Phase transitions in an expanding universe: stochastic gravitational waves in standard and non-standard histories
We undertake a careful analysis of stochastic gravitational wave production from cosmological phase transitions in an expanding universe, studying both a standard radiation as well as a matter dominated history. We analyze in detail the dynamics of the phase transition, including the false vacuum fr...
Saved in:
Published in | Journal of cosmology and astroparticle physics Vol. 2021; no. 1; p. 1 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Bristol
IOP Publishing
01.01.2021
Institute of Physics (IOP) |
Subjects | |
Online Access | Get full text |
ISSN | 1475-7516 1475-7516 |
DOI | 10.1088/1475-7516/2021/01/001 |
Cover
Abstract | We undertake a careful analysis of stochastic gravitational wave production from cosmological phase transitions in an expanding universe, studying both a standard radiation as well as a matter dominated history. We analyze in detail the dynamics of the phase transition, including the false vacuum fraction, bubble lifetime distribution, bubble number density, mean bubble separation, etc., for an expanding universe. We also study the full set of differential equations governing the evolution of plasma and the scalar field during the phase transition and generalize results obtained in Minkowski spacetime. In particular, we generalize the sound shell model to the expanding universe and determine the velocity field power spectrum. This ultimately provides an accurate calculation of the gravitational wave spectrum seen today for the dominant source of sound waves. For the amplitude of the gravitational wave spectrum visible today, we find a suppression factor arising from the finite lifetime of the sound waves and compare with the commonly used result in the literature, which corresponds to the asymptotic value of our suppression factor. We point out that the asymptotic value is only applicable for a very long lifetime of the sound waves, which is highly unlikely due to the onset of shocks, turbulence and other damping processes. We also point out that features of the gravitational wave spectral form may hold the tantalizing possibility of distinguishing between different expansion histories using phase transitions. |
---|---|
AbstractList | We undertake a careful analysis of stochastic gravitational wave production from cosmological phase transitions in an expanding universe, studying both a standard radiation as well as a matter dominated history. We analyze in detail the dynamics of the phase transition, including the false vacuum fraction, bubble lifetime distribution, bubble number density, mean bubble separation, etc., for an expanding universe. We also study the full set of differential equations governing the evolution of plasma and the scalar field during the phase transition and generalize results obtained in Minkowski spacetime. In particular, we generalize the sound shell model to the expanding universe and determine the velocity field power spectrum. This ultimately provides an accurate calculation of the gravitational wave spectrum seen today for the dominant source of sound waves. For the amplitude of the gravitational wave spectrum visible today, we find a suppression factor arising from the finite lifetime of the sound waves and compare with the commonly used result in the literature, which corresponds to the asymptotic value of our suppression factor. We point out that the asymptotic value is only applicable for a very long lifetime of the sound waves, which is highly unlikely due to the onset of shocks, turbulence and other damping processes. We also point out that features of the gravitational wave spectral form may hold the tantalizing possibility of distinguishing between different expansion histories using phase transitions. Not provided. |
Author | Sinha, Kuver White, Graham Vagie, Daniel Guo, Huai-Ke |
Author_xml | – sequence: 1 givenname: Huai-Ke surname: Guo fullname: Guo, Huai-Ke – sequence: 2 givenname: Kuver surname: Sinha fullname: Sinha, Kuver – sequence: 3 givenname: Daniel surname: Vagie fullname: Vagie, Daniel – sequence: 4 givenname: Graham surname: White fullname: White, Graham |
BackLink | https://www.osti.gov/biblio/1851224$$D View this record in Osti.gov |
BookMark | eNqFkU1LAzEQhoNUsK3-BCHoeW0-NputnqT4BQU96Dlks0mbUpM2Sav-e7O2FPEiDMwwvM8w884A9Jx3GoBzjK4wqusRLjkrOMPViCCCRygHwkegf-j3ftUnYBDjAiFSUVr3wfplLqOGKUgXbbLeRWgdlA7qz5V0rXUzuHF2q0PU1zAmr7I8WQVnQW5tkh0hl_BDbvUPGFOGZGjzhBbmNYtDY24zHayOp-DYyGXUZ_s8BG_3d6-Tx2L6_PA0uZ0WivIyFaQhFafjtuFjWskGEWS0Lg2tDVakRBWu24oaVRLFG9YaxRWRTLISG8QVaiUdgovdXJ8XFlHZpNVceee0SgLXDBNSZtHlTrQKfr3RMYmF34R8UhQkO4YxxYxl1c1OpYKPMWgj1P727JtdCoxE9wjRmSw6k0X3CIFyIJxp9odeBfsuw9c_3Ddl149m |
CitedBy_id | crossref_primary_10_1088_1475_7516_2024_04_044 crossref_primary_10_1088_1475_7516_2021_04_043 crossref_primary_10_1103_PhysRevD_105_023530 crossref_primary_10_1088_1475_7516_2023_06_053 crossref_primary_10_1088_1475_7516_2022_09_029 crossref_primary_10_1103_PhysRevD_110_075030 crossref_primary_10_1088_1475_7516_2022_05_003 crossref_primary_10_1103_PhysRevD_103_075012 crossref_primary_10_1103_RevModPhys_97_015001 crossref_primary_10_1103_PhysRevD_108_055010 crossref_primary_10_1007_s10714_022_03027_x crossref_primary_10_1088_1475_7516_2021_05_006 crossref_primary_10_1088_1475_7516_2024_12_043 crossref_primary_10_1103_PhysRevD_107_115008 crossref_primary_10_1088_1475_7516_2022_08_068 crossref_primary_10_1088_1475_7516_2024_03_005 crossref_primary_10_1103_PhysRevD_104_035005 crossref_primary_10_1103_PhysRevD_107_L041301 crossref_primary_10_1103_PhysRevD_108_055018 crossref_primary_10_1103_PhysRevD_103_055013 crossref_primary_10_1088_1475_7516_2021_10_039 crossref_primary_10_1103_PhysRevD_103_123541 crossref_primary_10_1103_PhysRevD_108_123544 crossref_primary_10_1007_s41114_023_00045_2 crossref_primary_10_1088_1475_7516_2023_04_054 crossref_primary_10_1038_s41598_023_35670_y crossref_primary_10_1103_PhysRevD_106_095016 crossref_primary_10_1103_PhysRevD_108_095014 crossref_primary_10_1103_PhysRevD_110_076011 crossref_primary_10_1103_PhysRevD_106_115012 crossref_primary_10_1103_PhysRevD_108_055022 crossref_primary_10_1103_PhysRevD_110_115005 crossref_primary_10_1007_s11433_024_2468_x crossref_primary_10_1103_PhysRevD_108_075010 crossref_primary_10_1103_PhysRevD_109_075034 crossref_primary_10_1103_PhysRevD_107_095034 crossref_primary_10_1103_PhysRevD_109_095034 crossref_primary_10_1007_s11433_023_2298_7 crossref_primary_10_1088_1475_7516_2025_01_100 crossref_primary_10_1016_j_scib_2022_06_011 crossref_primary_10_1088_1475_7516_2024_05_075 crossref_primary_10_1103_PhysRevD_110_035014 crossref_primary_10_1016_j_ppnp_2023_104094 crossref_primary_10_1103_PhysRevD_104_053004 crossref_primary_10_1007_s11433_021_1781_x crossref_primary_10_1103_PhysRevD_103_L081301 crossref_primary_10_1016_j_scib_2024_01_037 crossref_primary_10_1088_1475_7516_2023_04_061 crossref_primary_10_1103_PhysRevLett_132_081001 crossref_primary_10_21468_SciPostPhys_10_2_047 crossref_primary_10_1103_PhysRevD_109_115025 crossref_primary_10_1103_PhysRevD_110_023538 crossref_primary_10_1088_1475_7516_2021_12_023 crossref_primary_10_1088_1475_7516_2022_12_025 crossref_primary_10_3847_2041_8213_acdc91 crossref_primary_10_1088_1475_7516_2025_01_011 crossref_primary_10_1103_PhysRevD_104_095001 crossref_primary_10_1103_PhysRevD_107_043527 crossref_primary_10_1088_1475_7516_2021_03_096 crossref_primary_10_1088_1475_7516_2024_05_100 crossref_primary_10_1103_PhysRevD_103_123529 crossref_primary_10_1088_1475_7516_2025_02_056 crossref_primary_10_1007_s11433_023_2293_2 crossref_primary_10_1103_PhysRevLett_127_251302 crossref_primary_10_1103_PhysRevD_111_015037 crossref_primary_10_1016_j_dark_2024_101719 crossref_primary_10_1103_PhysRevD_106_103504 crossref_primary_10_1088_1572_9494_ad9c3d crossref_primary_10_1103_PhysRevD_104_115005 crossref_primary_10_1142_S0217751X22400231 crossref_primary_10_1088_1475_7516_2024_07_048 crossref_primary_10_1103_PhysRevD_110_043016 crossref_primary_10_1088_1475_7516_2024_03_059 crossref_primary_10_1103_PhysRevD_110_063521 crossref_primary_10_1093_mnras_stad392 crossref_primary_10_1103_PhysRevD_104_123532 crossref_primary_10_1103_PhysRevD_103_103520 crossref_primary_10_1088_1475_7516_2021_10_073 crossref_primary_10_1103_PhysRevD_107_036010 crossref_primary_10_1088_1475_7516_2021_05_049 crossref_primary_10_1103_PhysRevD_104_115030 crossref_primary_10_1103_PhysRevD_105_115033 crossref_primary_10_1103_PhysRevD_111_023509 crossref_primary_10_1103_PhysRevD_110_103512 crossref_primary_10_1093_ptep_ptac068 crossref_primary_10_1088_1475_7516_2023_10_001 crossref_primary_10_1103_PhysRevD_106_023505 crossref_primary_10_1103_PhysRevD_109_116001 crossref_primary_10_1360_SSPMA_2024_0516 crossref_primary_10_1103_PhysRevD_108_063526 crossref_primary_10_1088_1475_7516_2023_06_008 crossref_primary_10_1093_ptep_ptab003 crossref_primary_10_1103_PhysRevD_109_L061303 crossref_primary_10_1103_PhysRevLett_126_151301 crossref_primary_10_1103_PhysRevD_110_063541 crossref_primary_10_1140_epjc_s10052_024_13046_4 crossref_primary_10_1088_1475_7516_2021_04_014 crossref_primary_10_1088_1475_7516_2022_06_021 crossref_primary_10_1103_PhysRevD_105_115040 crossref_primary_10_1103_PhysRevD_111_L021303 crossref_primary_10_1088_1674_1137_ad0f89 crossref_primary_10_1103_PhysRevD_108_L021502 crossref_primary_10_1103_PhysRevD_105_103513 crossref_primary_10_1103_PhysRevD_109_063531 crossref_primary_10_1007_s41114_021_00032_5 crossref_primary_10_1103_PhysRevD_107_055032 crossref_primary_10_1103_PhysRevD_107_023511 crossref_primary_10_1088_1475_7516_2023_11_053 crossref_primary_10_1140_epjp_s13360_024_05842_4 crossref_primary_10_21468_SciPostPhysLectNotes_24 crossref_primary_10_1140_epjc_s10052_022_10130_5 crossref_primary_10_1103_PhysRevD_110_055019 crossref_primary_10_1103_PhysRevLett_132_221001 crossref_primary_10_1103_PhysRevD_110_095013 crossref_primary_10_3103_S1068335623030053 crossref_primary_10_1088_1475_7516_2023_03_006 crossref_primary_10_1103_PhysRevD_109_063526 crossref_primary_10_1103_PhysRevD_107_095011 crossref_primary_10_1103_PhysRevD_109_096012 crossref_primary_10_1139_cjp_2024_0128 |
Cites_doi | 10.1007/s10714-020-02691-1 10.1103/PhysRevResearch.1.013010 10.1103/PhysRevLett.112.041301 10.1088/1475-7516/2014/09/028 10.1088/1475-7516/2005/10/015 10.1088/0264-9381/33/3/035010 10.1016/j.cpc.2012.04.004 10.1007/JHEP04(2019)052 10.1007/JHEP03(2020)053 10.1098/rsta.2017.0126 10.1016/0370-2693(83)91091-2 10.1088/1475-7516/2020/07/050 10.1016/S0550-3213(02)00264-X 10.1103/PhysRevD.52.3548 10.1016/0550-3213(83)90072-X 10.1103/PhysRevD.94.055006 10.1103/PhysRevLett.117.131301 10.1088/1475-7516/2020/01/002 10.1103/PhysRevD.75.043507 10.1088/1475-7516/2017/05/052 10.1103/PhysRevD.95.085011 10.1088/1361-6633/ab1f55 10.1103/PhysRevD.100.061101 10.1007/JHEP02(2018)115 10.3390/physics1010010 10.1103/PhysRevD.102.095025 10.1103/PhysRevD.100.123546 10.1007/JHEP05(2019)190 10.1103/PhysRevD.72.125004 10.1103/PhysRevLett.115.181101 10.1088/1126-6708/2008/06/064 10.1016/0370-2693(81)90281-1 10.1088/1475-7516/2019/06/024 10.1103/PhysRevD.31.681 10.1007/JHEP02(2019)183 10.1103/PhysRevD.52.7182 10.1103/PhysRevD.96.103520 10.1103/PhysRevD.95.123515 10.1103/PhysRevD.80.083529 10.1103/PhysRevD.49.3854 10.1007/JHEP08(2019)002 10.1103/PhysRevD.92.123009 10.1088/1475-7516/2019/12/062 10.1103/PhysRevLett.124.171802 10.1103/PhysRevD.80.035014 10.1088/1475-7516/2010/06/028 10.1103/PhysRevD.101.063529 10.1103/PhysRevLett.118.121101 10.1103/PhysRevD.97.123505 10.1103/PhysRevD.101.095016 10.1103/PhysRevD.100.063502 10.1088/1475-7516/2017/09/009 10.1088/1126-6708/2008/04/029 10.1103/PhysRevD.92.103505 10.1103/PhysRevD.52.705 10.1103/PhysRevLett.125.021302 10.1007/JHEP05(2018)151 10.1007/JHEP02(2019)083 10.1103/PhysRevD.102.043522 10.1007/JHEP07(2018)062 10.1088/1475-7516/2019/04/003 10.1016/j.cpc.2019.05.017 10.1088/1742-6596/610/1/012011 10.1088/1674-1137/42/2/023107 10.1103/PhysRevD.51.5431 10.1103/PhysRevD.46.2668 10.1103/PhysRevD.83.044011 10.1016/j.nuclphysb.2006.06.003 10.1103/PhysRevD.77.085020 10.1088/1475-7516/2016/04/001 10.1088/1475-7516/2019/12/027 10.1103/PhysRevLett.120.071301 10.1103/PhysRevD.94.103519 10.1103/PhysRevD.96.043511 10.1103/PhysRevD.87.075024 10.1088/1475-7516/2019/02/034 10.1088/1475-7516/2010/11/009 10.1088/1475-7516/2018/06/021 10.1016/j.physletb.2016.06.009 10.1007/JHEP08(2018)203 10.1007/JHEP02(2020)078 10.1088/1475-7516/2020/04/036 10.1103/PhysRevD.49.779 10.1103/PhysRevD.54.1291 10.1093/oso/9780198526827.001.0001 10.1103/PhysRevD.84.023521 10.1103/PhysRevD.54.7163 10.1103/PhysRevD.101.091903 10.1142/S0217732317500493 10.1103/PhysRevLett.121.201303 10.1103/PhysRevD.94.063502 10.1088/1475-7516/2018/02/057 10.1088/1361-6382/aac608 10.1088/1475-7516/2020/03/024 10.1007/JHEP07(2019)044 10.1103/PhysRevD.23.876 10.1103/PhysRevD.82.035004 10.1103/PhysRevD.46.550 10.1007/s11433-018-9216-7 10.1103/PhysRevD.52.6901 10.1142/S0218271815300220 |
ContentType | Journal Article |
Copyright | Copyright IOP Publishing Jan 2021 |
Copyright_xml | – notice: Copyright IOP Publishing Jan 2021 |
CorporateAuthor | Univ. of Oklahoma, Norman, OK (United States) |
CorporateAuthor_xml | – name: Univ. of Oklahoma, Norman, OK (United States) |
DBID | AAYXX CITATION OTOTI |
DOI | 10.1088/1475-7516/2021/01/001 |
DatabaseName | CrossRef OSTI.GOV |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Astronomy & Astrophysics Physics |
EISSN | 1475-7516 |
EndPage | 1 |
ExternalDocumentID | 1851224 10_1088_1475_7516_2021_01_001 |
GroupedDBID | 1JI 5B3 5PX 5VS 5ZH 7.M 7.Q AAGCD AAGID AAJIO AAJKP AATNI AAYXX ABCXL ABJNI ABQJV ABVAM ACAFW ACGFO ACGFS ACHIP ADEQX ADWVK AEFHF AENEX AFYNE AKPSB ALMA_UNASSIGNED_HOLDINGS AOAED ASPBG ATQHT AVWKF AZFZN CBCFC CEBXE CITATION CJUJL CRLBU DU5 EBS EDWGO EMSAF EPQRW EQZZN ER. IHE IJHAN IOP IZVLO J9A KOT LAP M45 MV1 N5L N9A P2P PJBAE RIN RO9 ROL RPA SY9 VSI W28 XPP ZMT HAK KNG OTOTI RW3 UCJ |
ID | FETCH-LOGICAL-c374t-2b26739db7936ab020fee4f38f1c240618d63fc42c7b5dfc7c2a5a541f07c0da3 |
ISSN | 1475-7516 |
IngestDate | Fri May 19 00:47:16 EDT 2023 Sun Jun 29 15:42:45 EDT 2025 Tue Jul 01 03:49:23 EDT 2025 Thu Apr 24 23:05:56 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | http://iopscience.iop.org/info/page/text-and-data-mining http://iopscience.iop.org/page/copyright |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c374t-2b26739db7936ab020fee4f38f1c240618d63fc42c7b5dfc7c2a5a541f07c0da3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 SC0009956 USDOE Office of Science (SC) |
PQID | 2475113155 |
PQPubID | 2048024 |
PageCount | 1 |
ParticipantIDs | osti_scitechconnect_1851224 proquest_journals_2475113155 crossref_citationtrail_10_1088_1475_7516_2021_01_001 crossref_primary_10_1088_1475_7516_2021_01_001 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-01-01 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – month: 01 year: 2021 text: 2021-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Bristol |
PublicationPlace_xml | – name: Bristol – name: United States |
PublicationTitle | Journal of cosmology and astroparticle physics |
PublicationYear | 2021 |
Publisher | IOP Publishing Institute of Physics (IOP) |
Publisher_xml | – name: IOP Publishing – name: Institute of Physics (IOP) |
References | 89 J. Ellis (23) 2019; 2019 A. Mazumdar (3) 2019; 82 110 X. Wang (43) 2020; 2020 A.P. Morais (24) 2020; 2020 W. Chao (33) 2017; 2017 90 91 92 L. Bian (42) 94 95 96 97 T. Konstandin (103) 2014; 2014 10 98 99 J. Ellis (55) 2020; 2020 13 14 16 17 19 C. Delaunay (18) 2008; 2008 2 6 7 8 20 21 S. Weinberg (93) 2013 22 D. Bettoni (80) 2020; 2020 LISA collaboration (9) 25 26 27 28 29 I. Baldes (34) 2017; 2017 X. Gong . (11) 2015; 610 J.R. Espinosa (51) 2010; 2010 E. Hall (41) R. Allahverdi . (57) 30 31 32 36 37 38 39 B.S. Acharya (64) 2008; 2008 C. Cosme (70) K. Nakayama (74) 2010; 2010 A. Addazi (35) 2018; 42 D. Bettoni (79) 2019; 2019 40 44 45 46 48 49 50 52 K. Dimopoulos (77) 2018; 2018 G. Bertone . (4) 56 58 59 C. Caprini (84) 2018; 35 60 61 62 63 65 G.C. Dorsch (15) 2017; 2017 J. Ellis (54) 2019; 2019 66 67 S. Weinberg (88) 2008 68 M. Hindmarsh (53) 2019; 2019 TianQin collaboration (12) 2016; 33 71 72 C. Caprini . (5) 2020; 2020 73 C. Caprini . (1) 2016; 2016 76 78 V. Brdar (47) 2019; 2019 C. Pallis (75) 2005; 2005 100 101 102 104 105 106 M. Drees (69) 2018; 2018 107 81 108 82 109 83 85 86 87 |
References_xml | – ident: 6 doi: 10.1007/s10714-020-02691-1 – ident: 85 doi: 10.1103/PhysRevResearch.1.013010 – ident: 48 doi: 10.1103/PhysRevLett.112.041301 – volume: 2014 start-page: 028 issn: 1475-7516 year: 2014 ident: 103 publication-title: J. Cosmol. Astropart. Phys. doi: 10.1088/1475-7516/2014/09/028 – volume: 2005 start-page: 015 issn: 1475-7516 year: 2005 ident: 75 publication-title: J. Cosmol. Astropart. Phys. doi: 10.1088/1475-7516/2005/10/015 – volume: 33 start-page: 035010 issn: 0264-9381 year: 2016 ident: 12 publication-title: Class. Quant. Grav. doi: 10.1088/0264-9381/33/3/035010 – ident: 109 doi: 10.1016/j.cpc.2012.04.004 – ident: 22 doi: 10.1007/JHEP04(2019)052 – ident: 9 – ident: 21 doi: 10.1007/JHEP03(2020)053 – ident: 2 doi: 10.1098/rsta.2017.0126 – ident: 41 – ident: 60 doi: 10.1016/0370-2693(83)91091-2 – volume: 2020 start-page: 050 issn: 1475-7516 year: 2020 ident: 55 publication-title: J. Cosmol. Astropart. Phys. doi: 10.1088/1475-7516/2020/07/050 – ident: 97 doi: 10.1016/S0550-3213(02)00264-X – ident: 58 doi: 10.1103/PhysRevD.52.3548 – ident: 90 doi: 10.1016/0550-3213(83)90072-X – ident: 31 doi: 10.1103/PhysRevD.94.055006 – ident: 107 doi: 10.1103/PhysRevLett.117.131301 – volume: 2020 start-page: 002 issn: 1475-7516 year: 2020 ident: 80 publication-title: J. Cosmol. Astropart. Phys. doi: 10.1088/1475-7516/2020/01/002 – ident: 13 doi: 10.1103/PhysRevD.75.043507 – volume: 2017 start-page: 052 issn: 1475-7516 year: 2017 ident: 15 publication-title: J. Cosmol. Astropart. Phys. doi: 10.1088/1475-7516/2017/05/052 – ident: 92 doi: 10.1103/PhysRevD.95.085011 – volume: 82 start-page: 076901 issn: 0034-4885 year: 2019 ident: 3 publication-title: Rept. Prog. Phys. doi: 10.1088/1361-6633/ab1f55 – ident: 8 doi: 10.1103/PhysRevD.100.061101 – ident: 17 doi: 10.1007/JHEP02(2018)115 – ident: 25 doi: 10.3390/physics1010010 – volume: 2017 start-page: 028 issn: 1475-7516 year: 2017 ident: 34 publication-title: J. Cosmol. Astropart. Phys. – ident: 46 doi: 10.1103/PhysRevD.102.095025 – ident: 67 doi: 10.1103/PhysRevD.100.123546 – ident: 37 doi: 10.1007/JHEP05(2019)190 – ident: 91 doi: 10.1103/PhysRevD.72.125004 – ident: 29 doi: 10.1103/PhysRevLett.115.181101 – volume: 2008 start-page: 064 issn: 1126-6708 year: 2008 ident: 64 publication-title: J. High Energy Phys. doi: 10.1088/1126-6708/2008/06/064 – ident: 89 doi: 10.1016/0370-2693(81)90281-1 – volume: 2019 start-page: 024 issn: 1475-7516 year: 2019 ident: 23 publication-title: J. Cosmol. Astropart. Phys. doi: 10.1088/1475-7516/2019/06/024 – volume: 2020 start-page: 045 issn: 1475-7516 year: 2020 ident: 43 publication-title: J. Cosmol. Astropart. Phys. – ident: 94 doi: 10.1103/PhysRevD.31.681 – ident: 16 doi: 10.1007/JHEP02(2019)183 – ident: 96 doi: 10.1103/PhysRevD.52.7182 – ident: 50 doi: 10.1103/PhysRevD.96.103520 – ident: 14 doi: 10.1103/PhysRevD.95.123515 – ident: 65 doi: 10.1103/PhysRevD.80.083529 – ident: 99 doi: 10.1103/PhysRevD.49.3854 – ident: 20 doi: 10.1007/JHEP08(2019)002 – ident: 49 doi: 10.1103/PhysRevD.92.123009 – volume: 2019 start-page: 062 issn: 1475-7516 year: 2019 ident: 53 publication-title: J. Cosmol. Astropart. Phys. doi: 10.1088/1475-7516/2019/12/062 – ident: 45 doi: 10.1103/PhysRevLett.124.171802 – ident: 62 doi: 10.1103/PhysRevD.80.035014 – volume: 2010 start-page: 028 issn: 1475-7516 year: 2010 ident: 51 publication-title: J. Cosmol. Astropart. Phys. doi: 10.1088/1475-7516/2010/06/028 – ident: 73 doi: 10.1103/PhysRevD.101.063529 – ident: 7 doi: 10.1103/PhysRevLett.118.121101 – ident: 87 doi: 10.1103/PhysRevD.97.123505 – ident: 40 doi: 10.1103/PhysRevD.101.095016 – ident: 83 doi: 10.1103/PhysRevD.100.063502 – volume: 2017 start-page: 009 issn: 1475-7516 year: 2017 ident: 33 publication-title: J. Cosmol. Astropart. Phys. doi: 10.1088/1475-7516/2017/09/009 – volume: 2008 start-page: 029 issn: 1126-6708 year: 2008 ident: 18 publication-title: J. High Energy Phys. doi: 10.1088/1126-6708/2008/04/029 – ident: 68 doi: 10.1103/PhysRevD.92.103505 – ident: 59 doi: 10.1103/PhysRevD.52.705 – ident: 102 doi: 10.1103/PhysRevLett.125.021302 – ident: 28 doi: 10.1007/JHEP05(2018)151 – ident: 42 – ident: 44 doi: 10.1007/JHEP02(2019)083 – ident: 81 doi: 10.1103/PhysRevD.102.043522 – ident: 19 doi: 10.1007/JHEP07(2018)062 – volume: 2019 start-page: 003 issn: 1475-7516 year: 2019 ident: 54 publication-title: J. Cosmol. Astropart. Phys. doi: 10.1088/1475-7516/2019/04/003 – ident: 110 doi: 10.1016/j.cpc.2019.05.017 – volume: 610 start-page: 012011 issn: 1742-6596 year: 2015 ident: 11 publication-title: J. Phys. Conf. Ser. doi: 10.1088/1742-6596/610/1/012011 – volume: 42 start-page: 023107 issn: 1674-1137 year: 2018 ident: 35 publication-title: Chin. Phys. C doi: 10.1088/1674-1137/42/2/023107 – ident: 106 doi: 10.1103/PhysRevD.51.5431 – ident: 101 doi: 10.1103/PhysRevD.46.2668 – ident: 10 doi: 10.1103/PhysRevD.83.044011 – ident: 72 doi: 10.1016/j.nuclphysb.2006.06.003 – ident: 76 doi: 10.1103/PhysRevD.77.085020 – volume: 2016 start-page: 001 issn: 1475-7516 year: 2016 ident: 1 publication-title: J. Cosmol. Astropart. Phys. doi: 10.1088/1475-7516/2016/04/001 – volume: 2019 start-page: 027 issn: 1475-7516 year: 2019 ident: 47 publication-title: J. Cosmol. Astropart. Phys. doi: 10.1088/1475-7516/2019/12/027 – ident: 52 doi: 10.1103/PhysRevLett.120.071301 – ident: 30 doi: 10.1103/PhysRevD.94.103519 – ident: 78 doi: 10.1103/PhysRevD.96.043511 – ident: 63 doi: 10.1103/PhysRevD.87.075024 – volume: 2019 start-page: 034 issn: 1475-7516 year: 2019 ident: 79 publication-title: J. Cosmol. Astropart. Phys. doi: 10.1088/1475-7516/2019/02/034 – volume: 2010 start-page: 009 issn: 1475-7516 year: 2010 ident: 74 publication-title: J. Cosmol. Astropart. Phys. doi: 10.1088/1475-7516/2010/11/009 – volume: 2018 start-page: 021 issn: 1475-7516 year: 2018 ident: 77 publication-title: J. Cosmol. Astropart. Phys. doi: 10.1088/1475-7516/2018/06/021 – ident: 82 doi: 10.1016/j.physletb.2016.06.009 – ident: 36 doi: 10.1007/JHEP08(2018)203 – ident: 39 doi: 10.1007/JHEP02(2020)078 – volume: 2020 start-page: 036 issn: 1475-7516 year: 2020 ident: 24 publication-title: J. Cosmol. Astropart. Phys. doi: 10.1088/1475-7516/2020/04/036 – ident: 61 doi: 10.1103/PhysRevD.49.779 – ident: 57 – ident: 104 doi: 10.1103/PhysRevD.54.1291 – year: 2008 ident: 88 publication-title: Cosmology doi: 10.1093/oso/9780198526827.001.0001 – ident: 26 doi: 10.1103/PhysRevD.84.023521 – ident: 100 doi: 10.1103/PhysRevD.54.7163 – ident: 27 doi: 10.1103/PhysRevD.101.091903 – ident: 4 – ident: 32 doi: 10.1142/S0217732317500493 – ident: 70 – ident: 86 doi: 10.1103/PhysRevLett.121.201303 – ident: 66 doi: 10.1103/PhysRevD.94.063502 – volume: 2018 start-page: 057 issn: 1475-7516 year: 2018 ident: 69 publication-title: J. Cosmol. Astropart. Phys. doi: 10.1088/1475-7516/2018/02/057 – volume: 35 start-page: 163001 issn: 0264-9381 year: 2018 ident: 84 publication-title: Class. Quant. Grav. doi: 10.1088/1361-6382/aac608 – year: 2013 ident: 93 publication-title: The quantum theory of fields. Vol. 2: modern applications – volume: 2020 start-page: 024 issn: 1475-7516 year: 2020 ident: 5 publication-title: J. Cosmol. Astropart. Phys. doi: 10.1088/1475-7516/2020/03/024 – ident: 38 doi: 10.1007/JHEP07(2019)044 – ident: 95 doi: 10.1103/PhysRevD.23.876 – ident: 71 doi: 10.1103/PhysRevD.82.035004 – ident: 108 doi: 10.1103/PhysRevD.46.550 – ident: 98 doi: 10.1007/s11433-018-9216-7 – ident: 105 doi: 10.1103/PhysRevD.52.6901 – ident: 56 doi: 10.1142/S0218271815300220 |
SSID | ssj0026338 |
Score | 2.6318147 |
Snippet | We undertake a careful analysis of stochastic gravitational wave production from cosmological phase transitions in an expanding universe, studying both a... Not provided. |
SourceID | osti proquest crossref |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database |
StartPage | 1 |
SubjectTerms | Astronomy & Astrophysics Asymptotic properties Big Bang theory Bubbles Damping Differential equations Expanding universe theory Gravitation Gravitational waves Phase transitions Physics Radiation Radiation standards Scalars Sound waves Universe Velocity distribution Wave spectra |
Title | Phase transitions in an expanding universe: stochastic gravitational waves in standard and non-standard histories |
URI | https://www.proquest.com/docview/2475113155 https://www.osti.gov/biblio/1851224 |
Volume | 2021 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9UwFA_XK4IvQ6eyu03Jg_jWLWnTpPVtiHpxqBfcZG8lTRu8oL26tRP8e_xDPSdN07vd4RdcSgicpO3vd5OT0_NByFPJrNK1YlEmeBwJaaGVMxvFRtWm1FrJHGOH376T81Px5iw9m0x-rnktdW15YH7cGFfyP6hCH-CKUbL_gGwYFDqgDfjCFRCG619hvPgEexBWeWi85xVaL7RL2--jVbre78IFoIOaZ0AAM7Ri0SGfnBsg-q4vnVvWaFdAa3qzaqLQ0aclHhwON5VZs7r4MmZzgknO4TDe37A3ngTd_XXnrLPzTi-j40CrD8um__R03F2ODsMfta8E3UfCjzuIr-rXx3mvWy5ifs1yccUbYtHfilOr3y8GK0i_JguVRirlPmP2DX1-Icc5rlN2Y4eAVdXlGPDyGBADYi4Qwrla8nFjDO6KoNPgB8hb5HaslHMGgHsMx3qZuHrpYcghTizLDkMf2pj4IYOfrz40aEDTFbyEDT3AKTcn98iWB5Ie9YjdJ5O62SY7RwgjxrzQZ9S1PZLb5I5_kQ_IN8dBusZBumyobmjgIB04-JyODKRXGEgdA1FwIByMUNF1BtLAwIfk9NXLkxfzyJfxiEyiRBvFZSxVklclbAVSl3A-sXUtbJJZbpw-mVUysUbA8lCmlTXKxDrVqeCWKcMqnTwiU5iw3iGU5SUzPJNJbZWwaZmZEs7HeZ4xm8aJlDMihldbGP8QWGrlc-F8LbKsQEQKRKRARArG0alzRg6C2Nc-ycufBPYQtwK0VEy1bNAnzbSF58mM7A9wFn61uChiGIfzBNT33d8K75G7439ln0zb865-DHpvWz5xtPsFRPStWA |
linkProvider | IOP Publishing |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Phase+transitions+in+an+expanding+universe%3A+stochastic+gravitational+waves+in+standard+and+non-standard+histories&rft.jtitle=Journal+of+cosmology+and+astroparticle+physics&rft.au=Guo%2C+Huai-Ke&rft.au=Sinha%2C+Kuver&rft.au=Vagie%2C+Daniel&rft.au=White%2C+Graham&rft.date=2021-01-01&rft.pub=Institute+of+Physics+%28IOP%29&rft.issn=1475-7516&rft.eissn=1475-7516&rft.volume=2021&rft.issue=1&rft_id=info:doi/10.1088%2F1475-7516%2F2021%2F01%2F001&rft.externalDocID=1851224 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1475-7516&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1475-7516&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1475-7516&client=summon |