Learning Query Ambiguity Models by Using Search Logs
Identifying ambiguous queries is crucial to research on personalized Web search and search result diversity. Intuitively, query logs contain valuable information on how many intentions users have when issuing a query. However, previous work showed user clicks alone are misleading in judging a query...
Saved in:
Published in | Journal of computer science and technology Vol. 25; no. 4; pp. 728 - 738 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Boston
Springer US
01.07.2010
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Identifying ambiguous queries is crucial to research on personalized Web search and search result diversity. Intuitively, query logs contain valuable information on how many intentions users have when issuing a query. However, previous work showed user clicks alone are misleading in judging a query as being ambiguous or not. In this paper, we address the problem of learning a query ambiguity model by using search logs. First, we propose enriching a query by mining the documents clicked by users and the relevant follow up queries in a session. Second, we use a text classifier to map the documents and the queries into predefined categories. Third, we propose extracting features from the processed data. Finally, we apply a state-of-the-art algorithm, Support Vector Machine (SVM), to learn a query ambiguity classifier. Experimental results verify that the sole use of click based features or session based features perform worse than the previous work based on top retrieved documents. When we combine the two sets of features, our proposed approach achieves the best effectiveness, specifically 86% in terms of accuracy. It significantly improves the click based method by 5.6% and the session based method by 4.6%. |
---|---|
AbstractList | dentifying ambiguous queries is crucial to research on personalized Web search and search result diversity. Intuitively, query logs contain valuable information on how many intentions users have when issuing a query. However, previous work showed user clicks alone are misleading in judging a query as being ambiguous or not. In this paper, we address the problem of learning a query ambiguity model by using search logs. First, we propose enriching a query by mining the documents clicked by users and the relevant follow up queries in a session. Second, we use a text classifier to map the documents and the queries into predefined categories. Third, we propose extracting features from the processed data. Finally, we apply a state-of-the-art algorithm, Support Vector Machine (SVM), to learn a query ambiguity classifier. Experimental results verify that the sole use of click based features or session based features perform worse than the previous work based on top retrieved documents. When we combine the two sets of features, our proposed approach achieves the best effectiveness, specifically 86% in terms of accuracy. It significantly improves the click based method by 5.6% and the session based method by 4.6%. Identifying ambiguous queries is crucial to research on personalized Web search and search result diversity. Intuitively, query logs contain valuable information on how many intentions users have when issuing a query. However, previous work showed user clicks alone are misleading in judging a query as being ambiguous or not. In this paper, we address the problem of learning a query ambiguity model by using search logs. First, we propose enriching a query by mining the documents clicked by users and the relevant follow up queries in a session. Second, we use a text classifier to map the documents and the queries into predefined categories. Third, we propose extracting features from the processed data. Finally, we apply a state-of-the-art algorithm, Support Vector Machine (SVM), to learn a query ambiguity classifier. Experimental results verify that the sole use of click based features or session based features perform worse than the previous work based on top retrieved documents. When we combine the two sets of features, our proposed approach achieves the best effectiveness, specifically 86% in terms of accuracy. It significantly improves the click based method by 5.6% and the session based method by 4.6%. |
Author | 宋睿华 窦志成 洪小文 俞勇 |
AuthorAffiliation | Department of Computer Science, Shanghai Jiao Tong University, Shanghai 200240, China Microsoft Research Asia, Beijing 100190, China |
Author_xml | – sequence: 1 fullname: 宋睿华 窦志成 洪小文 俞勇 |
BookMark | eNp9kD1PwzAQhi0EEm3hB7BFLEyB80die6wqvqQghKCz5bhOmpLGrd0M-fe4SiUkBhb7pHueu9M7Reed6yxCNxjuMQB_CBhTCSlgSCXNIR3O0ASLWDDO5HmsAWInPpdoGsIGgHJgbIJYYbXvmq5OPnrrh2S-LZu6bw5D8uZWtg1JOSTLcOx_RtCsk8LV4QpdVLoN9vr0z9Dy6fFr8ZIW78-vi3mRGsrZIaUV00IbzsVKY0KksYQJLinkFc-1MDoTUPJSlhlfEWLy3FhDBDVZGX3DLJ2hu3Huzrt9b8NBbZtgbNvqzro-KAlcspwIiOTtH3Ljet_F45TgBGTG4t4ZwiNkvAvB20rtfLPVflAY1DFFNaaoYorqmKIaokNGJ0S2q63_HfyfdLrGrF1X76OnSm2-q6a1ijLGgTBJfwAjY4CR |
CitedBy_id | crossref_primary_10_1007_s10791_019_09356_x crossref_primary_10_1007_s10791_012_9216_x |
Cites_doi | 10.1109/18.61115 10.1145/1117454.1117466 10.1016/j.ipm.2008.09.005 10.1145/146802.146810 10.1145/1117454.1117467 10.1016/j.ipm.2004.11.003 10.1145/1148170.1148245 10.1145/1060745.1060804 10.1145/1498759.1498766 10.1145/860435.860440 10.7551/mitpress/1130.003.0016 10.1145/1135777.1135902 10.1145/956863.956925 10.1145/1242572.1242651 10.1145/1390334.1390420 10.1145/160688.160715 10.1145/1401890.1401995 10.1145/1148170.1148320 10.1145/290941.291025 |
ContentType | Journal Article |
Copyright | Springer 2010 Springer 2010. |
Copyright_xml | – notice: Springer 2010 – notice: Springer 2010. |
DBID | 2RA 92L CQIGP W92 ~WA AAYXX CITATION 3V. 7SC 7WY 7WZ 7XB 87Z 8AL 8FD 8FE 8FG 8FK 8FL ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ HCIFZ JQ2 K60 K6~ K7- L.- L6V L7M L~C L~D M0C M0N M7S P5Z P62 PQBIZ PQBZA PQEST PQQKQ PQUKI PTHSS Q9U |
DOI | 10.1007/s11390-010-9360-y |
DatabaseName | 维普_期刊 中文科技期刊数据库-CALIS站点 维普中文期刊数据库 中文科技期刊数据库-工程技术 中文科技期刊数据库- 镜像站点 CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni Edition) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central Advanced Technologies & Aerospace Database (1962 - current) ProQuest Central Essentials AUTh Library subscriptions: ProQuest Central ProQuest Business Premium Collection Technology Collection ProQuest One Community College ProQuest Central Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student SciTech Premium Collection (Proquest) (PQ_SDU_P3) ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global (ProQuest) Computing Database Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection One Business (ProQuest) ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition Engineering Collection ProQuest Central Basic |
DatabaseTitle | CrossRef ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced ProQuest Engineering Collection ProQuest Central Korea Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) Engineering Collection Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global ProQuest Computing Engineering Database ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Business (Alumni) ProQuest One Academic ProQuest Central (Alumni) Business Premium Collection (Alumni) |
DatabaseTitleList | Computer and Information Systems Abstracts ABI/INFORM Global (Corporate) |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
DocumentTitleAlternate | Learning Query Ambiguity Models by Using Search Logs |
EISSN | 1860-4749 |
EndPage | 738 |
ExternalDocumentID | 2376505641 10_1007_s11390_010_9360_y 34470249 |
GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .86 .VR 06D 0R~ 0VY 1N0 1SB 2.D 28- 29K 2B. 2C0 2J2 2JN 2JY 2KG 2KM 2LR 2RA 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5QI 5VR 5VS 67Z 6NX 7WY 8FE 8FG 8FL 8TC 8UJ 92H 92I 92L 92R 93N 95- 95. 95~ 96X AAAVM AABHQ AABYN AAFGU AAHNG AAIAL AAJKR AANZL AAOBN AARHV AARTL AATVU AAUYE AAWCG AAYIU AAYQN AAYTO ABBBX ABBXA ABDZT ABECU ABFGW ABFTD ABFTV ABHLI ABHQN ABJOX ABKAS ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTMW ABULA ABUWG ABXPI ACBMV ACBRV ACBXY ACGFS ACHSB ACHXU ACIGE ACIPQ ACKNC ACMDZ ACMLO ACOKC ACOMO ACSNA ACTTH ACVWB ACWMK ADGRI ADHHG ADHIR ADINQ ADKNI ADKPE ADMDM ADRFC ADTIX ADURQ ADYFF ADZKW AEBTG AEFIE AEFTE AEGAL AEGNC AEJHL AEJRE AEKMD AENEX AEOHA AEPYU AESTI AETLH AEVTX AEXYK AEYWE AFEXP AFGCZ AFKRA AFLOW AFQWF AFUIB AFWTZ AFZKB AGAYW AGDGC AGGBP AGGDS AGJBK AGMZJ AGQMX AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIIXL AILAN AIMYW AITGF AJBLW AJDOV AJRNO ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMYLF AMYQR ARAPS ARMRJ ASPBG AVWKF AXYYD AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ CAG CCEZO CDYEO CHBEP COF CQIGP CS3 CSCUP CUBFJ CW9 D-I DNIVK DU5 DWQXO EBLON EBS EIOEI EJD ESBYG F5P FA0 FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GXS H13 HCIFZ HF~ HG6 HMJXF HQYDN HRMNR HVGLF HZ~ IAO IHE IJ- IPNFZ IXC IXD IXE IZIGR IZQ I~X I~Z J-C JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV LAK LLZTM M0C M0N M4Y MA- N2Q N95 NB0 NDZJH NF0 NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P62 P9O PF0 PQBIZ PQEST PQQKQ PQUKI PRINS PROAC PT4 PT5 Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCL SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNX SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TCJ TGT TSG TSK TSV TUC U2A UG4 UNUBA UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 W92 WK8 YLTOR Z7R Z7U Z7X Z81 Z83 Z88 Z8R Z8W Z92 ZMTXR ~A9 ~EX ~WA AATNV AAWWR AAYFA ABJCF ABJNI ABTKH ABWNU ADOXG ADTPH AEEQQ AESKC AEVLU AFNRJ AMXSW AOCGG CCPQU DDRTE DPUIP IKXTQ IWAJR M7S NPVJJ PTHSS SNPRN SOHCF Z7Z -SI -S~ 5XA 5XJ AACDK AAEOY AAJBT AASML AAXDM AAYXX ABAKF ACAOD ACDTI ACZOJ AEFQL AEMSY AFBBN AGQEE AGRTI AIGIU CAJEI CITATION PQBZA Q-- U1G U5S 7SC 7XB 8AL 8FD 8FK JQ2 L.- L6V L7M L~C L~D Q9U AAYZH |
ID | FETCH-LOGICAL-c374t-3f4a8ac778da1229ce24879306f76a8ca580b7b9b57d22c66cec283c5bc37c4e3 |
IEDL.DBID | 8FG |
ISSN | 1000-9000 |
IngestDate | Fri Oct 25 07:23:51 EDT 2024 Thu Oct 10 22:16:56 EDT 2024 Thu Sep 12 16:36:26 EDT 2024 Sat Dec 16 12:08:36 EST 2023 Fri Nov 25 17:04:00 EST 2022 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | query classification ambiguous query log mining |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c374t-3f4a8ac778da1229ce24879306f76a8ca580b7b9b57d22c66cec283c5bc37c4e3 |
Notes | ambiguous query, log mining, query classification 11-2296/TP TP181 TP311.13 ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
PQID | 872095479 |
PQPubID | 326258 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_907946280 proquest_journals_872095479 crossref_primary_10_1007_s11390_010_9360_y springer_journals_10_1007_s11390_010_9360_y chongqing_backfile_34470249 |
PublicationCentury | 2000 |
PublicationDate | 2010-07-01 |
PublicationDateYYYYMMDD | 2010-07-01 |
PublicationDate_xml | – month: 07 year: 2010 text: 2010-07-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Boston |
PublicationPlace_xml | – name: Boston – name: Beijing |
PublicationTitle | Journal of computer science and technology |
PublicationTitleAbbrev | J. Comput. Sci. Technol |
PublicationTitleAlternate | Journal of Computer Science and Technology |
PublicationYear | 2010 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | CR2 CR4 CR3 CR6 Zhai, Lafferty (CR12) 2006; 42 CR19 CR7 CR18 CR17 CR9 CR16 CR15 CR14 Krovetz, Croft (CR8) 1992; 10 CR13 Lin (CR21) 1991; 37 Song, Luo, Nie, Yu, Hon (CR1) 2008; 45 CR11 CR10 Li, Zheng, Dai (CR5) 2005; 7 Shen, Pan, Sun, Pan, Wu, Yin, Yang (CR20) 2005; 7 D Shen (9360_CR20) 2005; 7 9360_CR9 J Lin (9360_CR21) 1991; 37 9360_CR7 9360_CR6 9360_CR17 9360_CR4 9360_CR18 9360_CR3 9360_CR19 9360_CR2 R Song (9360_CR1) 2008; 45 R Krovetz (9360_CR8) 1992; 10 9360_CR13 9360_CR14 Y Li (9360_CR5) 2005; 7 9360_CR15 9360_CR16 CX Zhai (9360_CR12) 2006; 42 9360_CR10 9360_CR11 |
References_xml | – ident: CR19 – ident: CR18 – volume: 37 start-page: 145 issue: 1 year: 1991 end-page: 151 ident: CR21 article-title: Divergence measures based on the Shannon entropy publication-title: IEEE Transactions on Information Theory doi: 10.1109/18.61115 contributor: fullname: Lin – ident: CR3 – ident: CR4 – volume: 7 start-page: 91 issue: 2 year: 2005 end-page: 99 ident: CR5 article-title: KDD CUP-2005 report: Facing a great challenge publication-title: SIGKDD Explor. Newsl. doi: 10.1145/1117454.1117466 contributor: fullname: Dai – ident: CR14 – ident: CR15 – ident: CR2 – ident: CR16 – ident: CR17 – ident: CR13 – ident: CR10 – ident: CR11 – ident: CR9 – ident: CR6 – volume: 45 start-page: 216 issue: 2 year: 2008 end-page: 229 ident: CR1 article-title: Identification of ambiguous queries in Web search publication-title: Information Processing and Management doi: 10.1016/j.ipm.2008.09.005 contributor: fullname: Hon – ident: CR7 – volume: 10 start-page: 115 issue: 2 year: 1992 end-page: 141 ident: CR8 article-title: Lexical ambiguity and information retrieval publication-title: ACM Trans. Inf. Syst. doi: 10.1145/146802.146810 contributor: fullname: Croft – volume: 7 start-page: 100 issue: 2 year: 2005 end-page: 110 ident: CR20 article-title: Q2C@UST: Our winning solution to query classification in KDDCUP 2005 publication-title: SIGKDD Explor. Newsl. doi: 10.1145/1117454.1117467 contributor: fullname: Yang – volume: 42 start-page: 31 issue: 1 year: 2006 end-page: 55 ident: CR12 article-title: A risk minimization framework for information retrieval publication-title: Information Processing and Management doi: 10.1016/j.ipm.2004.11.003 contributor: fullname: Lafferty – volume: 7 start-page: 91 issue: 2 year: 2005 ident: 9360_CR5 publication-title: SIGKDD Explor. Newsl. doi: 10.1145/1117454.1117466 contributor: fullname: Y Li – ident: 9360_CR13 doi: 10.1145/1148170.1148245 – volume: 37 start-page: 145 issue: 1 year: 1991 ident: 9360_CR21 publication-title: IEEE Transactions on Information Theory doi: 10.1109/18.61115 contributor: fullname: J Lin – ident: 9360_CR15 doi: 10.1145/1060745.1060804 – volume: 42 start-page: 31 issue: 1 year: 2006 ident: 9360_CR12 publication-title: Information Processing and Management doi: 10.1016/j.ipm.2004.11.003 contributor: fullname: CX Zhai – volume: 7 start-page: 100 issue: 2 year: 2005 ident: 9360_CR20 publication-title: SIGKDD Explor. Newsl. doi: 10.1145/1117454.1117467 contributor: fullname: D Shen – ident: 9360_CR14 doi: 10.1145/1498759.1498766 – ident: 9360_CR6 – ident: 9360_CR7 – ident: 9360_CR11 doi: 10.1145/860435.860440 – ident: 9360_CR18 doi: 10.7551/mitpress/1130.003.0016 – volume: 10 start-page: 115 issue: 2 year: 1992 ident: 9360_CR8 publication-title: ACM Trans. Inf. Syst. doi: 10.1145/146802.146810 contributor: fullname: R Krovetz – ident: 9360_CR16 doi: 10.1145/1135777.1135902 – ident: 9360_CR17 doi: 10.1145/956863.956925 – ident: 9360_CR2 doi: 10.1145/1242572.1242651 – ident: 9360_CR3 doi: 10.1145/1390334.1390420 – ident: 9360_CR9 doi: 10.1145/160688.160715 – ident: 9360_CR19 doi: 10.1145/1401890.1401995 – volume: 45 start-page: 216 issue: 2 year: 2008 ident: 9360_CR1 publication-title: Information Processing and Management doi: 10.1016/j.ipm.2008.09.005 contributor: fullname: R Song – ident: 9360_CR4 doi: 10.1145/1148170.1148320 – ident: 9360_CR10 doi: 10.1145/290941.291025 |
SSID | ssj0037044 |
Score | 1.9124613 |
Snippet | Identifying ambiguous queries is crucial to research on personalized Web search and search result diversity. Intuitively, query logs contain valuable... dentifying ambiguous queries is crucial to research on personalized Web search and search result diversity. Intuitively, query logs contain valuable... |
SourceID | proquest crossref springer chongqing |
SourceType | Aggregation Database Publisher |
StartPage | 728 |
SubjectTerms | Algorithms Ambiguity Artificial Intelligence Classifiers College baseball Computer Science Customization Data Structures and Information Theory Dictionaries Documents Information Systems Applications (incl.Internet) Learning Logs Mathematical models Queries Query processing Regular Paper Searching Software Software Engineering Support vector machines Theory of Computation User experience User needs Word sense disambiguation 学习分类器 搜索结果 支持向量机 文本分类器 模糊查询 模糊模型 网络搜索 |
SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT8MwDI3GuHDhGzEGKAdOoKAuTZr0OCGmCQESEpN2i1o3K2jQwroe9u9xunYTCA6cmzqS48Qvsf1MyEVgIYSJlUz2wDIReXgO4jZiCMWVz5Mk8bWrd354DIYjcTeW4xbhq6eLbHrdRCSrg3pd64ZYxeVQeSz0A48tNsimdGxoaMMj3m9OX195VQNX92zNXEPMJpL5mwjHp_CSZ-knTvfdL63B5o_4aOV2Brtku8aLtL9c4D3Sstk-2Wl6MdB6ax4QUROlpvSptLMF7b_Hr2mJEJu6bmdvBY0XtEoPoMsEY3qfp8UhGQ1un2-GrO6IwMBXYs78iYh0BErpJOpxHoLleOEIEfZPVBBpiKT2YhWHsVQJ5xAEYAHxA8gY_wdh_SPSzvLMHhMKE-UB6DBItBCgAZFAIiCRUnMQMfc7pLvSDXpUmDqeKOP4AR3JYIdcNtoyH0taDLMmQHZqNqhm49RsFiiq0aepd0hhtOKI7oRCUXT1FU3bxSuizOZlYfDeHrrSWa9DrppVWAv4c7qTf43ukq1lQoDLwD0l7fmstGeIM-bxeWVYX-azyTg priority: 102 providerName: Springer Nature |
Title | Learning Query Ambiguity Models by Using Search Logs |
URI | https://link.springer.com/article/10.1007/s11390-010-9360-y https://www.proquest.com/docview/872095479 https://search.proquest.com/docview/907946280 |
Volume | 25 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fb9MwED7B9sILMH6IUjb5gSeQReo4sfOEytRuGjABotJ4spKz2yEgaZv2of_97tKk1SaNp0ixbEtn--473_k-gLdpwAynIZHJAIPUeUR6kI6RJChuYuW9jy2_d_56mZ5P9MVVctXm5tRtWmWnExtF7SvkO_IP1ihCA9pkH-cLyaRRHFxtGTQewuFAGcO-lx2fdYo4NlHD5co32JK5MbugZvNyjpAPZ2RRS5xGcsOlFa6rcrYgg3HbRO1x551QaWOBxk_hcQsdxXC71kfwIJTP4ElHyyDaU_ocdFszdSa-r8NyI4b_it-zNaFtwcRnf2tRbESTKSC2ucbiSzWrX8BkPPp5ei5bcgSJsdErGU91bnM0xvp8oFSGQZHvkZEHMDVpbjFPbFSYIisS45XCNMWABCUwKag_6hC_hIOyKsMrEDg1EaLNUm-1RosECrxGnyRWoS5U3IP-TjZkXPEPl4xyXCqQ6w324F0nLTffVshw-1rILGZHYnYsZrehoTp5uvaw1G63tD0Qu1ba5Ry6yMtQrWtHLnzGr2ijHrzvVmE_wL3Tvf7vdH14tM0F4OTbN3CwWq7DMUGMVXHSbKQTOBye_fo8ou-n0eW3H_R3ooY3SHjQbw |
link.rule.ids | 315,783,787,12777,21400,27936,27937,33385,33386,33756,33757,41093,41535,42162,42604,43612,43817,52123,52246 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NT9wwEB1RemgvlH6JLVB86KmV1WA7sXOqEGK70AWpEkjcrGTsXapCAmT3sP--M9lkV0Vqz1ZiaWzPPHvevAH4lEXMcRJTmR5ilKZIyA_SMZIExa1WIQTtuN75_CIbXZmz6_S64-Y0Ha2y94mtow418hv5V2cVoQFj82_3D5KbRnFyteug8QyeG02hmgvFh997R6xt0vZy5Rdsyb0x-6RmWzlHyIcZWTSis0QuWFrhpq6mDxQw_g5Ra9z5JFXaRqDhNmx10FEcLdf6NWzE6g286tsyiO6UvgXTaaZOxc95fFyIo7vy13ROaFtw47PbRpQL0TIFxJJrLMb1tHkHV8OTy-OR7JojSNTWzKSemMIVaK0LxaFSOUZFd4-cbgATmxUOi9QlpS3zMrVBKcwyjEhQAtOSvkcT9XvYrOoq7oDAiU0QXZ4FZww6JFAQDIY0dQpNqfQAdle2oeCKv1kyyrNUIOsNDuBzby1_v1TI8GstZDazJzN7NrNf0K96e_rusDR-tbQDEKtR2uWcuiiqWM8bT1f4nKtokwF86Vdh_YN_Tvfhv9MdwIvR5fnYj08vfuzCyyUvgIm4e7A5e5zHfYIbs_Jju6n-AC8kzzo |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwEB3BVkJcaPlSl9LiAyeQ29RxYue4gm4LLRVIVConE4-dBRWypUkOy69nvIm7ooID4pxknMz44znz_Abgee6xwMpnPNtHz2WZ0DxIw4gTFFepcM6lOpx3fneaH53Jt-fZ-VDntIls95iS7M80BJWmut27dNXe6uAbAZdAqEp4keYJX9yGNRmEkUawNjn8dHwQJ-NUJct6ruEvNg_1MWNi809GgrzCl3k9-0GN_75MrbDnjXTpchWarsPn-P49-eRit2vtLv68Ie34Hx-4AfcGhMomfZe6D7d8_QDWY_UHNkwGD0EO0qwz9qHzVws2-W6_zjoC9SzUV_vWMLtgS0IC6ynN7GQ-ax7B2fTg46sjPtRg4Jgq2fK0kqUuUSntyn0hCvSCtjgFbTQqlZcay0wnVtnCZsoJgXmOHgmxYGbpeZQ-fQyjel77TWBYqQRRF7nTUqJGwh5OossyLVBakY5h69r9tIbjRVCmMkGRMMgajuFFDIi57IU4zEpyOXjLkLdM8JZZkKkYMjOMycZoJQhPSkWm2PVVGkwhQ1LWft41pkiC3r7QyRhexhitDPy1uSf_dPczuPP-9dScvDk93oK7PRsh0H-fwqi96vw2gZzW7gwd-RcntPJ4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Learning+Query+Ambiguity+Models+by+Using+Search+Logs&rft.jtitle=Journal+of+computer+science+and+technology&rft.au=Song%2C+Ruihua&rft.au=Dou%2C+Zhicheng&rft.au=Hon%2C+Hsiao-Wuen&rft.au=Yu%2C+Yong&rft.date=2010-07-01&rft.issn=1000-9000&rft.eissn=1860-4749&rft.volume=25&rft.issue=4&rft.spage=728&rft.epage=738&rft_id=info:doi/10.1007%2Fs11390-010-9360-y&rft.externalDBID=NO_FULL_TEXT |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F85226X%2F85226X.jpg |