Modeling Collisional Excitation of [O i] Fine Structure Line Emission from PDRs. I. Homogeneous Clouds
Atomic oxygen (O0) plays a critical role in determining the structure of photon-dominated regions (PDRs), but reliable modeling of its emission has been hampered by the high optical depth of the 63 m fine structure line and complexities in the excitation of the relevant fine structure levels. We dis...
Saved in:
Published in | The Astrophysical journal Vol. 887; no. 1; pp. 54 - 67 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Philadelphia
The American Astronomical Society
10.12.2019
IOP Publishing |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Atomic oxygen (O0) plays a critical role in determining the structure of photon-dominated regions (PDRs), but reliable modeling of its emission has been hampered by the high optical depth of the 63 m fine structure line and complexities in the excitation of the relevant fine structure levels. We discuss here radiation produced by collisional excitation of the submillimeter fine structure lines of atomic oxygen ([O I]) using recent calculations of rates for collisions with atomic and molecular hydrogen. We employ the Molpop-CEP code to include the effects of optical thickness in slab models that are characterized by uniform oxygen abundance, hydrogen density, and kinetic temperature. The particular spontaneous decay rates and collisional excitation rates connecting the three O0 fine structure levels result in population inversion of the upper, 145 m transition. The effects of trapping are rigorously included and are reflected in the resulting line profiles that exhibit prominent self-absorption even with uniform physical conditions. We present figures for analyzing the two fine structure lines based on the intensity of the 63 m line and the 145 m/63 m line ratio. For the clouds considered, the results for line intensities and line ratios are modestly different from those obtained with a large-velocity-gradient model, but the ability to calculate line profiles is an additional powerful tool. Comparison of the model results with observed line profiles suggests that cloud models with varying physical conditions are required to optimally utilize [O I] fine structure line emission to trace the energetics of PDR regions and the feedback from massive, young stars. |
---|---|
AbstractList | Atomic oxygen (O0) plays a critical role in determining the structure of photon-dominated regions (PDRs), but reliable modeling of its emission has been hampered by the high optical depth of the 63 m fine structure line and complexities in the excitation of the relevant fine structure levels. We discuss here radiation produced by collisional excitation of the submillimeter fine structure lines of atomic oxygen ([O I]) using recent calculations of rates for collisions with atomic and molecular hydrogen. We employ the Molpop-CEP code to include the effects of optical thickness in slab models that are characterized by uniform oxygen abundance, hydrogen density, and kinetic temperature. The particular spontaneous decay rates and collisional excitation rates connecting the three O0 fine structure levels result in population inversion of the upper, 145 m transition. The effects of trapping are rigorously included and are reflected in the resulting line profiles that exhibit prominent self-absorption even with uniform physical conditions. We present figures for analyzing the two fine structure lines based on the intensity of the 63 m line and the 145 m/63 m line ratio. For the clouds considered, the results for line intensities and line ratios are modestly different from those obtained with a large-velocity-gradient model, but the ability to calculate line profiles is an additional powerful tool. Comparison of the model results with observed line profiles suggests that cloud models with varying physical conditions are required to optimally utilize [O I] fine structure line emission to trace the energetics of PDR regions and the feedback from massive, young stars. Atomic oxygen (O0) plays a critical role in determining the structure of photon-dominated regions (PDRs), but reliable modeling of its emission has been hampered by the high optical depth of the 63 μm fine structure line and complexities in the excitation of the relevant fine structure levels. We discuss here radiation produced by collisional excitation of the submillimeter fine structure lines of atomic oxygen ([O I]) using recent calculations of rates for collisions with atomic and molecular hydrogen. We employ the Molpop–CEP code to include the effects of optical thickness in slab models that are characterized by uniform oxygen abundance, hydrogen density, and kinetic temperature. The particular spontaneous decay rates and collisional excitation rates connecting the three O0 fine structure levels result in population inversion of the upper, 145 μm transition. The effects of trapping are rigorously included and are reflected in the resulting line profiles that exhibit prominent self-absorption even with uniform physical conditions. We present figures for analyzing the two fine structure lines based on the intensity of the 63 μm line and the 145 μm/63 μm line ratio. For the clouds considered, the results for line intensities and line ratios are modestly different from those obtained with a large-velocity-gradient model, but the ability to calculate line profiles is an additional powerful tool. Comparison of the model results with observed line profiles suggests that cloud models with varying physical conditions are required to optimally utilize [O I] fine structure line emission to trace the energetics of PDR regions and the feedback from massive, young stars. Atomic oxygen (O 0 ) plays a critical role in determining the structure of photon-dominated regions (PDRs), but reliable modeling of its emission has been hampered by the high optical depth of the 63 μ m fine structure line and complexities in the excitation of the relevant fine structure levels. We discuss here radiation produced by collisional excitation of the submillimeter fine structure lines of atomic oxygen ([O I ]) using recent calculations of rates for collisions with atomic and molecular hydrogen. We employ the Molpop–CEP code to include the effects of optical thickness in slab models that are characterized by uniform oxygen abundance, hydrogen density, and kinetic temperature. The particular spontaneous decay rates and collisional excitation rates connecting the three O 0 fine structure levels result in population inversion of the upper, 145 μ m transition. The effects of trapping are rigorously included and are reflected in the resulting line profiles that exhibit prominent self-absorption even with uniform physical conditions. We present figures for analyzing the two fine structure lines based on the intensity of the 63 μ m line and the 145 μ m/63 μ m line ratio. For the clouds considered, the results for line intensities and line ratios are modestly different from those obtained with a large-velocity-gradient model, but the ability to calculate line profiles is an additional powerful tool. Comparison of the model results with observed line profiles suggests that cloud models with varying physical conditions are required to optimally utilize [O I ] fine structure line emission to trace the energetics of PDR regions and the feedback from massive, young stars. |
Author | Goldsmith, Paul F. |
Author_xml | – sequence: 1 givenname: Paul F. orcidid: 0000-0002-6622-8396 surname: Goldsmith fullname: Goldsmith, Paul F. email: paul.f.goldsmith@jpl.nasa.gov organization: California Institute of Technology Jet Propulsion Laboratory, 4800 Oak Grove Drive, Pasadena, CA 91109, USA |
BookMark | eNp9kFtLwzAYhoNMcJveexnw1m5pc-ylzM0NJooHEERClqYjo21m0oL-e1vqAQS9Cm94n4_ve0ZgULnKAHAaowkWhE9jikVEMOVTtaGYmgMw_P4agCFCiEQM86cjMAph18UkTYcgv3aZKWy1hTNXFDZYV6kCzt-0rVXdBuhy-HwD7Qtc2MrA-9o3um68gesuzksbOgTm3pXw9vIuTOBqApeudFtTGdcEOCtck4VjcJirIpiTz3cMHhfzh9kyWt9crWYX60hjTuoIszyjVDOlNM5olnLMEhxvKN-kQmVCE84FwooZRRATiMRGKJ6z2MQ6FSY1eAzO-rl7714bE2q5c41vTwoyaUVQThKM2hbqW9q7ELzJ5d7bUvl3GSPZ2ZSdOtmpk73NFmG_kC9DtVe2-A8870Hr9j_L_Fn_AOFpiKo |
CitedBy_id | crossref_primary_10_3847_1538_4357_ad1a09 crossref_primary_10_1093_mnras_stab121 crossref_primary_10_1051_0004_6361_202040217 crossref_primary_10_3847_1538_4357_abfb69 crossref_primary_10_1051_0004_6361_202040048 crossref_primary_10_1093_mnras_stac028 crossref_primary_10_1051_0004_6361_202245481 crossref_primary_10_1051_0004_6361_202450530 crossref_primary_10_3847_1538_4357_acd842 crossref_primary_10_1093_mnras_stad2644 crossref_primary_10_1146_annurev_astro_052920_010254 crossref_primary_10_1051_0004_6361_202243358 crossref_primary_10_3847_1538_4357_ad3baa |
Cites_doi | 10.1088/1538-4357/462/1/L43 10.1086/183948 10.1051/0004-6361/201731943 10.1086/186008 10.1093/mnras/stx2907 10.1117/12.2313823 10.1103/PhysRevA.28.3169 10.1086/306543 10.1051/0004-6361:20066820 10.1051/0004-6361/201526466 10.1515/9781400839087 10.1088/0067-0049/203/1/13 10.1086/509631 10.1088/0953-4075/21/9/007 10.3847/0067-0049/226/2/19 10.1086/306002 10.1086/323518 10.1051/0004-6361/201118029 10.1086/152821 10.1088/0004-637X/801/2/121 10.1051/0004-6361:20041063 10.1086/308102 10.1086/312842 10.1086/172270 10.1086/176482 10.1086/517987 10.1017/pasa.2018.15 10.1086/344136 10.1088/0004-637X/739/2/100 10.1088/0004-637X/812/1/75 10.1051/0004-6361/201732508 10.1051/0004-6361/201629045 10.1007/978-94-009-0963-2 10.1051/0004-6361:20053925 10.1086/323046 10.1002/9783527617722 10.1093/mnras/228.1.101 10.1111/j.1365-2966.2005.09770.x 10.1086/163111 10.1088/0004-637X/814/2/133 10.1051/0004-6361/201526473 10.1063/1.438500 10.1086/304022 10.1086/310094 10.1051/0004-6361/201935482 10.1051/0004-6361/201014698 10.1088/0953-4075/25/1/030 10.3847/1538-4357/aa81d7 10.1086/503252 10.1051/0004-6361/201014535 |
ContentType | Journal Article |
Copyright | 2019. The American Astronomical Society. All rights reserved. Copyright IOP Publishing Dec 10, 2019 |
Copyright_xml | – notice: 2019. The American Astronomical Society. All rights reserved. – notice: Copyright IOP Publishing Dec 10, 2019 |
DBID | AAYXX CITATION 7TG 8FD H8D KL. L7M |
DOI | 10.3847/1538-4357/ab535e |
DatabaseName | CrossRef Meteorological & Geoastrophysical Abstracts Technology Research Database Aerospace Database Meteorological & Geoastrophysical Abstracts - Academic Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aerospace Database Meteorological & Geoastrophysical Abstracts Technology Research Database Advanced Technologies Database with Aerospace Meteorological & Geoastrophysical Abstracts - Academic |
DatabaseTitleList | Aerospace Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Astronomy & Astrophysics Physics |
DocumentTitleAlternate | Modeling Collisional Excitation of [O i] Fine Structure Line Emission from PDRs. I. Homogeneous Clouds |
EISSN | 1538-4357 |
ExternalDocumentID | 10_3847_1538_4357_ab535e apjab535e |
GrantInformation_xml | – fundername: NASA grantid: unknown |
GroupedDBID | -DZ -~X 123 1JI 23N 2FS 2WC 4.4 6J9 85S AAFWJ AAGCD AAJIO ABHWH ACBEA ACGFS ACHIP ACNCT ADACN AEFHF AENEX AFPKN AKPSB ALMA_UNASSIGNED_HOLDINGS ASPBG ATQHT AVWKF AZFZN CJUJL CRLBU CS3 EBS F5P FRP GROUPED_DOAJ IJHAN IOP KOT M~E N5L O3W O43 OK1 PJBAE RIN RNS ROL SJN SY9 T37 TN5 TR2 WH7 XSW AAYXX CITATION 7TG 8FD AEINN H8D KL. L7M |
ID | FETCH-LOGICAL-c374t-36fd55c6aac3d5d9736231b57b98ad8c477803a6ea4068041e8a7f61e1c98e9e3 |
IEDL.DBID | O3W |
ISSN | 0004-637X |
IngestDate | Wed Aug 13 11:15:14 EDT 2025 Thu Apr 24 23:11:15 EDT 2025 Tue Jul 01 03:24:13 EDT 2025 Wed Aug 21 03:41:35 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c374t-36fd55c6aac3d5d9736231b57b98ad8c477803a6ea4068041e8a7f61e1c98e9e3 |
Notes | AAS19574 Interstellar Matter and the Local Universe ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-6622-8396 |
PQID | 2357574230 |
PQPubID | 4562441 |
PageCount | 14 |
ParticipantIDs | proquest_journals_2357574230 crossref_citationtrail_10_3847_1538_4357_ab535e iop_journals_10_3847_1538_4357_ab535e crossref_primary_10_3847_1538_4357_ab535e |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20191210 2019-12-10 |
PublicationDateYYYYMMDD | 2019-12-10 |
PublicationDate_xml | – month: 12 year: 2019 text: 20191210 day: 10 |
PublicationDecade | 2010 |
PublicationPlace | Philadelphia |
PublicationPlace_xml | – name: Philadelphia |
PublicationTitle | The Astrophysical journal |
PublicationTitleAbbrev | APJ |
PublicationTitleAlternate | Astrophys. J |
PublicationYear | 2019 |
Publisher | The American Astronomical Society IOP Publishing |
Publisher_xml | – name: The American Astronomical Society – name: IOP Publishing |
References | Liseau (apjab535ebib33) 1999; 344 Wiesemeyer (apjab535ebib57) 2016; 585 Mookerjea (apjab535ebib37) 2019; 626 Stacey (apjab535ebib52) 1983; 265 Lique (apjab535ebib30) 2018; 474 Goicoechea (apjab535ebib15) 2015; 812 Tielens (apjab535ebib53) 1985; 291 Díaz-Santos (apjab535ebib10) 2017; 846 González-Alfonso (apjab535ebib20) 2012; 541 Stacey (apjab535ebib51) 1993; 404 Ashby (apjab535ebib4) 2000; 539 Saraceno (apjab535ebib47) 1998 Leisawitz (apjab535ebib28) 2018; 10698 Vastel (apjab535ebib55) 2000; 357 Boreiko (apjab535ebib7) 1996; 464 Fernández-Ontiveros (apjab535ebib13) 2016; 226 Caux (apjab535ebib8) 1999; 347 Rybicki (apjab535ebib46) 1991; 245 Abel (apjab535ebib1) 2007; 662 Zink (apjab535ebib58) 1991; 371 Herrmann (apjab535ebib21) 1997; 481 Le Petit (apjab535ebib27) 2006; 164 Fischer (apjab535ebib14) 1983; 28 Goldsmith (apjab535ebib18) 2015; 814 Kraemer (apjab535ebib26) 1998b; 503 Nisini (apjab535ebib38) 2015; 801 Osterbrock (apjab535ebib40) 1989 Poglitsch (apjab535ebib41) 1996; 462 Schneider (apjab535ebib49) 2018; 617 Liseau (apjab535ebib32) 2006; 446 Malhotra (apjab535ebib34) 2001; 561 Goldsmith (apjab535ebib19) 2002 Baluja (apjab535ebib5) 1988; 21 Keene (apjab535ebib24) 1999; 427 Oberst (apjab535ebib39) 2011; 739 Saykally (apjab535ebib48) 1979; 71 van der Tak (apjab535ebib54) 2007; 468 Elitzur (apjab535ebib12) 2006; 365 Jaquet (apjab535ebib22) 1992; 25 Baluteau (apjab535ebib6) 1997; 322 Leurini (apjab535ebib29) 2015; 584 Monteiro (apjab535ebib36) 1987; 228 Poglitsch (apjab535ebib43) 2010; 518 Poglitsch (apjab535ebib42) 1995; 454 de Graauw (apjab535ebib9) 2010; 518 Goldreich (apjab535ebib16) 1974; 189 Risacher (apjab535ebib44) 2016; 595 Goldsmith (apjab535ebib17) 2012; 203 Kaufman (apjab535ebib23) 1999; 527 Roelfsema (apjab535ebib45) 2018; 35 Abrahamsson (apjab535ebib2) 2007; 654 Vastel (apjab535ebib56) 2002; 581 Lis (apjab535ebib31) 2001; 561 Asensio Ramos (apjab535ebib3) 2018; 616 Mizutani (apjab535ebib35) 2004; 423 Kraemer (apjab535ebib25) 1998a; 509 Draine (apjab535ebib11) 2011 Spitzer (apjab535ebib50) 1978 |
References_xml | – volume: 462 start-page: L43 year: 1996 ident: apjab535ebib41 publication-title: ApJL doi: 10.1088/1538-4357/462/1/L43 – start-page: 233 year: 1998 ident: apjab535ebib47 – volume: 265 start-page: L7 year: 1983 ident: apjab535ebib52 publication-title: ApJL doi: 10.1086/183948 – volume: 344 start-page: 342 year: 1999 ident: apjab535ebib33 publication-title: A&A – volume: 245 start-page: 171 year: 1991 ident: apjab535ebib46 publication-title: A&A – volume: 616 start-page: A131 year: 2018 ident: apjab535ebib3 publication-title: A&A doi: 10.1051/0004-6361/201731943 – volume: 371 start-page: L85 year: 1991 ident: apjab535ebib58 publication-title: ApJL doi: 10.1086/186008 – volume: 474 start-page: 2313 year: 2018 ident: apjab535ebib30 publication-title: MNRAS doi: 10.1093/mnras/stx2907 – volume: 10698 year: 2018 ident: apjab535ebib28 publication-title: Proc. SPIE doi: 10.1117/12.2313823 – volume: 28 start-page: 3169 year: 1983 ident: apjab535ebib14 publication-title: PhRvA doi: 10.1103/PhysRevA.28.3169 – volume: 509 start-page: 931 year: 1998a ident: apjab535ebib25 publication-title: ApJ doi: 10.1086/306543 – volume: 468 start-page: 627 year: 2007 ident: apjab535ebib54 publication-title: A&A doi: 10.1051/0004-6361:20066820 – volume: 584 start-page: A70 year: 2015 ident: apjab535ebib29 publication-title: A&A doi: 10.1051/0004-6361/201526466 – year: 2011 ident: apjab535ebib11 doi: 10.1515/9781400839087 – volume: 203 start-page: 13 year: 2012 ident: apjab535ebib17 publication-title: ApJS doi: 10.1088/0067-0049/203/1/13 – volume: 654 start-page: 1171 year: 2007 ident: apjab535ebib2 publication-title: ApJ doi: 10.1086/509631 – volume: 21 start-page: 1455 year: 1988 ident: apjab535ebib5 publication-title: JPhB doi: 10.1088/0953-4075/21/9/007 – volume: 226 start-page: 19 year: 2016 ident: apjab535ebib13 publication-title: ApJS doi: 10.3847/0067-0049/226/2/19 – volume: 503 start-page: 785 year: 1998b ident: apjab535ebib26 publication-title: ApJ doi: 10.1086/306002 – volume: 561 start-page: 823 year: 2001 ident: apjab535ebib31 publication-title: ApJ doi: 10.1086/323518 – volume: 322 start-page: L33 year: 1997 ident: apjab535ebib6 publication-title: A&A – volume: 541 start-page: A4 year: 2012 ident: apjab535ebib20 publication-title: A&A doi: 10.1051/0004-6361/201118029 – volume: 189 start-page: 441 year: 1974 ident: apjab535ebib16 publication-title: ApJ doi: 10.1086/152821 – volume: 801 start-page: 121 year: 2015 ident: apjab535ebib38 publication-title: ApJ doi: 10.1088/0004-637X/801/2/121 – volume: 423 start-page: 579 year: 2004 ident: apjab535ebib35 publication-title: A&A doi: 10.1051/0004-6361:20041063 – volume: 527 start-page: 795 year: 1999 ident: apjab535ebib23 publication-title: ApJ doi: 10.1086/308102 – start-page: 45 year: 2002 ident: apjab535ebib19 – volume: 539 start-page: L115 year: 2000 ident: apjab535ebib4 publication-title: ApJL doi: 10.1086/312842 – volume: 404 start-page: 219 year: 1993 ident: apjab535ebib51 publication-title: ApJ doi: 10.1086/172270 – volume: 427 start-page: 687 year: 1999 ident: apjab535ebib24 publication-title: ESA Spec. Publ. – volume: 357 start-page: 994 year: 2000 ident: apjab535ebib55 publication-title: A&A – volume: 454 start-page: 293 year: 1995 ident: apjab535ebib42 publication-title: ApJ doi: 10.1086/176482 – volume: 662 start-page: 1024 year: 2007 ident: apjab535ebib1 publication-title: ApJ doi: 10.1086/517987 – volume: 35 start-page: e030 year: 2018 ident: apjab535ebib45 publication-title: PASA doi: 10.1017/pasa.2018.15 – volume: 581 start-page: 315 year: 2002 ident: apjab535ebib56 publication-title: ApJ doi: 10.1086/344136 – volume: 739 start-page: 100 year: 2011 ident: apjab535ebib39 publication-title: ApJ doi: 10.1088/0004-637X/739/2/100 – volume: 812 start-page: 75 year: 2015 ident: apjab535ebib15 publication-title: ApJ doi: 10.1088/0004-637X/812/1/75 – volume: 617 start-page: A45 year: 2018 ident: apjab535ebib49 publication-title: A&A doi: 10.1051/0004-6361/201732508 – volume: 595 start-page: A34 year: 2016 ident: apjab535ebib44 publication-title: A&A doi: 10.1051/0004-6361/201629045 – year: 1989 ident: apjab535ebib40 doi: 10.1007/978-94-009-0963-2 – volume: 446 start-page: 561 year: 2006 ident: apjab535ebib32 publication-title: A&A doi: 10.1051/0004-6361:20053925 – volume: 561 start-page: 766 year: 2001 ident: apjab535ebib34 publication-title: ApJ doi: 10.1086/323046 – year: 1978 ident: apjab535ebib50 doi: 10.1002/9783527617722 – volume: 228 start-page: 101 year: 1987 ident: apjab535ebib36 publication-title: MNRAS doi: 10.1093/mnras/228.1.101 – volume: 365 start-page: 779 year: 2006 ident: apjab535ebib12 publication-title: MNRAS doi: 10.1111/j.1365-2966.2005.09770.x – volume: 291 start-page: 722 year: 1985 ident: apjab535ebib53 publication-title: ApJ doi: 10.1086/163111 – volume: 814 start-page: 133 year: 2015 ident: apjab535ebib18 publication-title: ApJ doi: 10.1088/0004-637X/814/2/133 – volume: 585 start-page: A76 year: 2016 ident: apjab535ebib57 publication-title: A&A doi: 10.1051/0004-6361/201526473 – volume: 71 start-page: 1564 year: 1979 ident: apjab535ebib48 publication-title: JChPh doi: 10.1063/1.438500 – volume: 481 start-page: 343 year: 1997 ident: apjab535ebib21 publication-title: ApJ doi: 10.1086/304022 – volume: 464 start-page: L83 year: 1996 ident: apjab535ebib7 publication-title: ApJL doi: 10.1086/310094 – volume: 626 start-page: A131 year: 2019 ident: apjab535ebib37 publication-title: A&A doi: 10.1051/0004-6361/201935482 – volume: 518 start-page: L6 year: 2010 ident: apjab535ebib9 publication-title: A&A doi: 10.1051/0004-6361/201014698 – volume: 25 start-page: 285 year: 1992 ident: apjab535ebib22 publication-title: JPhB doi: 10.1088/0953-4075/25/1/030 – volume: 347 start-page: L1 year: 1999 ident: apjab535ebib8 publication-title: A&A – volume: 846 start-page: 32 year: 2017 ident: apjab535ebib10 publication-title: ApJ doi: 10.3847/1538-4357/aa81d7 – volume: 164 start-page: 506 year: 2006 ident: apjab535ebib27 publication-title: ApJS doi: 10.1086/503252 – volume: 518 start-page: L2 year: 2010 ident: apjab535ebib43 publication-title: A&A doi: 10.1051/0004-6361/201014535 |
SSID | ssj0004299 |
Score | 2.4051895 |
Snippet | Atomic oxygen (O0) plays a critical role in determining the structure of photon-dominated regions (PDRs), but reliable modeling of its emission has been... Atomic oxygen (O 0 ) plays a critical role in determining the structure of photon-dominated regions (PDRs), but reliable modeling of its emission has been... |
SourceID | proquest crossref iop |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 54 |
SubjectTerms | Astrochemistry Astrophysics Atomic oxygen Atomic structure Cloud models Clouds Collision processes Decay rate Dense interstellar clouds Emission Excitation Fine structure Hydrogen Modelling Optical analysis Optical thickness Oxygen Population inversion Radiation Radiative transfer Star forming regions |
Title | Modeling Collisional Excitation of [O i] Fine Structure Line Emission from PDRs. I. Homogeneous Clouds |
URI | https://iopscience.iop.org/article/10.3847/1538-4357/ab535e https://www.proquest.com/docview/2357574230 |
Volume | 887 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dS9xAEB88pdCX4keLtlbmwQo-5O5y-5ENfRK94yytd7SVHpQS9isg6EUaD-x_351sThFFfJvA7ibZ387HzjAzAPtcDowMajWhNg4JTzkFCQO7K-4tMzYXVlC-87czOT7nX2ZitgKf73JhqutW9HcDGQsFxy0k_mZBlvYaHg1aPutpI5jwHVhjSiq6eU3Yr_ukyEHe2r48kSybxRjlkys80Emd8N5HgrnRNqN1eNOaiXgUP2oDVvx8E7aPanJcV1f_8AAbOvol6k14NY3UFpTU3YxyzJF8Ahex6AYOb21bjBurEn9P8OIPjoKBiT-a-rGLvx6_0uMwwE5TkNJOcHryve7iaRfH1VUVTpqvFjUeX1YLV7-F89Hw5_E4aZspJJZl_CZhsnRCWKm1ZU64PAuai6VGZCZX2inLs0z1mZZec2rHwVOvdFbK1Kc2Vz737B2szqu53wZ0pRgEM09rxz0XxpjcceOCKvQqTUuhdqC33M5i-XPU8OKyCDcOAqAgAAoCoIgA7MDh3YzrWGXjmbGfAkJFy2r1M-N2lxjeD6biPoKC0_33L1zmA7wONlLTMiLt78JqQMV_DHbIjdmDzulkutecuv-OR9TN |
linkProvider | IOP Publishing |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS9xAFB68oPRFrK1ovfQ82IIP2d3sXJI8iu6yXqqLVbpQSphbQNDNYlzQf-85maxSWsS3E5iZJPPNucwM53yM7QnVNQrdakQ0DpGIBV0SorqnwltubCatpHznH-dqcC1ORnLU8JzWuTDlpDH9LRRDoeAwhaTfHG1pu9ZR9PJJWxvJpW9PXDHPFiVXirgbLviv18TIbtbEvyJSPBmFe8r_jvKXX5rHd_9jnGuP019lK02oCAfhwz6yOT9eYxsHFR1el3dP8B1qOZxNVGtsaRikT6wghjPKMwc6F7gJhTeg92ibgtxQFvD7Am7-QB-DTPhZ15Cd3ns4o8ceQk9dgFJPYHh0WbXguAWD8q7E1ebLaQWHt-XUVZ_Zdb93dTiIGkKFyPJEPERcFU5Kq7S23EmXJei9eGxkYrJUu9SKJEk7XCuvBVFyiNinOilU7GObpT7zfJ0tjMux32DgCtnFUE9rJ7yQxpjMCePQHfo0jguZbrL2bDrz2c8R6cVtjrsOAiAnAHICIA8AbLL9lx6TUGnjjbbfEKG8UbfqjXbbMwxfG1OBH0kX1J0v7xzmK1seHvXzs-Pz0y32AUOmmkEi7myzBQTI72BY8mB266X3DMOo17M |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modeling+Collisional+Excitation+of+%5BO+i%5D+Fine+Structure+Line+Emission+from+PDRs.+I.+Homogeneous+Clouds&rft.jtitle=The+Astrophysical+journal&rft.au=Goldsmith%2C+Paul+F.&rft.date=2019-12-10&rft.issn=0004-637X&rft.eissn=1538-4357&rft.volume=887&rft.issue=1&rft.spage=54&rft_id=info:doi/10.3847%2F1538-4357%2Fab535e&rft.externalDBID=n%2Fa&rft.externalDocID=10_3847_1538_4357_ab535e |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0004-637X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0004-637X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0004-637X&client=summon |