Development of a Machine Learning Model to Predict Outcomes and Cost After Cardiac Surgery

Machine learning (ML) algorithms may enhance outcomes prediction and help guide clinical decision making. This study aimed to develop and validate a ML model that predicts postoperative outcomes and costs after cardiac surgery. The Society of Thoracic Surgeons registry data from 4874 patients who un...

Full description

Saved in:
Bibliographic Details
Published inThe Annals of thoracic surgery Vol. 115; no. 6; pp. 1533 - 1542
Main Authors Zea-Vera, Rodrigo, Ryan, Christopher T., Navarro, Sergio M., Havelka, Jim, Wall, Matthew J., Coselli, Joseph S., Rosengart, Todd K., Chatterjee, Subhasis, Ghanta, Ravi K.
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier Inc 01.06.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Machine learning (ML) algorithms may enhance outcomes prediction and help guide clinical decision making. This study aimed to develop and validate a ML model that predicts postoperative outcomes and costs after cardiac surgery. The Society of Thoracic Surgeons registry data from 4874 patients who underwent cardiac surgery (56% coronary artery bypass grafting, 42% valve surgery, 19% aortic surgery) at our institution were divided into training (80%) and testing (20%) datasets. The Extreme Gradient Boosting decision-tree ML algorithms were trained to predict three outcomes: operative mortality, major morbidity or mortality, and Medicare outlier high hospitalization cost. Algorithm performance was determined using accuracy, F1 score, and area under the precision-recall curve (AUC-PR). The ML algorithms were validated in index surgery cases with The Society of Thoracic Surgeons risk scores for mortality and major morbidities and with logistic regression and were then applied to nonindex cases. The ML algorithms with 25 input parameters predicted operative mortality (accuracy 95%; F1 0.31; AUC-PR 0.21), major morbidity or mortality (accuracy 71%, F1 0.47; AUC-PR 0.47), and high cost (accuracy 84%; F1 0.62; AUC-PR 0.65). Preoperative creatinine, complete blood count, patient height and weight, ventricular function, and liver dysfunction were important predictors for all outcomes. For patients undergoing nonindex cardiac operations, the ML model achieved an AUC-PR of 0.15 (95% CI, 0.05-0.32) for mortality and 0.59 (95% CI, 0.51-0.68) for major morbidity or mortality. The extreme gradient boosting ML algorithms can predict mortality, major morbidity, and high cost after cardiac surgery, including operations without established risk models. These ML algorithms may refine risk prediction after cardiac surgery for a wide range of procedures. [Display omitted]
AbstractList BACKGROUNDMachine learning (ML) algorithms may enhance outcomes prediction and help guide clinical decision making. This study aimed to develop and validate a ML model that predicts postoperative outcomes and costs after cardiac surgery. METHODSThe Society of Thoracic Surgeons registry data from 4874 patients who underwent cardiac surgery (56% coronary artery bypass grafting, 42% valve surgery, 19% aortic surgery) at our institution were divided into training (80%) and testing (20%) datasets. The Extreme Gradient Boosting decision-tree ML algorithms were trained to predict three outcomes: operative mortality, major morbidity or mortality, and Medicare outlier high hospitalization cost. Algorithm performance was determined using accuracy, F1 score, and area under the precision-recall curve (AUC-PR). The ML algorithms were validated in index surgery cases with The Society of Thoracic Surgeons risk scores for mortality and major morbidities and with logistic regression and were then applied to nonindex cases. RESULTSThe ML algorithms with 25 input parameters predicted operative mortality (accuracy 95%; F1 0.31; AUC-PR 0.21), major morbidity or mortality (accuracy 71%, F1 0.47; AUC-PR 0.47), and high cost (accuracy 84%; F1 0.62; AUC-PR 0.65). Preoperative creatinine, complete blood count, patient height and weight, ventricular function, and liver dysfunction were important predictors for all outcomes. For patients undergoing nonindex cardiac operations, the ML model achieved an AUC-PR of 0.15 (95% CI, 0.05-0.32) for mortality and 0.59 (95% CI, 0.51-0.68) for major morbidity or mortality. CONCLUSIONSThe extreme gradient boosting ML algorithms can predict mortality, major morbidity, and high cost after cardiac surgery, including operations without established risk models. These ML algorithms may refine risk prediction after cardiac surgery for a wide range of procedures.
Machine learning (ML) algorithms may enhance outcomes prediction and help guide clinical decision making. This study aimed to develop and validate a ML model that predicts postoperative outcomes and costs after cardiac surgery. The Society of Thoracic Surgeons registry data from 4874 patients who underwent cardiac surgery (56% coronary artery bypass grafting, 42% valve surgery, 19% aortic surgery) at our institution were divided into training (80%) and testing (20%) datasets. The Extreme Gradient Boosting decision-tree ML algorithms were trained to predict three outcomes: operative mortality, major morbidity or mortality, and Medicare outlier high hospitalization cost. Algorithm performance was determined using accuracy, F1 score, and area under the precision-recall curve (AUC-PR). The ML algorithms were validated in index surgery cases with The Society of Thoracic Surgeons risk scores for mortality and major morbidities and with logistic regression and were then applied to nonindex cases. The ML algorithms with 25 input parameters predicted operative mortality (accuracy 95%; F1 0.31; AUC-PR 0.21), major morbidity or mortality (accuracy 71%, F1 0.47; AUC-PR 0.47), and high cost (accuracy 84%; F1 0.62; AUC-PR 0.65). Preoperative creatinine, complete blood count, patient height and weight, ventricular function, and liver dysfunction were important predictors for all outcomes. For patients undergoing nonindex cardiac operations, the ML model achieved an AUC-PR of 0.15 (95% CI, 0.05-0.32) for mortality and 0.59 (95% CI, 0.51-0.68) for major morbidity or mortality. The extreme gradient boosting ML algorithms can predict mortality, major morbidity, and high cost after cardiac surgery, including operations without established risk models. These ML algorithms may refine risk prediction after cardiac surgery for a wide range of procedures.
Machine learning (ML) algorithms may enhance outcomes prediction and help guide clinical decision making. This study aimed to develop and validate a ML model that predicts postoperative outcomes and costs after cardiac surgery. The Society of Thoracic Surgeons registry data from 4874 patients who underwent cardiac surgery (56% coronary artery bypass grafting, 42% valve surgery, 19% aortic surgery) at our institution were divided into training (80%) and testing (20%) datasets. The Extreme Gradient Boosting decision-tree ML algorithms were trained to predict three outcomes: operative mortality, major morbidity or mortality, and Medicare outlier high hospitalization cost. Algorithm performance was determined using accuracy, F1 score, and area under the precision-recall curve (AUC-PR). The ML algorithms were validated in index surgery cases with The Society of Thoracic Surgeons risk scores for mortality and major morbidities and with logistic regression and were then applied to nonindex cases. The ML algorithms with 25 input parameters predicted operative mortality (accuracy 95%; F1 0.31; AUC-PR 0.21), major morbidity or mortality (accuracy 71%, F1 0.47; AUC-PR 0.47), and high cost (accuracy 84%; F1 0.62; AUC-PR 0.65). Preoperative creatinine, complete blood count, patient height and weight, ventricular function, and liver dysfunction were important predictors for all outcomes. For patients undergoing nonindex cardiac operations, the ML model achieved an AUC-PR of 0.15 (95% CI, 0.05-0.32) for mortality and 0.59 (95% CI, 0.51-0.68) for major morbidity or mortality. The extreme gradient boosting ML algorithms can predict mortality, major morbidity, and high cost after cardiac surgery, including operations without established risk models. These ML algorithms may refine risk prediction after cardiac surgery for a wide range of procedures. [Display omitted]
Author Rosengart, Todd K.
Ryan, Christopher T.
Chatterjee, Subhasis
Ghanta, Ravi K.
Havelka, Jim
Coselli, Joseph S.
Navarro, Sergio M.
Wall, Matthew J.
Zea-Vera, Rodrigo
Author_xml – sequence: 1
  givenname: Rodrigo
  surname: Zea-Vera
  fullname: Zea-Vera, Rodrigo
  organization: Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas
– sequence: 2
  givenname: Christopher T.
  surname: Ryan
  fullname: Ryan, Christopher T.
  organization: Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas
– sequence: 3
  givenname: Sergio M.
  surname: Navarro
  fullname: Navarro, Sergio M.
  organization: Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas
– sequence: 4
  givenname: Jim
  surname: Havelka
  fullname: Havelka, Jim
  organization: InformAI, Houston, Texas
– sequence: 5
  givenname: Matthew J.
  surname: Wall
  fullname: Wall, Matthew J.
  organization: Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas
– sequence: 6
  givenname: Joseph S.
  surname: Coselli
  fullname: Coselli, Joseph S.
  organization: Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas
– sequence: 7
  givenname: Todd K.
  surname: Rosengart
  fullname: Rosengart, Todd K.
  organization: Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas
– sequence: 8
  givenname: Subhasis
  surname: Chatterjee
  fullname: Chatterjee, Subhasis
  organization: Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas
– sequence: 9
  givenname: Ravi K.
  orcidid: 0000-0003-3299-2668
  surname: Ghanta
  fullname: Ghanta, Ravi K.
  email: ravi.ghanta@bcm.edu
  organization: Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35917942$$D View this record in MEDLINE/PubMed
BookMark eNqFkMFO3DAQhi1EVRboKyAfuSS1ndiJj7C0UGkRlVouvVjOZAJeJfZiO0i8PUFL2yOn0Wi-f0bzHZNDHzwSQjkrOePq67a0-TFEC2mOpWBClEyVTMoDsuJSikIJqQ_JijFWFbVu5BE5Tmm7tGIZfyZHldS80bVYkT9X-Ixj2E3oMw0DtfTWwqPzSDdoo3f-gd6GHkeaA_0ZsXeQ6d2cIUyYqPU9XYeU6cWQMdK1jb2zQH_N8QHjyyn5NNgx4Zf3ekLuv3_7vb4pNnfXP9YXmwKqps6FsEzXmncA1iK0rJXIFegWre4UqIFXrRZd10LVVUx2bSdkpUWjtATZ93VTnZDz_d5dDE8zpmwmlwDH0XoMczJC6UY1shF6Qds9CjGkFHEwu-gmG18MZ-bNrNma_2bNm1nDlFnMLtGz9ytzN2H_L_hX5QJc7gFcfn12GE0Chx4WZxEhmz64j6-8AkTMkPM
CitedBy_id crossref_primary_10_1097_SLA_0000000000005853
crossref_primary_10_1152_ajplung_00250_2022
crossref_primary_10_1016_j_athoracsur_2023_04_019
crossref_primary_10_1016_j_health_2024_100351
crossref_primary_10_1016_j_jtcvs_2024_04_027
crossref_primary_10_1016_j_surg_2024_03_051
crossref_primary_10_1016_j_athoracsur_2022_07_026
crossref_primary_10_1016_j_jtcvs_2024_04_022
Cites_doi 10.1016/j.athoracsur.2019.09.042
10.1016/j.jtcvs.2020.08.091
10.1213/ANE.0000000000004636
10.1016/j.jtcvs.2019.07.017
10.1097/SLA.0000000000002956
10.1016/j.athoracsur.2021.08.040
10.1097/CRD.0000000000000294
10.1016/j.jtcvs.2018.03.109
10.1016/j.jtcvs.2020.07.105
10.1016/j.athoracsur.2014.05.073
10.1038/s41746-018-0029-1
10.1001/jamanetworkopen.2019.6835
10.1093/ejcts/ezs043
10.1097/MLR.0000000000001204
10.1016/j.athoracsur.2021.08.028
10.1016/j.jtcvs.2005.12.055
10.1016/j.jacc.2018.03.521
10.1007/s40708-017-0065-7
10.1016/j.athoracsur.2019.09.049
10.1016/j.athoracsur.2018.12.022
10.1016/j.athoracsur.2021.03.043
10.1016/j.athoracsur.2019.11.003
10.3389/fgene.2019.00600
10.1016/S2213-2600(18)30300-X
10.1016/j.jtcvs.2012.07.055
ContentType Journal Article
Copyright 2023 The Society of Thoracic Surgeons
Copyright © 2023 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2023 The Society of Thoracic Surgeons
– notice: Copyright © 2023 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.
DBID CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7X8
DOI 10.1016/j.athoracsur.2022.06.055
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
EISSN 1552-6259
EndPage 1542
ExternalDocumentID 10_1016_j_athoracsur_2022_06_055
35917942
S0003497522009973
Genre Journal Article
GeographicLocations United States
GeographicLocations_xml – name: United States
GroupedDBID ---
--K
.1-
.55
.FO
.GJ
0R~
1B1
1P~
1~5
23M
3O-
4.4
457
4G.
53G
5GY
5RE
5VS
6J9
7-5
71M
AAEDT
AAEDW
AAEJM
AAIAV
AALRI
AAQFI
AAQQT
AAQXK
AAXUO
ABJNI
ABLJU
ABMAC
ABOCM
ACGFO
ACGFS
ACIUM
ACRZS
ADBBV
ADMUD
ADPAM
AENEX
AEVXI
AFCTW
AFFNX
AFRHN
AFTJW
AGHFR
AGZHU
AHPSJ
AI.
AITUG
AJJEV
AJUYK
ALMA_UNASSIGNED_HOLDINGS
ALXNB
AMRAJ
ASPBG
AVWKF
AZFZN
BAWUL
BELOY
C5W
CS3
DIK
E3Z
EBS
EFJIC
EJD
F5P
FDB
FEDTE
FGOYB
GBLVA
GX1
HVGLF
HZ~
IH2
IHE
J1W
J5H
K-O
KOM
L7B
M41
MO0
N9A
NQ-
O9-
OA-
OK1
OL.
OVD
P2P
P6G
PC.
R2-
RIG
ROL
RPZ
SES
SSZ
TEORI
TR2
UDS
UNMZH
UV1
VH1
W8F
X7M
XH2
XPP
Z5R
ZA5
ZGI
ZXP
AKRWK
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
ACRPL
ADNMO
CITATION
7X8
ID FETCH-LOGICAL-c374t-2a09491bccaaec8085e16c98ea9b6c6f13892bb8c3b305b8b253927695c5dd473
ISSN 0003-4975
IngestDate Tue Dec 03 23:24:09 EST 2024
Fri Dec 06 01:13:47 EST 2024
Sat Sep 28 08:16:29 EDT 2024
Fri Feb 23 02:40:21 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords PROMM
STS
PROM
XGBoost
AUC-PR
ROC
CABG
ML
Language English
License Copyright © 2023 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c374t-2a09491bccaaec8085e16c98ea9b6c6f13892bb8c3b305b8b253927695c5dd473
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-3299-2668
PMID 35917942
PQID 2697675729
PQPubID 23479
PageCount 10
ParticipantIDs proquest_miscellaneous_2697675729
crossref_primary_10_1016_j_athoracsur_2022_06_055
pubmed_primary_35917942
elsevier_sciencedirect_doi_10_1016_j_athoracsur_2022_06_055
PublicationCentury 2000
PublicationDate June 2023
2023-06-00
20230601
PublicationDateYYYYMMDD 2023-06-01
PublicationDate_xml – month: 06
  year: 2023
  text: June 2023
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle The Annals of thoracic surgery
PublicationTitleAlternate Ann Thorac Surg
PublicationYear 2023
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Johnson, Torres Soto, Glicksberg (bib4) 2018; 71
Patlolla, Schaff, Dearani, Stulak, Crestanello, Greason (bib17) 2022; 114
Chhabra, Nuliyalu, Dimick, Nathan (bib28) 2019; 57
Kilic (bib5) 2020; 109
LaPar, Hawkins, McMurry (bib27) 2018; 156
Zea-Vera, Ryan, Havelka (bib11) 2022; 114
Ji, Tong, Liu, Shi (bib20) 2019; 10
Mortazavi, Bucholz, Desai (bib9) 2019; 2
Fernandez (bib13) 2020; 109
Torlay, Perrone-Bertolotti, Thomas, Baciu (bib19) 2017; 4
Kennedy, LaPar, Kern (bib26) 2013; 146
Miller (bib30) 2020; 28
Meyer, Zverinski, Pfahringer (bib6) 2018; 6
Osnabrugge, Speir, Head (bib29) 2014; 98
Rajkomar, Oren, Chen (bib31) 2018; 1
Ghanta, LaPar, Zhang (bib15) 2017; 6
Bertsimas, Dunn, Velmahos, Kaafarani (bib8) 2018; 268
Ishwaran, Blackstone (bib23) 2022; 163
Bowdish, D'Agostino, Thourani (bib3) 2021; 111
O'Brien, Feng, He (bib1) 2018; 105
Centers for Medicare & Medicaid Services (bib18)
Charles, Mehaffey, Hawkins (bib25) 2019; 107
Blackstone, Swain, McCardle, Adams (bib14) 2019; 158
Nilsson, Ohlsson, Thulin, Höglund, Nashef, Brandt (bib24) 2006; 132
Nashef, Roques, Sharples (bib2) 2012; 41
bib16
Chen, Guestrin (bib21) 2016
Benedetto, Dimagli, Sinha (bib12) 2022; 163
Solomon, Saxena, Neradilek (bib7) 2020; 130
Bergstra, Bengio (bib22) 2012; 13
Kilic, Goyal, Miller (bib10) 2020; 109
35921856 - Ann Thorac Surg. 2023 Jun;115(6):1542-1543
Ghanta (10.1016/j.athoracsur.2022.06.055_bib15) 2017; 6
Bergstra (10.1016/j.athoracsur.2022.06.055_bib22) 2012; 13
LaPar (10.1016/j.athoracsur.2022.06.055_bib27) 2018; 156
Zea-Vera (10.1016/j.athoracsur.2022.06.055_bib11) 2022; 114
Centers for Medicare & Medicaid Services (10.1016/j.athoracsur.2022.06.055_bib18)
Nashef (10.1016/j.athoracsur.2022.06.055_bib2) 2012; 41
Ji (10.1016/j.athoracsur.2022.06.055_bib20) 2019; 10
Torlay (10.1016/j.athoracsur.2022.06.055_bib19) 2017; 4
Miller (10.1016/j.athoracsur.2022.06.055_bib30) 2020; 28
Meyer (10.1016/j.athoracsur.2022.06.055_bib6) 2018; 6
Kennedy (10.1016/j.athoracsur.2022.06.055_bib26) 2013; 146
Osnabrugge (10.1016/j.athoracsur.2022.06.055_bib29) 2014; 98
Charles (10.1016/j.athoracsur.2022.06.055_bib25) 2019; 107
Johnson (10.1016/j.athoracsur.2022.06.055_bib4) 2018; 71
Solomon (10.1016/j.athoracsur.2022.06.055_bib7) 2020; 130
Chhabra (10.1016/j.athoracsur.2022.06.055_bib28) 2019; 57
Nilsson (10.1016/j.athoracsur.2022.06.055_bib24) 2006; 132
Blackstone (10.1016/j.athoracsur.2022.06.055_bib14) 2019; 158
Kilic (10.1016/j.athoracsur.2022.06.055_bib5) 2020; 109
Benedetto (10.1016/j.athoracsur.2022.06.055_bib12) 2022; 163
Mortazavi (10.1016/j.athoracsur.2022.06.055_bib9) 2019; 2
Chen (10.1016/j.athoracsur.2022.06.055_bib21) 2016
Ishwaran (10.1016/j.athoracsur.2022.06.055_bib23) 2022; 163
Kilic (10.1016/j.athoracsur.2022.06.055_bib10) 2020; 109
Rajkomar (10.1016/j.athoracsur.2022.06.055_bib31) 2018; 1
Patlolla (10.1016/j.athoracsur.2022.06.055_bib17) 2022; 114
Bertsimas (10.1016/j.athoracsur.2022.06.055_bib8) 2018; 268
Fernandez (10.1016/j.athoracsur.2022.06.055_bib13) 2020; 109
O'Brien (10.1016/j.athoracsur.2022.06.055_bib1) 2018; 105
Bowdish (10.1016/j.athoracsur.2022.06.055_bib3) 2021; 111
References_xml – volume: 6
  year: 2017
  ident: bib15
  article-title: Obesity increases risk-adjusted morbidity, mortality, and cost following cardiac surgery
  publication-title: J Am Heart Assoc
  contributor:
    fullname: Zhang
– volume: 146
  start-page: 631
  year: 2013
  end-page: 637
  ident: bib26
  article-title: Does The Society of Thoracic Surgeons risk score accurately predict operative mortality for patients with pulmonary hypertension?
  publication-title: J Thorac Cardiovasc Surg
  contributor:
    fullname: Kern
– volume: 105
  start-page: 1419
  year: 2018
  end-page: 1428
  ident: bib1
  article-title: The Society of Thoracic Surgeons 2018 adult cardiac surgery risk models: part 2—statistical methods and results
  publication-title: Ann Thorac Surg
  contributor:
    fullname: He
– volume: 111
  start-page: 1770
  year: 2021
  end-page: 1780
  ident: bib3
  article-title: STS Adult Cardiac Surgery Database: 2021 update on outcomes, quality, and research
  publication-title: Ann Thorac Surg
  contributor:
    fullname: Thourani
– volume: 6
  start-page: 905
  year: 2018
  end-page: 914
  ident: bib6
  article-title: Machine learning for real-time prediction of complications in critical care: a retrospective study
  publication-title: Lancet Respir Med
  contributor:
    fullname: Pfahringer
– volume: 109
  start-page: 1811
  year: 2020
  end-page: 1819
  ident: bib10
  article-title: Predictive utility of a machine learning algorithm in estimating mortality risk in cardiac surgery
  publication-title: Ann Thorac Surg
  contributor:
    fullname: Miller
– volume: 156
  start-page: 66
  year: 2018
  end-page: 74.e2
  ident: bib27
  article-title: Investigators for the Virginia Cardiac Services Quality Initiative. Preoperative anemia vs blood transfusion: which is the culprit for worse outcomes in cardiac surgery?
  publication-title: J Thorac Cardiovasc Surg
  contributor:
    fullname: McMurry
– volume: 163
  start-page: 2075
  year: 2022
  end-page: 2087
  ident: bib12
  article-title: Machine learning improves mortality risk prediction after cardiac surgery: systematic review and meta-analysis
  publication-title: J Thorac Cardiovasc Surg
  contributor:
    fullname: Sinha
– volume: 114
  start-page: 711
  year: 2022
  end-page: 719
  ident: bib11
  article-title: Machine learning to predict outcomes and cost by phase of care after coronary artery bypass grafting
  publication-title: Ann Thorac Surg
  contributor:
    fullname: Havelka
– volume: 41
  start-page: 734
  year: 2012
  end-page: 744
  ident: bib2
  article-title: EuroSCORE II
  publication-title: Eur J Cardiothorac Surg
  contributor:
    fullname: Sharples
– volume: 132
  start-page: 12
  year: 2006
  end-page: 19
  ident: bib24
  article-title: Risk factor identification and mortality prediction in cardiac surgery using artificial neural networks
  publication-title: J Thorac Cardiovasc Surg
  contributor:
    fullname: Brandt
– volume: 98
  start-page: 1286
  year: 2014
  end-page: 1293
  ident: bib29
  article-title: Prediction of costs and length of stay in coronary artery bypass grafting
  publication-title: Ann Thorac Surg
  contributor:
    fullname: Head
– start-page: 785
  year: 2016
  end-page: 794
  ident: bib21
  article-title: XGBoost: a scalable tree boosting system
  publication-title: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
  contributor:
    fullname: Guestrin
– volume: 114
  start-page: 659
  year: 2022
  end-page: 666
  ident: bib17
  article-title: Aortic stenosis and coronary artery disease: cost of transcatheter vs surgical management
  publication-title: Ann Thorac Surg
  contributor:
    fullname: Greason
– ident: bib18
  article-title: FY 2019 final rule and correction notice data files
  contributor:
    fullname: Centers for Medicare & Medicaid Services
– volume: 268
  start-page: 574
  year: 2018
  end-page: 583
  ident: bib8
  article-title: Surgical risk is not linear: derivation and validation of a novel, user-friendly, and machine-learning-based Predictive Optimal Trees in Emergency Surgery Risk (POTTER) calculator
  publication-title: Ann Surg
  contributor:
    fullname: Kaafarani
– volume: 109
  start-page: 1323
  year: 2020
  end-page: 1329
  ident: bib5
  article-title: Artificial intelligence and machine learning in cardiovascular health care
  publication-title: Ann Thorac Surg
  contributor:
    fullname: Kilic
– volume: 71
  start-page: 2668
  year: 2018
  end-page: 2679
  ident: bib4
  article-title: Artificial intelligence in cardiology
  publication-title: J Am Coll Cardiol
  contributor:
    fullname: Glicksberg
– volume: 13
  start-page: 281
  year: 2012
  end-page: 305
  ident: bib22
  article-title: Random search for hyper-parameter optimization
  publication-title: J Mach Learn Res
  contributor:
    fullname: Bengio
– volume: 163
  start-page: 2088
  year: 2022
  end-page: 2090
  ident: bib23
  article-title: Commentary. Dabblers: beware of hidden dangers in machine-learning comparisons
  publication-title: J Thorac Cardiovasc Surg
  contributor:
    fullname: Blackstone
– volume: 107
  start-page: 1706
  year: 2019
  end-page: 1712
  ident: bib25
  article-title: Investigators for the Virginia Cardiac Services Quality Initiative. Socioeconomic Distressed Communities Index predicts risk-adjusted mortality after cardiac surgery
  publication-title: Ann Thorac Surg
  contributor:
    fullname: Hawkins
– volume: 57
  start-page: 869
  year: 2019
  end-page: 874
  ident: bib28
  article-title: Who will be the costliest patients? Using recent claims to predict expensive surgical episodes
  publication-title: Med Care
  contributor:
    fullname: Nathan
– ident: bib16
  article-title: Adult Cardiac Surgery Database data collection
– volume: 130
  start-page: 1201
  year: 2020
  end-page: 1210
  ident: bib7
  article-title: Forecasting a crisis: machine-learning models predict occurrence of intraoperative bradycardia associated with hypotension
  publication-title: Anesth Analg
  contributor:
    fullname: Neradilek
– volume: 109
  start-page: 10
  year: 2020
  end-page: 13
  ident: bib13
  article-title: The future is now: the 2020 evolution of The Society of Thoracic Surgeons National Database
  publication-title: Ann Thorac Surg
  contributor:
    fullname: Fernandez
– volume: 158
  start-page: 1120
  year: 2019
  end-page: 1126
  ident: bib14
  article-title: Governance Committee, American Association for Thoracic Surgery Quality Assessment Program. A comprehensive American Association for Thoracic Surgery quality program for the 21st century
  publication-title: J Thorac Cardiovasc Surg
  contributor:
    fullname: Adams
– volume: 10
  start-page: 600
  year: 2019
  ident: bib20
  article-title: Five-feature model for developing the classifier for synergistic vs. antagonistic drug combinations built by XGBoost
  publication-title: Front Genet
  contributor:
    fullname: Shi
– volume: 28
  start-page: 53
  year: 2020
  end-page: 64
  ident: bib30
  article-title: Machine intelligence in cardiovascular medicine
  publication-title: Cardiol Rev
  contributor:
    fullname: Miller
– volume: 2
  year: 2019
  ident: bib9
  article-title: Comparison of machine learning methods with national cardiovascular data registry models for prediction of risk of bleeding after percutaneous coronary intervention
  publication-title: JAMA Netw Open
  contributor:
    fullname: Desai
– volume: 1
  start-page: 18
  year: 2018
  ident: bib31
  article-title: Scalable and accurate deep learning with electronic health records
  publication-title: NPJ Digit Med
  contributor:
    fullname: Chen
– volume: 4
  start-page: 159
  year: 2017
  end-page: 169
  ident: bib19
  article-title: Machine learning-XGBoost analysis of language networks to classify patients with epilepsy
  publication-title: Brain Inform
  contributor:
    fullname: Baciu
– volume: 109
  start-page: 1323
  year: 2020
  ident: 10.1016/j.athoracsur.2022.06.055_bib5
  article-title: Artificial intelligence and machine learning in cardiovascular health care
  publication-title: Ann Thorac Surg
  doi: 10.1016/j.athoracsur.2019.09.042
  contributor:
    fullname: Kilic
– volume: 105
  start-page: 1419
  year: 2018
  ident: 10.1016/j.athoracsur.2022.06.055_bib1
  article-title: The Society of Thoracic Surgeons 2018 adult cardiac surgery risk models: part 2—statistical methods and results
  publication-title: Ann Thorac Surg
  contributor:
    fullname: O'Brien
– volume: 163
  start-page: 2088
  year: 2022
  ident: 10.1016/j.athoracsur.2022.06.055_bib23
  article-title: Commentary. Dabblers: beware of hidden dangers in machine-learning comparisons
  publication-title: J Thorac Cardiovasc Surg
  doi: 10.1016/j.jtcvs.2020.08.091
  contributor:
    fullname: Ishwaran
– volume: 130
  start-page: 1201
  year: 2020
  ident: 10.1016/j.athoracsur.2022.06.055_bib7
  article-title: Forecasting a crisis: machine-learning models predict occurrence of intraoperative bradycardia associated with hypotension
  publication-title: Anesth Analg
  doi: 10.1213/ANE.0000000000004636
  contributor:
    fullname: Solomon
– volume: 158
  start-page: 1120
  year: 2019
  ident: 10.1016/j.athoracsur.2022.06.055_bib14
  article-title: Governance Committee, American Association for Thoracic Surgery Quality Assessment Program. A comprehensive American Association for Thoracic Surgery quality program for the 21st century
  publication-title: J Thorac Cardiovasc Surg
  doi: 10.1016/j.jtcvs.2019.07.017
  contributor:
    fullname: Blackstone
– start-page: 785
  year: 2016
  ident: 10.1016/j.athoracsur.2022.06.055_bib21
  article-title: XGBoost: a scalable tree boosting system
  contributor:
    fullname: Chen
– volume: 268
  start-page: 574
  year: 2018
  ident: 10.1016/j.athoracsur.2022.06.055_bib8
  article-title: Surgical risk is not linear: derivation and validation of a novel, user-friendly, and machine-learning-based Predictive Optimal Trees in Emergency Surgery Risk (POTTER) calculator
  publication-title: Ann Surg
  doi: 10.1097/SLA.0000000000002956
  contributor:
    fullname: Bertsimas
– volume: 114
  start-page: 711
  year: 2022
  ident: 10.1016/j.athoracsur.2022.06.055_bib11
  article-title: Machine learning to predict outcomes and cost by phase of care after coronary artery bypass grafting
  publication-title: Ann Thorac Surg
  doi: 10.1016/j.athoracsur.2021.08.040
  contributor:
    fullname: Zea-Vera
– volume: 28
  start-page: 53
  year: 2020
  ident: 10.1016/j.athoracsur.2022.06.055_bib30
  article-title: Machine intelligence in cardiovascular medicine
  publication-title: Cardiol Rev
  doi: 10.1097/CRD.0000000000000294
  contributor:
    fullname: Miller
– volume: 156
  start-page: 66
  year: 2018
  ident: 10.1016/j.athoracsur.2022.06.055_bib27
  article-title: Investigators for the Virginia Cardiac Services Quality Initiative. Preoperative anemia vs blood transfusion: which is the culprit for worse outcomes in cardiac surgery?
  publication-title: J Thorac Cardiovasc Surg
  doi: 10.1016/j.jtcvs.2018.03.109
  contributor:
    fullname: LaPar
– volume: 163
  start-page: 2075
  year: 2022
  ident: 10.1016/j.athoracsur.2022.06.055_bib12
  article-title: Machine learning improves mortality risk prediction after cardiac surgery: systematic review and meta-analysis
  publication-title: J Thorac Cardiovasc Surg
  doi: 10.1016/j.jtcvs.2020.07.105
  contributor:
    fullname: Benedetto
– volume: 98
  start-page: 1286
  year: 2014
  ident: 10.1016/j.athoracsur.2022.06.055_bib29
  article-title: Prediction of costs and length of stay in coronary artery bypass grafting
  publication-title: Ann Thorac Surg
  doi: 10.1016/j.athoracsur.2014.05.073
  contributor:
    fullname: Osnabrugge
– volume: 1
  start-page: 18
  year: 2018
  ident: 10.1016/j.athoracsur.2022.06.055_bib31
  article-title: Scalable and accurate deep learning with electronic health records
  publication-title: NPJ Digit Med
  doi: 10.1038/s41746-018-0029-1
  contributor:
    fullname: Rajkomar
– volume: 2
  year: 2019
  ident: 10.1016/j.athoracsur.2022.06.055_bib9
  article-title: Comparison of machine learning methods with national cardiovascular data registry models for prediction of risk of bleeding after percutaneous coronary intervention
  publication-title: JAMA Netw Open
  doi: 10.1001/jamanetworkopen.2019.6835
  contributor:
    fullname: Mortazavi
– volume: 6
  year: 2017
  ident: 10.1016/j.athoracsur.2022.06.055_bib15
  article-title: Obesity increases risk-adjusted morbidity, mortality, and cost following cardiac surgery
  publication-title: J Am Heart Assoc
  contributor:
    fullname: Ghanta
– volume: 41
  start-page: 734
  year: 2012
  ident: 10.1016/j.athoracsur.2022.06.055_bib2
  article-title: EuroSCORE II
  publication-title: Eur J Cardiothorac Surg
  doi: 10.1093/ejcts/ezs043
  contributor:
    fullname: Nashef
– volume: 57
  start-page: 869
  year: 2019
  ident: 10.1016/j.athoracsur.2022.06.055_bib28
  article-title: Who will be the costliest patients? Using recent claims to predict expensive surgical episodes
  publication-title: Med Care
  doi: 10.1097/MLR.0000000000001204
  contributor:
    fullname: Chhabra
– volume: 114
  start-page: 659
  year: 2022
  ident: 10.1016/j.athoracsur.2022.06.055_bib17
  article-title: Aortic stenosis and coronary artery disease: cost of transcatheter vs surgical management
  publication-title: Ann Thorac Surg
  doi: 10.1016/j.athoracsur.2021.08.028
  contributor:
    fullname: Patlolla
– volume: 132
  start-page: 12
  year: 2006
  ident: 10.1016/j.athoracsur.2022.06.055_bib24
  article-title: Risk factor identification and mortality prediction in cardiac surgery using artificial neural networks
  publication-title: J Thorac Cardiovasc Surg
  doi: 10.1016/j.jtcvs.2005.12.055
  contributor:
    fullname: Nilsson
– volume: 71
  start-page: 2668
  year: 2018
  ident: 10.1016/j.athoracsur.2022.06.055_bib4
  article-title: Artificial intelligence in cardiology
  publication-title: J Am Coll Cardiol
  doi: 10.1016/j.jacc.2018.03.521
  contributor:
    fullname: Johnson
– volume: 4
  start-page: 159
  year: 2017
  ident: 10.1016/j.athoracsur.2022.06.055_bib19
  article-title: Machine learning-XGBoost analysis of language networks to classify patients with epilepsy
  publication-title: Brain Inform
  doi: 10.1007/s40708-017-0065-7
  contributor:
    fullname: Torlay
– ident: 10.1016/j.athoracsur.2022.06.055_bib18
  contributor:
    fullname: Centers for Medicare & Medicaid Services
– volume: 109
  start-page: 1811
  year: 2020
  ident: 10.1016/j.athoracsur.2022.06.055_bib10
  article-title: Predictive utility of a machine learning algorithm in estimating mortality risk in cardiac surgery
  publication-title: Ann Thorac Surg
  doi: 10.1016/j.athoracsur.2019.09.049
  contributor:
    fullname: Kilic
– volume: 107
  start-page: 1706
  year: 2019
  ident: 10.1016/j.athoracsur.2022.06.055_bib25
  article-title: Investigators for the Virginia Cardiac Services Quality Initiative. Socioeconomic Distressed Communities Index predicts risk-adjusted mortality after cardiac surgery
  publication-title: Ann Thorac Surg
  doi: 10.1016/j.athoracsur.2018.12.022
  contributor:
    fullname: Charles
– volume: 111
  start-page: 1770
  year: 2021
  ident: 10.1016/j.athoracsur.2022.06.055_bib3
  article-title: STS Adult Cardiac Surgery Database: 2021 update on outcomes, quality, and research
  publication-title: Ann Thorac Surg
  doi: 10.1016/j.athoracsur.2021.03.043
  contributor:
    fullname: Bowdish
– volume: 13
  start-page: 281
  year: 2012
  ident: 10.1016/j.athoracsur.2022.06.055_bib22
  article-title: Random search for hyper-parameter optimization
  publication-title: J Mach Learn Res
  contributor:
    fullname: Bergstra
– volume: 109
  start-page: 10
  year: 2020
  ident: 10.1016/j.athoracsur.2022.06.055_bib13
  article-title: The future is now: the 2020 evolution of The Society of Thoracic Surgeons National Database
  publication-title: Ann Thorac Surg
  doi: 10.1016/j.athoracsur.2019.11.003
  contributor:
    fullname: Fernandez
– volume: 10
  start-page: 600
  year: 2019
  ident: 10.1016/j.athoracsur.2022.06.055_bib20
  article-title: Five-feature model for developing the classifier for synergistic vs. antagonistic drug combinations built by XGBoost
  publication-title: Front Genet
  doi: 10.3389/fgene.2019.00600
  contributor:
    fullname: Ji
– volume: 6
  start-page: 905
  year: 2018
  ident: 10.1016/j.athoracsur.2022.06.055_bib6
  article-title: Machine learning for real-time prediction of complications in critical care: a retrospective study
  publication-title: Lancet Respir Med
  doi: 10.1016/S2213-2600(18)30300-X
  contributor:
    fullname: Meyer
– volume: 146
  start-page: 631
  year: 2013
  ident: 10.1016/j.athoracsur.2022.06.055_bib26
  article-title: Does The Society of Thoracic Surgeons risk score accurately predict operative mortality for patients with pulmonary hypertension?
  publication-title: J Thorac Cardiovasc Surg
  doi: 10.1016/j.jtcvs.2012.07.055
  contributor:
    fullname: Kennedy
SSID ssj0002155
Score 2.4956264
Snippet Machine learning (ML) algorithms may enhance outcomes prediction and help guide clinical decision making. This study aimed to develop and validate a ML model...
BACKGROUNDMachine learning (ML) algorithms may enhance outcomes prediction and help guide clinical decision making. This study aimed to develop and validate a...
SourceID proquest
crossref
pubmed
elsevier
SourceType Aggregation Database
Index Database
Publisher
StartPage 1533
SubjectTerms Aged
Cardiac Surgical Procedures - adverse effects
Coronary Artery Bypass - methods
Humans
Machine Learning
Medicare
Thoracic Surgery
United States - epidemiology
Title Development of a Machine Learning Model to Predict Outcomes and Cost After Cardiac Surgery
URI https://dx.doi.org/10.1016/j.athoracsur.2022.06.055
https://www.ncbi.nlm.nih.gov/pubmed/35917942
https://search.proquest.com/docview/2697675729
Volume 115
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZK98ILYuJWYMhIvEWpGse5iaeqAk1MBYQ6MfES2Y4zOiBBbYoEf2V_dufYTpqNToy9RFWURrbPl-PvHJ8LIa_iVMH4Su7zFF038STzZcoCH7tuM6kSkXDMd56_jw-P-buT6GQwOO9FLW0aOVZ_duaV3EaqcA_kilmy_yHZ7qVwA36DfOEKEobrjWTci_ixeY5zExqp26qpp6bV2Xfklx9XeCLTeB82DYxE28rMs3rdeFPTJXxmkKJAkfyVJm36Nnd1lpuvABq1VN669yR6nrVA56DlonUBRn_dHeb8FtWVQgbeYty5ocUvLARp3LB6dbqsvfl4qxdhgt9sOO_yR99DwcJtJFWndUPsZBdd0ro2i9PBq69DkYH29mPgeGynrrduhzNYcjNxmDWY-4yZcqy29O_l8tpXtr0uGLGNczvLt2_K8U05hvxF0R2yh1UW-ZDsTY8-fT7qNnpgS1HbkBGn5wLFbPjg7lFdx36us24My1ncJ_eceUKnFmv7ZKCrB-RLD2e0LqmgDme0xRk1OKNNTR3OaIszCjijiDNqcEYdzqjD2UNy_PbNYnbou54cvgoT3vhMTDKeBRI-fKFVCoRdB7HKUi0yGau4xHNvJmWqQgk7iUwli4CBJ3EWqagoeBI-IsOqrvQTQstEA3lOJsWkAFpblKLkYQnWS1DoJMkEH5GgXav8py29kv9LViPyul3U3FFISw1zQM0N_v2ylUMOWhaPzkSl6806Z3GGVY_AEh2Rx1ZA3ZjCKMNdjT29xXifkbvbL-Y5GTarjT4AltvIFw5tFycYqj4
link.rule.ids 314,780,784,27924,27925
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Development+of+a+Machine+Learning+Model+to+Predict+Outcomes+and+Cost+After+Cardiac+Surgery&rft.jtitle=The+Annals+of+thoracic+surgery&rft.au=Zea-Vera%2C+Rodrigo&rft.au=Ryan%2C+Christopher+T.&rft.au=Navarro%2C+Sergio+M.&rft.au=Havelka%2C+Jim&rft.date=2023-06-01&rft.issn=0003-4975&rft.volume=115&rft.issue=6&rft.spage=1533&rft.epage=1542&rft_id=info:doi/10.1016%2Fj.athoracsur.2022.06.055&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_athoracsur_2022_06_055
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-4975&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-4975&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-4975&client=summon