Visual Exploration of Big Spatio-Temporal Urban Data: A Study of New York City Taxi Trips
As increasing volumes of urban data are captured and become available, new opportunities arise for data-driven analysis that can lead to improvements in the lives of citizens through evidence-based decision making and policies. In this paper, we focus on a particularly important urban data set: taxi...
Saved in:
Published in | IEEE transactions on visualization and computer graphics Vol. 19; no. 12; pp. 2149 - 2158 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.12.2013
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | As increasing volumes of urban data are captured and become available, new opportunities arise for data-driven analysis that can lead to improvements in the lives of citizens through evidence-based decision making and policies. In this paper, we focus on a particularly important urban data set: taxi trips. Taxis are valuable sensors and information associated with taxi trips can provide unprecedented insight into many different aspects of city life, from economic activity and human behavior to mobility patterns. But analyzing these data presents many challenges. The data are complex, containing geographical and temporal components in addition to multiple variables associated with each trip. Consequently, it is hard to specify exploratory queries and to perform comparative analyses (e.g., compare different regions over time). This problem is compounded due to the size of the data-there are on average 500,000 taxi trips each day in NYC. We propose a new model that allows users to visually query taxi trips. Besides standard analytics queries, the model supports origin-destination queries that enable the study of mobility across the city. We show that this model is able to express a wide range of spatio-temporal queries, and it is also flexible in that not only can queries be composed but also different aggregations and visual representations can be applied, allowing users to explore and compare results. We have built a scalable system that implements this model which supports interactive response times; makes use of an adaptive level-of-detail rendering strategy to generate clutter-free visualization for large results; and shows hidden details to the users in a summary through the use of overlay heat maps. We present a series of case studies motivated by traffic engineers and economists that show how our model and system enable domain experts to perform tasks that were previously unattainable for them. |
---|---|
AbstractList | As increasing volumes of urban data are captured and become available, new opportunities arise for data-driven analysis that can lead to improvements in the lives of citizens through evidence-based decision making and policies. In this paper, we focus on a particularly important urban data set: taxi trips. Taxis are valuable sensors and information associated with taxi trips can provide unprecedented insight into many different aspects of city life, from economic activity and human behavior to mobility patterns. But analyzing these data presents many challenges. The data are complex, containing geographical and temporal components in addition to multiple variables associated with each trip. Consequently, it is hard to specify exploratory queries and to perform comparative analyses (e.g., compare different regions over time). This problem is compounded due to the size of the data-there are on average 500,000 taxi trips each day in NYC. We propose a new model that allows users to visually query taxi trips. Besides standard analytics queries, the model supports origin-destination queries that enable the study of mobility across the city. We show that this model is able to express a wide range of spatio-temporal queries, and it is also flexible in that not only can queries be composed but also different aggregations and visual representations can be applied, allowing users to explore and compare results. We have built a scalable system that implements this model which supports interactive response times; makes use of an adaptive level-of-detail rendering strategy to generate clutter-free visualization for large results; and shows hidden details to the users in a summary through the use of overlay heat maps. We present a series of case studies motivated by traffic engineers and economists that show how our model and system enable domain experts to perform tasks that were previously unattainable for them. As increasing volumes of urban data are captured and become available, new opportunities arise for data-driven analysis that can lead to improvements in the lives of citizens through evidence-based decision making and policies. In this paper, we focus on a particularly important urban data set: taxi trips. Taxis are valuable sensors and information associated with taxi trips can provide unprecedented insight into many different aspects of city life, from economic activity and human behavior to mobility patterns. But analyzing these data presents many challenges. The data are complex, containing geographical and temporal components in addition to multiple variables associated with each trip. Consequently, it is hard to specify exploratory queries and to perform comparative analyses (e.g., compare different regions over time). This problem is compounded due to the size of the data-there are on average 500,000 taxi trips each day in NYC. We propose a new model that allows users to visually query taxi trips. Besides standard analytics queries, the model supports origin-destination queries that enable the study of mobility across the city. We show that this model is able to express a wide range of spatio-temporal queries, and it is also flexible in that not only can queries be composed but also different aggregations and visual representations can be applied, allowing users to explore and compare results. We have built a scalable system that implements this model which supports interactive response times; makes use of an adaptive level-of-detail rendering strategy to generate clutter-free visualization for large results; and shows hidden details to the users in a summary through the use of overlay heat maps. We present a series of case studies motivated by traffic engineers and economists that show how our model and system enable domain experts to perform tasks that were previously unattainable for them.As increasing volumes of urban data are captured and become available, new opportunities arise for data-driven analysis that can lead to improvements in the lives of citizens through evidence-based decision making and policies. In this paper, we focus on a particularly important urban data set: taxi trips. Taxis are valuable sensors and information associated with taxi trips can provide unprecedented insight into many different aspects of city life, from economic activity and human behavior to mobility patterns. But analyzing these data presents many challenges. The data are complex, containing geographical and temporal components in addition to multiple variables associated with each trip. Consequently, it is hard to specify exploratory queries and to perform comparative analyses (e.g., compare different regions over time). This problem is compounded due to the size of the data-there are on average 500,000 taxi trips each day in NYC. We propose a new model that allows users to visually query taxi trips. Besides standard analytics queries, the model supports origin-destination queries that enable the study of mobility across the city. We show that this model is able to express a wide range of spatio-temporal queries, and it is also flexible in that not only can queries be composed but also different aggregations and visual representations can be applied, allowing users to explore and compare results. We have built a scalable system that implements this model which supports interactive response times; makes use of an adaptive level-of-detail rendering strategy to generate clutter-free visualization for large results; and shows hidden details to the users in a summary through the use of overlay heat maps. We present a series of case studies motivated by traffic engineers and economists that show how our model and system enable domain experts to perform tasks that were previously unattainable for them. |
Author | Ferreira, Nivan Poco, Jorge Silva, Claudio T. Vo, Huy T. Freire, Juliana |
Author_xml | – sequence: 1 givenname: Nivan surname: Ferreira fullname: Ferreira, Nivan email: nivan.ferreira@nyu.edu – sequence: 2 givenname: Jorge surname: Poco fullname: Poco, Jorge email: jpocom@nyu.edu – sequence: 3 givenname: Huy T. surname: Vo fullname: Vo, Huy T. email: huy.vo@nyu.edu – sequence: 4 givenname: Juliana surname: Freire fullname: Freire, Juliana email: juliana.freire@nyu.edu – sequence: 5 givenname: Claudio T. surname: Silva fullname: Silva, Claudio T. email: csilva@nyu.edu |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24051781$$D View this record in MEDLINE/PubMed |
BookMark | eNqN0U1P3DAQBmALUfHVHjkhVZa49JLFX7GT3uiW0kqoPRCQOFmz2QkyZOPUTgT77-t0gQMSEieP5WdG8rz7ZLvzHRJyyNmMc1aeVNfz85lgXM6E0Ftkj5eKZyxnejvVzJhMaKF3yX6Md4xxpYpyh-wKxXJuCr5Hbq5dHKGlZ4996wMMznfUN_Sbu6WX_XTNKlz16aWlV2EBHf0OA3ylp_RyGJfrif7GB3rjwz2du2FNK3h0tAqujx_JhwbaiJ-ezgNy9eOsmv_MLv6c_5qfXmS1NGrIJCzLptENA44FFEygYAbNgtUgOeRFLVRTpnqBkhswWkIutNGqNqVC0xTygHzZzO2D_ztiHOzKxRrbFjr0Y7RcaZXnIk19B5XKKCW4TvT4Fb3zY-jSR5JSopRp42VSn5_UuFjh0vbBrSCs7fN-E5AbUAcfY8DG1m74v-UhgGstZ3ZK0U4p2ilFm1JMXdmrrufBb_mjjXeI-GK1looLI_8BsJajFA |
CODEN | ITVGEA |
CitedBy_id | crossref_primary_10_1109_TVCG_2017_2744419 crossref_primary_10_1109_MCG_2019_2911230 crossref_primary_10_1109_TITS_2021_3092036 crossref_primary_10_1111_cgf_13882 crossref_primary_10_1016_j_cola_2019_01_001 crossref_primary_10_1109_TITS_2020_2989811 crossref_primary_10_1016_j_visinf_2017_01_007 crossref_primary_10_1080_03081060_2022_2111430 crossref_primary_10_1140_epjds_s13688_019_0206_8 crossref_primary_10_1016_j_dss_2017_05_008 crossref_primary_10_1016_j_tbs_2020_09_008 crossref_primary_10_14778_3007263_3007291 crossref_primary_10_1016_j_jvlc_2018_08_009 crossref_primary_10_1088_1757_899X_688_2_022049 crossref_primary_10_1109_TVCG_2014_2346265 crossref_primary_10_1002_cpe_5969 crossref_primary_10_1016_j_ifacol_2018_08_095 crossref_primary_10_1080_10630732_2016_1177260 crossref_primary_10_1109_TCSS_2018_2877149 crossref_primary_10_1109_TVCG_2016_2598416 crossref_primary_10_1080_13658816_2019_1673397 crossref_primary_10_1080_10095020_2017_1413798 crossref_primary_10_1111_cgf_12778 crossref_primary_10_1007_s10462_024_10854_8 crossref_primary_10_1109_TBDATA_2020_2964169 crossref_primary_10_1186_s40537_019_0203_6 crossref_primary_10_1109_TVCG_2019_2934670 crossref_primary_10_1109_TII_2021_3089330 crossref_primary_10_1109_TVCG_2019_2934671 crossref_primary_10_1109_TVCG_2021_3114813 crossref_primary_10_1109_TITS_2015_2498187 crossref_primary_10_1145_3130800_3130847 crossref_primary_10_1109_TVCG_2018_2864503 crossref_primary_10_1109_TVCG_2017_2758362 crossref_primary_10_1016_j_cola_2019_100936 crossref_primary_10_1111_cgf_14035 crossref_primary_10_1109_ACCESS_2020_3044956 crossref_primary_10_1109_TVCG_2022_3209360 crossref_primary_10_1109_TVCG_2022_3209474 crossref_primary_10_1007_s12650_020_00673_8 crossref_primary_10_1016_j_jvlc_2017_03_007 crossref_primary_10_2139_ssrn_2659896 crossref_primary_10_1016_j_trc_2019_10_001 crossref_primary_10_1109_MIM_2021_9549127 crossref_primary_10_1007_s12665_019_8800_4 crossref_primary_10_2139_ssrn_4229008 crossref_primary_10_1111_tgis_12473 crossref_primary_10_1002_cpe_7475 crossref_primary_10_1007_s10489_017_0949_5 crossref_primary_10_1109_TVCG_2019_2922597 crossref_primary_10_1007_s12650_017_0449_z crossref_primary_10_1016_j_compenvurbsys_2018_07_006 crossref_primary_10_1016_j_tourman_2016_06_013 crossref_primary_10_1088_1757_899X_231_1_012046 crossref_primary_10_1177_0361198120970526 crossref_primary_10_3390_ijgi7090371 crossref_primary_10_1109_MCG_2018_053491728 crossref_primary_10_1016_j_trd_2019_10_009 crossref_primary_10_1007_s12650_024_00968_0 crossref_primary_10_3390_info9040101 crossref_primary_10_1109_TITS_2017_2711644 crossref_primary_10_1016_j_visinf_2023_11_003 crossref_primary_10_1177_03611981211049143 crossref_primary_10_1109_TVCG_2018_2865018 crossref_primary_10_1016_j_bdr_2021_100294 crossref_primary_10_3233_ICA_210663 crossref_primary_10_1007_s12650_020_00713_3 crossref_primary_10_1016_j_trpro_2017_05_106 crossref_primary_10_1007_s11769_021_1173_0 crossref_primary_10_1007_s40890_020_00109_w crossref_primary_10_1111_cgf_12629 crossref_primary_10_3390_info11090425 crossref_primary_10_1109_TVCG_2018_2816219 crossref_primary_10_3390_ijgi7050164 crossref_primary_10_1109_TVCG_2015_2467194 crossref_primary_10_1080_17489725_2019_1630680 crossref_primary_10_1145_3200766 crossref_primary_10_1061_JTEPBS_0000550 crossref_primary_10_1007_s41095_022_0275_7 crossref_primary_10_3390_ijgi12080305 crossref_primary_10_1109_TVCG_2022_3201101 crossref_primary_10_1109_TVCG_2018_2865191 crossref_primary_10_1016_j_ijdrr_2024_105054 crossref_primary_10_1109_TVCG_2021_3114853 crossref_primary_10_1016_j_cag_2016_08_005 crossref_primary_10_1109_TVCG_2019_2940580 crossref_primary_10_1016_j_visinf_2019_10_002 crossref_primary_10_1080_17489725_2019_1588406 crossref_primary_10_1109_TVCG_2021_3071387 crossref_primary_10_1111_exsy_13065 crossref_primary_10_1016_j_apgeog_2017_08_007 crossref_primary_10_1089_big_2016_0052 crossref_primary_10_1109_ACCESS_2021_3052795 crossref_primary_10_1109_TITS_2017_2727281 crossref_primary_10_1111_tgis_12485 crossref_primary_10_1016_j_trc_2017_03_002 crossref_primary_10_1109_TII_2022_3181045 crossref_primary_10_1080_23249935_2018_1523250 crossref_primary_10_1007_s12650_016_0357_7 crossref_primary_10_1109_ACCESS_2019_2948304 crossref_primary_10_1109_TBDATA_2016_2620488 crossref_primary_10_1111_mice_12251 crossref_primary_10_3390_su142013548 crossref_primary_10_1007_s11280_018_0578_x crossref_primary_10_1109_TSMC_2020_3040262 crossref_primary_10_1109_TVCG_2015_2467771 crossref_primary_10_1016_j_autcon_2017_12_036 crossref_primary_10_1016_j_jtrangeo_2024_104080 crossref_primary_10_1177_03611981211018474 crossref_primary_10_1007_s40313_022_00908_z crossref_primary_10_1007_s12650_018_0499_x crossref_primary_10_1080_13658816_2017_1393542 crossref_primary_10_1016_j_jtrangeo_2019_102568 crossref_primary_10_1109_TVCG_2019_2907583 crossref_primary_10_1007_s12205_022_0434_5 crossref_primary_10_1080_15230406_2018_1553113 crossref_primary_10_1109_TITS_2018_2875021 crossref_primary_10_1016_j_jtrangeo_2017_10_021 crossref_primary_10_1016_j_cag_2024_104013 crossref_primary_10_1016_j_jvlc_2017_04_001 crossref_primary_10_1109_TVCG_2020_2978847 crossref_primary_10_1007_s11042_019_08012_2 crossref_primary_10_3141_2542_06 crossref_primary_10_1109_TVCG_2020_3028891 crossref_primary_10_3390_su152115325 crossref_primary_10_1109_TITS_2017_2683539 crossref_primary_10_1016_j_trpro_2017_03_065 crossref_primary_10_1007_s11116_023_10372_6 crossref_primary_10_1140_epjs_s11734_021_00424_2 crossref_primary_10_1109_TITS_2020_2983226 crossref_primary_10_1080_10236198_2016_1167890 crossref_primary_10_1016_j_jtte_2021_01_001 crossref_primary_10_3390_s20041107 crossref_primary_10_1109_TVCG_2020_2992200 crossref_primary_10_48130_dts_0024_0001 crossref_primary_10_1016_j_cag_2023_07_031 crossref_primary_10_1109_ACCESS_2018_2858260 crossref_primary_10_1016_j_ifacol_2017_08_1462 crossref_primary_10_3389_fnins_2024_1369832 crossref_primary_10_3745_KTSDE_2015_4_9_347 crossref_primary_10_1016_j_is_2015_06_002 crossref_primary_10_1111_tgis_12849 crossref_primary_10_1007_s11280_019_00700_1 crossref_primary_10_1007_s10707_016_0280_z crossref_primary_10_1007_s10489_024_06198_z crossref_primary_10_1109_TITS_2015_2436897 crossref_primary_10_1016_j_procs_2017_05_429 crossref_primary_10_1111_tgis_13028 crossref_primary_10_1016_j_compenvurbsys_2021_101674 crossref_primary_10_1080_15472450_2019_1617142 crossref_primary_10_3390_info9030065 crossref_primary_10_1016_j_compenvurbsys_2016_10_006 crossref_primary_10_1007_s11432_015_5397_4 crossref_primary_10_1109_TVCG_2024_3456353 crossref_primary_10_2139_ssrn_4102588 crossref_primary_10_1007_s12650_019_00594_1 crossref_primary_10_1080_13658816_2020_1737700 crossref_primary_10_1145_3162076 crossref_primary_10_1109_TVCG_2021_3114777 crossref_primary_10_1088_1755_1315_1086_1_012031 crossref_primary_10_1007_s12650_015_0278_x crossref_primary_10_1016_j_cola_2019_03_001 crossref_primary_10_3390_app10020628 crossref_primary_10_1109_TBDATA_2020_2991008 crossref_primary_10_1016_j_visinf_2017_11_002 crossref_primary_10_1109_TVCG_2014_2346449 crossref_primary_10_3724_SP_J_1089_2022_18834 crossref_primary_10_1016_j_compenvurbsys_2019_101359 crossref_primary_10_1145_3639276 crossref_primary_10_1111_itor_12952 crossref_primary_10_3141_2643_15 crossref_primary_10_1109_TVCG_2021_3114762 crossref_primary_10_1109_TVCG_2020_3030469 crossref_primary_10_1016_j_jtrangeo_2025_104128 crossref_primary_10_3390_app131810192 crossref_primary_10_1016_j_trd_2019_09_025 crossref_primary_10_1109_TVCG_2015_2440259 crossref_primary_10_3390_su16052065 crossref_primary_10_1109_TVCG_2017_2744159 crossref_primary_10_1109_TVCG_2016_2598585 crossref_primary_10_22201_igg_25940694_2019_2_61 crossref_primary_10_1109_TBDATA_2017_2667700 crossref_primary_10_1016_j_enconman_2017_11_070 crossref_primary_10_3390_ijgi9090518 crossref_primary_10_1007_s00778_019_00589_2 crossref_primary_10_1080_13658816_2020_1712401 crossref_primary_10_5604_01_3001_0014_0206 crossref_primary_10_1007_s41324_016_0079_x crossref_primary_10_1061__ASCE_CP_1943_5487_0000806 crossref_primary_10_1109_COMST_2017_2736886 crossref_primary_10_1109_TITS_2016_2639320 crossref_primary_10_3390_s17102201 crossref_primary_10_1007_s12650_025_01055_8 crossref_primary_10_1109_TBDATA_2016_2546301 crossref_primary_10_1080_17538947_2014_898704 crossref_primary_10_1109_TVCG_2015_2467112 crossref_primary_10_1109_TVCG_2014_2346746 crossref_primary_10_1109_TVCG_2015_2467592 crossref_primary_10_1109_TBDATA_2018_2868936 crossref_primary_10_1109_MCG_2017_3621228 crossref_primary_10_3390_computation4030037 crossref_primary_10_3390_ijgi6120392 crossref_primary_10_1111_cgf_14534 crossref_primary_10_1109_MCG_2022_3210004 crossref_primary_10_1007_s12650_018_0481_7 crossref_primary_10_1016_j_compenvurbsys_2018_01_008 crossref_primary_10_1007_s42979_025_03740_9 crossref_primary_10_1016_j_landurbplan_2019_103612 crossref_primary_10_1007_s11442_016_1317_9 crossref_primary_10_1016_j_trc_2019_09_007 crossref_primary_10_1111_gean_12087 crossref_primary_10_1145_3292390_3292393 crossref_primary_10_3390_ijgi6030076 crossref_primary_10_3390_mti6070053 crossref_primary_10_1145_3224204 crossref_primary_10_1007_s42489_022_00106_6 crossref_primary_10_1017_S0373463318000085 crossref_primary_10_1049_iet_its_2018_5188 crossref_primary_10_1016_j_visinf_2017_07_001 crossref_primary_10_1109_TVCG_2018_2802945 crossref_primary_10_1007_s41095_020_0191_7 crossref_primary_10_1111_cgf_12923 crossref_primary_10_1109_TITS_2020_2983853 crossref_primary_10_3390_su11164432 crossref_primary_10_1002_sam_11354 crossref_primary_10_1016_j_jvlc_2015_03_003 crossref_primary_10_1007_s42421_021_00033_4 crossref_primary_10_1007_s00779_019_01346_6 crossref_primary_10_3390_s16122194 crossref_primary_10_3390_info9110285 crossref_primary_10_1007_s12650_018_0517_z crossref_primary_10_1109_ACCESS_2019_2942844 crossref_primary_10_1088_1755_1315_440_4_042066 crossref_primary_10_1016_j_ifacol_2016_07_033 crossref_primary_10_1109_TITS_2015_2480157 crossref_primary_10_1016_j_autcon_2016_06_009 crossref_primary_10_1109_TCC_2019_2958087 crossref_primary_10_1007_s41095_023_0351_7 crossref_primary_10_1177_2053951719827619 crossref_primary_10_3138_cart_52_1_3820 crossref_primary_10_1109_TVCG_2014_2346898 crossref_primary_10_3390_math9040315 crossref_primary_10_1109_ACCESS_2019_2916342 crossref_primary_10_3390_ijgi8060257 crossref_primary_10_1007_s41651_020_00068_1 crossref_primary_10_3390_ijgi9110683 crossref_primary_10_3390_s19020332 crossref_primary_10_1080_15472450_2020_1754818 crossref_primary_10_1109_TBDATA_2016_2586447 crossref_primary_10_1109_TVCG_2014_2346893 crossref_primary_10_1061_JTEPBS_0000266 crossref_primary_10_1080_20964471_2020_1758537 crossref_primary_10_1109_TVCG_2016_2598432 |
Cites_doi | 10.1109/INFVIS.2005.1532150 10.1179/000870410x12658023467367 10.1371/journal.pone.0034487 10.1109/VAST.2008.4677356 10.1145/142750.143054 10.1016/S1045-926X(03)00046-6 10.1111/j.1467-8659.2009.01696.x 10.1109/TVCG.2007.70535 10.1109/ICNSC.2007.372897 10.1109/TITS.2012.2209201 10.1109/VAST.2008.4677370 10.1145/2370216.2370425 10.1007/11496168_3 10.1145/2030080.2030086 10.1111/j.1467-8306.1994.tb01869.x 10.1007/978-0-387-35504-7_14 10.1109/PACIFICVIS.2011.5742386 10.1007/s10707-011-0135-6 10.1016/j.physa.2011.11.035 10.1109/VAST.2011.6102454 10.1145/582034.582036 10.1057/palgrave.ivs.9500183 10.1145/2030112.2030128 10.1145/1835804.1835918 10.1007/978-3-662-03427-9 10.1109/2945.981851 10.1109/TVCG.2009.84 10.1145/1357054.1357203 10.1109/INFVIS.2004.12 10.1109/VAST.2010.5652467 10.1145/245882.245893 10.1177/1473871612457601 10.1111/j.1467-8659.2011.01946.x |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Dec 2013 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Dec 2013 |
DBID | 97E RIA RIE AAYXX CITATION CGR CUY CVF ECM EIF NPM 7SC 7SP 8FD JQ2 L7M L~C L~D 7X8 F28 FR3 |
DOI | 10.1109/TVCG.2013.226 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic ANTE: Abstracts in New Technology & Engineering Engineering Research Database |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional MEDLINE - Academic Engineering Research Database ANTE: Abstracts in New Technology & Engineering |
DatabaseTitleList | Technology Research Database Technology Research Database MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Economics |
EISSN | 1941-0506 |
EndPage | 2158 |
ExternalDocumentID | 3102743991 24051781 10_1109_TVCG_2013_226 6634127 |
Genre | orig-research Research Support, U.S. Gov't, Non-P.H.S Journal Article |
GeographicLocations | New York City |
GeographicLocations_xml | – name: New York City |
GroupedDBID | --- -~X .DC 0R~ 29I 4.4 53G 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IEDLZ IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P PQQKQ RIA RIE RNI RNS RZB TN5 VH1 AAYOK AAYXX CITATION RIG CGR CUY CVF ECM EIF NPM 7SC 7SP 8FD JQ2 L7M L~C L~D 7X8 F28 FR3 |
ID | FETCH-LOGICAL-c374t-3ad9ff6f0a1e8a802e207e7b0ca31a58c24f9ca3be317a763a526764c794e7f83 |
IEDL.DBID | RIE |
ISSN | 1077-2626 1941-0506 |
IngestDate | Fri Jul 11 08:32:27 EDT 2025 Fri Jul 11 16:45:50 EDT 2025 Sun Jun 29 12:29:06 EDT 2025 Mon Jul 21 05:48:26 EDT 2025 Sun Jul 06 05:07:40 EDT 2025 Thu Apr 24 23:06:47 EDT 2025 Tue Aug 26 16:41:22 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c374t-3ad9ff6f0a1e8a802e207e7b0ca31a58c24f9ca3be317a763a526764c794e7f83 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
PMID | 24051781 |
PQID | 1442930139 |
PQPubID | 75741 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_1464552207 proquest_miscellaneous_1434744216 crossref_citationtrail_10_1109_TVCG_2013_226 proquest_journals_1442930139 ieee_primary_6634127 pubmed_primary_24051781 crossref_primary_10_1109_TVCG_2013_226 |
PublicationCentury | 2000 |
PublicationDate | 2013-12-01 |
PublicationDateYYYYMMDD | 2013-12-01 |
PublicationDate_xml | – month: 12 year: 2013 text: 2013-12-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: New York |
PublicationTitle | IEEE transactions on visualization and computer graphics |
PublicationTitleAbbrev | TVCG |
PublicationTitleAlternate | IEEE Trans Vis Comput Graph |
PublicationYear | 2013 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref12 ref34 Edsall (ref13) ref15 ref37 ref14 ref36 ref31 Fekete (ref17) 2012; 35 ref30 ref11 ref33 ref10 ref32 ref2 ref1 ref39 ref16 ref38 ref19 ref18 Veloso (ref35) ref24 ref23 ref26 ref20 ref22 ref21 Olston (ref25) 1998 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 |
References_xml | – ident: ref30 doi: 10.1109/INFVIS.2005.1532150 – ident: ref38 doi: 10.1179/000870410x12658023467367 – volume-title: NYC Open Data ident: ref24 – volume-title: The Best Open Data Releases of 2012 ident: ref7 – ident: ref28 doi: 10.1371/journal.pone.0034487 – ident: ref3 doi: 10.1109/VAST.2008.4677356 – ident: ref2 doi: 10.1145/142750.143054 – start-page: 182 volume-title: Proceedings of the American Congo of Surveying and Mapping Annual Convention and Exhibition ident: ref13 article-title: A graphical user interface for the integration of time into GIS – volume-title: First Workshop on Pervasive Urban Applications (PURBA) ident: ref35 article-title: Exploratory study of urban flow using taxi traces – ident: ref6 doi: 10.1016/S1045-926X(03)00046-6 – ident: ref32 doi: 10.1111/j.1467-8659.2009.01696.x – ident: ref14 doi: 10.1109/TVCG.2007.70535 – ident: ref9 doi: 10.1109/ICNSC.2007.372897 – ident: ref26 doi: 10.1109/TITS.2012.2209201 – ident: ref37 doi: 10.1109/VAST.2008.4677370 – ident: ref40 doi: 10.1145/2370216.2370425 – ident: ref18 doi: 10.1007/11496168_3 – ident: ref34 doi: 10.1145/2030080.2030086 – ident: ref29 doi: 10.1111/j.1467-8306.1994.tb01869.x – ident: ref16 doi: 10.1007/978-0-387-35504-7_14 – ident: ref20 doi: 10.1109/PACIFICVIS.2011.5742386 – ident: ref12 doi: 10.1007/s10707-011-0135-6 – ident: ref22 doi: 10.1016/j.physa.2011.11.035 – ident: ref4 doi: 10.1109/VAST.2011.6102454 – ident: ref27 doi: 10.1145/582034.582036 – ident: ref31 doi: 10.1057/palgrave.ivs.9500183 – volume-title: City of Chicago Data Portal ident: ref10 – ident: ref39 doi: 10.1145/2030112.2030128 – ident: ref19 doi: 10.1145/1835804.1835918 – ident: ref11 doi: 10.1007/978-3-662-03427-9 – start-page: 162 year: 1998 ident: ref25 article-title: Viqing: visual interactive querying publication-title: Visual Languages – ident: ref33 doi: 10.1109/2945.981851 – ident: ref15 doi: 10.1109/TVCG.2009.84 – volume: 35 start-page: 27 issue: 3 year: 2012 ident: ref17 article-title: Managing data for visual analytics: Opportunities and challenges publication-title: IEEE Data Engineering Bulletin – ident: ref21 doi: 10.1145/1357054.1357203 – ident: ref36 doi: 10.1109/INFVIS.2004.12 – ident: ref23 doi: 10.1109/VAST.2010.5652467 – ident: ref1 doi: 10.1145/245882.245893 – ident: ref5 doi: 10.1177/1473871612457601 – ident: ref8 doi: 10.1111/j.1467-8659.2011.01946.x |
SSID | ssj0014489 |
Score | 2.5738068 |
Snippet | As increasing volumes of urban data are captured and become available, new opportunities arise for data-driven analysis that can lead to improvements in the... |
SourceID | proquest pubmed crossref ieee |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2149 |
SubjectTerms | Algorithms Analytical models Cities and towns Computer Graphics Data models Data visualization Economics Geographic Information Systems - statistics & numerical data Mathematical analysis Mathematical model Mathematical models Models, Statistical Motor Vehicles - statistics & numerical data New York City NYC taxis Policies Queries Rendering Reproducibility of Results Sensitivity and Specificity Spatio-Temporal Analysis Spatio-temporal queries Studies Time factors urban data User-Computer Interface Visual Visual analytics visual exploration Visualization |
Title | Visual Exploration of Big Spatio-Temporal Urban Data: A Study of New York City Taxi Trips |
URI | https://ieeexplore.ieee.org/document/6634127 https://www.ncbi.nlm.nih.gov/pubmed/24051781 https://www.proquest.com/docview/1442930139 https://www.proquest.com/docview/1434744216 https://www.proquest.com/docview/1464552207 |
Volume | 19 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELbanuDAqzy2FGQkxKneOrFjO72VhVIhlQvZqpwix7GrFVUWdROp7a_vTJwND1HEzVI-yU5m7PkmHn8m5K1ymfO5CMxAssykCZLlStfMh7Q2lZHOVJgonnxRx3P5-Sw72yB741kY731ffOan2Oz38uul6_BX2T5ER5mkepNsQuIWz2qNOwaQZuSxvlCzFFj6Tz3N_eJ09gmLuMQUuAaq_0oUpjLJb6Gov1vlbprZh5ujh-RkPdBYZfJ92rXV1N38oeH4v2_yiDwYeCc9jI7ymGz45gm5_4sa4Tb5drpYdYCJZXm9xegy0PeLc_q1r7tmRdSxuqDzy8o29INt7QE9pFiLeI1QWDEpakDRGXB7WtirBS1gUVo9JfOjj8XsmA03LzAntGyZsHUeggrcJt5Yw1Ofcu11xZ0Vic2MS2XIoV15oB8WliibpUor6WB2ex2MeEa2mmXjXxCqpNWuRpF81NEJvKo9z2qbuloKlQc-IXtrI5RukCXH2zEuyj494XmJ5ivRfCWYb0LejfAfUY_jLuA2fvYRNHzxCdldW7gcZusK0h-IygLJ8IS8GR_DPMPNE9v4ZYcYITXgEvUvjJIZEFoO3TyP3jP2v3a6nb-P6yW5hyOPhTK7ZKu97PwroDtt9br381u0Jvg0 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VcgAOvMojUMBIiFOzzcOxHW5loSzQ7YVsVU6R49hoRZVF3UQCfj0zcTY8RBG3SPmk2J6xZyb-_BngmTCZsXnqQoXFcsiV42EuZB1al9SqUtyoigrF-bGYLfi70-x0C_bGszDW2p58Zif02O_l1yvT0a-yfYyOPE7kJbiMcT-L_Wmtcc8AC43cMwxlmGCe_lNRc784mb4hGlc6wWyD9H85SVOp-Ldg1N-ucnGi2Qecwxsw3zTV80w-T7q2mpjvf6g4_m9fbsL1IfNkB95VbsGWbW7DtV_0CHfg48ly3SHGE_N6m7GVYy-Xn9iHnnkdFl7J6owtzivdsFe61S_YASM24jeC4prJSAWKTTG7Z4X-umQFLkvrO7A4fF1MZ-Fw90JoUsnbMNV17pxwkY6t0ipKbBJJK6vI6DTWmTIJdzk-VxYTEI2LlM4SIQU3OL-tdCq9C9vNqrH3gQmupalJJp-UdFxU1TbKap2Ymqcid1EAexsjlGYQJqf7Mc7KvkCJ8pLMV5L5SjRfAM9H-BevyHERcIeGfQQNIx7A7sbC5TBf11gAYVxOKR0O4On4GmcabZ_oxq46wqRcIi4W_8II9MwExyqAe957xu9vnO7B39v1BK7MivlRefT2-P1DuEq98LSZXdhuzzv7CJOftnrc-_wPzSn7fQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Visual+Exploration+of+Big+Spatio-Temporal+Urban+Data%3A+A+Study+of+New+York+City+Taxi+Trips&rft.jtitle=IEEE+transactions+on+visualization+and+computer+graphics&rft.au=Ferreira%2C+Nivan&rft.au=Poco%2C+Jorge&rft.au=Vo%2C+Huy+T.&rft.au=Freire%2C+Juliana&rft.date=2013-12-01&rft.pub=IEEE&rft.issn=1077-2626&rft.volume=19&rft.issue=12&rft.spage=2149&rft.epage=2158&rft_id=info:doi/10.1109%2FTVCG.2013.226&rft_id=info%3Apmid%2F24051781&rft.externalDocID=6634127 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1077-2626&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1077-2626&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1077-2626&client=summon |