Learning Query Ambiguity Models by Using Search Logs

Identifying ambiguous queries is crucial to research on personalized Web search and search result diversity. Intuitively, query logs contain valuable information on how many intentions users have when issuing a query. However, previous work showed user clicks alone are misleading in judging a query...

Full description

Saved in:
Bibliographic Details
Published inJournal of computer science and technology Vol. 25; no. 4; pp. 728 - 738
Main Author 宋睿华 窦志成 洪小文 俞勇
Format Journal Article
LanguageEnglish
Published Boston Springer US 01.07.2010
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Identifying ambiguous queries is crucial to research on personalized Web search and search result diversity. Intuitively, query logs contain valuable information on how many intentions users have when issuing a query. However, previous work showed user clicks alone are misleading in judging a query as being ambiguous or not. In this paper, we address the problem of learning a query ambiguity model by using search logs. First, we propose enriching a query by mining the documents clicked by users and the relevant follow up queries in a session. Second, we use a text classifier to map the documents and the queries into predefined categories. Third, we propose extracting features from the processed data. Finally, we apply a state-of-the-art algorithm, Support Vector Machine (SVM), to learn a query ambiguity classifier. Experimental results verify that the sole use of click based features or session based features perform worse than the previous work based on top retrieved documents. When we combine the two sets of features, our proposed approach achieves the best effectiveness, specifically 86% in terms of accuracy. It significantly improves the click based method by 5.6% and the session based method by 4.6%.
AbstractList dentifying ambiguous queries is crucial to research on personalized Web search and search result diversity. Intuitively, query logs contain valuable information on how many intentions users have when issuing a query. However, previous work showed user clicks alone are misleading in judging a query as being ambiguous or not. In this paper, we address the problem of learning a query ambiguity model by using search logs. First, we propose enriching a query by mining the documents clicked by users and the relevant follow up queries in a session. Second, we use a text classifier to map the documents and the queries into predefined categories. Third, we propose extracting features from the processed data. Finally, we apply a state-of-the-art algorithm, Support Vector Machine (SVM), to learn a query ambiguity classifier. Experimental results verify that the sole use of click based features or session based features perform worse than the previous work based on top retrieved documents. When we combine the two sets of features, our proposed approach achieves the best effectiveness, specifically 86% in terms of accuracy. It significantly improves the click based method by 5.6% and the session based method by 4.6%.
Identifying ambiguous queries is crucial to research on personalized Web search and search result diversity. Intuitively, query logs contain valuable information on how many intentions users have when issuing a query. However, previous work showed user clicks alone are misleading in judging a query as being ambiguous or not. In this paper, we address the problem of learning a query ambiguity model by using search logs. First, we propose enriching a query by mining the documents clicked by users and the relevant follow up queries in a session. Second, we use a text classifier to map the documents and the queries into predefined categories. Third, we propose extracting features from the processed data. Finally, we apply a state-of-the-art algorithm, Support Vector Machine (SVM), to learn a query ambiguity classifier. Experimental results verify that the sole use of click based features or session based features perform worse than the previous work based on top retrieved documents. When we combine the two sets of features, our proposed approach achieves the best effectiveness, specifically 86% in terms of accuracy. It significantly improves the click based method by 5.6% and the session based method by 4.6%.
Author 宋睿华 窦志成 洪小文 俞勇
AuthorAffiliation Department of Computer Science, Shanghai Jiao Tong University, Shanghai 200240, China Microsoft Research Asia, Beijing 100190, China
Author_xml – sequence: 1
  fullname: 宋睿华 窦志成 洪小文 俞勇
BookMark eNp9kD1PwzAQhi0EEm3hB7BFLEyB80die6wqvqQghKCz5bhOmpLGrd0M-fe4SiUkBhb7pHueu9M7Reed6yxCNxjuMQB_CBhTCSlgSCXNIR3O0ASLWDDO5HmsAWInPpdoGsIGgHJgbIJYYbXvmq5OPnrrh2S-LZu6bw5D8uZWtg1JOSTLcOx_RtCsk8LV4QpdVLoN9vr0z9Dy6fFr8ZIW78-vi3mRGsrZIaUV00IbzsVKY0KksYQJLinkFc-1MDoTUPJSlhlfEWLy3FhDBDVZGX3DLJ2hu3Huzrt9b8NBbZtgbNvqzro-KAlcspwIiOTtH3Ljet_F45TgBGTG4t4ZwiNkvAvB20rtfLPVflAY1DFFNaaoYorqmKIaokNGJ0S2q63_HfyfdLrGrF1X76OnSm2-q6a1ijLGgTBJfwAjY4CR
CitedBy_id crossref_primary_10_1007_s10791_019_09356_x
crossref_primary_10_1007_s10791_012_9216_x
Cites_doi 10.1109/18.61115
10.1145/1117454.1117466
10.1016/j.ipm.2008.09.005
10.1145/146802.146810
10.1145/1117454.1117467
10.1016/j.ipm.2004.11.003
10.1145/1148170.1148245
10.1145/1060745.1060804
10.1145/1498759.1498766
10.1145/860435.860440
10.7551/mitpress/1130.003.0016
10.1145/1135777.1135902
10.1145/956863.956925
10.1145/1242572.1242651
10.1145/1390334.1390420
10.1145/160688.160715
10.1145/1401890.1401995
10.1145/1148170.1148320
10.1145/290941.291025
ContentType Journal Article
Copyright Springer 2010
Springer 2010.
Copyright_xml – notice: Springer 2010
– notice: Springer 2010.
DBID 2RA
92L
CQIGP
W92
~WA
AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8FD
8FE
8FG
8FK
8FL
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
HCIFZ
JQ2
K60
K6~
K7-
L.-
L6V
L7M
L~C
L~D
M0C
M0N
M7S
P5Z
P62
PQBIZ
PQBZA
PQEST
PQQKQ
PQUKI
PTHSS
Q9U
DOI 10.1007/s11390-010-9360-y
DatabaseName 维普_期刊
中文科技期刊数据库-CALIS站点
维普中文期刊数据库
中文科技期刊数据库-工程技术
中文科技期刊数据库- 镜像站点
CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni Edition)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central
Advanced Technologies & Aerospace Database‎ (1962 - current)
ProQuest Central Essentials
AUTh Library subscriptions: ProQuest Central
ProQuest Business Premium Collection
Technology Collection
ProQuest One Community College
ProQuest Central
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
SciTech Premium Collection (Proquest) (PQ_SDU_P3)
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global (ProQuest)
Computing Database
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
One Business (ProQuest)
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering Collection
ProQuest Central Basic
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
ProQuest Central Korea
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Engineering Collection
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Computing
Engineering Database
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList Computer and Information Systems Abstracts


ABI/INFORM Global (Corporate)
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
DocumentTitleAlternate Learning Query Ambiguity Models by Using Search Logs
EISSN 1860-4749
EndPage 738
ExternalDocumentID 2376505641
10_1007_s11390_010_9360_y
34470249
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
1N0
1SB
2.D
28-
29K
2B.
2C0
2J2
2JN
2JY
2KG
2KM
2LR
2RA
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VR
5VS
67Z
6NX
7WY
8FE
8FG
8FL
8TC
8UJ
92H
92I
92L
92R
93N
95-
95.
95~
96X
AAAVM
AABHQ
AABYN
AAFGU
AAHNG
AAIAL
AAJKR
AANZL
AAOBN
AARHV
AARTL
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
ABBBX
ABBXA
ABDZT
ABECU
ABFGW
ABFTD
ABFTV
ABHLI
ABHQN
ABJOX
ABKAS
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTMW
ABULA
ABUWG
ABXPI
ACBMV
ACBRV
ACBXY
ACGFS
ACHSB
ACHXU
ACIGE
ACIPQ
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACSNA
ACTTH
ACVWB
ACWMK
ADGRI
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADMDM
ADRFC
ADTIX
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFTE
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AENEX
AEOHA
AEPYU
AESTI
AETLH
AEVTX
AEXYK
AEYWE
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFUIB
AFWTZ
AFZKB
AGAYW
AGDGC
AGGBP
AGGDS
AGJBK
AGMZJ
AGQMX
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIIXL
AILAN
AIMYW
AITGF
AJBLW
AJDOV
AJRNO
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMYLF
AMYQR
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
CAG
CCEZO
CDYEO
CHBEP
COF
CQIGP
CS3
CSCUP
CUBFJ
CW9
D-I
DNIVK
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FA0
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GXS
H13
HCIFZ
HF~
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
IAO
IHE
IJ-
IPNFZ
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
LAK
LLZTM
M0C
M0N
M4Y
MA-
N2Q
N95
NB0
NDZJH
NF0
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9O
PF0
PQBIZ
PQEST
PQQKQ
PQUKI
PRINS
PROAC
PT4
PT5
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCL
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNX
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TCJ
TGT
TSG
TSK
TSV
TUC
U2A
UG4
UNUBA
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
W92
WK8
YLTOR
Z7R
Z7U
Z7X
Z81
Z83
Z88
Z8R
Z8W
Z92
ZMTXR
~A9
~EX
~WA
AATNV
AAWWR
AAYFA
ABJCF
ABJNI
ABTKH
ABWNU
ADOXG
ADTPH
AEEQQ
AESKC
AEVLU
AFNRJ
AMXSW
AOCGG
CCPQU
DDRTE
DPUIP
IKXTQ
IWAJR
M7S
NPVJJ
PTHSS
SNPRN
SOHCF
Z7Z
-SI
-S~
5XA
5XJ
AACDK
AAEOY
AAJBT
AASML
AAXDM
AAYXX
ABAKF
ACAOD
ACDTI
ACZOJ
AEFQL
AEMSY
AFBBN
AGQEE
AGRTI
AIGIU
CAJEI
CITATION
PQBZA
Q--
U1G
U5S
7SC
7XB
8AL
8FD
8FK
JQ2
L.-
L6V
L7M
L~C
L~D
Q9U
AAYZH
ID FETCH-LOGICAL-c374t-3f4a8ac778da1229ce24879306f76a8ca580b7b9b57d22c66cec283c5bc37c4e3
IEDL.DBID 8FG
ISSN 1000-9000
IngestDate Fri Oct 25 07:23:51 EDT 2024
Thu Oct 10 22:16:56 EDT 2024
Thu Sep 12 16:36:26 EDT 2024
Sat Dec 16 12:08:36 EST 2023
Fri Nov 25 17:04:00 EST 2022
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords query classification
ambiguous query
log mining
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c374t-3f4a8ac778da1229ce24879306f76a8ca580b7b9b57d22c66cec283c5bc37c4e3
Notes ambiguous query, log mining, query classification
11-2296/TP
TP181
TP311.13
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 872095479
PQPubID 326258
PageCount 11
ParticipantIDs proquest_miscellaneous_907946280
proquest_journals_872095479
crossref_primary_10_1007_s11390_010_9360_y
springer_journals_10_1007_s11390_010_9360_y
chongqing_backfile_34470249
PublicationCentury 2000
PublicationDate 2010-07-01
PublicationDateYYYYMMDD 2010-07-01
PublicationDate_xml – month: 07
  year: 2010
  text: 2010-07-01
  day: 01
PublicationDecade 2010
PublicationPlace Boston
PublicationPlace_xml – name: Boston
– name: Beijing
PublicationTitle Journal of computer science and technology
PublicationTitleAbbrev J. Comput. Sci. Technol
PublicationTitleAlternate Journal of Computer Science and Technology
PublicationYear 2010
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References CR2
CR4
CR3
CR6
Zhai, Lafferty (CR12) 2006; 42
CR19
CR7
CR18
CR17
CR9
CR16
CR15
CR14
Krovetz, Croft (CR8) 1992; 10
CR13
Lin (CR21) 1991; 37
Song, Luo, Nie, Yu, Hon (CR1) 2008; 45
CR11
CR10
Li, Zheng, Dai (CR5) 2005; 7
Shen, Pan, Sun, Pan, Wu, Yin, Yang (CR20) 2005; 7
D Shen (9360_CR20) 2005; 7
9360_CR9
J Lin (9360_CR21) 1991; 37
9360_CR7
9360_CR6
9360_CR17
9360_CR4
9360_CR18
9360_CR3
9360_CR19
9360_CR2
R Song (9360_CR1) 2008; 45
R Krovetz (9360_CR8) 1992; 10
9360_CR13
9360_CR14
Y Li (9360_CR5) 2005; 7
9360_CR15
9360_CR16
CX Zhai (9360_CR12) 2006; 42
9360_CR10
9360_CR11
References_xml – ident: CR19
– ident: CR18
– volume: 37
  start-page: 145
  issue: 1
  year: 1991
  end-page: 151
  ident: CR21
  article-title: Divergence measures based on the Shannon entropy
  publication-title: IEEE Transactions on Information Theory
  doi: 10.1109/18.61115
  contributor:
    fullname: Lin
– ident: CR3
– ident: CR4
– volume: 7
  start-page: 91
  issue: 2
  year: 2005
  end-page: 99
  ident: CR5
  article-title: KDD CUP-2005 report: Facing a great challenge
  publication-title: SIGKDD Explor. Newsl.
  doi: 10.1145/1117454.1117466
  contributor:
    fullname: Dai
– ident: CR14
– ident: CR15
– ident: CR2
– ident: CR16
– ident: CR17
– ident: CR13
– ident: CR10
– ident: CR11
– ident: CR9
– ident: CR6
– volume: 45
  start-page: 216
  issue: 2
  year: 2008
  end-page: 229
  ident: CR1
  article-title: Identification of ambiguous queries in Web search
  publication-title: Information Processing and Management
  doi: 10.1016/j.ipm.2008.09.005
  contributor:
    fullname: Hon
– ident: CR7
– volume: 10
  start-page: 115
  issue: 2
  year: 1992
  end-page: 141
  ident: CR8
  article-title: Lexical ambiguity and information retrieval
  publication-title: ACM Trans. Inf. Syst.
  doi: 10.1145/146802.146810
  contributor:
    fullname: Croft
– volume: 7
  start-page: 100
  issue: 2
  year: 2005
  end-page: 110
  ident: CR20
  article-title: Q2C@UST: Our winning solution to query classification in KDDCUP 2005
  publication-title: SIGKDD Explor. Newsl.
  doi: 10.1145/1117454.1117467
  contributor:
    fullname: Yang
– volume: 42
  start-page: 31
  issue: 1
  year: 2006
  end-page: 55
  ident: CR12
  article-title: A risk minimization framework for information retrieval
  publication-title: Information Processing and Management
  doi: 10.1016/j.ipm.2004.11.003
  contributor:
    fullname: Lafferty
– volume: 7
  start-page: 91
  issue: 2
  year: 2005
  ident: 9360_CR5
  publication-title: SIGKDD Explor. Newsl.
  doi: 10.1145/1117454.1117466
  contributor:
    fullname: Y Li
– ident: 9360_CR13
  doi: 10.1145/1148170.1148245
– volume: 37
  start-page: 145
  issue: 1
  year: 1991
  ident: 9360_CR21
  publication-title: IEEE Transactions on Information Theory
  doi: 10.1109/18.61115
  contributor:
    fullname: J Lin
– ident: 9360_CR15
  doi: 10.1145/1060745.1060804
– volume: 42
  start-page: 31
  issue: 1
  year: 2006
  ident: 9360_CR12
  publication-title: Information Processing and Management
  doi: 10.1016/j.ipm.2004.11.003
  contributor:
    fullname: CX Zhai
– volume: 7
  start-page: 100
  issue: 2
  year: 2005
  ident: 9360_CR20
  publication-title: SIGKDD Explor. Newsl.
  doi: 10.1145/1117454.1117467
  contributor:
    fullname: D Shen
– ident: 9360_CR14
  doi: 10.1145/1498759.1498766
– ident: 9360_CR6
– ident: 9360_CR7
– ident: 9360_CR11
  doi: 10.1145/860435.860440
– ident: 9360_CR18
  doi: 10.7551/mitpress/1130.003.0016
– volume: 10
  start-page: 115
  issue: 2
  year: 1992
  ident: 9360_CR8
  publication-title: ACM Trans. Inf. Syst.
  doi: 10.1145/146802.146810
  contributor:
    fullname: R Krovetz
– ident: 9360_CR16
  doi: 10.1145/1135777.1135902
– ident: 9360_CR17
  doi: 10.1145/956863.956925
– ident: 9360_CR2
  doi: 10.1145/1242572.1242651
– ident: 9360_CR3
  doi: 10.1145/1390334.1390420
– ident: 9360_CR9
  doi: 10.1145/160688.160715
– ident: 9360_CR19
  doi: 10.1145/1401890.1401995
– volume: 45
  start-page: 216
  issue: 2
  year: 2008
  ident: 9360_CR1
  publication-title: Information Processing and Management
  doi: 10.1016/j.ipm.2008.09.005
  contributor:
    fullname: R Song
– ident: 9360_CR4
  doi: 10.1145/1148170.1148320
– ident: 9360_CR10
  doi: 10.1145/290941.291025
SSID ssj0037044
Score 1.9124613
Snippet Identifying ambiguous queries is crucial to research on personalized Web search and search result diversity. Intuitively, query logs contain valuable...
dentifying ambiguous queries is crucial to research on personalized Web search and search result diversity. Intuitively, query logs contain valuable...
SourceID proquest
crossref
springer
chongqing
SourceType Aggregation Database
Publisher
StartPage 728
SubjectTerms Algorithms
Ambiguity
Artificial Intelligence
Classifiers
College baseball
Computer Science
Customization
Data Structures and Information Theory
Dictionaries
Documents
Information Systems Applications (incl.Internet)
Learning
Logs
Mathematical models
Queries
Query processing
Regular Paper
Searching
Software
Software Engineering
Support vector machines
Theory of Computation
User experience
User needs
Word sense disambiguation
学习分类器
搜索结果
支持向量机
文本分类器
模糊查询
模糊模型
网络搜索
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT8MwDI3GuHDhGzEGKAdOoKAuTZr0OCGmCQESEpN2i1o3K2jQwroe9u9xunYTCA6cmzqS48Qvsf1MyEVgIYSJlUz2wDIReXgO4jZiCMWVz5Mk8bWrd354DIYjcTeW4xbhq6eLbHrdRCSrg3pd64ZYxeVQeSz0A48tNsimdGxoaMMj3m9OX195VQNX92zNXEPMJpL5mwjHp_CSZ-knTvfdL63B5o_4aOV2Brtku8aLtL9c4D3Sstk-2Wl6MdB6ax4QUROlpvSptLMF7b_Hr2mJEJu6bmdvBY0XtEoPoMsEY3qfp8UhGQ1un2-GrO6IwMBXYs78iYh0BErpJOpxHoLleOEIEfZPVBBpiKT2YhWHsVQJ5xAEYAHxA8gY_wdh_SPSzvLMHhMKE-UB6DBItBCgAZFAIiCRUnMQMfc7pLvSDXpUmDqeKOP4AR3JYIdcNtoyH0taDLMmQHZqNqhm49RsFiiq0aepd0hhtOKI7oRCUXT1FU3bxSuizOZlYfDeHrrSWa9DrppVWAv4c7qTf43ukq1lQoDLwD0l7fmstGeIM-bxeWVYX-azyTg
  priority: 102
  providerName: Springer Nature
Title Learning Query Ambiguity Models by Using Search Logs
URI https://link.springer.com/article/10.1007/s11390-010-9360-y
https://www.proquest.com/docview/872095479
https://search.proquest.com/docview/907946280
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fb9MwED7B9sILMH6IUjb5gSeQReo4sfOEytRuGjABotJ4spKz2yEgaZv2of_97tKk1SaNp0ixbEtn--473_k-gLdpwAynIZHJAIPUeUR6kI6RJChuYuW9jy2_d_56mZ5P9MVVctXm5tRtWmWnExtF7SvkO_IP1ihCA9pkH-cLyaRRHFxtGTQewuFAGcO-lx2fdYo4NlHD5co32JK5MbugZvNyjpAPZ2RRS5xGcsOlFa6rcrYgg3HbRO1x551QaWOBxk_hcQsdxXC71kfwIJTP4ElHyyDaU_ocdFszdSa-r8NyI4b_it-zNaFtwcRnf2tRbESTKSC2ucbiSzWrX8BkPPp5ei5bcgSJsdErGU91bnM0xvp8oFSGQZHvkZEHMDVpbjFPbFSYIisS45XCNMWABCUwKag_6hC_hIOyKsMrEDg1EaLNUm-1RosECrxGnyRWoS5U3IP-TjZkXPEPl4xyXCqQ6w324F0nLTffVshw-1rILGZHYnYsZrehoTp5uvaw1G63tD0Qu1ba5Ry6yMtQrWtHLnzGr2ijHrzvVmE_wL3Tvf7vdH14tM0F4OTbN3CwWq7DMUGMVXHSbKQTOBye_fo8ou-n0eW3H_R3ooY3SHjQbw
link.rule.ids 315,783,787,12777,21400,27936,27937,33385,33386,33756,33757,41093,41535,42162,42604,43612,43817,52123,52246
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NT9wwEB1RemgvlH6JLVB86KmV1WA7sXOqEGK70AWpEkjcrGTsXapCAmT3sP--M9lkV0Vqz1ZiaWzPPHvevAH4lEXMcRJTmR5ilKZIyA_SMZIExa1WIQTtuN75_CIbXZmz6_S64-Y0Ha2y94mtow418hv5V2cVoQFj82_3D5KbRnFyteug8QyeG02hmgvFh997R6xt0vZy5Rdsyb0x-6RmWzlHyIcZWTSis0QuWFrhpq6mDxQw_g5Ra9z5JFXaRqDhNmx10FEcLdf6NWzE6g286tsyiO6UvgXTaaZOxc95fFyIo7vy13ROaFtw47PbRpQL0TIFxJJrLMb1tHkHV8OTy-OR7JojSNTWzKSemMIVaK0LxaFSOUZFd4-cbgATmxUOi9QlpS3zMrVBKcwyjEhQAtOSvkcT9XvYrOoq7oDAiU0QXZ4FZww6JFAQDIY0dQpNqfQAdle2oeCKv1kyyrNUIOsNDuBzby1_v1TI8GstZDazJzN7NrNf0K96e_rusDR-tbQDEKtR2uWcuiiqWM8bT1f4nKtokwF86Vdh_YN_Tvfhv9MdwIvR5fnYj08vfuzCyyUvgIm4e7A5e5zHfYIbs_Jju6n-AC8kzzo
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwEB3BVkJcaPlSl9LiAyeQ29RxYue4gm4LLRVIVConE4-dBRWypUkOy69nvIm7ooID4pxknMz44znz_Abgee6xwMpnPNtHz2WZ0DxIw4gTFFepcM6lOpx3fneaH53Jt-fZ-VDntIls95iS7M80BJWmut27dNXe6uAbAZdAqEp4keYJX9yGNRmEkUawNjn8dHwQJ-NUJct6ruEvNg_1MWNi809GgrzCl3k9-0GN_75MrbDnjXTpchWarsPn-P49-eRit2vtLv68Ie34Hx-4AfcGhMomfZe6D7d8_QDWY_UHNkwGD0EO0qwz9qHzVws2-W6_zjoC9SzUV_vWMLtgS0IC6ynN7GQ-ax7B2fTg46sjPtRg4Jgq2fK0kqUuUSntyn0hCvSCtjgFbTQqlZcay0wnVtnCZsoJgXmOHgmxYGbpeZQ-fQyjel77TWBYqQRRF7nTUqJGwh5OossyLVBakY5h69r9tIbjRVCmMkGRMMgajuFFDIi57IU4zEpyOXjLkLdM8JZZkKkYMjOMycZoJQhPSkWm2PVVGkwhQ1LWft41pkiC3r7QyRhexhitDPy1uSf_dPczuPP-9dScvDk93oK7PRsh0H-fwqi96vw2gZzW7gwd-RcntPJ4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Learning+Query+Ambiguity+Models+by+Using+Search+Logs&rft.jtitle=Journal+of+computer+science+and+technology&rft.au=Song%2C+Ruihua&rft.au=Dou%2C+Zhicheng&rft.au=Hon%2C+Hsiao-Wuen&rft.au=Yu%2C+Yong&rft.date=2010-07-01&rft.issn=1000-9000&rft.eissn=1860-4749&rft.volume=25&rft.issue=4&rft.spage=728&rft.epage=738&rft_id=info:doi/10.1007%2Fs11390-010-9360-y&rft.externalDBID=NO_FULL_TEXT
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F85226X%2F85226X.jpg