Selenium-rich nickel cobalt bimetallic selenides with core-shell architecture enable superior hybrid energy storage devices
The continuous exploration of advanced electrode materials is of remarkable significance to revolutionize next-generation high-performance energy storage devices towards a green future. Benefiting from their electrochemically active sites and abundant redox centers, bimetallic selenides with desirab...
Saved in:
Published in | Nanoscale Vol. 12; no. 6; pp. 44 - 45 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Royal Society of Chemistry
14.02.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The continuous exploration of advanced electrode materials is of remarkable significance to revolutionize next-generation high-performance energy storage devices towards a green future. Benefiting from their electrochemically active sites and abundant redox centers, bimetallic selenides with desirable nanostructures recently have emerged as promising electrode alternatives for battery-supercapacitor hybrid (BSH) devices which demonstrate enormous potential in bridging the gap between electrochemical properties with high power densities (supercapacitors) and energy densities (batteries). Herein, employing the hydrothermal approach with solid Ni-Co spheres as precursors followed by the selenization process, selenide-rich bimetallic selenide spheres with a core-shell nanostructure were rationally designed and synthesized for use as the cathode electrode in superior BSH devices. The as-obtained (NiCo)
9
Se
8
/(NiCo)
0.85
Se (Ni-Co-Se) exhibits a high specific capacity of 164.44 mA h g
−1
at a current density of 1 A g
−1
with 85.72% capacity retention even after 5000 cycles at a current density of as high as 8 A g
−1
, suggesting its great promise in practical applications for BSH devices. By integrating activated carbon as the anode with the as-obtained bimetallic selenides as the cathode, an alkaline aqueous BSH device is fabricated and delivers a high energy density of 37.54 W h kg
−1
at a high power density of 842.7 W kg
−1
. It is found that the excellent electrochemical performances can be ascribed to facile ion and electron transport pathways, high electrical conductivity and reliable structural robustness of the prepared selenides. Moreover, the synthetic strategy presented in this paper opens up an avenue to guide the synthesis of various anion doped bimetallic compounds towards high-performance energy conversion and storage devices.
Selenide-rich bimetallic selenide spheres with core-shell nanostructure were rationally designed and synthesized towards superior battery-supercapacitor hybrid device as the cathode electrode by selenizing hydrothermal-derived Ni-Co spheres. |
---|---|
AbstractList | The continuous exploration of advanced electrode materials is of remarkable significance to revolutionize next-generation high-performance energy storage devices towards a green future. Benefiting from their electrochemically active sites and abundant redox centers, bimetallic selenides with desirable nanostructures recently have emerged as promising electrode alternatives for battery-supercapacitor hybrid (BSH) devices which demonstrate enormous potential in bridging the gap between electrochemical properties with high power densities (supercapacitors) and energy densities (batteries). Herein, employing the hydrothermal approach with solid Ni-Co spheres as precursors followed by the selenization process, selenide-rich bimetallic selenide spheres with a core-shell nanostructure were rationally designed and synthesized for use as the cathode electrode in superior BSH devices. The as-obtained (NiCo)
9
Se
8
/(NiCo)
0.85
Se (Ni-Co-Se) exhibits a high specific capacity of 164.44 mA h g
−1
at a current density of 1 A g
−1
with 85.72% capacity retention even after 5000 cycles at a current density of as high as 8 A g
−1
, suggesting its great promise in practical applications for BSH devices. By integrating activated carbon as the anode with the as-obtained bimetallic selenides as the cathode, an alkaline aqueous BSH device is fabricated and delivers a high energy density of 37.54 W h kg
−1
at a high power density of 842.7 W kg
−1
. It is found that the excellent electrochemical performances can be ascribed to facile ion and electron transport pathways, high electrical conductivity and reliable structural robustness of the prepared selenides. Moreover, the synthetic strategy presented in this paper opens up an avenue to guide the synthesis of various anion doped bimetallic compounds towards high-performance energy conversion and storage devices.
Selenide-rich bimetallic selenide spheres with core-shell nanostructure were rationally designed and synthesized towards superior battery-supercapacitor hybrid device as the cathode electrode by selenizing hydrothermal-derived Ni-Co spheres. The continuous exploration of advanced electrode materials is of remarkable significance to revolutionize next-generation high-performance energy storage devices towards a green future. Benefiting from their electrochemically active sites and abundant redox centers, bimetallic selenides with desirable nanostructures recently have emerged as promising electrode alternatives for battery-supercapacitor hybrid (BSH) devices which demonstrate enormous potential in bridging the gap between electrochemical properties with high power densities (supercapacitors) and energy densities (batteries). Herein, employing the hydrothermal approach with solid Ni-Co spheres as precursors followed by the selenization process, selenide-rich bimetallic selenide spheres with a core-shell nanostructure were rationally designed and synthesized for use as the cathode electrode in superior BSH devices. The as-obtained (NiCo)9Se8/(NiCo)0.85Se (Ni-Co-Se) exhibits a high specific capacity of 164.44 mA h g-1 at a current density of 1 A g-1 with 85.72% capacity retention even after 5000 cycles at a current density of as high as 8 A g-1, suggesting its great promise in practical applications for BSH devices. By integrating activated carbon as the anode with the as-obtained bimetallic selenides as the cathode, an alkaline aqueous BSH device is fabricated and delivers a high energy density of 37.54 W h kg-1 at a high power density of 842.7 W kg-1. It is found that the excellent electrochemical performances can be ascribed to facile ion and electron transport pathways, high electrical conductivity and reliable structural robustness of the prepared selenides. Moreover, the synthetic strategy presented in this paper opens up an avenue to guide the synthesis of various anion doped bimetallic compounds towards high-performance energy conversion and storage devices.The continuous exploration of advanced electrode materials is of remarkable significance to revolutionize next-generation high-performance energy storage devices towards a green future. Benefiting from their electrochemically active sites and abundant redox centers, bimetallic selenides with desirable nanostructures recently have emerged as promising electrode alternatives for battery-supercapacitor hybrid (BSH) devices which demonstrate enormous potential in bridging the gap between electrochemical properties with high power densities (supercapacitors) and energy densities (batteries). Herein, employing the hydrothermal approach with solid Ni-Co spheres as precursors followed by the selenization process, selenide-rich bimetallic selenide spheres with a core-shell nanostructure were rationally designed and synthesized for use as the cathode electrode in superior BSH devices. The as-obtained (NiCo)9Se8/(NiCo)0.85Se (Ni-Co-Se) exhibits a high specific capacity of 164.44 mA h g-1 at a current density of 1 A g-1 with 85.72% capacity retention even after 5000 cycles at a current density of as high as 8 A g-1, suggesting its great promise in practical applications for BSH devices. By integrating activated carbon as the anode with the as-obtained bimetallic selenides as the cathode, an alkaline aqueous BSH device is fabricated and delivers a high energy density of 37.54 W h kg-1 at a high power density of 842.7 W kg-1. It is found that the excellent electrochemical performances can be ascribed to facile ion and electron transport pathways, high electrical conductivity and reliable structural robustness of the prepared selenides. Moreover, the synthetic strategy presented in this paper opens up an avenue to guide the synthesis of various anion doped bimetallic compounds towards high-performance energy conversion and storage devices. The continuous exploration of advanced electrode materials is of remarkable significance to revolutionize next-generation high-performance energy storage devices towards a green future. Benefiting from their electrochemically active sites and abundant redox centers, bimetallic selenides with desirable nanostructures recently have emerged as promising electrode alternatives for battery–supercapacitor hybrid (BSH) devices which demonstrate enormous potential in bridging the gap between electrochemical properties with high power densities (supercapacitors) and energy densities (batteries). Herein, employing the hydrothermal approach with solid Ni–Co spheres as precursors followed by the selenization process, selenide-rich bimetallic selenide spheres with a core–shell nanostructure were rationally designed and synthesized for use as the cathode electrode in superior BSH devices. The as-obtained (NiCo) 9 Se 8 /(NiCo) 0.85 Se (Ni–Co–Se) exhibits a high specific capacity of 164.44 mA h g −1 at a current density of 1 A g −1 with 85.72% capacity retention even after 5000 cycles at a current density of as high as 8 A g −1 , suggesting its great promise in practical applications for BSH devices. By integrating activated carbon as the anode with the as-obtained bimetallic selenides as the cathode, an alkaline aqueous BSH device is fabricated and delivers a high energy density of 37.54 W h kg −1 at a high power density of 842.7 W kg −1 . It is found that the excellent electrochemical performances can be ascribed to facile ion and electron transport pathways, high electrical conductivity and reliable structural robustness of the prepared selenides. Moreover, the synthetic strategy presented in this paper opens up an avenue to guide the synthesis of various anion doped bimetallic compounds towards high-performance energy conversion and storage devices. The continuous exploration of advanced electrode materials is of remarkable significance to revolutionize next-generation high-performance energy storage devices towards a green future. Benefiting from their electrochemically active sites and abundant redox centers, bimetallic selenides with desirable nanostructures recently have emerged as promising electrode alternatives for battery-supercapacitor hybrid (BSH) devices which demonstrate enormous potential in bridging the gap between electrochemical properties with high power densities (supercapacitors) and energy densities (batteries). Herein, employing the hydrothermal approach with solid Ni-Co spheres as precursors followed by the selenization process, selenide-rich bimetallic selenide spheres with a core-shell nanostructure were rationally designed and synthesized for use as the cathode electrode in superior BSH devices. The as-obtained (NiCo) Se /(NiCo) Se (Ni-Co-Se) exhibits a high specific capacity of 164.44 mA h g at a current density of 1 A g with 85.72% capacity retention even after 5000 cycles at a current density of as high as 8 A g , suggesting its great promise in practical applications for BSH devices. By integrating activated carbon as the anode with the as-obtained bimetallic selenides as the cathode, an alkaline aqueous BSH device is fabricated and delivers a high energy density of 37.54 W h kg at a high power density of 842.7 W kg . It is found that the excellent electrochemical performances can be ascribed to facile ion and electron transport pathways, high electrical conductivity and reliable structural robustness of the prepared selenides. Moreover, the synthetic strategy presented in this paper opens up an avenue to guide the synthesis of various anion doped bimetallic compounds towards high-performance energy conversion and storage devices. The continuous exploration of advanced electrode materials is of remarkable significance to revolutionize next-generation high-performance energy storage devices towards a green future. Benefiting from their electrochemically active sites and abundant redox centers, bimetallic selenides with desirable nanostructures recently have emerged as promising electrode alternatives for battery–supercapacitor hybrid (BSH) devices which demonstrate enormous potential in bridging the gap between electrochemical properties with high power densities (supercapacitors) and energy densities (batteries). Herein, employing the hydrothermal approach with solid Ni–Co spheres as precursors followed by the selenization process, selenide-rich bimetallic selenide spheres with a core–shell nanostructure were rationally designed and synthesized for use as the cathode electrode in superior BSH devices. The as-obtained (NiCo)9Se8/(NiCo)0.85Se (Ni–Co–Se) exhibits a high specific capacity of 164.44 mA h g−1 at a current density of 1 A g−1 with 85.72% capacity retention even after 5000 cycles at a current density of as high as 8 A g−1, suggesting its great promise in practical applications for BSH devices. By integrating activated carbon as the anode with the as-obtained bimetallic selenides as the cathode, an alkaline aqueous BSH device is fabricated and delivers a high energy density of 37.54 W h kg−1 at a high power density of 842.7 W kg−1. It is found that the excellent electrochemical performances can be ascribed to facile ion and electron transport pathways, high electrical conductivity and reliable structural robustness of the prepared selenides. Moreover, the synthetic strategy presented in this paper opens up an avenue to guide the synthesis of various anion doped bimetallic compounds towards high-performance energy conversion and storage devices. |
Author | Liu, Yi-Lin Kang, Qi Zhang, Hua-Yu Wang, Gui-Gen Yan, Cheng Li, Fei Han, Jie-Cai |
AuthorAffiliation | Department of Polymer Science and Engineering Harbin Institute of Technology The University of Sydney Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing Shenzhen Key Laboratory for Advanced Materials Faculty of Science School of Chemistry Shanghai Jiao Tong University Center for Composite Materials |
AuthorAffiliation_xml | – sequence: 0 name: Center for Composite Materials – sequence: 0 name: School of Chemistry – sequence: 0 name: Department of Polymer Science and Engineering – sequence: 0 name: Harbin Institute of Technology – sequence: 0 name: The University of Sydney – sequence: 0 name: Shenzhen Key Laboratory for Advanced Materials – sequence: 0 name: Shanghai Jiao Tong University – sequence: 0 name: Faculty of Science – sequence: 0 name: Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing |
Author_xml | – sequence: 1 givenname: Yi-Lin surname: Liu fullname: Liu, Yi-Lin – sequence: 2 givenname: Cheng surname: Yan fullname: Yan, Cheng – sequence: 3 givenname: Gui-Gen surname: Wang fullname: Wang, Gui-Gen – sequence: 4 givenname: Fei surname: Li fullname: Li, Fei – sequence: 5 givenname: Qi surname: Kang fullname: Kang, Qi – sequence: 6 givenname: Hua-Yu surname: Zhang fullname: Zhang, Hua-Yu – sequence: 7 givenname: Jie-Cai surname: Han fullname: Han, Jie-Cai |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32016240$$D View this record in MEDLINE/PubMed |
BookMark | eNpt0s1rFTEQAPAgLfZDL96VgBcRVrNJdvflWB7aCqWCH-clmZ3tpmaTZ5JVHv7z5vW1FYqnDOE3w0wmJ-TAB4-EvKjZu5oJ9R6Uj7ug1U_IMWeSVUJ0_OAhbuUROUnphrFWiVY8JUeCs7rlkh2TP1_RobfLXEULE_UWfqCjEIx2mRo7Y9bOWaDplg2Y6G-bpwIiVmlC56iOMNmMkJeIFL02DmlaNhhtiHTammiHco3xektTDlFfIx3wlwVMz8jhqF3C53fnKfn-8cO39UV1-fn80_rssgLRyVxxiWJEUSOY1piR87FuV4x3IEFhY2QHWjWrQemGd6JuAQezEryMB0Zywbg4JW_2dTcx_Fww5X62CUrv2mNYUs9FwxRjqpGFvn5Eb8ISfelup4SSnay7ol7dqcXMOPSbaGcdt_39sxbA9gBiSCni2IPNOtvgc9TW9TXrdwvr1-rqy-3mzkrK20cp91X_i1_ucUzw4P59A_EXmb2jwQ |
CitedBy_id | crossref_primary_10_1016_j_compositesb_2023_110747 crossref_primary_10_1016_j_ceramint_2021_01_121 crossref_primary_10_1021_acs_jpcc_0c05125 crossref_primary_10_1039_D3TA04705A crossref_primary_10_1016_j_jcis_2023_10_107 crossref_primary_10_1016_j_est_2024_113726 crossref_primary_10_1016_j_apsusc_2024_161547 crossref_primary_10_1016_j_cej_2025_160817 crossref_primary_10_1002_cnma_202300610 crossref_primary_10_1002_er_8642 crossref_primary_10_1007_s12274_021_3640_4 crossref_primary_10_1016_j_jpowsour_2021_230255 crossref_primary_10_1002_adfm_202414686 crossref_primary_10_1016_j_est_2020_101663 crossref_primary_10_1002_adfm_202310399 crossref_primary_10_1016_j_electacta_2021_138649 crossref_primary_10_1038_s41598_023_41816_9 crossref_primary_10_1007_s40843_021_1895_2 crossref_primary_10_1016_j_jelechem_2021_115759 crossref_primary_10_1039_D1QM00349F crossref_primary_10_1016_j_jelechem_2022_116548 crossref_primary_10_1039_D4DT01230E crossref_primary_10_1021_acsnano_1c08428 crossref_primary_10_1039_D2SE00223J crossref_primary_10_1088_1361_6528_acb4f1 crossref_primary_10_1016_j_surfin_2023_103358 crossref_primary_10_1002_adfm_202418366 crossref_primary_10_1016_j_mtphys_2024_101444 crossref_primary_10_1016_j_est_2024_113736 crossref_primary_10_1016_j_jcis_2022_06_073 crossref_primary_10_1016_j_colsurfa_2022_130191 crossref_primary_10_1021_acsami_3c05224 crossref_primary_10_1016_j_jcis_2022_04_072 crossref_primary_10_1016_j_electacta_2022_140405 crossref_primary_10_2139_ssrn_4052220 crossref_primary_10_1016_j_jallcom_2023_169045 crossref_primary_10_1039_D2NJ00488G crossref_primary_10_1016_j_est_2023_108440 crossref_primary_10_1016_j_cej_2022_138347 crossref_primary_10_1039_D1NR00174D crossref_primary_10_1002_smll_202404193 crossref_primary_10_1039_D1TA06209C crossref_primary_10_1021_acsami_2c14412 crossref_primary_10_1016_j_jallcom_2021_158751 crossref_primary_10_1016_j_cej_2020_126174 crossref_primary_10_1002_admt_202301329 crossref_primary_10_1016_j_est_2021_102374 crossref_primary_10_1016_j_jcis_2022_01_126 crossref_primary_10_1039_D2NJ02361J crossref_primary_10_3390_chemosensors11100530 crossref_primary_10_1039_D2MA00091A crossref_primary_10_1039_D2QI00695B crossref_primary_10_1063_5_0164805 crossref_primary_10_1088_1361_6528_ac02ea crossref_primary_10_1002_smtd_202201315 crossref_primary_10_1039_D2TA05046C crossref_primary_10_1016_j_carbon_2023_02_021 crossref_primary_10_1016_j_jallcom_2020_158147 crossref_primary_10_1021_acsami_4c05534 crossref_primary_10_1016_j_est_2022_106537 crossref_primary_10_1016_j_est_2023_106855 crossref_primary_10_1016_j_jelechem_2021_115976 crossref_primary_10_1016_j_ccr_2021_214242 crossref_primary_10_1021_acssuschemeng_2c06927 crossref_primary_10_1016_j_colsurfa_2022_129702 crossref_primary_10_1016_j_matchemphys_2022_126311 crossref_primary_10_1002_celc_202101523 crossref_primary_10_1039_D0CS00721H crossref_primary_10_1021_acsaem_1c02205 crossref_primary_10_1016_j_jcis_2023_04_037 crossref_primary_10_1016_j_ceramint_2024_07_296 crossref_primary_10_1002_elan_202300216 crossref_primary_10_1039_D1RA08678B |
Cites_doi | 10.1016/j.nanoen.2019.04.003 10.1002/adma.201605051 10.1016/j.ensm.2017.03.005 10.1021/acsenergylett.8b00515 10.1088/1361-6528/aab19b 10.1002/anie.201800363 10.1021/acsami.8b19386 10.1016/j.mattod.2014.10.040 10.1016/j.nanoen.2018.02.059 10.1021/ja303034w 10.1002/advs.201600539 10.1002/adfm.201504004 10.1016/j.cej.2019.01.156 10.1039/C4CS00266K 10.1039/C7TA11364A 10.1021/acsami.8b21803 10.1002/aenm.201702384 10.1002/adma.201504225 10.1016/j.jallcom.2016.12.124 10.1039/C5TA08366D 10.1002/smll.201700979 10.1039/C8CS00561C 10.1021/ja3046603 10.1039/C8CC09553A 10.1039/C9NR03088C 10.1038/nmat1368 10.1016/j.chempr.2018.06.007 10.1002/celc.201701033 10.1016/j.electacta.2018.05.100 10.1021/nl500011d 10.1016/j.apsusc.2015.11.194 10.1021/acssuschemeng.7b00729 10.1016/j.nanoen.2016.04.012 10.1016/j.nanoen.2019.01.071 10.1016/j.ensm.2019.02.014 10.1039/c3ee40509e 10.1016/j.ensm.2018.07.018 10.1039/C5CS00147A 10.1038/nmat2297 10.1002/aenm.201601362 10.1002/anie.200352386 10.1016/j.jpowsour.2018.09.021 10.1021/acs.accounts.5b00482 10.1038/ncomms7694 10.1126/science.1212741 10.1002/adfm.201705921 10.1126/science.1249625 10.1016/j.apmt.2019.06.002 10.1039/C6RA17825A 10.1021/acsnano.9b04005 10.1039/C8TA08263D 10.1002/adma.201800295 10.1016/j.electacta.2018.02.146 |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2020 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2020 |
DBID | AAYXX CITATION NPM 7SR 7U5 8BQ 8FD F28 FR3 JG9 L7M 7X8 |
DOI | 10.1039/c9nr10396a |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database Solid State and Superconductivity Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering METADEX MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef PubMed Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2040-3372 |
EndPage | 45 |
ExternalDocumentID | 32016240 10_1039_C9NR10396A c9nr10396a |
Genre | Journal Article |
GroupedDBID | --- -JG 0-7 0R~ 29M 4.4 53G 705 7~J AAEMU AAIWI AAJAE AANOJ AARTK AAWGC AAXHV ABASK ABDVN ABEMK ABJNI ABPDG ABRYZ ABXOH ACGFS ACIWK ACLDK ADMRA ADSRN AEFDR AENEX AENGV AESAV AETIL AFLYV AFOGI AFRDS AFVBQ AGEGJ AGRSR AGSTE AHGCF AKBGW ALMA_UNASSIGNED_HOLDINGS ANUXI APEMP ASKNT AUDPV AZFZN BLAPV BSQNT C6K DU5 EBS ECGLT EE0 EF- F5P GGIMP H13 HZ~ H~N J3I O-G O9- OK1 P2P RAOCF RCNCU RNS RPMJG RRC RSCEA RVUXY AAYXX AFRZK AKMSF ALUYA CITATION NPM 7SR 7U5 8BQ 8FD F28 FR3 JG9 L7M 7X8 |
ID | FETCH-LOGICAL-c374t-24e3fe31ecb6bbf22f168027c4c9e5b47ca958d9a527316cedb832624cb423023 |
ISSN | 2040-3364 2040-3372 |
IngestDate | Fri Jul 11 06:17:00 EDT 2025 Sun Jun 29 15:30:11 EDT 2025 Wed Feb 19 02:31:16 EST 2025 Thu Apr 24 23:12:35 EDT 2025 Tue Jul 01 01:13:50 EDT 2025 Tue Dec 17 20:58:26 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c374t-24e3fe31ecb6bbf22f168027c4c9e5b47ca958d9a527316cedb832624cb423023 |
Notes | Electronic supplementary information (ESI) available. See DOI 10.1039/c9nr10396a ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-8606-8986 0000-0003-3979-4146 |
PMID | 32016240 |
PQID | 2353947417 |
PQPubID | 2047485 |
PageCount | 11 |
ParticipantIDs | crossref_primary_10_1039_C9NR10396A rsc_primary_c9nr10396a proquest_journals_2353947417 pubmed_primary_32016240 crossref_citationtrail_10_1039_C9NR10396A proquest_miscellaneous_2350900954 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-02-14 |
PublicationDateYYYYMMDD | 2020-02-14 |
PublicationDate_xml | – month: 02 year: 2020 text: 2020-02-14 day: 14 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Cambridge |
PublicationTitle | Nanoscale |
PublicationTitleAlternate | Nanoscale |
PublicationYear | 2020 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Chen (C9NR10396A-(cit27)/*[position()=1]) 2019; 17 He (C9NR10396A-(cit38)/*[position()=1]) 2018; 3 Simon (C9NR10396A-(cit7)/*[position()=1]) 2014; 343 Shi (C9NR10396A-(cit42)/*[position()=1]) 2019; 364 Xia (C9NR10396A-(cit22)/*[position()=1]) 2016; 24 Zhu (C9NR10396A-(cit47)/*[position()=1]) 2018; 269 Zuo (C9NR10396A-(cit12)/*[position()=1]) 2017; 4 Ling (C9NR10396A-(cit19)/*[position()=1]) 2016; 26 Chen (C9NR10396A-(cit3)/*[position()=1]) 2015; 44 Simon (C9NR10396A-(cit1)/*[position()=1]) 2008; 7 Guan (C9NR10396A-(cit21)/*[position()=1]) 2017; 29 Sajedi-Moghaddam (C9NR10396A-(cit23)/*[position()=1]) 2019; 16 Nitta (C9NR10396A-(cit16)/*[position()=1]) 2015; 18 Wang (C9NR10396A-(cit4)/*[position()=1]) 2018; 47 Sun (C9NR10396A-(cit8)/*[position()=1]) 2004; 43 Shen (C9NR10396A-(cit33)/*[position()=1]) 2015; 6 Hou (C9NR10396A-(cit31)/*[position()=1]) 2018; 28 Arico (C9NR10396A-(cit2)/*[position()=1]) 2005; 4 Liu (C9NR10396A-(cit9)/*[position()=1]) 2019; 11 Chen (C9NR10396A-(cit28)/*[position()=1]) 2018; 14 Wen (C9NR10396A-(cit5)/*[position()=1]) 2016; 28 Wang (C9NR10396A-(cit43)/*[position()=1]) 2019; 11 Xiao (C9NR10396A-(cit41)/*[position()=1]) 2019; 55 Chen (C9NR10396A-(cit49)/*[position()=1]) 2018; 29 Luo (C9NR10396A-(cit17)/*[position()=1]) 2016; 49 Peng (C9NR10396A-(cit53)/*[position()=1]) 2017; 5 Gong (C9NR10396A-(cit35)/*[position()=1]) 2012; 134 An (C9NR10396A-(cit52)/*[position()=1]) 2016; 6 Kim (C9NR10396A-(cit18)/*[position()=1]) 2018; 8 Chen (C9NR10396A-(cit30)/*[position()=1]) 2019; 13 Zhang (C9NR10396A-(cit13)/*[position()=1]) 2013; 6 Zhai (C9NR10396A-(cit10)/*[position()=1]) 2018; 47 Zhang (C9NR10396A-(cit36)/*[position()=1]) 2012; 134 Li (C9NR10396A-(cit26)/*[position()=1]) 2018; 4 Lu (C9NR10396A-(cit34)/*[position()=1]) 2018; 57 Quan (C9NR10396A-(cit45)/*[position()=1]) 2018; 281 Lin (C9NR10396A-(cit44)/*[position()=1]) 2018; 6 Gong (C9NR10396A-(cit46)/*[position()=1]) 2016; 362 Yang (C9NR10396A-(cit24)/*[position()=1]) 2019; 58 Dunn (C9NR10396A-(cit6)/*[position()=1]) 2011; 334 Dubal (C9NR10396A-(cit11)/*[position()=1]) 2015; 44 Lv (C9NR10396A-(cit37)/*[position()=1]) 2019; 11 Liu (C9NR10396A-(cit14)/*[position()=1]) 2018; 30 Wang (C9NR10396A-(cit15)/*[position()=1]) 2014; 14 Liu (C9NR10396A-(cit20)/*[position()=1]) 2019; 61 Zhao (C9NR10396A-(cit51)/*[position()=1]) 2017; 697 Huang (C9NR10396A-(cit39)/*[position()=1]) 2018; 6 Li (C9NR10396A-(cit40)/*[position()=1]) 2018; 402 Chen (C9NR10396A-(cit32)/*[position()=1]) 2015; 3 Liu (C9NR10396A-(cit25)/*[position()=1]) 2019; 22 Nagaraju (C9NR10396A-(cit50)/*[position()=1]) 2017; 7 Ye (C9NR10396A-(cit48)/*[position()=1]) 2018; 5 Zhang (C9NR10396A-(cit29)/*[position()=1]) 2017; 8 |
References_xml | – volume: 61 start-page: 18 year: 2019 ident: C9NR10396A-(cit20)/*[position()=1] publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.04.003 – volume: 29 start-page: 1605051 year: 2017 ident: C9NR10396A-(cit21)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201605051 – volume: 8 start-page: 28 year: 2017 ident: C9NR10396A-(cit29)/*[position()=1] publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2017.03.005 – volume: 3 start-page: 1373 year: 2018 ident: C9NR10396A-(cit38)/*[position()=1] publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.8b00515 – volume: 29 start-page: 205401 year: 2018 ident: C9NR10396A-(cit49)/*[position()=1] publication-title: Nanotechnology doi: 10.1088/1361-6528/aab19b – volume: 57 start-page: 2899 year: 2018 ident: C9NR10396A-(cit34)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201800363 – volume: 11 start-page: 7946 year: 2019 ident: C9NR10396A-(cit43)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b19386 – volume: 18 start-page: 252 year: 2015 ident: C9NR10396A-(cit16)/*[position()=1] publication-title: Mater. Today doi: 10.1016/j.mattod.2014.10.040 – volume: 47 start-page: 89 year: 2018 ident: C9NR10396A-(cit10)/*[position()=1] publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.02.059 – volume: 134 start-page: 10953 year: 2012 ident: C9NR10396A-(cit35)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja303034w – volume: 4 start-page: 1600539 year: 2017 ident: C9NR10396A-(cit12)/*[position()=1] publication-title: Adv. Sci. doi: 10.1002/advs.201600539 – volume: 26 start-page: 111 year: 2016 ident: C9NR10396A-(cit19)/*[position()=1] publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201504004 – volume: 364 start-page: 320 year: 2019 ident: C9NR10396A-(cit42)/*[position()=1] publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.01.156 – volume: 44 start-page: 1777 year: 2015 ident: C9NR10396A-(cit11)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/C4CS00266K – volume: 6 start-page: 7420 year: 2018 ident: C9NR10396A-(cit39)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C7TA11364A – volume: 11 start-page: 9984 year: 2019 ident: C9NR10396A-(cit9)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b21803 – volume: 8 start-page: 1702384 year: 2018 ident: C9NR10396A-(cit18)/*[position()=1] publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201702384 – volume: 28 start-page: 4306 year: 2016 ident: C9NR10396A-(cit5)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201504225 – volume: 697 start-page: 124 year: 2017 ident: C9NR10396A-(cit51)/*[position()=1] publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2016.12.124 – volume: 3 start-page: 23653 year: 2015 ident: C9NR10396A-(cit32)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C5TA08366D – volume: 14 start-page: 1700979 year: 2018 ident: C9NR10396A-(cit28)/*[position()=1] publication-title: Small doi: 10.1002/smll.201700979 – volume: 47 start-page: 7426 year: 2018 ident: C9NR10396A-(cit4)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/C8CS00561C – volume: 134 start-page: 11908 year: 2012 ident: C9NR10396A-(cit36)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja3046603 – volume: 55 start-page: 2513 year: 2019 ident: C9NR10396A-(cit41)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/C8CC09553A – volume: 11 start-page: 13996 year: 2019 ident: C9NR10396A-(cit37)/*[position()=1] publication-title: Nanoscale doi: 10.1039/C9NR03088C – volume: 4 start-page: 366 year: 2005 ident: C9NR10396A-(cit2)/*[position()=1] publication-title: Nat. Mater. doi: 10.1038/nmat1368 – volume: 4 start-page: 2168 year: 2018 ident: C9NR10396A-(cit26)/*[position()=1] publication-title: Chem doi: 10.1016/j.chempr.2018.06.007 – volume: 5 start-page: 507 year: 2018 ident: C9NR10396A-(cit48)/*[position()=1] publication-title: ChemElectroChem doi: 10.1002/celc.201701033 – volume: 281 start-page: 109 year: 2018 ident: C9NR10396A-(cit45)/*[position()=1] publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2018.05.100 – volume: 14 start-page: 1987 year: 2014 ident: C9NR10396A-(cit15)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/nl500011d – volume: 362 start-page: 469 year: 2016 ident: C9NR10396A-(cit46)/*[position()=1] publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2015.11.194 – volume: 5 start-page: 5951 year: 2017 ident: C9NR10396A-(cit53)/*[position()=1] publication-title: ACS Sustainable Chem. Eng. doi: 10.1021/acssuschemeng.7b00729 – volume: 24 start-page: 78 year: 2016 ident: C9NR10396A-(cit22)/*[position()=1] publication-title: Nano Energy doi: 10.1016/j.nanoen.2016.04.012 – volume: 58 start-page: 455 year: 2019 ident: C9NR10396A-(cit24)/*[position()=1] publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.01.071 – volume: 22 start-page: 384 year: 2019 ident: C9NR10396A-(cit25)/*[position()=1] publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2019.02.014 – volume: 6 start-page: 1623 year: 2013 ident: C9NR10396A-(cit13)/*[position()=1] publication-title: Energy Environ. Sci. doi: 10.1039/c3ee40509e – volume: 17 start-page: 194 year: 2019 ident: C9NR10396A-(cit27)/*[position()=1] publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2018.07.018 – volume: 44 start-page: 6230 year: 2015 ident: C9NR10396A-(cit3)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/C5CS00147A – volume: 7 start-page: 845 year: 2008 ident: C9NR10396A-(cit1)/*[position()=1] publication-title: Nat. Mater. doi: 10.1038/nmat2297 – volume: 7 start-page: 1601362 year: 2017 ident: C9NR10396A-(cit50)/*[position()=1] publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201601362 – volume: 43 start-page: 597 year: 2004 ident: C9NR10396A-(cit8)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200352386 – volume: 402 start-page: 116 year: 2018 ident: C9NR10396A-(cit40)/*[position()=1] publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2018.09.021 – volume: 49 start-page: 231 year: 2016 ident: C9NR10396A-(cit17)/*[position()=1] publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.5b00482 – volume: 6 start-page: 6694 year: 2015 ident: C9NR10396A-(cit33)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/ncomms7694 – volume: 334 start-page: 928 year: 2011 ident: C9NR10396A-(cit6)/*[position()=1] publication-title: Science doi: 10.1126/science.1212741 – volume: 28 start-page: 1705921 year: 2018 ident: C9NR10396A-(cit31)/*[position()=1] publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201705921 – volume: 343 start-page: 1210 year: 2014 ident: C9NR10396A-(cit7)/*[position()=1] publication-title: Science doi: 10.1126/science.1249625 – volume: 16 start-page: 280 year: 2019 ident: C9NR10396A-(cit23)/*[position()=1] publication-title: Appl. Mater. Today doi: 10.1016/j.apmt.2019.06.002 – volume: 6 start-page: 75251 year: 2016 ident: C9NR10396A-(cit52)/*[position()=1] publication-title: RSC Adv. doi: 10.1039/C6RA17825A – volume: 13 start-page: 9376 year: 2019 ident: C9NR10396A-(cit30)/*[position()=1] publication-title: ACS Nano doi: 10.1021/acsnano.9b04005 – volume: 6 start-page: 19151 year: 2018 ident: C9NR10396A-(cit44)/*[position()=1] publication-title: J. Mater. Chem. A doi: 10.1039/C8TA08263D – volume: 30 start-page: 1800295 year: 2018 ident: C9NR10396A-(cit14)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201800295 – volume: 269 start-page: 30 year: 2018 ident: C9NR10396A-(cit47)/*[position()=1] publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2018.02.146 |
SSID | ssj0069363 |
Score | 2.5524573 |
Snippet | The continuous exploration of advanced electrode materials is of remarkable significance to revolutionize next-generation high-performance energy storage... |
SourceID | proquest pubmed crossref rsc |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 44 |
SubjectTerms | Activated carbon Bimetals Cathodes Core-shell structure Current density Electrical resistivity Electrochemical analysis Electrode materials Electrodes Electron transport Electronic devices Energy conversion Energy storage Flux density Intermetallic compounds Nanostructure Nickel Selenides Selenium Supercapacitors |
Title | Selenium-rich nickel cobalt bimetallic selenides with core-shell architecture enable superior hybrid energy storage devices |
URI | https://www.ncbi.nlm.nih.gov/pubmed/32016240 https://www.proquest.com/docview/2353947417 https://www.proquest.com/docview/2350900954 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLZgk9A4IH4NCgMZwQVVZm3sOPWxTKwTlB1gE-NU2c6rFmlNp6Y5AP88z3Z-dRsScIkix4mlfJ-fn-33PhPyBgDm0UgrFkmImcARkhn0WxmkiYoHQpto7iaKn4_l0an4eBafXckuWZt39ueNeSX_gyqWIa4uS_YfkG0-igV4j_jiFRHG619h_NWNGVm5YGjMzvt5hj3SqX0YfbHum2wB6Fg7DevCV0uhqAPNV8AKFwDa39hGgJBGVZRO_Hi56p__cNlcfQjZgS6K0sX3pOBtS9epRQu9LBDrhiPTrPSmPWPTrCHfd13t70M1WPpl_GBqJmXGJm1S2tSHGBxC1l2TwAmoOyElrAuAt12RC1TkPNk0tFGHUF2rKQZBsumaOR9wp4ZqVb5yt1J3KyEUlwsPLEcnRkbhE1fEs-tHt8l2hPMINITb40_vJ9_qwVoqLnmtWsvVftvUDrlTv7zpslybh6BXsqpPi_Feycl9cq-aTtBx4MYDcgvyh-RuR2TyEfm1wRIaWEIDS2jLEtqwhDqW0JYltMsSGlhCa5bQwBIaWEIrltCKJY_J6eGHk4MjVh25wSxPxJpFAvgc-BCskcbMI-ypcjSIEiusgtiIxGoVj1KlnW7fUFpIDQ4J-JOsQb8c_b9dspUvc3hKqBRWpzqRqUytmBttkpHQieVaD0dOBLFH3tZ_dWYrPXp3LMrFzMdFcDU7UMdfPBjjHnnd1L0MKiw31tqrwZlVvbSYRTzmSqDfjA2-ah6jDXUbYzqHZenrDJSbbIgeeRJAbZqpSdAju4hyU9wS5dkfX3lOdtrOsUe21qsSXqALuzYvKxr-BvUln8g |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Selenium-rich+nickel+cobalt+bimetallic+selenides+with+core-shell+architecture+enable+superior+hybrid+energy+storage+devices&rft.jtitle=Nanoscale&rft.au=Liu%2C+Yi-Lin&rft.au=Yan%2C+Cheng&rft.au=Wang%2C+Gui-Gen&rft.au=Li%2C+Fei&rft.date=2020-02-14&rft.eissn=2040-3372&rft.volume=12&rft.issue=6&rft.spage=4040&rft_id=info:doi/10.1039%2Fc9nr10396a&rft_id=info%3Apmid%2F32016240&rft.externalDocID=32016240 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2040-3364&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2040-3364&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2040-3364&client=summon |