1]) 2015; 5
Verbrugge (C8NR04280B-(cit26)/*[position()=1]) 2009; 156
Kim (C8NR04280B-(cit44)/*[position()=1]) 2015; 5
Jing (C8NR04280B-(cit41)/*[position()=1]) 2015; 3
Deshpande (C8NR04280B-(cit25)/*[position()=1]) 2010; 195
Cheng (C8NR04280B-(cit24)/*[position()=1]) 2008; 104
Yue (C8NR04280B-(cit17)/*[position()=1]) 2016; 329
References_xml – volume: 14
  start-page: 1702737
  year: 2018
  ident: C8NR04280B-(cit15)/*[position()=1]
  publication-title: Small
  doi: 10.1002/smll.201702737
– volume: 1
  start-page: 1036
  year: 2011
  ident: C8NR04280B-(cit42)/*[position()=1]
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201100485
– volume: 3
  start-page: 3962
  year: 2015
  ident: C8NR04280B-(cit36)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C4TA06249C
– volume: 46
  start-page: 2025
  year: 2010
  ident: C8NR04280B-(cit34)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/b919738a
– volume: 331
  start-page: 10
  year: 2016
  ident: C8NR04280B-(cit49)/*[position()=1]
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2016.09.029
– volume: 7
  start-page: 1601481
  year: 2016
  ident: C8NR04280B-(cit29)/*[position()=1]
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201601481
– volume: 6
  start-page: 2593
  year: 2018
  ident: C8NR04280B-(cit23)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA08283E
– volume: 1
  start-page: 1079
  year: 2011
  ident: C8NR04280B-(cit52)/*[position()=1]
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201100426
– volume: 7
  start-page: 310
  year: 2012
  ident: C8NR04280B-(cit21)/*[position()=1]
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2012.35
– volume: 5
  start-page: 400
  year: 2012
  ident: C8NR04280B-(cit48)/*[position()=1]
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201100609
– volume: 329
  start-page: 422
  year: 2016
  ident: C8NR04280B-(cit17)/*[position()=1]
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2016.08.104
– volume: 5
  start-page: 9014
  year: 2015
  ident: C8NR04280B-(cit44)/*[position()=1]
  publication-title: Sci. Rep.
  doi: 10.1038/srep09014
– volume: 1
  start-page: 1154
  year: 2011
  ident: C8NR04280B-(cit16)/*[position()=1]
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201100259
– volume: 9
  start-page: 491
  year: 2009
  ident: C8NR04280B-(cit18)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/nl8036323
– volume: 151
  start-page: A838
  year: 2004
  ident: C8NR04280B-(cit13)/*[position()=1]
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.1739217
– volume: 5
  start-page: 1401627
  year: 2015
  ident: C8NR04280B-(cit8)/*[position()=1]
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201401627
– volume: 5
  start-page: 107
  year: 2015
  ident: C8NR04280B-(cit46)/*[position()=1]
  publication-title: Adv. Energy Mater.
– volume: 3
  start-page: 1507
  year: 2013
  ident: C8NR04280B-(cit9)/*[position()=1]
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201300496
– volume: 104
  start-page: 083521
  year: 2008
  ident: C8NR04280B-(cit24)/*[position()=1]
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.3000442
– volume: 2
  start-page: 1086
  year: 2012
  ident: C8NR04280B-(cit40)/*[position()=1]
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201200158
– volume: 48
  start-page: 2198
  year: 2012
  ident: C8NR04280B-(cit35)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/c2cc17061b
– volume: 49
  start-page: 1787
  year: 2011
  ident: C8NR04280B-(cit32)/*[position()=1]
  publication-title: Carbon
  doi: 10.1016/j.carbon.2011.01.002
– volume: 56
  start-page: 3204
  year: 2011
  ident: C8NR04280B-(cit50)/*[position()=1]
  publication-title: Sci. Bull.
  doi: 10.1007/s11434-011-4609-6
– volume: 34
  start-page: 1902
  year: 2018
  ident: C8NR04280B-(cit7)/*[position()=1]
  publication-title: J. Mater. Sci. Technol.
  doi: 10.1016/j.jmst.2018.02.004
– volume: 3
  start-page: 15675
  year: 2015
  ident: C8NR04280B-(cit41)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C5TA04203H
– volume: 1
  start-page: 77
  year: 2013
  ident: C8NR04280B-(cit39)/*[position()=1]
  publication-title: Energy Technol.
  doi: 10.1002/ente.200038
– volume: 2
  start-page: 11254
  year: 2014
  ident: C8NR04280B-(cit45)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C4TA01876A
– volume: 3
  start-page: 295
  year: 2013
  ident: C8NR04280B-(cit31)/*[position()=1]
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201200857
– volume: 332
  start-page: 1537
  year: 2011
  ident: C8NR04280B-(cit53)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.1200770
– volume: 5
  start-page: 8781
  year: 2015
  ident: C8NR04280B-(cit28)/*[position()=1]
  publication-title: Sci. Rep.
  doi: 10.1038/srep08781
– volume: 13
  start-page: 546
  year: 2011
  ident: C8NR04280B-(cit10)/*[position()=1]
  publication-title: Electrochem. Commun.
  doi: 10.1016/j.elecom.2011.03.006
– volume: 9
  start-page: 3844
  year: 2009
  ident: C8NR04280B-(cit4)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/nl902058c
– volume: 5
  start-page: 4105
  year: 2014
  ident: C8NR04280B-(cit20)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms5105
– volume: 150
  start-page: A1457
  year: 2003
  ident: C8NR04280B-(cit14)/*[position()=1]
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.1613668
– volume: 329
  start-page: 305
  year: 2016
  ident: C8NR04280B-(cit37)/*[position()=1]
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2016.08.087
– volume: 162
  start-page: A2509
  year: 2015
  ident: C8NR04280B-(cit2)/*[position()=1]
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.0131514jes
– volume: 5
  start-page: 1400753
  year: 2015
  ident: C8NR04280B-(cit30)/*[position()=1]
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201400753
– volume: 12
  start-page: 253
  year: 2006
  ident: C8NR04280B-(cit11)/*[position()=1]
  publication-title: Ionics
  doi: 10.1007/s11581-006-0046-y
– volume: 195
  start-page: 5081
  year: 2010
  ident: C8NR04280B-(cit25)/*[position()=1]
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2010.02.021
– volume: 36
  start-page: 107
  year: 2013
  ident: C8NR04280B-(cit43)/*[position()=1]
  publication-title: Electrochem. Commun.
  doi: 10.1016/j.elecom.2013.09.019
– volume: 49
  start-page: 1787
  year: 2011
  ident: C8NR04280B-(cit51)/*[position()=1]
  publication-title: Carbon
  doi: 10.1016/j.carbon.2011.01.002
– volume: 10
  start-page: 15624
  year: 2018
  ident: C8NR04280B-(cit38)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b00370
– volume: 1
  start-page: 16071
  year: 2016
  ident: C8NR04280B-(cit6)/*[position()=1]
  publication-title: Nat. Energy
  doi: 10.1038/nenergy.2016.71
– volume: 81
  start-page: 237
  year: 1999
  ident: C8NR04280B-(cit12)/*[position()=1]
  publication-title: J. Power Sources
  doi: 10.1016/S0378-7753(99)00139-1
– volume: 107
  start-page: 600
  year: 2016
  ident: C8NR04280B-(cit33)/*[position()=1]
  publication-title: Carbon
  doi: 10.1016/j.carbon.2016.06.068
– volume: 154
  start-page: A156
  year: 2007
  ident: C8NR04280B-(cit47)/*[position()=1]
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.2409862
– volume: 7
  start-page: 414
  year: 2012
  ident: C8NR04280B-(cit19)/*[position()=1]
  publication-title: Nano Today
  doi: 10.1016/j.nantod.2012.08.004
– volume: 15
  start-page: 7045
  year: 2013
  ident: C8NR04280B-(cit22)/*[position()=1]
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/c3cp51190a
– volume: 17
  start-page: 366
  year: 2015
  ident: C8NR04280B-(cit3)/*[position()=1]
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2015.08.025
– volume: 4
  start-page: 1300882
  year: 2014
  ident: C8NR04280B-(cit1)/*[position()=1]
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201300882
– volume: 156
  start-page: A927
  year: 2009
  ident: C8NR04280B-(cit26)/*[position()=1]
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.3205485
– volume: 8
  start-page: 701
  year: 2015
  ident: C8NR04280B-(cit5)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/C5NR06278K
– volume: 48
  start-page: 1057
  year: 2018
  ident: C8NR04280B-(cit27)/*[position()=1]
  publication-title: J. Appl. Electrochem.
  doi: 10.1007/s10800-018-1234-y
SSID ssj0069363
Score 2.4127862
Snippet Si/C composites are considered as the most promising anode materials for next-generation lithium-ion batteries (LIBs) due to their high specific capacity and...
SourceID proquest
pubmed
crossref
rsc
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 19195
SubjectTerms Anodes
Commercialization
Composite materials
Cycles
Electrode materials
Graphene
Lithium
Lithium-ion batteries
Morphology
Quantum dots
Rechargeable batteries
Scanning electron microscopy
Silicon
Structural hierarchy
Title Synthesis of complementary hierarchical structured Si/C composites with high Si content for lithium-ion batteries
URI https://www.ncbi.nlm.nih.gov/pubmed/30303217
https://www.proquest.com/docview/2121655812
https://www.proquest.com/docview/2117820617
Volume 1
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLegu8AB8TVWGMgILghlS-I4aY5bBUxD7EA3reUS-StaJUigaw7jr-c9x3FSUSTgElV-jlPl_fL8s_0-CHmdRipJJ9oEWqUMjxkjtIM60IDlUIrQaLun--ksPblITud83rvb2uiStTxQP7fGlfyPVqEN9IpRsv-gWT8oNMBv0C9cQcNw_Ssdz24q4G8upYh1Dm99wVc3b7HEtT0kUG1ASGOPCoBc4uOmtjO6axkX3YZZi0FmPddtuqZ6hdHJV8vmW4AAkTYNZ-dw6MgsWOb6Gsb32Fg0dnt0vqyChXBTIja3m6xfruq-beZcgReNR-dl094s6uC0m1DdfkRkk8MOTWiMPoqMtbnJD8ywLdu0uwN4JQMbCnhp6266CRk4aLzV2IcMc6WqSbXChV8o-ynNOxr2wttkJ4aVRDwiO0cfjz9cdtN1mjNbbs__7S6HLcsP-7s3WctvSxEgJquuYIwlJuf3yT23oqBHLTwekFumekjuDvJMPiI_PFBoXdINoNAhUGgPFDpbHk5pDxOKMKEIE5BQBxMKMKEDmFAPk8fk4v278-lJ4GptBIplyTpIBNOJErEMjYkVN3koZFaKOOFacsNzzkuVlkxPMp3mKpeai6zkWItBZEA6Y7ZLRlVdmT1C0zjLhZGJTGCpX-ap4JGSMAArM50bnY3Jm-5dFsolosd6KF8L6xDB8mI6Ofts3_vxmLzyfb-36Ve29trvVFK4z_O6AE4WpZwDgR2Tl14MxhNPxERl6gb7RJgvElj8mDxpVekfA9wuZDFKdkG3vrnHxNM_CZ6RO_2HsU9GoDrzHKjrWr5w4PsFlbCc5Q
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Synthesis+of+complementary+hierarchical+structured+Si%2FC+composites+with+high+Si+content+for+lithium-ion+batteries&rft.jtitle=Nanoscale&rft.au=Yue%2C+Xin-Yang&rft.au=Yan%2C+Zhong&rft.au=Song%2C+Yun&rft.au=Wu%2C+Xiao-Jing&rft.date=2018-10-18&rft.issn=2040-3364&rft.eissn=2040-3372&rft.volume=1&rft.issue=4&rft.spage=19195&rft.epage=1922&rft_id=info:doi/10.1039%2Fc8nr04280b&rft.externalDocID=c8nr04280b
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2040-3364&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2040-3364&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2040-3364&client=summon