Modeling Collisional Excitation of [O i] Fine Structure Line Emission from PDRs. I. Homogeneous Clouds

Atomic oxygen (O0) plays a critical role in determining the structure of photon-dominated regions (PDRs), but reliable modeling of its emission has been hampered by the high optical depth of the 63 m fine structure line and complexities in the excitation of the relevant fine structure levels. We dis...

Full description

Saved in:
Bibliographic Details
Published inThe Astrophysical journal Vol. 887; no. 1; pp. 54 - 67
Main Author Goldsmith, Paul F.
Format Journal Article
LanguageEnglish
Published Philadelphia The American Astronomical Society 10.12.2019
IOP Publishing
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Atomic oxygen (O0) plays a critical role in determining the structure of photon-dominated regions (PDRs), but reliable modeling of its emission has been hampered by the high optical depth of the 63 m fine structure line and complexities in the excitation of the relevant fine structure levels. We discuss here radiation produced by collisional excitation of the submillimeter fine structure lines of atomic oxygen ([O I]) using recent calculations of rates for collisions with atomic and molecular hydrogen. We employ the Molpop-CEP code to include the effects of optical thickness in slab models that are characterized by uniform oxygen abundance, hydrogen density, and kinetic temperature. The particular spontaneous decay rates and collisional excitation rates connecting the three O0 fine structure levels result in population inversion of the upper, 145 m transition. The effects of trapping are rigorously included and are reflected in the resulting line profiles that exhibit prominent self-absorption even with uniform physical conditions. We present figures for analyzing the two fine structure lines based on the intensity of the 63 m line and the 145 m/63 m line ratio. For the clouds considered, the results for line intensities and line ratios are modestly different from those obtained with a large-velocity-gradient model, but the ability to calculate line profiles is an additional powerful tool. Comparison of the model results with observed line profiles suggests that cloud models with varying physical conditions are required to optimally utilize [O I] fine structure line emission to trace the energetics of PDR regions and the feedback from massive, young stars.
AbstractList Atomic oxygen (O0) plays a critical role in determining the structure of photon-dominated regions (PDRs), but reliable modeling of its emission has been hampered by the high optical depth of the 63 m fine structure line and complexities in the excitation of the relevant fine structure levels. We discuss here radiation produced by collisional excitation of the submillimeter fine structure lines of atomic oxygen ([O I]) using recent calculations of rates for collisions with atomic and molecular hydrogen. We employ the Molpop-CEP code to include the effects of optical thickness in slab models that are characterized by uniform oxygen abundance, hydrogen density, and kinetic temperature. The particular spontaneous decay rates and collisional excitation rates connecting the three O0 fine structure levels result in population inversion of the upper, 145 m transition. The effects of trapping are rigorously included and are reflected in the resulting line profiles that exhibit prominent self-absorption even with uniform physical conditions. We present figures for analyzing the two fine structure lines based on the intensity of the 63 m line and the 145 m/63 m line ratio. For the clouds considered, the results for line intensities and line ratios are modestly different from those obtained with a large-velocity-gradient model, but the ability to calculate line profiles is an additional powerful tool. Comparison of the model results with observed line profiles suggests that cloud models with varying physical conditions are required to optimally utilize [O I] fine structure line emission to trace the energetics of PDR regions and the feedback from massive, young stars.
Atomic oxygen (O0) plays a critical role in determining the structure of photon-dominated regions (PDRs), but reliable modeling of its emission has been hampered by the high optical depth of the 63 μm fine structure line and complexities in the excitation of the relevant fine structure levels. We discuss here radiation produced by collisional excitation of the submillimeter fine structure lines of atomic oxygen ([O I]) using recent calculations of rates for collisions with atomic and molecular hydrogen. We employ the Molpop–CEP code to include the effects of optical thickness in slab models that are characterized by uniform oxygen abundance, hydrogen density, and kinetic temperature. The particular spontaneous decay rates and collisional excitation rates connecting the three O0 fine structure levels result in population inversion of the upper, 145 μm transition. The effects of trapping are rigorously included and are reflected in the resulting line profiles that exhibit prominent self-absorption even with uniform physical conditions. We present figures for analyzing the two fine structure lines based on the intensity of the 63 μm line and the 145 μm/63 μm line ratio. For the clouds considered, the results for line intensities and line ratios are modestly different from those obtained with a large-velocity-gradient model, but the ability to calculate line profiles is an additional powerful tool. Comparison of the model results with observed line profiles suggests that cloud models with varying physical conditions are required to optimally utilize [O I] fine structure line emission to trace the energetics of PDR regions and the feedback from massive, young stars.
Atomic oxygen (O 0 ) plays a critical role in determining the structure of photon-dominated regions (PDRs), but reliable modeling of its emission has been hampered by the high optical depth of the 63 μ m fine structure line and complexities in the excitation of the relevant fine structure levels. We discuss here radiation produced by collisional excitation of the submillimeter fine structure lines of atomic oxygen ([O I ]) using recent calculations of rates for collisions with atomic and molecular hydrogen. We employ the Molpop–CEP code to include the effects of optical thickness in slab models that are characterized by uniform oxygen abundance, hydrogen density, and kinetic temperature. The particular spontaneous decay rates and collisional excitation rates connecting the three O 0 fine structure levels result in population inversion of the upper, 145 μ m transition. The effects of trapping are rigorously included and are reflected in the resulting line profiles that exhibit prominent self-absorption even with uniform physical conditions. We present figures for analyzing the two fine structure lines based on the intensity of the 63 μ m line and the 145 μ m/63 μ m line ratio. For the clouds considered, the results for line intensities and line ratios are modestly different from those obtained with a large-velocity-gradient model, but the ability to calculate line profiles is an additional powerful tool. Comparison of the model results with observed line profiles suggests that cloud models with varying physical conditions are required to optimally utilize [O I ] fine structure line emission to trace the energetics of PDR regions and the feedback from massive, young stars.
Author Goldsmith, Paul F.
Author_xml – sequence: 1
  givenname: Paul F.
  orcidid: 0000-0002-6622-8396
  surname: Goldsmith
  fullname: Goldsmith, Paul F.
  email: paul.f.goldsmith@jpl.nasa.gov
  organization: California Institute of Technology Jet Propulsion Laboratory, 4800 Oak Grove Drive, Pasadena, CA 91109, USA
BookMark eNp9kFtLwzAYhoNMcJveexnw1m5pc-ylzM0NJooHEERClqYjo21m0oL-e1vqAQS9Cm94n4_ve0ZgULnKAHAaowkWhE9jikVEMOVTtaGYmgMw_P4agCFCiEQM86cjMAph18UkTYcgv3aZKWy1hTNXFDZYV6kCzt-0rVXdBuhy-HwD7Qtc2MrA-9o3um68gesuzksbOgTm3pXw9vIuTOBqApeudFtTGdcEOCtck4VjcJirIpiTz3cMHhfzh9kyWt9crWYX60hjTuoIszyjVDOlNM5olnLMEhxvKN-kQmVCE84FwooZRRATiMRGKJ6z2MQ6FSY1eAzO-rl7714bE2q5c41vTwoyaUVQThKM2hbqW9q7ELzJ5d7bUvl3GSPZ2ZSdOtmpk73NFmG_kC9DtVe2-A8870Hr9j_L_Fn_AOFpiKo
CitedBy_id crossref_primary_10_3847_1538_4357_ad1a09
crossref_primary_10_1093_mnras_stab121
crossref_primary_10_1051_0004_6361_202040217
crossref_primary_10_3847_1538_4357_abfb69
crossref_primary_10_1051_0004_6361_202040048
crossref_primary_10_1093_mnras_stac028
crossref_primary_10_1051_0004_6361_202245481
crossref_primary_10_1051_0004_6361_202450530
crossref_primary_10_3847_1538_4357_acd842
crossref_primary_10_1093_mnras_stad2644
crossref_primary_10_1146_annurev_astro_052920_010254
crossref_primary_10_1051_0004_6361_202243358
crossref_primary_10_3847_1538_4357_ad3baa
Cites_doi 10.1088/1538-4357/462/1/L43
10.1086/183948
10.1051/0004-6361/201731943
10.1086/186008
10.1093/mnras/stx2907
10.1117/12.2313823
10.1103/PhysRevA.28.3169
10.1086/306543
10.1051/0004-6361:20066820
10.1051/0004-6361/201526466
10.1515/9781400839087
10.1088/0067-0049/203/1/13
10.1086/509631
10.1088/0953-4075/21/9/007
10.3847/0067-0049/226/2/19
10.1086/306002
10.1086/323518
10.1051/0004-6361/201118029
10.1086/152821
10.1088/0004-637X/801/2/121
10.1051/0004-6361:20041063
10.1086/308102
10.1086/312842
10.1086/172270
10.1086/176482
10.1086/517987
10.1017/pasa.2018.15
10.1086/344136
10.1088/0004-637X/739/2/100
10.1088/0004-637X/812/1/75
10.1051/0004-6361/201732508
10.1051/0004-6361/201629045
10.1007/978-94-009-0963-2
10.1051/0004-6361:20053925
10.1086/323046
10.1002/9783527617722
10.1093/mnras/228.1.101
10.1111/j.1365-2966.2005.09770.x
10.1086/163111
10.1088/0004-637X/814/2/133
10.1051/0004-6361/201526473
10.1063/1.438500
10.1086/304022
10.1086/310094
10.1051/0004-6361/201935482
10.1051/0004-6361/201014698
10.1088/0953-4075/25/1/030
10.3847/1538-4357/aa81d7
10.1086/503252
10.1051/0004-6361/201014535
ContentType Journal Article
Copyright 2019. The American Astronomical Society. All rights reserved.
Copyright IOP Publishing Dec 10, 2019
Copyright_xml – notice: 2019. The American Astronomical Society. All rights reserved.
– notice: Copyright IOP Publishing Dec 10, 2019
DBID AAYXX
CITATION
7TG
8FD
H8D
KL.
L7M
DOI 10.3847/1538-4357/ab535e
DatabaseName CrossRef
Meteorological & Geoastrophysical Abstracts
Technology Research Database
Aerospace Database
Meteorological & Geoastrophysical Abstracts - Academic
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Meteorological & Geoastrophysical Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Meteorological & Geoastrophysical Abstracts - Academic
DatabaseTitleList
Aerospace Database
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Astronomy & Astrophysics
Physics
DocumentTitleAlternate Modeling Collisional Excitation of [O i] Fine Structure Line Emission from PDRs. I. Homogeneous Clouds
EISSN 1538-4357
ExternalDocumentID 10_3847_1538_4357_ab535e
apjab535e
GrantInformation_xml – fundername: NASA
  grantid: unknown
GroupedDBID -DZ
-~X
123
1JI
23N
2FS
2WC
4.4
6J9
85S
AAFWJ
AAGCD
AAJIO
ABHWH
ACBEA
ACGFS
ACHIP
ACNCT
ADACN
AEFHF
AENEX
AFPKN
AKPSB
ALMA_UNASSIGNED_HOLDINGS
ASPBG
ATQHT
AVWKF
AZFZN
CJUJL
CRLBU
CS3
EBS
F5P
FRP
GROUPED_DOAJ
IJHAN
IOP
KOT
M~E
N5L
O3W
O43
OK1
PJBAE
RIN
RNS
ROL
SJN
SY9
T37
TN5
TR2
WH7
XSW
AAYXX
CITATION
7TG
8FD
AEINN
H8D
KL.
L7M
ID FETCH-LOGICAL-c374t-36fd55c6aac3d5d9736231b57b98ad8c477803a6ea4068041e8a7f61e1c98e9e3
IEDL.DBID O3W
ISSN 0004-637X
IngestDate Wed Aug 13 11:15:14 EDT 2025
Thu Apr 24 23:11:15 EDT 2025
Tue Jul 01 03:24:13 EDT 2025
Wed Aug 21 03:41:35 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c374t-36fd55c6aac3d5d9736231b57b98ad8c477803a6ea4068041e8a7f61e1c98e9e3
Notes AAS19574
Interstellar Matter and the Local Universe
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-6622-8396
PQID 2357574230
PQPubID 4562441
PageCount 14
ParticipantIDs proquest_journals_2357574230
crossref_citationtrail_10_3847_1538_4357_ab535e
iop_journals_10_3847_1538_4357_ab535e
crossref_primary_10_3847_1538_4357_ab535e
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20191210
2019-12-10
PublicationDateYYYYMMDD 2019-12-10
PublicationDate_xml – month: 12
  year: 2019
  text: 20191210
  day: 10
PublicationDecade 2010
PublicationPlace Philadelphia
PublicationPlace_xml – name: Philadelphia
PublicationTitle The Astrophysical journal
PublicationTitleAbbrev APJ
PublicationTitleAlternate Astrophys. J
PublicationYear 2019
Publisher The American Astronomical Society
IOP Publishing
Publisher_xml – name: The American Astronomical Society
– name: IOP Publishing
References Liseau (apjab535ebib33) 1999; 344
Wiesemeyer (apjab535ebib57) 2016; 585
Mookerjea (apjab535ebib37) 2019; 626
Stacey (apjab535ebib52) 1983; 265
Lique (apjab535ebib30) 2018; 474
Goicoechea (apjab535ebib15) 2015; 812
Tielens (apjab535ebib53) 1985; 291
Díaz-Santos (apjab535ebib10) 2017; 846
González-Alfonso (apjab535ebib20) 2012; 541
Stacey (apjab535ebib51) 1993; 404
Ashby (apjab535ebib4) 2000; 539
Saraceno (apjab535ebib47) 1998
Leisawitz (apjab535ebib28) 2018; 10698
Vastel (apjab535ebib55) 2000; 357
Boreiko (apjab535ebib7) 1996; 464
Fernández-Ontiveros (apjab535ebib13) 2016; 226
Caux (apjab535ebib8) 1999; 347
Rybicki (apjab535ebib46) 1991; 245
Abel (apjab535ebib1) 2007; 662
Zink (apjab535ebib58) 1991; 371
Herrmann (apjab535ebib21) 1997; 481
Le Petit (apjab535ebib27) 2006; 164
Fischer (apjab535ebib14) 1983; 28
Goldsmith (apjab535ebib18) 2015; 814
Kraemer (apjab535ebib26) 1998b; 503
Nisini (apjab535ebib38) 2015; 801
Osterbrock (apjab535ebib40) 1989
Poglitsch (apjab535ebib41) 1996; 462
Schneider (apjab535ebib49) 2018; 617
Liseau (apjab535ebib32) 2006; 446
Malhotra (apjab535ebib34) 2001; 561
Goldsmith (apjab535ebib19) 2002
Baluja (apjab535ebib5) 1988; 21
Keene (apjab535ebib24) 1999; 427
Oberst (apjab535ebib39) 2011; 739
Saykally (apjab535ebib48) 1979; 71
van der Tak (apjab535ebib54) 2007; 468
Elitzur (apjab535ebib12) 2006; 365
Jaquet (apjab535ebib22) 1992; 25
Baluteau (apjab535ebib6) 1997; 322
Leurini (apjab535ebib29) 2015; 584
Monteiro (apjab535ebib36) 1987; 228
Poglitsch (apjab535ebib43) 2010; 518
Poglitsch (apjab535ebib42) 1995; 454
de Graauw (apjab535ebib9) 2010; 518
Goldreich (apjab535ebib16) 1974; 189
Risacher (apjab535ebib44) 2016; 595
Goldsmith (apjab535ebib17) 2012; 203
Kaufman (apjab535ebib23) 1999; 527
Roelfsema (apjab535ebib45) 2018; 35
Abrahamsson (apjab535ebib2) 2007; 654
Vastel (apjab535ebib56) 2002; 581
Lis (apjab535ebib31) 2001; 561
Asensio Ramos (apjab535ebib3) 2018; 616
Mizutani (apjab535ebib35) 2004; 423
Kraemer (apjab535ebib25) 1998a; 509
Draine (apjab535ebib11) 2011
Spitzer (apjab535ebib50) 1978
References_xml – volume: 462
  start-page: L43
  year: 1996
  ident: apjab535ebib41
  publication-title: ApJL
  doi: 10.1088/1538-4357/462/1/L43
– start-page: 233
  year: 1998
  ident: apjab535ebib47
– volume: 265
  start-page: L7
  year: 1983
  ident: apjab535ebib52
  publication-title: ApJL
  doi: 10.1086/183948
– volume: 344
  start-page: 342
  year: 1999
  ident: apjab535ebib33
  publication-title: A&A
– volume: 245
  start-page: 171
  year: 1991
  ident: apjab535ebib46
  publication-title: A&A
– volume: 616
  start-page: A131
  year: 2018
  ident: apjab535ebib3
  publication-title: A&A
  doi: 10.1051/0004-6361/201731943
– volume: 371
  start-page: L85
  year: 1991
  ident: apjab535ebib58
  publication-title: ApJL
  doi: 10.1086/186008
– volume: 474
  start-page: 2313
  year: 2018
  ident: apjab535ebib30
  publication-title: MNRAS
  doi: 10.1093/mnras/stx2907
– volume: 10698
  year: 2018
  ident: apjab535ebib28
  publication-title: Proc. SPIE
  doi: 10.1117/12.2313823
– volume: 28
  start-page: 3169
  year: 1983
  ident: apjab535ebib14
  publication-title: PhRvA
  doi: 10.1103/PhysRevA.28.3169
– volume: 509
  start-page: 931
  year: 1998a
  ident: apjab535ebib25
  publication-title: ApJ
  doi: 10.1086/306543
– volume: 468
  start-page: 627
  year: 2007
  ident: apjab535ebib54
  publication-title: A&A
  doi: 10.1051/0004-6361:20066820
– volume: 584
  start-page: A70
  year: 2015
  ident: apjab535ebib29
  publication-title: A&A
  doi: 10.1051/0004-6361/201526466
– year: 2011
  ident: apjab535ebib11
  doi: 10.1515/9781400839087
– volume: 203
  start-page: 13
  year: 2012
  ident: apjab535ebib17
  publication-title: ApJS
  doi: 10.1088/0067-0049/203/1/13
– volume: 654
  start-page: 1171
  year: 2007
  ident: apjab535ebib2
  publication-title: ApJ
  doi: 10.1086/509631
– volume: 21
  start-page: 1455
  year: 1988
  ident: apjab535ebib5
  publication-title: JPhB
  doi: 10.1088/0953-4075/21/9/007
– volume: 226
  start-page: 19
  year: 2016
  ident: apjab535ebib13
  publication-title: ApJS
  doi: 10.3847/0067-0049/226/2/19
– volume: 503
  start-page: 785
  year: 1998b
  ident: apjab535ebib26
  publication-title: ApJ
  doi: 10.1086/306002
– volume: 561
  start-page: 823
  year: 2001
  ident: apjab535ebib31
  publication-title: ApJ
  doi: 10.1086/323518
– volume: 322
  start-page: L33
  year: 1997
  ident: apjab535ebib6
  publication-title: A&A
– volume: 541
  start-page: A4
  year: 2012
  ident: apjab535ebib20
  publication-title: A&A
  doi: 10.1051/0004-6361/201118029
– volume: 189
  start-page: 441
  year: 1974
  ident: apjab535ebib16
  publication-title: ApJ
  doi: 10.1086/152821
– volume: 801
  start-page: 121
  year: 2015
  ident: apjab535ebib38
  publication-title: ApJ
  doi: 10.1088/0004-637X/801/2/121
– volume: 423
  start-page: 579
  year: 2004
  ident: apjab535ebib35
  publication-title: A&A
  doi: 10.1051/0004-6361:20041063
– volume: 527
  start-page: 795
  year: 1999
  ident: apjab535ebib23
  publication-title: ApJ
  doi: 10.1086/308102
– start-page: 45
  year: 2002
  ident: apjab535ebib19
– volume: 539
  start-page: L115
  year: 2000
  ident: apjab535ebib4
  publication-title: ApJL
  doi: 10.1086/312842
– volume: 404
  start-page: 219
  year: 1993
  ident: apjab535ebib51
  publication-title: ApJ
  doi: 10.1086/172270
– volume: 427
  start-page: 687
  year: 1999
  ident: apjab535ebib24
  publication-title: ESA Spec. Publ.
– volume: 357
  start-page: 994
  year: 2000
  ident: apjab535ebib55
  publication-title: A&A
– volume: 454
  start-page: 293
  year: 1995
  ident: apjab535ebib42
  publication-title: ApJ
  doi: 10.1086/176482
– volume: 662
  start-page: 1024
  year: 2007
  ident: apjab535ebib1
  publication-title: ApJ
  doi: 10.1086/517987
– volume: 35
  start-page: e030
  year: 2018
  ident: apjab535ebib45
  publication-title: PASA
  doi: 10.1017/pasa.2018.15
– volume: 581
  start-page: 315
  year: 2002
  ident: apjab535ebib56
  publication-title: ApJ
  doi: 10.1086/344136
– volume: 739
  start-page: 100
  year: 2011
  ident: apjab535ebib39
  publication-title: ApJ
  doi: 10.1088/0004-637X/739/2/100
– volume: 812
  start-page: 75
  year: 2015
  ident: apjab535ebib15
  publication-title: ApJ
  doi: 10.1088/0004-637X/812/1/75
– volume: 617
  start-page: A45
  year: 2018
  ident: apjab535ebib49
  publication-title: A&A
  doi: 10.1051/0004-6361/201732508
– volume: 595
  start-page: A34
  year: 2016
  ident: apjab535ebib44
  publication-title: A&A
  doi: 10.1051/0004-6361/201629045
– year: 1989
  ident: apjab535ebib40
  doi: 10.1007/978-94-009-0963-2
– volume: 446
  start-page: 561
  year: 2006
  ident: apjab535ebib32
  publication-title: A&A
  doi: 10.1051/0004-6361:20053925
– volume: 561
  start-page: 766
  year: 2001
  ident: apjab535ebib34
  publication-title: ApJ
  doi: 10.1086/323046
– year: 1978
  ident: apjab535ebib50
  doi: 10.1002/9783527617722
– volume: 228
  start-page: 101
  year: 1987
  ident: apjab535ebib36
  publication-title: MNRAS
  doi: 10.1093/mnras/228.1.101
– volume: 365
  start-page: 779
  year: 2006
  ident: apjab535ebib12
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2005.09770.x
– volume: 291
  start-page: 722
  year: 1985
  ident: apjab535ebib53
  publication-title: ApJ
  doi: 10.1086/163111
– volume: 814
  start-page: 133
  year: 2015
  ident: apjab535ebib18
  publication-title: ApJ
  doi: 10.1088/0004-637X/814/2/133
– volume: 585
  start-page: A76
  year: 2016
  ident: apjab535ebib57
  publication-title: A&A
  doi: 10.1051/0004-6361/201526473
– volume: 71
  start-page: 1564
  year: 1979
  ident: apjab535ebib48
  publication-title: JChPh
  doi: 10.1063/1.438500
– volume: 481
  start-page: 343
  year: 1997
  ident: apjab535ebib21
  publication-title: ApJ
  doi: 10.1086/304022
– volume: 464
  start-page: L83
  year: 1996
  ident: apjab535ebib7
  publication-title: ApJL
  doi: 10.1086/310094
– volume: 626
  start-page: A131
  year: 2019
  ident: apjab535ebib37
  publication-title: A&A
  doi: 10.1051/0004-6361/201935482
– volume: 518
  start-page: L6
  year: 2010
  ident: apjab535ebib9
  publication-title: A&A
  doi: 10.1051/0004-6361/201014698
– volume: 25
  start-page: 285
  year: 1992
  ident: apjab535ebib22
  publication-title: JPhB
  doi: 10.1088/0953-4075/25/1/030
– volume: 347
  start-page: L1
  year: 1999
  ident: apjab535ebib8
  publication-title: A&A
– volume: 846
  start-page: 32
  year: 2017
  ident: apjab535ebib10
  publication-title: ApJ
  doi: 10.3847/1538-4357/aa81d7
– volume: 164
  start-page: 506
  year: 2006
  ident: apjab535ebib27
  publication-title: ApJS
  doi: 10.1086/503252
– volume: 518
  start-page: L2
  year: 2010
  ident: apjab535ebib43
  publication-title: A&A
  doi: 10.1051/0004-6361/201014535
SSID ssj0004299
Score 2.4051895
Snippet Atomic oxygen (O0) plays a critical role in determining the structure of photon-dominated regions (PDRs), but reliable modeling of its emission has been...
Atomic oxygen (O 0 ) plays a critical role in determining the structure of photon-dominated regions (PDRs), but reliable modeling of its emission has been...
SourceID proquest
crossref
iop
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 54
SubjectTerms Astrochemistry
Astrophysics
Atomic oxygen
Atomic structure
Cloud models
Clouds
Collision processes
Decay rate
Dense interstellar clouds
Emission
Excitation
Fine structure
Hydrogen
Modelling
Optical analysis
Optical thickness
Oxygen
Population inversion
Radiation
Radiative transfer
Star forming regions
Title Modeling Collisional Excitation of [O i] Fine Structure Line Emission from PDRs. I. Homogeneous Clouds
URI https://iopscience.iop.org/article/10.3847/1538-4357/ab535e
https://www.proquest.com/docview/2357574230
Volume 887
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dS9xAEB88pdCX4keLtlbmwQo-5O5y-5ENfRK94yytd7SVHpQS9isg6EUaD-x_351sThFFfJvA7ibZ387HzjAzAPtcDowMajWhNg4JTzkFCQO7K-4tMzYXVlC-87czOT7nX2ZitgKf73JhqutW9HcDGQsFxy0k_mZBlvYaHg1aPutpI5jwHVhjSiq6eU3Yr_ukyEHe2r48kSybxRjlkys80Emd8N5HgrnRNqN1eNOaiXgUP2oDVvx8E7aPanJcV1f_8AAbOvol6k14NY3UFpTU3YxyzJF8Ahex6AYOb21bjBurEn9P8OIPjoKBiT-a-rGLvx6_0uMwwE5TkNJOcHryve7iaRfH1VUVTpqvFjUeX1YLV7-F89Hw5_E4aZspJJZl_CZhsnRCWKm1ZU64PAuai6VGZCZX2inLs0z1mZZec2rHwVOvdFbK1Kc2Vz737B2szqu53wZ0pRgEM09rxz0XxpjcceOCKvQqTUuhdqC33M5i-XPU8OKyCDcOAqAgAAoCoIgA7MDh3YzrWGXjmbGfAkJFy2r1M-N2lxjeD6biPoKC0_33L1zmA7wONlLTMiLt78JqQMV_DHbIjdmDzulkutecuv-OR9TN
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS9xAFB68oPRFrK1ovfQ82IIP2d3sXJI8iu6yXqqLVbpQSphbQNDNYlzQf-85maxSWsS3E5iZJPPNucwM53yM7QnVNQrdakQ0DpGIBV0SorqnwltubCatpHznH-dqcC1ORnLU8JzWuTDlpDH9LRRDoeAwhaTfHG1pu9ZR9PJJWxvJpW9PXDHPFiVXirgbLviv18TIbtbEvyJSPBmFe8r_jvKXX5rHd_9jnGuP019lK02oCAfhwz6yOT9eYxsHFR1el3dP8B1qOZxNVGtsaRikT6wghjPKMwc6F7gJhTeg92ibgtxQFvD7Am7-QB-DTPhZ15Cd3ns4o8ceQk9dgFJPYHh0WbXguAWD8q7E1ebLaQWHt-XUVZ_Zdb93dTiIGkKFyPJEPERcFU5Kq7S23EmXJei9eGxkYrJUu9SKJEk7XCuvBVFyiNinOilU7GObpT7zfJ0tjMux32DgCtnFUE9rJ7yQxpjMCePQHfo0jguZbrL2bDrz2c8R6cVtjrsOAiAnAHICIA8AbLL9lx6TUGnjjbbfEKG8UbfqjXbbMwxfG1OBH0kX1J0v7xzmK1seHvXzs-Pz0y32AUOmmkEi7myzBQTI72BY8mB266X3DMOo17M
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modeling+Collisional+Excitation+of+%5BO+i%5D+Fine+Structure+Line+Emission+from+PDRs.+I.+Homogeneous+Clouds&rft.jtitle=The+Astrophysical+journal&rft.au=Goldsmith%2C+Paul+F.&rft.date=2019-12-10&rft.issn=0004-637X&rft.eissn=1538-4357&rft.volume=887&rft.issue=1&rft.spage=54&rft_id=info:doi/10.3847%2F1538-4357%2Fab535e&rft.externalDBID=n%2Fa&rft.externalDocID=10_3847_1538_4357_ab535e
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0004-637X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0004-637X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0004-637X&client=summon