Phase transitions in an expanding universe: stochastic gravitational waves in standard and non-standard histories

We undertake a careful analysis of stochastic gravitational wave production from cosmological phase transitions in an expanding universe, studying both a standard radiation as well as a matter dominated history. We analyze in detail the dynamics of the phase transition, including the false vacuum fr...

Full description

Saved in:
Bibliographic Details
Published inJournal of cosmology and astroparticle physics Vol. 2021; no. 1; p. 1
Main Authors Guo, Huai-Ke, Sinha, Kuver, Vagie, Daniel, White, Graham
Format Journal Article
LanguageEnglish
Published Bristol IOP Publishing 01.01.2021
Institute of Physics (IOP)
Subjects
Online AccessGet full text
ISSN1475-7516
1475-7516
DOI10.1088/1475-7516/2021/01/001

Cover

Abstract We undertake a careful analysis of stochastic gravitational wave production from cosmological phase transitions in an expanding universe, studying both a standard radiation as well as a matter dominated history. We analyze in detail the dynamics of the phase transition, including the false vacuum fraction, bubble lifetime distribution, bubble number density, mean bubble separation, etc., for an expanding universe. We also study the full set of differential equations governing the evolution of plasma and the scalar field during the phase transition and generalize results obtained in Minkowski spacetime. In particular, we generalize the sound shell model to the expanding universe and determine the velocity field power spectrum. This ultimately provides an accurate calculation of the gravitational wave spectrum seen today for the dominant source of sound waves. For the amplitude of the gravitational wave spectrum visible today, we find a suppression factor arising from the finite lifetime of the sound waves and compare with the commonly used result in the literature, which corresponds to the asymptotic value of our suppression factor. We point out that the asymptotic value is only applicable for a very long lifetime of the sound waves, which is highly unlikely due to the onset of shocks, turbulence and other damping processes. We also point out that features of the gravitational wave spectral form may hold the tantalizing possibility of distinguishing between different expansion histories using phase transitions.
AbstractList We undertake a careful analysis of stochastic gravitational wave production from cosmological phase transitions in an expanding universe, studying both a standard radiation as well as a matter dominated history. We analyze in detail the dynamics of the phase transition, including the false vacuum fraction, bubble lifetime distribution, bubble number density, mean bubble separation, etc., for an expanding universe. We also study the full set of differential equations governing the evolution of plasma and the scalar field during the phase transition and generalize results obtained in Minkowski spacetime. In particular, we generalize the sound shell model to the expanding universe and determine the velocity field power spectrum. This ultimately provides an accurate calculation of the gravitational wave spectrum seen today for the dominant source of sound waves. For the amplitude of the gravitational wave spectrum visible today, we find a suppression factor arising from the finite lifetime of the sound waves and compare with the commonly used result in the literature, which corresponds to the asymptotic value of our suppression factor. We point out that the asymptotic value is only applicable for a very long lifetime of the sound waves, which is highly unlikely due to the onset of shocks, turbulence and other damping processes. We also point out that features of the gravitational wave spectral form may hold the tantalizing possibility of distinguishing between different expansion histories using phase transitions.
Not provided.
Author Sinha, Kuver
White, Graham
Vagie, Daniel
Guo, Huai-Ke
Author_xml – sequence: 1
  givenname: Huai-Ke
  surname: Guo
  fullname: Guo, Huai-Ke
– sequence: 2
  givenname: Kuver
  surname: Sinha
  fullname: Sinha, Kuver
– sequence: 3
  givenname: Daniel
  surname: Vagie
  fullname: Vagie, Daniel
– sequence: 4
  givenname: Graham
  surname: White
  fullname: White, Graham
BackLink https://www.osti.gov/biblio/1851224$$D View this record in Osti.gov
BookMark eNqFkU1LAzEQhoNUsK3-BCHoeW0-NputnqT4BQU96Dlks0mbUpM2Sav-e7O2FPEiDMwwvM8w884A9Jx3GoBzjK4wqusRLjkrOMPViCCCRygHwkegf-j3ftUnYBDjAiFSUVr3wfplLqOGKUgXbbLeRWgdlA7qz5V0rXUzuHF2q0PU1zAmr7I8WQVnQW5tkh0hl_BDbvUPGFOGZGjzhBbmNYtDY24zHayOp-DYyGXUZ_s8BG_3d6-Tx2L6_PA0uZ0WivIyFaQhFafjtuFjWskGEWS0Lg2tDVakRBWu24oaVRLFG9YaxRWRTLISG8QVaiUdgovdXJ8XFlHZpNVceee0SgLXDBNSZtHlTrQKfr3RMYmF34R8UhQkO4YxxYxl1c1OpYKPMWgj1P727JtdCoxE9wjRmSw6k0X3CIFyIJxp9odeBfsuw9c_3Ddl149m
CitedBy_id crossref_primary_10_1088_1475_7516_2024_04_044
crossref_primary_10_1088_1475_7516_2021_04_043
crossref_primary_10_1103_PhysRevD_105_023530
crossref_primary_10_1088_1475_7516_2023_06_053
crossref_primary_10_1088_1475_7516_2022_09_029
crossref_primary_10_1103_PhysRevD_110_075030
crossref_primary_10_1088_1475_7516_2022_05_003
crossref_primary_10_1103_PhysRevD_103_075012
crossref_primary_10_1103_RevModPhys_97_015001
crossref_primary_10_1103_PhysRevD_108_055010
crossref_primary_10_1007_s10714_022_03027_x
crossref_primary_10_1088_1475_7516_2021_05_006
crossref_primary_10_1088_1475_7516_2024_12_043
crossref_primary_10_1103_PhysRevD_107_115008
crossref_primary_10_1088_1475_7516_2022_08_068
crossref_primary_10_1088_1475_7516_2024_03_005
crossref_primary_10_1103_PhysRevD_104_035005
crossref_primary_10_1103_PhysRevD_107_L041301
crossref_primary_10_1103_PhysRevD_108_055018
crossref_primary_10_1103_PhysRevD_103_055013
crossref_primary_10_1088_1475_7516_2021_10_039
crossref_primary_10_1103_PhysRevD_103_123541
crossref_primary_10_1103_PhysRevD_108_123544
crossref_primary_10_1007_s41114_023_00045_2
crossref_primary_10_1088_1475_7516_2023_04_054
crossref_primary_10_1038_s41598_023_35670_y
crossref_primary_10_1103_PhysRevD_106_095016
crossref_primary_10_1103_PhysRevD_108_095014
crossref_primary_10_1103_PhysRevD_110_076011
crossref_primary_10_1103_PhysRevD_106_115012
crossref_primary_10_1103_PhysRevD_108_055022
crossref_primary_10_1103_PhysRevD_110_115005
crossref_primary_10_1007_s11433_024_2468_x
crossref_primary_10_1103_PhysRevD_108_075010
crossref_primary_10_1103_PhysRevD_109_075034
crossref_primary_10_1103_PhysRevD_107_095034
crossref_primary_10_1103_PhysRevD_109_095034
crossref_primary_10_1007_s11433_023_2298_7
crossref_primary_10_1088_1475_7516_2025_01_100
crossref_primary_10_1016_j_scib_2022_06_011
crossref_primary_10_1088_1475_7516_2024_05_075
crossref_primary_10_1103_PhysRevD_110_035014
crossref_primary_10_1016_j_ppnp_2023_104094
crossref_primary_10_1103_PhysRevD_104_053004
crossref_primary_10_1007_s11433_021_1781_x
crossref_primary_10_1103_PhysRevD_103_L081301
crossref_primary_10_1016_j_scib_2024_01_037
crossref_primary_10_1088_1475_7516_2023_04_061
crossref_primary_10_1103_PhysRevLett_132_081001
crossref_primary_10_21468_SciPostPhys_10_2_047
crossref_primary_10_1103_PhysRevD_109_115025
crossref_primary_10_1103_PhysRevD_110_023538
crossref_primary_10_1088_1475_7516_2021_12_023
crossref_primary_10_1088_1475_7516_2022_12_025
crossref_primary_10_3847_2041_8213_acdc91
crossref_primary_10_1088_1475_7516_2025_01_011
crossref_primary_10_1103_PhysRevD_104_095001
crossref_primary_10_1103_PhysRevD_107_043527
crossref_primary_10_1088_1475_7516_2021_03_096
crossref_primary_10_1088_1475_7516_2024_05_100
crossref_primary_10_1103_PhysRevD_103_123529
crossref_primary_10_1088_1475_7516_2025_02_056
crossref_primary_10_1007_s11433_023_2293_2
crossref_primary_10_1103_PhysRevLett_127_251302
crossref_primary_10_1103_PhysRevD_111_015037
crossref_primary_10_1016_j_dark_2024_101719
crossref_primary_10_1103_PhysRevD_106_103504
crossref_primary_10_1088_1572_9494_ad9c3d
crossref_primary_10_1103_PhysRevD_104_115005
crossref_primary_10_1142_S0217751X22400231
crossref_primary_10_1088_1475_7516_2024_07_048
crossref_primary_10_1103_PhysRevD_110_043016
crossref_primary_10_1088_1475_7516_2024_03_059
crossref_primary_10_1103_PhysRevD_110_063521
crossref_primary_10_1093_mnras_stad392
crossref_primary_10_1103_PhysRevD_104_123532
crossref_primary_10_1103_PhysRevD_103_103520
crossref_primary_10_1088_1475_7516_2021_10_073
crossref_primary_10_1103_PhysRevD_107_036010
crossref_primary_10_1088_1475_7516_2021_05_049
crossref_primary_10_1103_PhysRevD_104_115030
crossref_primary_10_1103_PhysRevD_105_115033
crossref_primary_10_1103_PhysRevD_111_023509
crossref_primary_10_1103_PhysRevD_110_103512
crossref_primary_10_1093_ptep_ptac068
crossref_primary_10_1088_1475_7516_2023_10_001
crossref_primary_10_1103_PhysRevD_106_023505
crossref_primary_10_1103_PhysRevD_109_116001
crossref_primary_10_1360_SSPMA_2024_0516
crossref_primary_10_1103_PhysRevD_108_063526
crossref_primary_10_1088_1475_7516_2023_06_008
crossref_primary_10_1093_ptep_ptab003
crossref_primary_10_1103_PhysRevD_109_L061303
crossref_primary_10_1103_PhysRevLett_126_151301
crossref_primary_10_1103_PhysRevD_110_063541
crossref_primary_10_1140_epjc_s10052_024_13046_4
crossref_primary_10_1088_1475_7516_2021_04_014
crossref_primary_10_1088_1475_7516_2022_06_021
crossref_primary_10_1103_PhysRevD_105_115040
crossref_primary_10_1103_PhysRevD_111_L021303
crossref_primary_10_1088_1674_1137_ad0f89
crossref_primary_10_1103_PhysRevD_108_L021502
crossref_primary_10_1103_PhysRevD_105_103513
crossref_primary_10_1103_PhysRevD_109_063531
crossref_primary_10_1007_s41114_021_00032_5
crossref_primary_10_1103_PhysRevD_107_055032
crossref_primary_10_1103_PhysRevD_107_023511
crossref_primary_10_1088_1475_7516_2023_11_053
crossref_primary_10_1140_epjp_s13360_024_05842_4
crossref_primary_10_21468_SciPostPhysLectNotes_24
crossref_primary_10_1140_epjc_s10052_022_10130_5
crossref_primary_10_1103_PhysRevD_110_055019
crossref_primary_10_1103_PhysRevLett_132_221001
crossref_primary_10_1103_PhysRevD_110_095013
crossref_primary_10_3103_S1068335623030053
crossref_primary_10_1088_1475_7516_2023_03_006
crossref_primary_10_1103_PhysRevD_109_063526
crossref_primary_10_1103_PhysRevD_107_095011
crossref_primary_10_1103_PhysRevD_109_096012
crossref_primary_10_1139_cjp_2024_0128
Cites_doi 10.1007/s10714-020-02691-1
10.1103/PhysRevResearch.1.013010
10.1103/PhysRevLett.112.041301
10.1088/1475-7516/2014/09/028
10.1088/1475-7516/2005/10/015
10.1088/0264-9381/33/3/035010
10.1016/j.cpc.2012.04.004
10.1007/JHEP04(2019)052
10.1007/JHEP03(2020)053
10.1098/rsta.2017.0126
10.1016/0370-2693(83)91091-2
10.1088/1475-7516/2020/07/050
10.1016/S0550-3213(02)00264-X
10.1103/PhysRevD.52.3548
10.1016/0550-3213(83)90072-X
10.1103/PhysRevD.94.055006
10.1103/PhysRevLett.117.131301
10.1088/1475-7516/2020/01/002
10.1103/PhysRevD.75.043507
10.1088/1475-7516/2017/05/052
10.1103/PhysRevD.95.085011
10.1088/1361-6633/ab1f55
10.1103/PhysRevD.100.061101
10.1007/JHEP02(2018)115
10.3390/physics1010010
10.1103/PhysRevD.102.095025
10.1103/PhysRevD.100.123546
10.1007/JHEP05(2019)190
10.1103/PhysRevD.72.125004
10.1103/PhysRevLett.115.181101
10.1088/1126-6708/2008/06/064
10.1016/0370-2693(81)90281-1
10.1088/1475-7516/2019/06/024
10.1103/PhysRevD.31.681
10.1007/JHEP02(2019)183
10.1103/PhysRevD.52.7182
10.1103/PhysRevD.96.103520
10.1103/PhysRevD.95.123515
10.1103/PhysRevD.80.083529
10.1103/PhysRevD.49.3854
10.1007/JHEP08(2019)002
10.1103/PhysRevD.92.123009
10.1088/1475-7516/2019/12/062
10.1103/PhysRevLett.124.171802
10.1103/PhysRevD.80.035014
10.1088/1475-7516/2010/06/028
10.1103/PhysRevD.101.063529
10.1103/PhysRevLett.118.121101
10.1103/PhysRevD.97.123505
10.1103/PhysRevD.101.095016
10.1103/PhysRevD.100.063502
10.1088/1475-7516/2017/09/009
10.1088/1126-6708/2008/04/029
10.1103/PhysRevD.92.103505
10.1103/PhysRevD.52.705
10.1103/PhysRevLett.125.021302
10.1007/JHEP05(2018)151
10.1007/JHEP02(2019)083
10.1103/PhysRevD.102.043522
10.1007/JHEP07(2018)062
10.1088/1475-7516/2019/04/003
10.1016/j.cpc.2019.05.017
10.1088/1742-6596/610/1/012011
10.1088/1674-1137/42/2/023107
10.1103/PhysRevD.51.5431
10.1103/PhysRevD.46.2668
10.1103/PhysRevD.83.044011
10.1016/j.nuclphysb.2006.06.003
10.1103/PhysRevD.77.085020
10.1088/1475-7516/2016/04/001
10.1088/1475-7516/2019/12/027
10.1103/PhysRevLett.120.071301
10.1103/PhysRevD.94.103519
10.1103/PhysRevD.96.043511
10.1103/PhysRevD.87.075024
10.1088/1475-7516/2019/02/034
10.1088/1475-7516/2010/11/009
10.1088/1475-7516/2018/06/021
10.1016/j.physletb.2016.06.009
10.1007/JHEP08(2018)203
10.1007/JHEP02(2020)078
10.1088/1475-7516/2020/04/036
10.1103/PhysRevD.49.779
10.1103/PhysRevD.54.1291
10.1093/oso/9780198526827.001.0001
10.1103/PhysRevD.84.023521
10.1103/PhysRevD.54.7163
10.1103/PhysRevD.101.091903
10.1142/S0217732317500493
10.1103/PhysRevLett.121.201303
10.1103/PhysRevD.94.063502
10.1088/1475-7516/2018/02/057
10.1088/1361-6382/aac608
10.1088/1475-7516/2020/03/024
10.1007/JHEP07(2019)044
10.1103/PhysRevD.23.876
10.1103/PhysRevD.82.035004
10.1103/PhysRevD.46.550
10.1007/s11433-018-9216-7
10.1103/PhysRevD.52.6901
10.1142/S0218271815300220
ContentType Journal Article
Copyright Copyright IOP Publishing Jan 2021
Copyright_xml – notice: Copyright IOP Publishing Jan 2021
CorporateAuthor Univ. of Oklahoma, Norman, OK (United States)
CorporateAuthor_xml – name: Univ. of Oklahoma, Norman, OK (United States)
DBID AAYXX
CITATION
OTOTI
DOI 10.1088/1475-7516/2021/01/001
DatabaseName CrossRef
OSTI.GOV
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Astronomy & Astrophysics
Physics
EISSN 1475-7516
EndPage 1
ExternalDocumentID 1851224
10_1088_1475_7516_2021_01_001
GroupedDBID 1JI
5B3
5PX
5VS
5ZH
7.M
7.Q
AAGCD
AAGID
AAJIO
AAJKP
AATNI
AAYXX
ABCXL
ABJNI
ABQJV
ABVAM
ACAFW
ACGFO
ACGFS
ACHIP
ADEQX
ADWVK
AEFHF
AENEX
AFYNE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
AOAED
ASPBG
ATQHT
AVWKF
AZFZN
CBCFC
CEBXE
CITATION
CJUJL
CRLBU
DU5
EBS
EDWGO
EMSAF
EPQRW
EQZZN
ER.
IHE
IJHAN
IOP
IZVLO
J9A
KOT
LAP
M45
MV1
N5L
N9A
P2P
PJBAE
RIN
RO9
ROL
RPA
SY9
VSI
W28
XPP
ZMT
HAK
KNG
OTOTI
RW3
UCJ
ID FETCH-LOGICAL-c374t-2b26739db7936ab020fee4f38f1c240618d63fc42c7b5dfc7c2a5a541f07c0da3
ISSN 1475-7516
IngestDate Fri May 19 00:47:16 EDT 2023
Sun Jun 29 15:42:45 EDT 2025
Tue Jul 01 03:49:23 EDT 2025
Thu Apr 24 23:05:56 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License http://iopscience.iop.org/info/page/text-and-data-mining
http://iopscience.iop.org/page/copyright
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c374t-2b26739db7936ab020fee4f38f1c240618d63fc42c7b5dfc7c2a5a541f07c0da3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
SC0009956
USDOE Office of Science (SC)
PQID 2475113155
PQPubID 2048024
PageCount 1
ParticipantIDs osti_scitechconnect_1851224
proquest_journals_2475113155
crossref_citationtrail_10_1088_1475_7516_2021_01_001
crossref_primary_10_1088_1475_7516_2021_01_001
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-01-01
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 01
  year: 2021
  text: 2021-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Bristol
PublicationPlace_xml – name: Bristol
– name: United States
PublicationTitle Journal of cosmology and astroparticle physics
PublicationYear 2021
Publisher IOP Publishing
Institute of Physics (IOP)
Publisher_xml – name: IOP Publishing
– name: Institute of Physics (IOP)
References 89
J. Ellis (23) 2019; 2019
A. Mazumdar (3) 2019; 82
110
X. Wang (43) 2020; 2020
A.P. Morais (24) 2020; 2020
W. Chao (33) 2017; 2017
90
91
92
L. Bian (42)
94
95
96
97
T. Konstandin (103) 2014; 2014
10
98
99
J. Ellis (55) 2020; 2020
13
14
16
17
19
C. Delaunay (18) 2008; 2008
2
6
7
8
20
21
S. Weinberg (93) 2013
22
D. Bettoni (80) 2020; 2020
LISA collaboration (9)
25
26
27
28
29
I. Baldes (34) 2017; 2017
X. Gong . (11) 2015; 610
J.R. Espinosa (51) 2010; 2010
E. Hall (41)
R. Allahverdi . (57)
30
31
32
36
37
38
39
B.S. Acharya (64) 2008; 2008
C. Cosme (70)
K. Nakayama (74) 2010; 2010
A. Addazi (35) 2018; 42
D. Bettoni (79) 2019; 2019
40
44
45
46
48
49
50
52
K. Dimopoulos (77) 2018; 2018
G. Bertone . (4)
56
58
59
C. Caprini (84) 2018; 35
60
61
62
63
65
G.C. Dorsch (15) 2017; 2017
J. Ellis (54) 2019; 2019
66
67
S. Weinberg (88) 2008
68
M. Hindmarsh (53) 2019; 2019
TianQin collaboration (12) 2016; 33
71
72
C. Caprini . (5) 2020; 2020
73
C. Caprini . (1) 2016; 2016
76
78
V. Brdar (47) 2019; 2019
C. Pallis (75) 2005; 2005
100
101
102
104
105
106
M. Drees (69) 2018; 2018
107
81
108
82
109
83
85
86
87
References_xml – ident: 6
  doi: 10.1007/s10714-020-02691-1
– ident: 85
  doi: 10.1103/PhysRevResearch.1.013010
– ident: 48
  doi: 10.1103/PhysRevLett.112.041301
– volume: 2014
  start-page: 028
  issn: 1475-7516
  year: 2014
  ident: 103
  publication-title: J. Cosmol. Astropart. Phys.
  doi: 10.1088/1475-7516/2014/09/028
– volume: 2005
  start-page: 015
  issn: 1475-7516
  year: 2005
  ident: 75
  publication-title: J. Cosmol. Astropart. Phys.
  doi: 10.1088/1475-7516/2005/10/015
– volume: 33
  start-page: 035010
  issn: 0264-9381
  year: 2016
  ident: 12
  publication-title: Class. Quant. Grav.
  doi: 10.1088/0264-9381/33/3/035010
– ident: 109
  doi: 10.1016/j.cpc.2012.04.004
– ident: 22
  doi: 10.1007/JHEP04(2019)052
– ident: 9
– ident: 21
  doi: 10.1007/JHEP03(2020)053
– ident: 2
  doi: 10.1098/rsta.2017.0126
– ident: 41
– ident: 60
  doi: 10.1016/0370-2693(83)91091-2
– volume: 2020
  start-page: 050
  issn: 1475-7516
  year: 2020
  ident: 55
  publication-title: J. Cosmol. Astropart. Phys.
  doi: 10.1088/1475-7516/2020/07/050
– ident: 97
  doi: 10.1016/S0550-3213(02)00264-X
– ident: 58
  doi: 10.1103/PhysRevD.52.3548
– ident: 90
  doi: 10.1016/0550-3213(83)90072-X
– ident: 31
  doi: 10.1103/PhysRevD.94.055006
– ident: 107
  doi: 10.1103/PhysRevLett.117.131301
– volume: 2020
  start-page: 002
  issn: 1475-7516
  year: 2020
  ident: 80
  publication-title: J. Cosmol. Astropart. Phys.
  doi: 10.1088/1475-7516/2020/01/002
– ident: 13
  doi: 10.1103/PhysRevD.75.043507
– volume: 2017
  start-page: 052
  issn: 1475-7516
  year: 2017
  ident: 15
  publication-title: J. Cosmol. Astropart. Phys.
  doi: 10.1088/1475-7516/2017/05/052
– ident: 92
  doi: 10.1103/PhysRevD.95.085011
– volume: 82
  start-page: 076901
  issn: 0034-4885
  year: 2019
  ident: 3
  publication-title: Rept. Prog. Phys.
  doi: 10.1088/1361-6633/ab1f55
– ident: 8
  doi: 10.1103/PhysRevD.100.061101
– ident: 17
  doi: 10.1007/JHEP02(2018)115
– ident: 25
  doi: 10.3390/physics1010010
– volume: 2017
  start-page: 028
  issn: 1475-7516
  year: 2017
  ident: 34
  publication-title: J. Cosmol. Astropart. Phys.
– ident: 46
  doi: 10.1103/PhysRevD.102.095025
– ident: 67
  doi: 10.1103/PhysRevD.100.123546
– ident: 37
  doi: 10.1007/JHEP05(2019)190
– ident: 91
  doi: 10.1103/PhysRevD.72.125004
– ident: 29
  doi: 10.1103/PhysRevLett.115.181101
– volume: 2008
  start-page: 064
  issn: 1126-6708
  year: 2008
  ident: 64
  publication-title: J. High Energy Phys.
  doi: 10.1088/1126-6708/2008/06/064
– ident: 89
  doi: 10.1016/0370-2693(81)90281-1
– volume: 2019
  start-page: 024
  issn: 1475-7516
  year: 2019
  ident: 23
  publication-title: J. Cosmol. Astropart. Phys.
  doi: 10.1088/1475-7516/2019/06/024
– volume: 2020
  start-page: 045
  issn: 1475-7516
  year: 2020
  ident: 43
  publication-title: J. Cosmol. Astropart. Phys.
– ident: 94
  doi: 10.1103/PhysRevD.31.681
– ident: 16
  doi: 10.1007/JHEP02(2019)183
– ident: 96
  doi: 10.1103/PhysRevD.52.7182
– ident: 50
  doi: 10.1103/PhysRevD.96.103520
– ident: 14
  doi: 10.1103/PhysRevD.95.123515
– ident: 65
  doi: 10.1103/PhysRevD.80.083529
– ident: 99
  doi: 10.1103/PhysRevD.49.3854
– ident: 20
  doi: 10.1007/JHEP08(2019)002
– ident: 49
  doi: 10.1103/PhysRevD.92.123009
– volume: 2019
  start-page: 062
  issn: 1475-7516
  year: 2019
  ident: 53
  publication-title: J. Cosmol. Astropart. Phys.
  doi: 10.1088/1475-7516/2019/12/062
– ident: 45
  doi: 10.1103/PhysRevLett.124.171802
– ident: 62
  doi: 10.1103/PhysRevD.80.035014
– volume: 2010
  start-page: 028
  issn: 1475-7516
  year: 2010
  ident: 51
  publication-title: J. Cosmol. Astropart. Phys.
  doi: 10.1088/1475-7516/2010/06/028
– ident: 73
  doi: 10.1103/PhysRevD.101.063529
– ident: 7
  doi: 10.1103/PhysRevLett.118.121101
– ident: 87
  doi: 10.1103/PhysRevD.97.123505
– ident: 40
  doi: 10.1103/PhysRevD.101.095016
– ident: 83
  doi: 10.1103/PhysRevD.100.063502
– volume: 2017
  start-page: 009
  issn: 1475-7516
  year: 2017
  ident: 33
  publication-title: J. Cosmol. Astropart. Phys.
  doi: 10.1088/1475-7516/2017/09/009
– volume: 2008
  start-page: 029
  issn: 1126-6708
  year: 2008
  ident: 18
  publication-title: J. High Energy Phys.
  doi: 10.1088/1126-6708/2008/04/029
– ident: 68
  doi: 10.1103/PhysRevD.92.103505
– ident: 59
  doi: 10.1103/PhysRevD.52.705
– ident: 102
  doi: 10.1103/PhysRevLett.125.021302
– ident: 28
  doi: 10.1007/JHEP05(2018)151
– ident: 42
– ident: 44
  doi: 10.1007/JHEP02(2019)083
– ident: 81
  doi: 10.1103/PhysRevD.102.043522
– ident: 19
  doi: 10.1007/JHEP07(2018)062
– volume: 2019
  start-page: 003
  issn: 1475-7516
  year: 2019
  ident: 54
  publication-title: J. Cosmol. Astropart. Phys.
  doi: 10.1088/1475-7516/2019/04/003
– ident: 110
  doi: 10.1016/j.cpc.2019.05.017
– volume: 610
  start-page: 012011
  issn: 1742-6596
  year: 2015
  ident: 11
  publication-title: J. Phys. Conf. Ser.
  doi: 10.1088/1742-6596/610/1/012011
– volume: 42
  start-page: 023107
  issn: 1674-1137
  year: 2018
  ident: 35
  publication-title: Chin. Phys. C
  doi: 10.1088/1674-1137/42/2/023107
– ident: 106
  doi: 10.1103/PhysRevD.51.5431
– ident: 101
  doi: 10.1103/PhysRevD.46.2668
– ident: 10
  doi: 10.1103/PhysRevD.83.044011
– ident: 72
  doi: 10.1016/j.nuclphysb.2006.06.003
– ident: 76
  doi: 10.1103/PhysRevD.77.085020
– volume: 2016
  start-page: 001
  issn: 1475-7516
  year: 2016
  ident: 1
  publication-title: J. Cosmol. Astropart. Phys.
  doi: 10.1088/1475-7516/2016/04/001
– volume: 2019
  start-page: 027
  issn: 1475-7516
  year: 2019
  ident: 47
  publication-title: J. Cosmol. Astropart. Phys.
  doi: 10.1088/1475-7516/2019/12/027
– ident: 52
  doi: 10.1103/PhysRevLett.120.071301
– ident: 30
  doi: 10.1103/PhysRevD.94.103519
– ident: 78
  doi: 10.1103/PhysRevD.96.043511
– ident: 63
  doi: 10.1103/PhysRevD.87.075024
– volume: 2019
  start-page: 034
  issn: 1475-7516
  year: 2019
  ident: 79
  publication-title: J. Cosmol. Astropart. Phys.
  doi: 10.1088/1475-7516/2019/02/034
– volume: 2010
  start-page: 009
  issn: 1475-7516
  year: 2010
  ident: 74
  publication-title: J. Cosmol. Astropart. Phys.
  doi: 10.1088/1475-7516/2010/11/009
– volume: 2018
  start-page: 021
  issn: 1475-7516
  year: 2018
  ident: 77
  publication-title: J. Cosmol. Astropart. Phys.
  doi: 10.1088/1475-7516/2018/06/021
– ident: 82
  doi: 10.1016/j.physletb.2016.06.009
– ident: 36
  doi: 10.1007/JHEP08(2018)203
– ident: 39
  doi: 10.1007/JHEP02(2020)078
– volume: 2020
  start-page: 036
  issn: 1475-7516
  year: 2020
  ident: 24
  publication-title: J. Cosmol. Astropart. Phys.
  doi: 10.1088/1475-7516/2020/04/036
– ident: 61
  doi: 10.1103/PhysRevD.49.779
– ident: 57
– ident: 104
  doi: 10.1103/PhysRevD.54.1291
– year: 2008
  ident: 88
  publication-title: Cosmology
  doi: 10.1093/oso/9780198526827.001.0001
– ident: 26
  doi: 10.1103/PhysRevD.84.023521
– ident: 100
  doi: 10.1103/PhysRevD.54.7163
– ident: 27
  doi: 10.1103/PhysRevD.101.091903
– ident: 4
– ident: 32
  doi: 10.1142/S0217732317500493
– ident: 70
– ident: 86
  doi: 10.1103/PhysRevLett.121.201303
– ident: 66
  doi: 10.1103/PhysRevD.94.063502
– volume: 2018
  start-page: 057
  issn: 1475-7516
  year: 2018
  ident: 69
  publication-title: J. Cosmol. Astropart. Phys.
  doi: 10.1088/1475-7516/2018/02/057
– volume: 35
  start-page: 163001
  issn: 0264-9381
  year: 2018
  ident: 84
  publication-title: Class. Quant. Grav.
  doi: 10.1088/1361-6382/aac608
– year: 2013
  ident: 93
  publication-title: The quantum theory of fields. Vol. 2: modern applications
– volume: 2020
  start-page: 024
  issn: 1475-7516
  year: 2020
  ident: 5
  publication-title: J. Cosmol. Astropart. Phys.
  doi: 10.1088/1475-7516/2020/03/024
– ident: 38
  doi: 10.1007/JHEP07(2019)044
– ident: 95
  doi: 10.1103/PhysRevD.23.876
– ident: 71
  doi: 10.1103/PhysRevD.82.035004
– ident: 108
  doi: 10.1103/PhysRevD.46.550
– ident: 98
  doi: 10.1007/s11433-018-9216-7
– ident: 105
  doi: 10.1103/PhysRevD.52.6901
– ident: 56
  doi: 10.1142/S0218271815300220
SSID ssj0026338
Score 2.6318147
Snippet We undertake a careful analysis of stochastic gravitational wave production from cosmological phase transitions in an expanding universe, studying both a...
Not provided.
SourceID osti
proquest
crossref
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 1
SubjectTerms Astronomy & Astrophysics
Asymptotic properties
Big Bang theory
Bubbles
Damping
Differential equations
Expanding universe theory
Gravitation
Gravitational waves
Phase transitions
Physics
Radiation
Radiation standards
Scalars
Sound waves
Universe
Velocity distribution
Wave spectra
Title Phase transitions in an expanding universe: stochastic gravitational waves in standard and non-standard histories
URI https://www.proquest.com/docview/2475113155
https://www.osti.gov/biblio/1851224
Volume 2021
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9UwFA_XK4IvQ6eyu03Jg_jWLWnTpPVtiHpxqBfcZG8lTRu8oL26tRP8e_xDPSdN07vd4RdcSgicpO3vd5OT0_NByFPJrNK1YlEmeBwJaaGVMxvFRtWm1FrJHGOH376T81Px5iw9m0x-rnktdW15YH7cGFfyP6hCH-CKUbL_gGwYFDqgDfjCFRCG619hvPgEexBWeWi85xVaL7RL2--jVbre78IFoIOaZ0AAM7Ri0SGfnBsg-q4vnVvWaFdAa3qzaqLQ0aclHhwON5VZs7r4MmZzgknO4TDe37A3ngTd_XXnrLPzTi-j40CrD8um__R03F2ODsMfta8E3UfCjzuIr-rXx3mvWy5ifs1yccUbYtHfilOr3y8GK0i_JguVRirlPmP2DX1-Icc5rlN2Y4eAVdXlGPDyGBADYi4Qwrla8nFjDO6KoNPgB8hb5HaslHMGgHsMx3qZuHrpYcghTizLDkMf2pj4IYOfrz40aEDTFbyEDT3AKTcn98iWB5Ie9YjdJ5O62SY7RwgjxrzQZ9S1PZLb5I5_kQ_IN8dBusZBumyobmjgIB04-JyODKRXGEgdA1FwIByMUNF1BtLAwIfk9NXLkxfzyJfxiEyiRBvFZSxVklclbAVSl3A-sXUtbJJZbpw-mVUysUbA8lCmlTXKxDrVqeCWKcMqnTwiU5iw3iGU5SUzPJNJbZWwaZmZEs7HeZ4xm8aJlDMihldbGP8QWGrlc-F8LbKsQEQKRKRARArG0alzRg6C2Nc-ycufBPYQtwK0VEy1bNAnzbSF58mM7A9wFn61uChiGIfzBNT33d8K75G7439ln0zb865-DHpvWz5xtPsFRPStWA
linkProvider IOP Publishing
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Phase+transitions+in+an+expanding+universe%3A+stochastic+gravitational+waves+in+standard+and+non-standard+histories&rft.jtitle=Journal+of+cosmology+and+astroparticle+physics&rft.au=Guo%2C+Huai-Ke&rft.au=Sinha%2C+Kuver&rft.au=Vagie%2C+Daniel&rft.au=White%2C+Graham&rft.date=2021-01-01&rft.pub=Institute+of+Physics+%28IOP%29&rft.issn=1475-7516&rft.eissn=1475-7516&rft.volume=2021&rft.issue=1&rft_id=info:doi/10.1088%2F1475-7516%2F2021%2F01%2F001&rft.externalDocID=1851224
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1475-7516&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1475-7516&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1475-7516&client=summon