Synthesis of complementary hierarchical structured Si/C composites with high Si content for lithium-ion batteries
Si/C composites are considered as the most promising anode materials for next-generation lithium-ion batteries (LIBs) due to their high specific capacity and low cost. However, the commercialized Si/C composites cannot maintain a Si content over 10 wt% for sustaining an acceptable cycle life. To ach...
Saved in:
Published in | Nanoscale Vol. 1; no. 4; pp. 19195 - 1922 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
England
Royal Society of Chemistry
18.10.2018
|
Subjects | |
Online Access | Get full text |
ISSN | 2040-3364 2040-3372 2040-3372 |
DOI | 10.1039/c8nr04280b |
Cover
Loading…
Abstract | Si/C composites are considered as the most promising anode materials for next-generation lithium-ion batteries (LIBs) due to their high specific capacity and low cost. However, the commercialized Si/C composites cannot maintain a Si content over 10 wt% for sustaining an acceptable cycle life. To achieve long-term cycle stability for Si/C composites with high Si content is still very challenging. Here, we report a rationally designed double-morphology Si/graphene (DMSiG) composite with a high Si content of 78 wt%, and prove its feasibility as a high performance anode material for LIBs. DMSiG composes of Si quantum-dot decorated graphene and mesoporous Si spheres with a complementary hierarchical structure. The graphene framework enhances the electronic conductivity, alleviates the aggregation of mesoporous Si spheres and provides space and flexibility to buffer the volume change during cycling. Mesoporous Si spheres contribute to a large reversible capacity and support the hierarchical architecture of DMSiG. The Si quantum-dots help to build firm connections between graphene and mesoporous Si spheres to avoid their separation during cycling. Coupling these features together, the DMSiG anode delivers a high reversible capacity of 1318 mA h g
−1
at a current density of 500 mA g
−1
and 684 mA h g
−1
at 2000 mA g
−1
.
A double-morphology Si/C composite with a complementary hierarchical structure is reported as a new anode material for lithium batteries. |
---|---|
AbstractList | Si/C composites are considered as the most promising anode materials for next-generation lithium-ion batteries (LIBs) due to their high specific capacity and low cost. However, the commercialized Si/C composites cannot maintain a Si content over 10 wt% for sustaining an acceptable cycle life. To achieve long-term cycle stability for Si/C composites with high Si content is still very challenging. Here, we report a rationally designed double-morphology Si/graphene (DMSiG) composite with a high Si content of 78 wt%, and prove its feasibility as a high performance anode material for LIBs. DMSiG composes of Si quantum-dot decorated graphene and mesoporous Si spheres with a complementary hierarchical structure. The graphene framework enhances the electronic conductivity, alleviates the aggregation of mesoporous Si spheres and provides space and flexibility to buffer the volume change during cycling. Mesoporous Si spheres contribute to a large reversible capacity and support the hierarchical architecture of DMSiG. The Si quantum-dots help to build firm connections between graphene and mesoporous Si spheres to avoid their separation during cycling. Coupling these features together, the DMSiG anode delivers a high reversible capacity of 1318 mA h g-1 at a current density of 500 mA g-1 and 684 mA h g-1 at 2000 mA g-1.Si/C composites are considered as the most promising anode materials for next-generation lithium-ion batteries (LIBs) due to their high specific capacity and low cost. However, the commercialized Si/C composites cannot maintain a Si content over 10 wt% for sustaining an acceptable cycle life. To achieve long-term cycle stability for Si/C composites with high Si content is still very challenging. Here, we report a rationally designed double-morphology Si/graphene (DMSiG) composite with a high Si content of 78 wt%, and prove its feasibility as a high performance anode material for LIBs. DMSiG composes of Si quantum-dot decorated graphene and mesoporous Si spheres with a complementary hierarchical structure. The graphene framework enhances the electronic conductivity, alleviates the aggregation of mesoporous Si spheres and provides space and flexibility to buffer the volume change during cycling. Mesoporous Si spheres contribute to a large reversible capacity and support the hierarchical architecture of DMSiG. The Si quantum-dots help to build firm connections between graphene and mesoporous Si spheres to avoid their separation during cycling. Coupling these features together, the DMSiG anode delivers a high reversible capacity of 1318 mA h g-1 at a current density of 500 mA g-1 and 684 mA h g-1 at 2000 mA g-1. Si/C composites are considered as the most promising anode materials for next-generation lithium-ion batteries (LIBs) due to their high specific capacity and low cost. However, the commercialized Si/C composites cannot maintain a Si content over 10 wt% for sustaining an acceptable cycle life. To achieve long-term cycle stability for Si/C composites with high Si content is still very challenging. Here, we report a rationally designed double-morphology Si/graphene (DMSiG) composite with a high Si content of 78 wt%, and prove its feasibility as a high performance anode material for LIBs. DMSiG composes of Si quantum-dot decorated graphene and mesoporous Si spheres with a complementary hierarchical structure. The graphene framework enhances the electronic conductivity, alleviates the aggregation of mesoporous Si spheres and provides space and flexibility to buffer the volume change during cycling. Mesoporous Si spheres contribute to a large reversible capacity and support the hierarchical architecture of DMSiG. The Si quantum-dots help to build firm connections between graphene and mesoporous Si spheres to avoid their separation during cycling. Coupling these features together, the DMSiG anode delivers a high reversible capacity of 1318 mA h g-1 at a current density of 500 mA g-1 and 684 mA h g-1 at 2000 mA g-1. Si/C composites are considered as the most promising anode materials for next-generation lithium-ion batteries (LIBs) due to their high specific capacity and low cost. However, the commercialized Si/C composites cannot maintain a Si content over 10 wt% for sustaining an acceptable cycle life. To achieve long-term cycle stability for Si/C composites with high Si content is still very challenging. Here, we report a rationally designed double-morphology Si/graphene (DMSiG) composite with a high Si content of 78 wt%, and prove its feasibility as a high performance anode material for LIBs. DMSiG composes of Si quantum-dot decorated graphene and mesoporous Si spheres with a complementary hierarchical structure. The graphene framework enhances the electronic conductivity, alleviates the aggregation of mesoporous Si spheres and provides space and flexibility to buffer the volume change during cycling. Mesoporous Si spheres contribute to a large reversible capacity and support the hierarchical architecture of DMSiG. The Si quantum-dots help to build firm connections between graphene and mesoporous Si spheres to avoid their separation during cycling. Coupling these features together, the DMSiG anode delivers a high reversible capacity of 1318 mA h g −1 at a current density of 500 mA g −1 and 684 mA h g −1 at 2000 mA g −1 . A double-morphology Si/C composite with a complementary hierarchical structure is reported as a new anode material for lithium batteries. Si/C composites are considered as the most promising anode materials for next-generation lithium-ion batteries (LIBs) due to their high specific capacity and low cost. However, the commercialized Si/C composites cannot maintain a Si content over 10 wt% for sustaining an acceptable cycle life. To achieve long-term cycle stability for Si/C composites with high Si content is still very challenging. Here, we report a rationally designed double-morphology Si/graphene (DMSiG) composite with a high Si content of 78 wt%, and prove its feasibility as a high performance anode material for LIBs. DMSiG composes of Si quantum-dot decorated graphene and mesoporous Si spheres with a complementary hierarchical structure. The graphene framework enhances the electronic conductivity, alleviates the aggregation of mesoporous Si spheres and provides space and flexibility to buffer the volume change during cycling. Mesoporous Si spheres contribute to a large reversible capacity and support the hierarchical architecture of DMSiG. The Si quantum-dots help to build firm connections between graphene and mesoporous Si spheres to avoid their separation during cycling. Coupling these features together, the DMSiG anode delivers a high reversible capacity of 1318 mA h g −1 at a current density of 500 mA g −1 and 684 mA h g −1 at 2000 mA g −1 . Si/C composites are considered as the most promising anode materials for next-generation lithium-ion batteries (LIBs) due to their high specific capacity and low cost. However, the commercialized Si/C composites cannot maintain a Si content over 10 wt% for sustaining an acceptable cycle life. To achieve long-term cycle stability for Si/C composites with high Si content is still very challenging. Here, we report a rationally designed double-morphology Si/graphene (DMSiG) composite with a high Si content of 78 wt%, and prove its feasibility as a high performance anode material for LIBs. DMSiG composes of Si quantum-dot decorated graphene and mesoporous Si spheres with a complementary hierarchical structure. The graphene framework enhances the electronic conductivity, alleviates the aggregation of mesoporous Si spheres and provides space and flexibility to buffer the volume change during cycling. Mesoporous Si spheres contribute to a large reversible capacity and support the hierarchical architecture of DMSiG. The Si quantum-dots help to build firm connections between graphene and mesoporous Si spheres to avoid their separation during cycling. Coupling these features together, the DMSiG anode delivers a high reversible capacity of 1318 mA h g−1 at a current density of 500 mA g−1 and 684 mA h g−1 at 2000 mA g−1. |
Author | Yue, Xin-Yang Yan, Zhong Wu, Xiao-Jing Zhou, Yong-Ning Song, Yun |
AuthorAffiliation | Fudan University Department of Materials Science |
AuthorAffiliation_xml | – sequence: 0 name: Fudan University – sequence: 0 name: Department of Materials Science |
Author_xml | – sequence: 1 givenname: Xin-Yang surname: Yue fullname: Yue, Xin-Yang – sequence: 2 givenname: Zhong surname: Yan fullname: Yan, Zhong – sequence: 3 givenname: Yun surname: Song fullname: Song, Yun – sequence: 4 givenname: Xiao-Jing surname: Wu fullname: Wu, Xiao-Jing – sequence: 5 givenname: Yong-Ning surname: Zhou fullname: Zhou, Yong-Ning |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30303217$$D View this record in MEDLINE/PubMed |
BookMark | eNptkd1r2zAUxcXoWNN0L3tvEfRlDNzqw7LsxzZs6yC00GzPRpavZxVbSiSZkv9-atKlUIoeJHR_53A55wQdWWcBoS-UXFLCqytdWk9yVpLmA5oxkpOMc8mODu8iP0YnITwSUlS84J_QMSfpMCpnaLPa2thDMAG7Dms3rgcYwUblt7g34JXXvdFqwCH6ScfJQ4tX5mqxQ10wEQJ-MrFP8N8-TdK_jUmPO-fxkAZmGjPjLG5UjOANhFP0sVNDgM8v9xz9-fH99-I2W97__LW4XmaayzxmueJtrhVrCADTAiqiGtkplou2ESAqITpddLwtZVtUumpaoWQnyrykSkpBGJ-jr3vftXebCUKsRxM0DIOy4KZQM0plyUhBZUIv3qCPbvI2bZcoRgshSvpseP5CTc0Ibb32Zkwx1f_DTMC3PaC9C8FDd0AoqZ-bqhfl3cOuqZsEkzewNlHFFFX0ygzvS872Eh_0wfq1fP4PehygTg |
CitedBy_id | crossref_primary_10_1016_j_ensm_2019_12_025 crossref_primary_10_1021_acsami_2c11906 crossref_primary_10_1021_acsami_9b13024 crossref_primary_10_1016_j_jpowsour_2021_229709 crossref_primary_10_34133_energymatadv_0113 crossref_primary_10_1016_j_electacta_2020_136222 crossref_primary_10_1016_j_ensm_2022_11_054 crossref_primary_10_1016_j_jallcom_2020_157932 crossref_primary_10_1016_j_jpowsour_2018_11_014 crossref_primary_10_1021_acs_energyfuels_3c01074 crossref_primary_10_1016_j_colsurfa_2024_133877 crossref_primary_10_1016_j_jpowsour_2019_227056 crossref_primary_10_1021_acsaem_1c00737 crossref_primary_10_1016_j_surfcoat_2021_127606 crossref_primary_10_3389_fenrg_2020_00002 crossref_primary_10_1149_1945_7111_ada370 crossref_primary_10_1016_j_nxmate_2024_100371 crossref_primary_10_1002_celc_202000827 crossref_primary_10_1039_C9TA08554H crossref_primary_10_1002_celc_201901113 crossref_primary_10_1021_acsami_4c09120 crossref_primary_10_3390_ma15124264 crossref_primary_10_1039_D0DT00566E crossref_primary_10_1021_acsaem_1c00523 crossref_primary_10_1016_j_electacta_2019_135248 crossref_primary_10_1016_j_heliyon_2024_e31482 crossref_primary_10_1039_C9NR01440C crossref_primary_10_1039_C9QI00488B crossref_primary_10_1007_s11426_024_2265_9 crossref_primary_10_1016_j_ceramint_2021_11_017 crossref_primary_10_1039_D0TA04389C |
Cites_doi | 10.1002/smll.201702737 10.1002/aenm.201100485 10.1039/C4TA06249C 10.1039/b919738a 10.1016/j.jpowsour.2016.09.029 10.1002/aenm.201601481 10.1039/C7TA08283E 10.1002/aenm.201100426 10.1038/nnano.2012.35 10.1002/cssc.201100609 10.1016/j.jpowsour.2016.08.104 10.1038/srep09014 10.1002/aenm.201100259 10.1021/nl8036323 10.1149/1.1739217 10.1002/aenm.201401627 10.1002/aenm.201300496 10.1063/1.3000442 10.1002/aenm.201200158 10.1039/c2cc17061b 10.1016/j.carbon.2011.01.002 10.1007/s11434-011-4609-6 10.1016/j.jmst.2018.02.004 10.1039/C5TA04203H 10.1002/ente.200038 10.1039/C4TA01876A 10.1002/aenm.201200857 10.1126/science.1200770 10.1038/srep08781 10.1016/j.elecom.2011.03.006 10.1021/nl902058c 10.1038/ncomms5105 10.1149/1.1613668 10.1016/j.jpowsour.2016.08.087 10.1149/2.0131514jes 10.1002/aenm.201400753 10.1007/s11581-006-0046-y 10.1016/j.jpowsour.2010.02.021 10.1016/j.elecom.2013.09.019 10.1021/acsami.8b00370 10.1038/nenergy.2016.71 10.1016/S0378-7753(99)00139-1 10.1016/j.carbon.2016.06.068 10.1149/1.2409862 10.1016/j.nantod.2012.08.004 10.1039/c3cp51190a 10.1016/j.nanoen.2015.08.025 10.1002/aenm.201300882 10.1149/1.3205485 10.1039/C5NR06278K 10.1007/s10800-018-1234-y |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2018 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2018 |
DBID | AAYXX CITATION NPM 7SR 7U5 8BQ 8FD F28 FR3 JG9 L7M 7X8 |
DOI | 10.1039/c8nr04280b |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database Solid State and Superconductivity Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering METADEX MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed CrossRef Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2040-3372 |
EndPage | 1922 |
ExternalDocumentID | 30303217 10_1039_C8NR04280B c8nr04280b |
Genre | Journal Article |
GroupedDBID | --- -JG 0-7 0R~ 29M 4.4 53G 705 7~J AAEMU AAIWI AAJAE AANOJ AARTK AAWGC AAXHV ABASK ABDVN ABEMK ABJNI ABPDG ABRYZ ABXOH ACGFS ACIWK ACLDK ADMRA ADSRN AEFDR AENEX AENGV AESAV AETIL AFLYV AFOGI AFRDS AFVBQ AGEGJ AGRSR AGSTE AHGCF AKBGW ALMA_UNASSIGNED_HOLDINGS ANUXI APEMP ASKNT AUDPV AZFZN BLAPV BSQNT C6K DU5 EBS ECGLT EE0 EF- EJD F5P GGIMP H13 HZ~ H~N J3I O-G O9- OK1 P2P RAOCF RCNCU RNS RPMJG RRC RSCEA RVUXY AAYXX AFRZK AKMSF ALUYA CITATION NPM 7SR 7U5 8BQ 8FD F28 FR3 JG9 L7M 7X8 |
ID | FETCH-LOGICAL-c374t-4a3d4ca2b0ee2c5e90ab7fa245db5e5955fc6f3d87d69c9bd5a7f58481a775023 |
ISSN | 2040-3364 2040-3372 |
IngestDate | Fri Jul 11 07:11:52 EDT 2025 Sun Jun 29 15:35:49 EDT 2025 Wed Feb 19 02:43:09 EST 2025 Tue Jul 01 01:13:29 EDT 2025 Thu Apr 24 23:08:10 EDT 2025 Tue Dec 17 21:00:31 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c374t-4a3d4ca2b0ee2c5e90ab7fa245db5e5955fc6f3d87d69c9bd5a7f58481a775023 |
Notes | 10.1039/c8nr04280b 2 RGO; TEM image of the GN; TGA curves of the DMSiG; SEM images of the DMSiG electrode after cycling; cycling performance of the DMSiG. See DOI Electronic supplementary information (ESI) available: Photographs of the samples; SEM images of the DMSiO ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-9791-3468 |
PMID | 30303217 |
PQID | 2121655812 |
PQPubID | 2047485 |
PageCount | 8 |
ParticipantIDs | crossref_primary_10_1039_C8NR04280B pubmed_primary_30303217 crossref_citationtrail_10_1039_C8NR04280B proquest_miscellaneous_2117820617 rsc_primary_c8nr04280b proquest_journals_2121655812 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20181018 |
PublicationDateYYYYMMDD | 2018-10-18 |
PublicationDate_xml | – month: 10 year: 2018 text: 20181018 day: 18 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Cambridge |
PublicationTitle | Nanoscale |
PublicationTitleAlternate | Nanoscale |
PublicationYear | 2018 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Liu (C8NR04280B-(cit5)/*[position()=1]) 2015; 8 Li (C8NR04280B-(cit20)/*[position()=1]) 2014; 5 Kim (C8NR04280B-(cit27)/*[position()=1]) 2018; 48 Lee (C8NR04280B-(cit22)/*[position()=1]) 2013; 15 Yi (C8NR04280B-(cit9)/*[position()=1]) 2013; 3 Nguyen (C8NR04280B-(cit16)/*[position()=1]) 2011; 1 Beaulieu (C8NR04280B-(cit14)/*[position()=1]) 2003; 150 Wu (C8NR04280B-(cit19)/*[position()=1]) 2012; 7 Jiang (C8NR04280B-(cit33)/*[position()=1]) 2016; 107 Wang (C8NR04280B-(cit36)/*[position()=1]) 2015; 3 Weydanz (C8NR04280B-(cit12)/*[position()=1]) 1999; 81 Su (C8NR04280B-(cit1)/*[position()=1]) 2014; 4 Zhao (C8NR04280B-(cit52)/*[position()=1]) 2011; 1 Cui (C8NR04280B-(cit18)/*[position()=1]) 2009; 9 Wu (C8NR04280B-(cit21)/*[position()=1]) 2012; 7 Park (C8NR04280B-(cit4)/*[position()=1]) 2009; 9 Zhou (C8NR04280B-(cit40)/*[position()=1]) 2012; 2 Xiang (C8NR04280B-(cit32)/*[position()=1]) 2011; 49 Zhou (C8NR04280B-(cit10)/*[position()=1]) 2011; 13 Xu (C8NR04280B-(cit30)/*[position()=1]) 2015; 5 Zhou (C8NR04280B-(cit35)/*[position()=1]) 2012; 48 Huang (C8NR04280B-(cit23)/*[position()=1]) 2018; 6 Wang (C8NR04280B-(cit37)/*[position()=1]) 2016; 329 Jia (C8NR04280B-(cit42)/*[position()=1]) 2011; 1 Ren (C8NR04280B-(cit39)/*[position()=1]) 2013; 1 Du (C8NR04280B-(cit43)/*[position()=1]) 2013; 36 Sun (C8NR04280B-(cit6)/*[position()=1]) 2016; 1 Mi (C8NR04280B-(cit45)/*[position()=1]) 2014; 2 Xiang (C8NR04280B-(cit51)/*[position()=1]) 2011; 49 Feng (C8NR04280B-(cit15)/*[position()=1]) 2018; 14 Zhu (C8NR04280B-(cit53)/*[position()=1]) 2011; 332 Yi (C8NR04280B-(cit31)/*[position()=1]) 2013; 3 Wang (C8NR04280B-(cit28)/*[position()=1]) 2015; 5 Li (C8NR04280B-(cit8)/*[position()=1]) 2015; 5 Raimann (C8NR04280B-(cit11)/*[position()=1]) 2006; 12 Luo (C8NR04280B-(cit2)/*[position()=1]) 2015; 162 Li (C8NR04280B-(cit47)/*[position()=1]) 2007; 154 Gu (C8NR04280B-(cit3)/*[position()=1]) 2015; 17 Lee (C8NR04280B-(cit34)/*[position()=1]) 2010; 46 Tian (C8NR04280B-(cit50)/*[position()=1]) 2011; 56 Hatchard (C8NR04280B-(cit13)/*[position()=1]) 2004; 151 Xu (C8NR04280B-(cit29)/*[position()=1]) 2016; 7 Tang (C8NR04280B-(cit48)/*[position()=1]) 2012; 5 Yue (C8NR04280B-(cit49)/*[position()=1]) 2016; 331 Yin (C8NR04280B-(cit7)/*[position()=1]) 2018; 34 Huang (C8NR04280B-(cit38)/*[position()=1]) 2018; 10 Li (C8NR04280B-(cit46)/*[position()=1]) 2015; 5 Verbrugge (C8NR04280B-(cit26)/*[position()=1]) 2009; 156 Kim (C8NR04280B-(cit44)/*[position()=1]) 2015; 5 Jing (C8NR04280B-(cit41)/*[position()=1]) 2015; 3 Deshpande (C8NR04280B-(cit25)/*[position()=1]) 2010; 195 Cheng (C8NR04280B-(cit24)/*[position()=1]) 2008; 104 Yue (C8NR04280B-(cit17)/*[position()=1]) 2016; 329 |
References_xml | – volume: 14 start-page: 1702737 year: 2018 ident: C8NR04280B-(cit15)/*[position()=1] publication-title: Small doi: 10.1002/smll.201702737 – volume: 1 start-page: 1036 year: 2011 ident: C8NR04280B-(cit42)/*[position()=1] publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201100485 – volume: 3 start-page: 3962 year: 2015 ident: C8NR04280B-(cit36)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C4TA06249C – volume: 46 start-page: 2025 year: 2010 ident: C8NR04280B-(cit34)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/b919738a – volume: 331 start-page: 10 year: 2016 ident: C8NR04280B-(cit49)/*[position()=1] publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2016.09.029 – volume: 7 start-page: 1601481 year: 2016 ident: C8NR04280B-(cit29)/*[position()=1] publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201601481 – volume: 6 start-page: 2593 year: 2018 ident: C8NR04280B-(cit23)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C7TA08283E – volume: 1 start-page: 1079 year: 2011 ident: C8NR04280B-(cit52)/*[position()=1] publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201100426 – volume: 7 start-page: 310 year: 2012 ident: C8NR04280B-(cit21)/*[position()=1] publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2012.35 – volume: 5 start-page: 400 year: 2012 ident: C8NR04280B-(cit48)/*[position()=1] publication-title: ChemSusChem doi: 10.1002/cssc.201100609 – volume: 329 start-page: 422 year: 2016 ident: C8NR04280B-(cit17)/*[position()=1] publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2016.08.104 – volume: 5 start-page: 9014 year: 2015 ident: C8NR04280B-(cit44)/*[position()=1] publication-title: Sci. Rep. doi: 10.1038/srep09014 – volume: 1 start-page: 1154 year: 2011 ident: C8NR04280B-(cit16)/*[position()=1] publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201100259 – volume: 9 start-page: 491 year: 2009 ident: C8NR04280B-(cit18)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/nl8036323 – volume: 151 start-page: A838 year: 2004 ident: C8NR04280B-(cit13)/*[position()=1] publication-title: J. Electrochem. Soc. doi: 10.1149/1.1739217 – volume: 5 start-page: 1401627 year: 2015 ident: C8NR04280B-(cit8)/*[position()=1] publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201401627 – volume: 5 start-page: 107 year: 2015 ident: C8NR04280B-(cit46)/*[position()=1] publication-title: Adv. Energy Mater. – volume: 3 start-page: 1507 year: 2013 ident: C8NR04280B-(cit9)/*[position()=1] publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201300496 – volume: 104 start-page: 083521 year: 2008 ident: C8NR04280B-(cit24)/*[position()=1] publication-title: J. Appl. Phys. doi: 10.1063/1.3000442 – volume: 2 start-page: 1086 year: 2012 ident: C8NR04280B-(cit40)/*[position()=1] publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201200158 – volume: 48 start-page: 2198 year: 2012 ident: C8NR04280B-(cit35)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/c2cc17061b – volume: 49 start-page: 1787 year: 2011 ident: C8NR04280B-(cit32)/*[position()=1] publication-title: Carbon doi: 10.1016/j.carbon.2011.01.002 – volume: 56 start-page: 3204 year: 2011 ident: C8NR04280B-(cit50)/*[position()=1] publication-title: Sci. Bull. doi: 10.1007/s11434-011-4609-6 – volume: 34 start-page: 1902 year: 2018 ident: C8NR04280B-(cit7)/*[position()=1] publication-title: J. Mater. Sci. Technol. doi: 10.1016/j.jmst.2018.02.004 – volume: 3 start-page: 15675 year: 2015 ident: C8NR04280B-(cit41)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C5TA04203H – volume: 1 start-page: 77 year: 2013 ident: C8NR04280B-(cit39)/*[position()=1] publication-title: Energy Technol. doi: 10.1002/ente.200038 – volume: 2 start-page: 11254 year: 2014 ident: C8NR04280B-(cit45)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C4TA01876A – volume: 3 start-page: 295 year: 2013 ident: C8NR04280B-(cit31)/*[position()=1] publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201200857 – volume: 332 start-page: 1537 year: 2011 ident: C8NR04280B-(cit53)/*[position()=1] publication-title: Science doi: 10.1126/science.1200770 – volume: 5 start-page: 8781 year: 2015 ident: C8NR04280B-(cit28)/*[position()=1] publication-title: Sci. Rep. doi: 10.1038/srep08781 – volume: 13 start-page: 546 year: 2011 ident: C8NR04280B-(cit10)/*[position()=1] publication-title: Electrochem. Commun. doi: 10.1016/j.elecom.2011.03.006 – volume: 9 start-page: 3844 year: 2009 ident: C8NR04280B-(cit4)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/nl902058c – volume: 5 start-page: 4105 year: 2014 ident: C8NR04280B-(cit20)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/ncomms5105 – volume: 150 start-page: A1457 year: 2003 ident: C8NR04280B-(cit14)/*[position()=1] publication-title: J. Electrochem. Soc. doi: 10.1149/1.1613668 – volume: 329 start-page: 305 year: 2016 ident: C8NR04280B-(cit37)/*[position()=1] publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2016.08.087 – volume: 162 start-page: A2509 year: 2015 ident: C8NR04280B-(cit2)/*[position()=1] publication-title: J. Electrochem. Soc. doi: 10.1149/2.0131514jes – volume: 5 start-page: 1400753 year: 2015 ident: C8NR04280B-(cit30)/*[position()=1] publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201400753 – volume: 12 start-page: 253 year: 2006 ident: C8NR04280B-(cit11)/*[position()=1] publication-title: Ionics doi: 10.1007/s11581-006-0046-y – volume: 195 start-page: 5081 year: 2010 ident: C8NR04280B-(cit25)/*[position()=1] publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2010.02.021 – volume: 36 start-page: 107 year: 2013 ident: C8NR04280B-(cit43)/*[position()=1] publication-title: Electrochem. Commun. doi: 10.1016/j.elecom.2013.09.019 – volume: 49 start-page: 1787 year: 2011 ident: C8NR04280B-(cit51)/*[position()=1] publication-title: Carbon doi: 10.1016/j.carbon.2011.01.002 – volume: 10 start-page: 15624 year: 2018 ident: C8NR04280B-(cit38)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b00370 – volume: 1 start-page: 16071 year: 2016 ident: C8NR04280B-(cit6)/*[position()=1] publication-title: Nat. Energy doi: 10.1038/nenergy.2016.71 – volume: 81 start-page: 237 year: 1999 ident: C8NR04280B-(cit12)/*[position()=1] publication-title: J. Power Sources doi: 10.1016/S0378-7753(99)00139-1 – volume: 107 start-page: 600 year: 2016 ident: C8NR04280B-(cit33)/*[position()=1] publication-title: Carbon doi: 10.1016/j.carbon.2016.06.068 – volume: 154 start-page: A156 year: 2007 ident: C8NR04280B-(cit47)/*[position()=1] publication-title: J. Electrochem. Soc. doi: 10.1149/1.2409862 – volume: 7 start-page: 414 year: 2012 ident: C8NR04280B-(cit19)/*[position()=1] publication-title: Nano Today doi: 10.1016/j.nantod.2012.08.004 – volume: 15 start-page: 7045 year: 2013 ident: C8NR04280B-(cit22)/*[position()=1] publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/c3cp51190a – volume: 17 start-page: 366 year: 2015 ident: C8NR04280B-(cit3)/*[position()=1] publication-title: Nano Energy doi: 10.1016/j.nanoen.2015.08.025 – volume: 4 start-page: 1300882 year: 2014 ident: C8NR04280B-(cit1)/*[position()=1] publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201300882 – volume: 156 start-page: A927 year: 2009 ident: C8NR04280B-(cit26)/*[position()=1] publication-title: J. Electrochem. Soc. doi: 10.1149/1.3205485 – volume: 8 start-page: 701 year: 2015 ident: C8NR04280B-(cit5)/*[position()=1] publication-title: Nanoscale doi: 10.1039/C5NR06278K – volume: 48 start-page: 1057 year: 2018 ident: C8NR04280B-(cit27)/*[position()=1] publication-title: J. Appl. Electrochem. doi: 10.1007/s10800-018-1234-y |
SSID | ssj0069363 |
Score | 2.4127862 |
Snippet | Si/C composites are considered as the most promising anode materials for next-generation lithium-ion batteries (LIBs) due to their high specific capacity and... |
SourceID | proquest pubmed crossref rsc |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 19195 |
SubjectTerms | Anodes Commercialization Composite materials Cycles Electrode materials Graphene Lithium Lithium-ion batteries Morphology Quantum dots Rechargeable batteries Scanning electron microscopy Silicon Structural hierarchy |
Title | Synthesis of complementary hierarchical structured Si/C composites with high Si content for lithium-ion batteries |
URI | https://www.ncbi.nlm.nih.gov/pubmed/30303217 https://www.proquest.com/docview/2121655812 https://www.proquest.com/docview/2117820617 |
Volume | 1 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLegu8AB8TVWGMgILghlS-I4aY5bBUxD7EA3reUS-StaJUigaw7jr-c9x3FSUSTgElV-jlPl_fL8s_0-CHmdRipJJ9oEWqUMjxkjtIM60IDlUIrQaLun--ksPblITud83rvb2uiStTxQP7fGlfyPVqEN9IpRsv-gWT8oNMBv0C9cQcNw_Ssdz24q4G8upYh1Dm99wVc3b7HEtT0kUG1ASGOPCoBc4uOmtjO6axkX3YZZi0FmPddtuqZ6hdHJV8vmW4AAkTYNZ-dw6MgsWOb6Gsb32Fg0dnt0vqyChXBTIja3m6xfruq-beZcgReNR-dl094s6uC0m1DdfkRkk8MOTWiMPoqMtbnJD8ywLdu0uwN4JQMbCnhp6266CRk4aLzV2IcMc6WqSbXChV8o-ynNOxr2wttkJ4aVRDwiO0cfjz9cdtN1mjNbbs__7S6HLcsP-7s3WctvSxEgJquuYIwlJuf3yT23oqBHLTwekFumekjuDvJMPiI_PFBoXdINoNAhUGgPFDpbHk5pDxOKMKEIE5BQBxMKMKEDmFAPk8fk4v278-lJ4GptBIplyTpIBNOJErEMjYkVN3koZFaKOOFacsNzzkuVlkxPMp3mKpeai6zkWItBZEA6Y7ZLRlVdmT1C0zjLhZGJTGCpX-ap4JGSMAArM50bnY3Jm-5dFsolosd6KF8L6xDB8mI6Ofts3_vxmLzyfb-36Ve29trvVFK4z_O6AE4WpZwDgR2Tl14MxhNPxERl6gb7RJgvElj8mDxpVekfA9wuZDFKdkG3vrnHxNM_CZ6RO_2HsU9GoDrzHKjrWr5w4PsFlbCc5Q |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Synthesis+of+complementary+hierarchical+structured+Si%2FC+composites+with+high+Si+content+for+lithium-ion+batteries&rft.jtitle=Nanoscale&rft.au=Yue%2C+Xin-Yang&rft.au=Yan%2C+Zhong&rft.au=Song%2C+Yun&rft.au=Wu%2C+Xiao-Jing&rft.date=2018-10-18&rft.issn=2040-3364&rft.eissn=2040-3372&rft.volume=1&rft.issue=4&rft.spage=19195&rft.epage=1922&rft_id=info:doi/10.1039%2Fc8nr04280b&rft.externalDocID=c8nr04280b |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2040-3364&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2040-3364&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2040-3364&client=summon |