Visual Exploration of Big Spatio-Temporal Urban Data: A Study of New York City Taxi Trips

As increasing volumes of urban data are captured and become available, new opportunities arise for data-driven analysis that can lead to improvements in the lives of citizens through evidence-based decision making and policies. In this paper, we focus on a particularly important urban data set: taxi...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on visualization and computer graphics Vol. 19; no. 12; pp. 2149 - 2158
Main Authors Ferreira, Nivan, Poco, Jorge, Vo, Huy T., Freire, Juliana, Silva, Claudio T.
Format Journal Article
LanguageEnglish
Published United States IEEE 01.12.2013
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
Abstract As increasing volumes of urban data are captured and become available, new opportunities arise for data-driven analysis that can lead to improvements in the lives of citizens through evidence-based decision making and policies. In this paper, we focus on a particularly important urban data set: taxi trips. Taxis are valuable sensors and information associated with taxi trips can provide unprecedented insight into many different aspects of city life, from economic activity and human behavior to mobility patterns. But analyzing these data presents many challenges. The data are complex, containing geographical and temporal components in addition to multiple variables associated with each trip. Consequently, it is hard to specify exploratory queries and to perform comparative analyses (e.g., compare different regions over time). This problem is compounded due to the size of the data-there are on average 500,000 taxi trips each day in NYC. We propose a new model that allows users to visually query taxi trips. Besides standard analytics queries, the model supports origin-destination queries that enable the study of mobility across the city. We show that this model is able to express a wide range of spatio-temporal queries, and it is also flexible in that not only can queries be composed but also different aggregations and visual representations can be applied, allowing users to explore and compare results. We have built a scalable system that implements this model which supports interactive response times; makes use of an adaptive level-of-detail rendering strategy to generate clutter-free visualization for large results; and shows hidden details to the users in a summary through the use of overlay heat maps. We present a series of case studies motivated by traffic engineers and economists that show how our model and system enable domain experts to perform tasks that were previously unattainable for them.
AbstractList As increasing volumes of urban data are captured and become available, new opportunities arise for data-driven analysis that can lead to improvements in the lives of citizens through evidence-based decision making and policies. In this paper, we focus on a particularly important urban data set: taxi trips. Taxis are valuable sensors and information associated with taxi trips can provide unprecedented insight into many different aspects of city life, from economic activity and human behavior to mobility patterns. But analyzing these data presents many challenges. The data are complex, containing geographical and temporal components in addition to multiple variables associated with each trip. Consequently, it is hard to specify exploratory queries and to perform comparative analyses (e.g., compare different regions over time). This problem is compounded due to the size of the data-there are on average 500,000 taxi trips each day in NYC. We propose a new model that allows users to visually query taxi trips. Besides standard analytics queries, the model supports origin-destination queries that enable the study of mobility across the city. We show that this model is able to express a wide range of spatio-temporal queries, and it is also flexible in that not only can queries be composed but also different aggregations and visual representations can be applied, allowing users to explore and compare results. We have built a scalable system that implements this model which supports interactive response times; makes use of an adaptive level-of-detail rendering strategy to generate clutter-free visualization for large results; and shows hidden details to the users in a summary through the use of overlay heat maps. We present a series of case studies motivated by traffic engineers and economists that show how our model and system enable domain experts to perform tasks that were previously unattainable for them.
As increasing volumes of urban data are captured and become available, new opportunities arise for data-driven analysis that can lead to improvements in the lives of citizens through evidence-based decision making and policies. In this paper, we focus on a particularly important urban data set: taxi trips. Taxis are valuable sensors and information associated with taxi trips can provide unprecedented insight into many different aspects of city life, from economic activity and human behavior to mobility patterns. But analyzing these data presents many challenges. The data are complex, containing geographical and temporal components in addition to multiple variables associated with each trip. Consequently, it is hard to specify exploratory queries and to perform comparative analyses (e.g., compare different regions over time). This problem is compounded due to the size of the data-there are on average 500,000 taxi trips each day in NYC. We propose a new model that allows users to visually query taxi trips. Besides standard analytics queries, the model supports origin-destination queries that enable the study of mobility across the city. We show that this model is able to express a wide range of spatio-temporal queries, and it is also flexible in that not only can queries be composed but also different aggregations and visual representations can be applied, allowing users to explore and compare results. We have built a scalable system that implements this model which supports interactive response times; makes use of an adaptive level-of-detail rendering strategy to generate clutter-free visualization for large results; and shows hidden details to the users in a summary through the use of overlay heat maps. We present a series of case studies motivated by traffic engineers and economists that show how our model and system enable domain experts to perform tasks that were previously unattainable for them.As increasing volumes of urban data are captured and become available, new opportunities arise for data-driven analysis that can lead to improvements in the lives of citizens through evidence-based decision making and policies. In this paper, we focus on a particularly important urban data set: taxi trips. Taxis are valuable sensors and information associated with taxi trips can provide unprecedented insight into many different aspects of city life, from economic activity and human behavior to mobility patterns. But analyzing these data presents many challenges. The data are complex, containing geographical and temporal components in addition to multiple variables associated with each trip. Consequently, it is hard to specify exploratory queries and to perform comparative analyses (e.g., compare different regions over time). This problem is compounded due to the size of the data-there are on average 500,000 taxi trips each day in NYC. We propose a new model that allows users to visually query taxi trips. Besides standard analytics queries, the model supports origin-destination queries that enable the study of mobility across the city. We show that this model is able to express a wide range of spatio-temporal queries, and it is also flexible in that not only can queries be composed but also different aggregations and visual representations can be applied, allowing users to explore and compare results. We have built a scalable system that implements this model which supports interactive response times; makes use of an adaptive level-of-detail rendering strategy to generate clutter-free visualization for large results; and shows hidden details to the users in a summary through the use of overlay heat maps. We present a series of case studies motivated by traffic engineers and economists that show how our model and system enable domain experts to perform tasks that were previously unattainable for them.
Author Ferreira, Nivan
Poco, Jorge
Silva, Claudio T.
Vo, Huy T.
Freire, Juliana
Author_xml – sequence: 1
  givenname: Nivan
  surname: Ferreira
  fullname: Ferreira, Nivan
  email: nivan.ferreira@nyu.edu
– sequence: 2
  givenname: Jorge
  surname: Poco
  fullname: Poco, Jorge
  email: jpocom@nyu.edu
– sequence: 3
  givenname: Huy T.
  surname: Vo
  fullname: Vo, Huy T.
  email: huy.vo@nyu.edu
– sequence: 4
  givenname: Juliana
  surname: Freire
  fullname: Freire, Juliana
  email: juliana.freire@nyu.edu
– sequence: 5
  givenname: Claudio T.
  surname: Silva
  fullname: Silva, Claudio T.
  email: csilva@nyu.edu
BackLink https://www.ncbi.nlm.nih.gov/pubmed/24051781$$D View this record in MEDLINE/PubMed
BookMark eNqN0U1P3DAQBmALUfHVHjkhVZa49JLFX7GT3uiW0kqoPRCQOFmz2QkyZOPUTgT77-t0gQMSEieP5WdG8rz7ZLvzHRJyyNmMc1aeVNfz85lgXM6E0Ftkj5eKZyxnejvVzJhMaKF3yX6Md4xxpYpyh-wKxXJuCr5Hbq5dHKGlZ4996wMMznfUN_Sbu6WX_XTNKlz16aWlV2EBHf0OA3ylp_RyGJfrif7GB3rjwz2du2FNK3h0tAqujx_JhwbaiJ-ezgNy9eOsmv_MLv6c_5qfXmS1NGrIJCzLptENA44FFEygYAbNgtUgOeRFLVRTpnqBkhswWkIutNGqNqVC0xTygHzZzO2D_ztiHOzKxRrbFjr0Y7RcaZXnIk19B5XKKCW4TvT4Fb3zY-jSR5JSopRp42VSn5_UuFjh0vbBrSCs7fN-E5AbUAcfY8DG1m74v-UhgGstZ3ZK0U4p2ilFm1JMXdmrrufBb_mjjXeI-GK1looLI_8BsJajFA
CODEN ITVGEA
CitedBy_id crossref_primary_10_1109_TVCG_2017_2744419
crossref_primary_10_1109_MCG_2019_2911230
crossref_primary_10_1109_TITS_2021_3092036
crossref_primary_10_1111_cgf_13882
crossref_primary_10_1016_j_cola_2019_01_001
crossref_primary_10_1109_TITS_2020_2989811
crossref_primary_10_1016_j_visinf_2017_01_007
crossref_primary_10_1080_03081060_2022_2111430
crossref_primary_10_1140_epjds_s13688_019_0206_8
crossref_primary_10_1016_j_dss_2017_05_008
crossref_primary_10_1016_j_tbs_2020_09_008
crossref_primary_10_14778_3007263_3007291
crossref_primary_10_1016_j_jvlc_2018_08_009
crossref_primary_10_1088_1757_899X_688_2_022049
crossref_primary_10_1109_TVCG_2014_2346265
crossref_primary_10_1002_cpe_5969
crossref_primary_10_1016_j_ifacol_2018_08_095
crossref_primary_10_1080_10630732_2016_1177260
crossref_primary_10_1109_TCSS_2018_2877149
crossref_primary_10_1109_TVCG_2016_2598416
crossref_primary_10_1080_13658816_2019_1673397
crossref_primary_10_1080_10095020_2017_1413798
crossref_primary_10_1111_cgf_12778
crossref_primary_10_1007_s10462_024_10854_8
crossref_primary_10_1109_TBDATA_2020_2964169
crossref_primary_10_1186_s40537_019_0203_6
crossref_primary_10_1109_TVCG_2019_2934670
crossref_primary_10_1109_TII_2021_3089330
crossref_primary_10_1109_TVCG_2019_2934671
crossref_primary_10_1109_TVCG_2021_3114813
crossref_primary_10_1109_TITS_2015_2498187
crossref_primary_10_1145_3130800_3130847
crossref_primary_10_1109_TVCG_2018_2864503
crossref_primary_10_1109_TVCG_2017_2758362
crossref_primary_10_1016_j_cola_2019_100936
crossref_primary_10_1111_cgf_14035
crossref_primary_10_1109_ACCESS_2020_3044956
crossref_primary_10_1109_TVCG_2022_3209360
crossref_primary_10_1109_TVCG_2022_3209474
crossref_primary_10_1007_s12650_020_00673_8
crossref_primary_10_1016_j_jvlc_2017_03_007
crossref_primary_10_2139_ssrn_2659896
crossref_primary_10_1016_j_trc_2019_10_001
crossref_primary_10_1109_MIM_2021_9549127
crossref_primary_10_1007_s12665_019_8800_4
crossref_primary_10_2139_ssrn_4229008
crossref_primary_10_1111_tgis_12473
crossref_primary_10_1002_cpe_7475
crossref_primary_10_1007_s10489_017_0949_5
crossref_primary_10_1109_TVCG_2019_2922597
crossref_primary_10_1007_s12650_017_0449_z
crossref_primary_10_1016_j_compenvurbsys_2018_07_006
crossref_primary_10_1016_j_tourman_2016_06_013
crossref_primary_10_1088_1757_899X_231_1_012046
crossref_primary_10_1177_0361198120970526
crossref_primary_10_3390_ijgi7090371
crossref_primary_10_1109_MCG_2018_053491728
crossref_primary_10_1016_j_trd_2019_10_009
crossref_primary_10_1007_s12650_024_00968_0
crossref_primary_10_3390_info9040101
crossref_primary_10_1109_TITS_2017_2711644
crossref_primary_10_1016_j_visinf_2023_11_003
crossref_primary_10_1177_03611981211049143
crossref_primary_10_1109_TVCG_2018_2865018
crossref_primary_10_1016_j_bdr_2021_100294
crossref_primary_10_3233_ICA_210663
crossref_primary_10_1007_s12650_020_00713_3
crossref_primary_10_1016_j_trpro_2017_05_106
crossref_primary_10_1007_s11769_021_1173_0
crossref_primary_10_1007_s40890_020_00109_w
crossref_primary_10_1111_cgf_12629
crossref_primary_10_3390_info11090425
crossref_primary_10_1109_TVCG_2018_2816219
crossref_primary_10_3390_ijgi7050164
crossref_primary_10_1109_TVCG_2015_2467194
crossref_primary_10_1080_17489725_2019_1630680
crossref_primary_10_1145_3200766
crossref_primary_10_1061_JTEPBS_0000550
crossref_primary_10_1007_s41095_022_0275_7
crossref_primary_10_3390_ijgi12080305
crossref_primary_10_1109_TVCG_2022_3201101
crossref_primary_10_1109_TVCG_2018_2865191
crossref_primary_10_1016_j_ijdrr_2024_105054
crossref_primary_10_1109_TVCG_2021_3114853
crossref_primary_10_1016_j_cag_2016_08_005
crossref_primary_10_1109_TVCG_2019_2940580
crossref_primary_10_1016_j_visinf_2019_10_002
crossref_primary_10_1080_17489725_2019_1588406
crossref_primary_10_1109_TVCG_2021_3071387
crossref_primary_10_1111_exsy_13065
crossref_primary_10_1016_j_apgeog_2017_08_007
crossref_primary_10_1089_big_2016_0052
crossref_primary_10_1109_ACCESS_2021_3052795
crossref_primary_10_1109_TITS_2017_2727281
crossref_primary_10_1111_tgis_12485
crossref_primary_10_1016_j_trc_2017_03_002
crossref_primary_10_1109_TII_2022_3181045
crossref_primary_10_1080_23249935_2018_1523250
crossref_primary_10_1007_s12650_016_0357_7
crossref_primary_10_1109_ACCESS_2019_2948304
crossref_primary_10_1109_TBDATA_2016_2620488
crossref_primary_10_1111_mice_12251
crossref_primary_10_3390_su142013548
crossref_primary_10_1007_s11280_018_0578_x
crossref_primary_10_1109_TSMC_2020_3040262
crossref_primary_10_1109_TVCG_2015_2467771
crossref_primary_10_1016_j_autcon_2017_12_036
crossref_primary_10_1016_j_jtrangeo_2024_104080
crossref_primary_10_1177_03611981211018474
crossref_primary_10_1007_s40313_022_00908_z
crossref_primary_10_1007_s12650_018_0499_x
crossref_primary_10_1080_13658816_2017_1393542
crossref_primary_10_1016_j_jtrangeo_2019_102568
crossref_primary_10_1109_TVCG_2019_2907583
crossref_primary_10_1007_s12205_022_0434_5
crossref_primary_10_1080_15230406_2018_1553113
crossref_primary_10_1109_TITS_2018_2875021
crossref_primary_10_1016_j_jtrangeo_2017_10_021
crossref_primary_10_1016_j_cag_2024_104013
crossref_primary_10_1016_j_jvlc_2017_04_001
crossref_primary_10_1109_TVCG_2020_2978847
crossref_primary_10_1007_s11042_019_08012_2
crossref_primary_10_3141_2542_06
crossref_primary_10_1109_TVCG_2020_3028891
crossref_primary_10_3390_su152115325
crossref_primary_10_1109_TITS_2017_2683539
crossref_primary_10_1016_j_trpro_2017_03_065
crossref_primary_10_1007_s11116_023_10372_6
crossref_primary_10_1140_epjs_s11734_021_00424_2
crossref_primary_10_1109_TITS_2020_2983226
crossref_primary_10_1080_10236198_2016_1167890
crossref_primary_10_1016_j_jtte_2021_01_001
crossref_primary_10_3390_s20041107
crossref_primary_10_1109_TVCG_2020_2992200
crossref_primary_10_48130_dts_0024_0001
crossref_primary_10_1016_j_cag_2023_07_031
crossref_primary_10_1109_ACCESS_2018_2858260
crossref_primary_10_1016_j_ifacol_2017_08_1462
crossref_primary_10_3389_fnins_2024_1369832
crossref_primary_10_3745_KTSDE_2015_4_9_347
crossref_primary_10_1016_j_is_2015_06_002
crossref_primary_10_1111_tgis_12849
crossref_primary_10_1007_s11280_019_00700_1
crossref_primary_10_1007_s10707_016_0280_z
crossref_primary_10_1007_s10489_024_06198_z
crossref_primary_10_1109_TITS_2015_2436897
crossref_primary_10_1016_j_procs_2017_05_429
crossref_primary_10_1111_tgis_13028
crossref_primary_10_1016_j_compenvurbsys_2021_101674
crossref_primary_10_1080_15472450_2019_1617142
crossref_primary_10_3390_info9030065
crossref_primary_10_1016_j_compenvurbsys_2016_10_006
crossref_primary_10_1007_s11432_015_5397_4
crossref_primary_10_1109_TVCG_2024_3456353
crossref_primary_10_2139_ssrn_4102588
crossref_primary_10_1007_s12650_019_00594_1
crossref_primary_10_1080_13658816_2020_1737700
crossref_primary_10_1145_3162076
crossref_primary_10_1109_TVCG_2021_3114777
crossref_primary_10_1088_1755_1315_1086_1_012031
crossref_primary_10_1007_s12650_015_0278_x
crossref_primary_10_1016_j_cola_2019_03_001
crossref_primary_10_3390_app10020628
crossref_primary_10_1109_TBDATA_2020_2991008
crossref_primary_10_1016_j_visinf_2017_11_002
crossref_primary_10_1109_TVCG_2014_2346449
crossref_primary_10_3724_SP_J_1089_2022_18834
crossref_primary_10_1016_j_compenvurbsys_2019_101359
crossref_primary_10_1145_3639276
crossref_primary_10_1111_itor_12952
crossref_primary_10_3141_2643_15
crossref_primary_10_1109_TVCG_2021_3114762
crossref_primary_10_1109_TVCG_2020_3030469
crossref_primary_10_1016_j_jtrangeo_2025_104128
crossref_primary_10_3390_app131810192
crossref_primary_10_1016_j_trd_2019_09_025
crossref_primary_10_1109_TVCG_2015_2440259
crossref_primary_10_3390_su16052065
crossref_primary_10_1109_TVCG_2017_2744159
crossref_primary_10_1109_TVCG_2016_2598585
crossref_primary_10_22201_igg_25940694_2019_2_61
crossref_primary_10_1109_TBDATA_2017_2667700
crossref_primary_10_1016_j_enconman_2017_11_070
crossref_primary_10_3390_ijgi9090518
crossref_primary_10_1007_s00778_019_00589_2
crossref_primary_10_1080_13658816_2020_1712401
crossref_primary_10_5604_01_3001_0014_0206
crossref_primary_10_1007_s41324_016_0079_x
crossref_primary_10_1061__ASCE_CP_1943_5487_0000806
crossref_primary_10_1109_COMST_2017_2736886
crossref_primary_10_1109_TITS_2016_2639320
crossref_primary_10_3390_s17102201
crossref_primary_10_1007_s12650_025_01055_8
crossref_primary_10_1109_TBDATA_2016_2546301
crossref_primary_10_1080_17538947_2014_898704
crossref_primary_10_1109_TVCG_2015_2467112
crossref_primary_10_1109_TVCG_2014_2346746
crossref_primary_10_1109_TVCG_2015_2467592
crossref_primary_10_1109_TBDATA_2018_2868936
crossref_primary_10_1109_MCG_2017_3621228
crossref_primary_10_3390_computation4030037
crossref_primary_10_3390_ijgi6120392
crossref_primary_10_1111_cgf_14534
crossref_primary_10_1109_MCG_2022_3210004
crossref_primary_10_1007_s12650_018_0481_7
crossref_primary_10_1016_j_compenvurbsys_2018_01_008
crossref_primary_10_1007_s42979_025_03740_9
crossref_primary_10_1016_j_landurbplan_2019_103612
crossref_primary_10_1007_s11442_016_1317_9
crossref_primary_10_1016_j_trc_2019_09_007
crossref_primary_10_1111_gean_12087
crossref_primary_10_1145_3292390_3292393
crossref_primary_10_3390_ijgi6030076
crossref_primary_10_3390_mti6070053
crossref_primary_10_1145_3224204
crossref_primary_10_1007_s42489_022_00106_6
crossref_primary_10_1017_S0373463318000085
crossref_primary_10_1049_iet_its_2018_5188
crossref_primary_10_1016_j_visinf_2017_07_001
crossref_primary_10_1109_TVCG_2018_2802945
crossref_primary_10_1007_s41095_020_0191_7
crossref_primary_10_1111_cgf_12923
crossref_primary_10_1109_TITS_2020_2983853
crossref_primary_10_3390_su11164432
crossref_primary_10_1002_sam_11354
crossref_primary_10_1016_j_jvlc_2015_03_003
crossref_primary_10_1007_s42421_021_00033_4
crossref_primary_10_1007_s00779_019_01346_6
crossref_primary_10_3390_s16122194
crossref_primary_10_3390_info9110285
crossref_primary_10_1007_s12650_018_0517_z
crossref_primary_10_1109_ACCESS_2019_2942844
crossref_primary_10_1088_1755_1315_440_4_042066
crossref_primary_10_1016_j_ifacol_2016_07_033
crossref_primary_10_1109_TITS_2015_2480157
crossref_primary_10_1016_j_autcon_2016_06_009
crossref_primary_10_1109_TCC_2019_2958087
crossref_primary_10_1007_s41095_023_0351_7
crossref_primary_10_1177_2053951719827619
crossref_primary_10_3138_cart_52_1_3820
crossref_primary_10_1109_TVCG_2014_2346898
crossref_primary_10_3390_math9040315
crossref_primary_10_1109_ACCESS_2019_2916342
crossref_primary_10_3390_ijgi8060257
crossref_primary_10_1007_s41651_020_00068_1
crossref_primary_10_3390_ijgi9110683
crossref_primary_10_3390_s19020332
crossref_primary_10_1080_15472450_2020_1754818
crossref_primary_10_1109_TBDATA_2016_2586447
crossref_primary_10_1109_TVCG_2014_2346893
crossref_primary_10_1061_JTEPBS_0000266
crossref_primary_10_1080_20964471_2020_1758537
crossref_primary_10_1109_TVCG_2016_2598432
Cites_doi 10.1109/INFVIS.2005.1532150
10.1179/000870410x12658023467367
10.1371/journal.pone.0034487
10.1109/VAST.2008.4677356
10.1145/142750.143054
10.1016/S1045-926X(03)00046-6
10.1111/j.1467-8659.2009.01696.x
10.1109/TVCG.2007.70535
10.1109/ICNSC.2007.372897
10.1109/TITS.2012.2209201
10.1109/VAST.2008.4677370
10.1145/2370216.2370425
10.1007/11496168_3
10.1145/2030080.2030086
10.1111/j.1467-8306.1994.tb01869.x
10.1007/978-0-387-35504-7_14
10.1109/PACIFICVIS.2011.5742386
10.1007/s10707-011-0135-6
10.1016/j.physa.2011.11.035
10.1109/VAST.2011.6102454
10.1145/582034.582036
10.1057/palgrave.ivs.9500183
10.1145/2030112.2030128
10.1145/1835804.1835918
10.1007/978-3-662-03427-9
10.1109/2945.981851
10.1109/TVCG.2009.84
10.1145/1357054.1357203
10.1109/INFVIS.2004.12
10.1109/VAST.2010.5652467
10.1145/245882.245893
10.1177/1473871612457601
10.1111/j.1467-8659.2011.01946.x
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Dec 2013
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Dec 2013
DBID 97E
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
F28
FR3
DOI 10.1109/TVCG.2013.226
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
Engineering Research Database
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList Technology Research Database
Technology Research Database

MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Economics
EISSN 1941-0506
EndPage 2158
ExternalDocumentID 3102743991
24051781
10_1109_TVCG_2013_226
6634127
Genre orig-research
Research Support, U.S. Gov't, Non-P.H.S
Journal Article
GeographicLocations New York City
GeographicLocations_xml – name: New York City
GroupedDBID ---
-~X
.DC
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IEDLZ
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNI
RNS
RZB
TN5
VH1
AAYOK
AAYXX
CITATION
RIG
CGR
CUY
CVF
ECM
EIF
NPM
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
F28
FR3
ID FETCH-LOGICAL-c374t-3ad9ff6f0a1e8a802e207e7b0ca31a58c24f9ca3be317a763a526764c794e7f83
IEDL.DBID RIE
ISSN 1077-2626
1941-0506
IngestDate Fri Jul 11 08:32:27 EDT 2025
Fri Jul 11 16:45:50 EDT 2025
Sun Jun 29 12:29:06 EDT 2025
Mon Jul 21 05:48:26 EDT 2025
Sun Jul 06 05:07:40 EDT 2025
Thu Apr 24 23:06:47 EDT 2025
Tue Aug 26 16:41:22 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c374t-3ad9ff6f0a1e8a802e207e7b0ca31a58c24f9ca3be317a763a526764c794e7f83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
PMID 24051781
PQID 1442930139
PQPubID 75741
PageCount 10
ParticipantIDs proquest_miscellaneous_1464552207
proquest_miscellaneous_1434744216
crossref_citationtrail_10_1109_TVCG_2013_226
proquest_journals_1442930139
ieee_primary_6634127
pubmed_primary_24051781
crossref_primary_10_1109_TVCG_2013_226
PublicationCentury 2000
PublicationDate 2013-12-01
PublicationDateYYYYMMDD 2013-12-01
PublicationDate_xml – month: 12
  year: 2013
  text: 2013-12-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on visualization and computer graphics
PublicationTitleAbbrev TVCG
PublicationTitleAlternate IEEE Trans Vis Comput Graph
PublicationYear 2013
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref12
ref34
Edsall (ref13)
ref15
ref37
ref14
ref36
ref31
Fekete (ref17) 2012; 35
ref30
ref11
ref33
ref10
ref32
ref2
ref1
ref39
ref16
ref38
ref19
ref18
Veloso (ref35)
ref24
ref23
ref26
ref20
ref22
ref21
Olston (ref25) 1998
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
References_xml – ident: ref30
  doi: 10.1109/INFVIS.2005.1532150
– ident: ref38
  doi: 10.1179/000870410x12658023467367
– volume-title: NYC Open Data
  ident: ref24
– volume-title: The Best Open Data Releases of 2012
  ident: ref7
– ident: ref28
  doi: 10.1371/journal.pone.0034487
– ident: ref3
  doi: 10.1109/VAST.2008.4677356
– ident: ref2
  doi: 10.1145/142750.143054
– start-page: 182
  volume-title: Proceedings of the American Congo of Surveying and Mapping Annual Convention and Exhibition
  ident: ref13
  article-title: A graphical user interface for the integration of time into GIS
– volume-title: First Workshop on Pervasive Urban Applications (PURBA)
  ident: ref35
  article-title: Exploratory study of urban flow using taxi traces
– ident: ref6
  doi: 10.1016/S1045-926X(03)00046-6
– ident: ref32
  doi: 10.1111/j.1467-8659.2009.01696.x
– ident: ref14
  doi: 10.1109/TVCG.2007.70535
– ident: ref9
  doi: 10.1109/ICNSC.2007.372897
– ident: ref26
  doi: 10.1109/TITS.2012.2209201
– ident: ref37
  doi: 10.1109/VAST.2008.4677370
– ident: ref40
  doi: 10.1145/2370216.2370425
– ident: ref18
  doi: 10.1007/11496168_3
– ident: ref34
  doi: 10.1145/2030080.2030086
– ident: ref29
  doi: 10.1111/j.1467-8306.1994.tb01869.x
– ident: ref16
  doi: 10.1007/978-0-387-35504-7_14
– ident: ref20
  doi: 10.1109/PACIFICVIS.2011.5742386
– ident: ref12
  doi: 10.1007/s10707-011-0135-6
– ident: ref22
  doi: 10.1016/j.physa.2011.11.035
– ident: ref4
  doi: 10.1109/VAST.2011.6102454
– ident: ref27
  doi: 10.1145/582034.582036
– ident: ref31
  doi: 10.1057/palgrave.ivs.9500183
– volume-title: City of Chicago Data Portal
  ident: ref10
– ident: ref39
  doi: 10.1145/2030112.2030128
– ident: ref19
  doi: 10.1145/1835804.1835918
– ident: ref11
  doi: 10.1007/978-3-662-03427-9
– start-page: 162
  year: 1998
  ident: ref25
  article-title: Viqing: visual interactive querying
  publication-title: Visual Languages
– ident: ref33
  doi: 10.1109/2945.981851
– ident: ref15
  doi: 10.1109/TVCG.2009.84
– volume: 35
  start-page: 27
  issue: 3
  year: 2012
  ident: ref17
  article-title: Managing data for visual analytics: Opportunities and challenges
  publication-title: IEEE Data Engineering Bulletin
– ident: ref21
  doi: 10.1145/1357054.1357203
– ident: ref36
  doi: 10.1109/INFVIS.2004.12
– ident: ref23
  doi: 10.1109/VAST.2010.5652467
– ident: ref1
  doi: 10.1145/245882.245893
– ident: ref5
  doi: 10.1177/1473871612457601
– ident: ref8
  doi: 10.1111/j.1467-8659.2011.01946.x
SSID ssj0014489
Score 2.5738068
Snippet As increasing volumes of urban data are captured and become available, new opportunities arise for data-driven analysis that can lead to improvements in the...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2149
SubjectTerms Algorithms
Analytical models
Cities and towns
Computer Graphics
Data models
Data visualization
Economics
Geographic Information Systems - statistics & numerical data
Mathematical analysis
Mathematical model
Mathematical models
Models, Statistical
Motor Vehicles - statistics & numerical data
New York City
NYC taxis
Policies
Queries
Rendering
Reproducibility of Results
Sensitivity and Specificity
Spatio-Temporal Analysis
Spatio-temporal queries
Studies
Time factors
urban data
User-Computer Interface
Visual
Visual analytics
visual exploration
Visualization
Title Visual Exploration of Big Spatio-Temporal Urban Data: A Study of New York City Taxi Trips
URI https://ieeexplore.ieee.org/document/6634127
https://www.ncbi.nlm.nih.gov/pubmed/24051781
https://www.proquest.com/docview/1442930139
https://www.proquest.com/docview/1434744216
https://www.proquest.com/docview/1464552207
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELbanuDAqzy2FGQkxKneOrFjO72VhVIhlQvZqpwix7GrFVUWdROp7a_vTJwND1HEzVI-yU5m7PkmHn8m5K1ymfO5CMxAssykCZLlStfMh7Q2lZHOVJgonnxRx3P5-Sw72yB741kY731ffOan2Oz38uul6_BX2T5ER5mkepNsQuIWz2qNOwaQZuSxvlCzFFj6Tz3N_eJ09gmLuMQUuAaq_0oUpjLJb6Gov1vlbprZh5ujh-RkPdBYZfJ92rXV1N38oeH4v2_yiDwYeCc9jI7ymGz45gm5_4sa4Tb5drpYdYCJZXm9xegy0PeLc_q1r7tmRdSxuqDzy8o29INt7QE9pFiLeI1QWDEpakDRGXB7WtirBS1gUVo9JfOjj8XsmA03LzAntGyZsHUeggrcJt5Yw1Ofcu11xZ0Vic2MS2XIoV15oB8WliibpUor6WB2ex2MeEa2mmXjXxCqpNWuRpF81NEJvKo9z2qbuloKlQc-IXtrI5RukCXH2zEuyj494XmJ5ivRfCWYb0LejfAfUY_jLuA2fvYRNHzxCdldW7gcZusK0h-IygLJ8IS8GR_DPMPNE9v4ZYcYITXgEvUvjJIZEFoO3TyP3jP2v3a6nb-P6yW5hyOPhTK7ZKu97PwroDtt9br381u0Jvg0
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VcgAOvMojUMBIiFOzzcOxHW5loSzQ7YVsVU6R49hoRZVF3UQCfj0zcTY8RBG3SPmk2J6xZyb-_BngmTCZsXnqQoXFcsiV42EuZB1al9SqUtyoigrF-bGYLfi70-x0C_bGszDW2p58Zif02O_l1yvT0a-yfYyOPE7kJbiMcT-L_Wmtcc8AC43cMwxlmGCe_lNRc784mb4hGlc6wWyD9H85SVOp-Ldg1N-ucnGi2Qecwxsw3zTV80w-T7q2mpjvf6g4_m9fbsL1IfNkB95VbsGWbW7DtV_0CHfg48ly3SHGE_N6m7GVYy-Xn9iHnnkdFl7J6owtzivdsFe61S_YASM24jeC4prJSAWKTTG7Z4X-umQFLkvrO7A4fF1MZ-Fw90JoUsnbMNV17pxwkY6t0ipKbBJJK6vI6DTWmTIJdzk-VxYTEI2LlM4SIQU3OL-tdCq9C9vNqrH3gQmupalJJp-UdFxU1TbKap2Ymqcid1EAexsjlGYQJqf7Mc7KvkCJ8pLMV5L5SjRfAM9H-BevyHERcIeGfQQNIx7A7sbC5TBf11gAYVxOKR0O4On4GmcabZ_oxq46wqRcIi4W_8II9MwExyqAe957xu9vnO7B39v1BK7MivlRefT2-P1DuEq98LSZXdhuzzv7CJOftnrc-_wPzSn7fQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Visual+Exploration+of+Big+Spatio-Temporal+Urban+Data%3A+A+Study+of+New+York+City+Taxi+Trips&rft.jtitle=IEEE+transactions+on+visualization+and+computer+graphics&rft.au=Ferreira%2C+Nivan&rft.au=Poco%2C+Jorge&rft.au=Vo%2C+Huy+T.&rft.au=Freire%2C+Juliana&rft.date=2013-12-01&rft.pub=IEEE&rft.issn=1077-2626&rft.volume=19&rft.issue=12&rft.spage=2149&rft.epage=2158&rft_id=info:doi/10.1109%2FTVCG.2013.226&rft_id=info%3Apmid%2F24051781&rft.externalDocID=6634127
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1077-2626&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1077-2626&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1077-2626&client=summon