Selenium-rich nickel cobalt bimetallic selenides with core-shell architecture enable superior hybrid energy storage devices

The continuous exploration of advanced electrode materials is of remarkable significance to revolutionize next-generation high-performance energy storage devices towards a green future. Benefiting from their electrochemically active sites and abundant redox centers, bimetallic selenides with desirab...

Full description

Saved in:
Bibliographic Details
Published inNanoscale Vol. 12; no. 6; pp. 44 - 45
Main Authors Liu, Yi-Lin, Yan, Cheng, Wang, Gui-Gen, Li, Fei, Kang, Qi, Zhang, Hua-Yu, Han, Jie-Cai
Format Journal Article
LanguageEnglish
Published England Royal Society of Chemistry 14.02.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The continuous exploration of advanced electrode materials is of remarkable significance to revolutionize next-generation high-performance energy storage devices towards a green future. Benefiting from their electrochemically active sites and abundant redox centers, bimetallic selenides with desirable nanostructures recently have emerged as promising electrode alternatives for battery-supercapacitor hybrid (BSH) devices which demonstrate enormous potential in bridging the gap between electrochemical properties with high power densities (supercapacitors) and energy densities (batteries). Herein, employing the hydrothermal approach with solid Ni-Co spheres as precursors followed by the selenization process, selenide-rich bimetallic selenide spheres with a core-shell nanostructure were rationally designed and synthesized for use as the cathode electrode in superior BSH devices. The as-obtained (NiCo) 9 Se 8 /(NiCo) 0.85 Se (Ni-Co-Se) exhibits a high specific capacity of 164.44 mA h g −1 at a current density of 1 A g −1 with 85.72% capacity retention even after 5000 cycles at a current density of as high as 8 A g −1 , suggesting its great promise in practical applications for BSH devices. By integrating activated carbon as the anode with the as-obtained bimetallic selenides as the cathode, an alkaline aqueous BSH device is fabricated and delivers a high energy density of 37.54 W h kg −1 at a high power density of 842.7 W kg −1 . It is found that the excellent electrochemical performances can be ascribed to facile ion and electron transport pathways, high electrical conductivity and reliable structural robustness of the prepared selenides. Moreover, the synthetic strategy presented in this paper opens up an avenue to guide the synthesis of various anion doped bimetallic compounds towards high-performance energy conversion and storage devices. Selenide-rich bimetallic selenide spheres with core-shell nanostructure were rationally designed and synthesized towards superior battery-supercapacitor hybrid device as the cathode electrode by selenizing hydrothermal-derived Ni-Co spheres.
AbstractList The continuous exploration of advanced electrode materials is of remarkable significance to revolutionize next-generation high-performance energy storage devices towards a green future. Benefiting from their electrochemically active sites and abundant redox centers, bimetallic selenides with desirable nanostructures recently have emerged as promising electrode alternatives for battery-supercapacitor hybrid (BSH) devices which demonstrate enormous potential in bridging the gap between electrochemical properties with high power densities (supercapacitors) and energy densities (batteries). Herein, employing the hydrothermal approach with solid Ni-Co spheres as precursors followed by the selenization process, selenide-rich bimetallic selenide spheres with a core-shell nanostructure were rationally designed and synthesized for use as the cathode electrode in superior BSH devices. The as-obtained (NiCo) 9 Se 8 /(NiCo) 0.85 Se (Ni-Co-Se) exhibits a high specific capacity of 164.44 mA h g −1 at a current density of 1 A g −1 with 85.72% capacity retention even after 5000 cycles at a current density of as high as 8 A g −1 , suggesting its great promise in practical applications for BSH devices. By integrating activated carbon as the anode with the as-obtained bimetallic selenides as the cathode, an alkaline aqueous BSH device is fabricated and delivers a high energy density of 37.54 W h kg −1 at a high power density of 842.7 W kg −1 . It is found that the excellent electrochemical performances can be ascribed to facile ion and electron transport pathways, high electrical conductivity and reliable structural robustness of the prepared selenides. Moreover, the synthetic strategy presented in this paper opens up an avenue to guide the synthesis of various anion doped bimetallic compounds towards high-performance energy conversion and storage devices. Selenide-rich bimetallic selenide spheres with core-shell nanostructure were rationally designed and synthesized towards superior battery-supercapacitor hybrid device as the cathode electrode by selenizing hydrothermal-derived Ni-Co spheres.
The continuous exploration of advanced electrode materials is of remarkable significance to revolutionize next-generation high-performance energy storage devices towards a green future. Benefiting from their electrochemically active sites and abundant redox centers, bimetallic selenides with desirable nanostructures recently have emerged as promising electrode alternatives for battery-supercapacitor hybrid (BSH) devices which demonstrate enormous potential in bridging the gap between electrochemical properties with high power densities (supercapacitors) and energy densities (batteries). Herein, employing the hydrothermal approach with solid Ni-Co spheres as precursors followed by the selenization process, selenide-rich bimetallic selenide spheres with a core-shell nanostructure were rationally designed and synthesized for use as the cathode electrode in superior BSH devices. The as-obtained (NiCo)9Se8/(NiCo)0.85Se (Ni-Co-Se) exhibits a high specific capacity of 164.44 mA h g-1 at a current density of 1 A g-1 with 85.72% capacity retention even after 5000 cycles at a current density of as high as 8 A g-1, suggesting its great promise in practical applications for BSH devices. By integrating activated carbon as the anode with the as-obtained bimetallic selenides as the cathode, an alkaline aqueous BSH device is fabricated and delivers a high energy density of 37.54 W h kg-1 at a high power density of 842.7 W kg-1. It is found that the excellent electrochemical performances can be ascribed to facile ion and electron transport pathways, high electrical conductivity and reliable structural robustness of the prepared selenides. Moreover, the synthetic strategy presented in this paper opens up an avenue to guide the synthesis of various anion doped bimetallic compounds towards high-performance energy conversion and storage devices.The continuous exploration of advanced electrode materials is of remarkable significance to revolutionize next-generation high-performance energy storage devices towards a green future. Benefiting from their electrochemically active sites and abundant redox centers, bimetallic selenides with desirable nanostructures recently have emerged as promising electrode alternatives for battery-supercapacitor hybrid (BSH) devices which demonstrate enormous potential in bridging the gap between electrochemical properties with high power densities (supercapacitors) and energy densities (batteries). Herein, employing the hydrothermal approach with solid Ni-Co spheres as precursors followed by the selenization process, selenide-rich bimetallic selenide spheres with a core-shell nanostructure were rationally designed and synthesized for use as the cathode electrode in superior BSH devices. The as-obtained (NiCo)9Se8/(NiCo)0.85Se (Ni-Co-Se) exhibits a high specific capacity of 164.44 mA h g-1 at a current density of 1 A g-1 with 85.72% capacity retention even after 5000 cycles at a current density of as high as 8 A g-1, suggesting its great promise in practical applications for BSH devices. By integrating activated carbon as the anode with the as-obtained bimetallic selenides as the cathode, an alkaline aqueous BSH device is fabricated and delivers a high energy density of 37.54 W h kg-1 at a high power density of 842.7 W kg-1. It is found that the excellent electrochemical performances can be ascribed to facile ion and electron transport pathways, high electrical conductivity and reliable structural robustness of the prepared selenides. Moreover, the synthetic strategy presented in this paper opens up an avenue to guide the synthesis of various anion doped bimetallic compounds towards high-performance energy conversion and storage devices.
The continuous exploration of advanced electrode materials is of remarkable significance to revolutionize next-generation high-performance energy storage devices towards a green future. Benefiting from their electrochemically active sites and abundant redox centers, bimetallic selenides with desirable nanostructures recently have emerged as promising electrode alternatives for battery–supercapacitor hybrid (BSH) devices which demonstrate enormous potential in bridging the gap between electrochemical properties with high power densities (supercapacitors) and energy densities (batteries). Herein, employing the hydrothermal approach with solid Ni–Co spheres as precursors followed by the selenization process, selenide-rich bimetallic selenide spheres with a core–shell nanostructure were rationally designed and synthesized for use as the cathode electrode in superior BSH devices. The as-obtained (NiCo) 9 Se 8 /(NiCo) 0.85 Se (Ni–Co–Se) exhibits a high specific capacity of 164.44 mA h g −1 at a current density of 1 A g −1 with 85.72% capacity retention even after 5000 cycles at a current density of as high as 8 A g −1 , suggesting its great promise in practical applications for BSH devices. By integrating activated carbon as the anode with the as-obtained bimetallic selenides as the cathode, an alkaline aqueous BSH device is fabricated and delivers a high energy density of 37.54 W h kg −1 at a high power density of 842.7 W kg −1 . It is found that the excellent electrochemical performances can be ascribed to facile ion and electron transport pathways, high electrical conductivity and reliable structural robustness of the prepared selenides. Moreover, the synthetic strategy presented in this paper opens up an avenue to guide the synthesis of various anion doped bimetallic compounds towards high-performance energy conversion and storage devices.
The continuous exploration of advanced electrode materials is of remarkable significance to revolutionize next-generation high-performance energy storage devices towards a green future. Benefiting from their electrochemically active sites and abundant redox centers, bimetallic selenides with desirable nanostructures recently have emerged as promising electrode alternatives for battery-supercapacitor hybrid (BSH) devices which demonstrate enormous potential in bridging the gap between electrochemical properties with high power densities (supercapacitors) and energy densities (batteries). Herein, employing the hydrothermal approach with solid Ni-Co spheres as precursors followed by the selenization process, selenide-rich bimetallic selenide spheres with a core-shell nanostructure were rationally designed and synthesized for use as the cathode electrode in superior BSH devices. The as-obtained (NiCo) Se /(NiCo) Se (Ni-Co-Se) exhibits a high specific capacity of 164.44 mA h g at a current density of 1 A g with 85.72% capacity retention even after 5000 cycles at a current density of as high as 8 A g , suggesting its great promise in practical applications for BSH devices. By integrating activated carbon as the anode with the as-obtained bimetallic selenides as the cathode, an alkaline aqueous BSH device is fabricated and delivers a high energy density of 37.54 W h kg at a high power density of 842.7 W kg . It is found that the excellent electrochemical performances can be ascribed to facile ion and electron transport pathways, high electrical conductivity and reliable structural robustness of the prepared selenides. Moreover, the synthetic strategy presented in this paper opens up an avenue to guide the synthesis of various anion doped bimetallic compounds towards high-performance energy conversion and storage devices.
The continuous exploration of advanced electrode materials is of remarkable significance to revolutionize next-generation high-performance energy storage devices towards a green future. Benefiting from their electrochemically active sites and abundant redox centers, bimetallic selenides with desirable nanostructures recently have emerged as promising electrode alternatives for battery–supercapacitor hybrid (BSH) devices which demonstrate enormous potential in bridging the gap between electrochemical properties with high power densities (supercapacitors) and energy densities (batteries). Herein, employing the hydrothermal approach with solid Ni–Co spheres as precursors followed by the selenization process, selenide-rich bimetallic selenide spheres with a core–shell nanostructure were rationally designed and synthesized for use as the cathode electrode in superior BSH devices. The as-obtained (NiCo)9Se8/(NiCo)0.85Se (Ni–Co–Se) exhibits a high specific capacity of 164.44 mA h g−1 at a current density of 1 A g−1 with 85.72% capacity retention even after 5000 cycles at a current density of as high as 8 A g−1, suggesting its great promise in practical applications for BSH devices. By integrating activated carbon as the anode with the as-obtained bimetallic selenides as the cathode, an alkaline aqueous BSH device is fabricated and delivers a high energy density of 37.54 W h kg−1 at a high power density of 842.7 W kg−1. It is found that the excellent electrochemical performances can be ascribed to facile ion and electron transport pathways, high electrical conductivity and reliable structural robustness of the prepared selenides. Moreover, the synthetic strategy presented in this paper opens up an avenue to guide the synthesis of various anion doped bimetallic compounds towards high-performance energy conversion and storage devices.
Author Liu, Yi-Lin
Kang, Qi
Zhang, Hua-Yu
Wang, Gui-Gen
Yan, Cheng
Li, Fei
Han, Jie-Cai
AuthorAffiliation Department of Polymer Science and Engineering
Harbin Institute of Technology
The University of Sydney
Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing
Shenzhen Key Laboratory for Advanced Materials
Faculty of Science
School of Chemistry
Shanghai Jiao Tong University
Center for Composite Materials
AuthorAffiliation_xml – sequence: 0
  name: Center for Composite Materials
– sequence: 0
  name: School of Chemistry
– sequence: 0
  name: Department of Polymer Science and Engineering
– sequence: 0
  name: Harbin Institute of Technology
– sequence: 0
  name: The University of Sydney
– sequence: 0
  name: Shenzhen Key Laboratory for Advanced Materials
– sequence: 0
  name: Shanghai Jiao Tong University
– sequence: 0
  name: Faculty of Science
– sequence: 0
  name: Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing
Author_xml – sequence: 1
  givenname: Yi-Lin
  surname: Liu
  fullname: Liu, Yi-Lin
– sequence: 2
  givenname: Cheng
  surname: Yan
  fullname: Yan, Cheng
– sequence: 3
  givenname: Gui-Gen
  surname: Wang
  fullname: Wang, Gui-Gen
– sequence: 4
  givenname: Fei
  surname: Li
  fullname: Li, Fei
– sequence: 5
  givenname: Qi
  surname: Kang
  fullname: Kang, Qi
– sequence: 6
  givenname: Hua-Yu
  surname: Zhang
  fullname: Zhang, Hua-Yu
– sequence: 7
  givenname: Jie-Cai
  surname: Han
  fullname: Han, Jie-Cai
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32016240$$D View this record in MEDLINE/PubMed
BookMark eNpt0s1rFTEQAPAgLfZDL96VgBcRVrNJdvflWB7aCqWCH-clmZ3tpmaTZ5JVHv7z5vW1FYqnDOE3w0wmJ-TAB4-EvKjZu5oJ9R6Uj7ug1U_IMWeSVUJ0_OAhbuUROUnphrFWiVY8JUeCs7rlkh2TP1_RobfLXEULE_UWfqCjEIx2mRo7Y9bOWaDplg2Y6G-bpwIiVmlC56iOMNmMkJeIFL02DmlaNhhtiHTammiHco3xektTDlFfIx3wlwVMz8jhqF3C53fnKfn-8cO39UV1-fn80_rssgLRyVxxiWJEUSOY1piR87FuV4x3IEFhY2QHWjWrQemGd6JuAQezEryMB0Zywbg4JW_2dTcx_Fww5X62CUrv2mNYUs9FwxRjqpGFvn5Eb8ISfelup4SSnay7ol7dqcXMOPSbaGcdt_39sxbA9gBiSCni2IPNOtvgc9TW9TXrdwvr1-rqy-3mzkrK20cp91X_i1_ucUzw4P59A_EXmb2jwQ
CitedBy_id crossref_primary_10_1016_j_compositesb_2023_110747
crossref_primary_10_1016_j_ceramint_2021_01_121
crossref_primary_10_1021_acs_jpcc_0c05125
crossref_primary_10_1039_D3TA04705A
crossref_primary_10_1016_j_jcis_2023_10_107
crossref_primary_10_1016_j_est_2024_113726
crossref_primary_10_1016_j_apsusc_2024_161547
crossref_primary_10_1016_j_cej_2025_160817
crossref_primary_10_1002_cnma_202300610
crossref_primary_10_1002_er_8642
crossref_primary_10_1007_s12274_021_3640_4
crossref_primary_10_1016_j_jpowsour_2021_230255
crossref_primary_10_1002_adfm_202414686
crossref_primary_10_1016_j_est_2020_101663
crossref_primary_10_1002_adfm_202310399
crossref_primary_10_1016_j_electacta_2021_138649
crossref_primary_10_1038_s41598_023_41816_9
crossref_primary_10_1007_s40843_021_1895_2
crossref_primary_10_1016_j_jelechem_2021_115759
crossref_primary_10_1039_D1QM00349F
crossref_primary_10_1016_j_jelechem_2022_116548
crossref_primary_10_1039_D4DT01230E
crossref_primary_10_1021_acsnano_1c08428
crossref_primary_10_1039_D2SE00223J
crossref_primary_10_1088_1361_6528_acb4f1
crossref_primary_10_1016_j_surfin_2023_103358
crossref_primary_10_1002_adfm_202418366
crossref_primary_10_1016_j_mtphys_2024_101444
crossref_primary_10_1016_j_est_2024_113736
crossref_primary_10_1016_j_jcis_2022_06_073
crossref_primary_10_1016_j_colsurfa_2022_130191
crossref_primary_10_1021_acsami_3c05224
crossref_primary_10_1016_j_jcis_2022_04_072
crossref_primary_10_1016_j_electacta_2022_140405
crossref_primary_10_2139_ssrn_4052220
crossref_primary_10_1016_j_jallcom_2023_169045
crossref_primary_10_1039_D2NJ00488G
crossref_primary_10_1016_j_est_2023_108440
crossref_primary_10_1016_j_cej_2022_138347
crossref_primary_10_1039_D1NR00174D
crossref_primary_10_1002_smll_202404193
crossref_primary_10_1039_D1TA06209C
crossref_primary_10_1021_acsami_2c14412
crossref_primary_10_1016_j_jallcom_2021_158751
crossref_primary_10_1016_j_cej_2020_126174
crossref_primary_10_1002_admt_202301329
crossref_primary_10_1016_j_est_2021_102374
crossref_primary_10_1016_j_jcis_2022_01_126
crossref_primary_10_1039_D2NJ02361J
crossref_primary_10_3390_chemosensors11100530
crossref_primary_10_1039_D2MA00091A
crossref_primary_10_1039_D2QI00695B
crossref_primary_10_1063_5_0164805
crossref_primary_10_1088_1361_6528_ac02ea
crossref_primary_10_1002_smtd_202201315
crossref_primary_10_1039_D2TA05046C
crossref_primary_10_1016_j_carbon_2023_02_021
crossref_primary_10_1016_j_jallcom_2020_158147
crossref_primary_10_1021_acsami_4c05534
crossref_primary_10_1016_j_est_2022_106537
crossref_primary_10_1016_j_est_2023_106855
crossref_primary_10_1016_j_jelechem_2021_115976
crossref_primary_10_1016_j_ccr_2021_214242
crossref_primary_10_1021_acssuschemeng_2c06927
crossref_primary_10_1016_j_colsurfa_2022_129702
crossref_primary_10_1016_j_matchemphys_2022_126311
crossref_primary_10_1002_celc_202101523
crossref_primary_10_1039_D0CS00721H
crossref_primary_10_1021_acsaem_1c02205
crossref_primary_10_1016_j_jcis_2023_04_037
crossref_primary_10_1016_j_ceramint_2024_07_296
crossref_primary_10_1002_elan_202300216
crossref_primary_10_1039_D1RA08678B
Cites_doi 10.1016/j.nanoen.2019.04.003
10.1002/adma.201605051
10.1016/j.ensm.2017.03.005
10.1021/acsenergylett.8b00515
10.1088/1361-6528/aab19b
10.1002/anie.201800363
10.1021/acsami.8b19386
10.1016/j.mattod.2014.10.040
10.1016/j.nanoen.2018.02.059
10.1021/ja303034w
10.1002/advs.201600539
10.1002/adfm.201504004
10.1016/j.cej.2019.01.156
10.1039/C4CS00266K
10.1039/C7TA11364A
10.1021/acsami.8b21803
10.1002/aenm.201702384
10.1002/adma.201504225
10.1016/j.jallcom.2016.12.124
10.1039/C5TA08366D
10.1002/smll.201700979
10.1039/C8CS00561C
10.1021/ja3046603
10.1039/C8CC09553A
10.1039/C9NR03088C
10.1038/nmat1368
10.1016/j.chempr.2018.06.007
10.1002/celc.201701033
10.1016/j.electacta.2018.05.100
10.1021/nl500011d
10.1016/j.apsusc.2015.11.194
10.1021/acssuschemeng.7b00729
10.1016/j.nanoen.2016.04.012
10.1016/j.nanoen.2019.01.071
10.1016/j.ensm.2019.02.014
10.1039/c3ee40509e
10.1016/j.ensm.2018.07.018
10.1039/C5CS00147A
10.1038/nmat2297
10.1002/aenm.201601362
10.1002/anie.200352386
10.1016/j.jpowsour.2018.09.021
10.1021/acs.accounts.5b00482
10.1038/ncomms7694
10.1126/science.1212741
10.1002/adfm.201705921
10.1126/science.1249625
10.1016/j.apmt.2019.06.002
10.1039/C6RA17825A
10.1021/acsnano.9b04005
10.1039/C8TA08263D
10.1002/adma.201800295
10.1016/j.electacta.2018.02.146
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2020
Copyright_xml – notice: Copyright Royal Society of Chemistry 2020
DBID AAYXX
CITATION
NPM
7SR
7U5
8BQ
8FD
F28
FR3
JG9
L7M
7X8
DOI 10.1039/c9nr10396a
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Solid State and Superconductivity Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
METADEX
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
CrossRef
PubMed
Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2040-3372
EndPage 45
ExternalDocumentID 32016240
10_1039_C9NR10396A
c9nr10396a
Genre Journal Article
GroupedDBID ---
-JG
0-7
0R~
29M
4.4
53G
705
7~J
AAEMU
AAIWI
AAJAE
AANOJ
AARTK
AAWGC
AAXHV
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFS
ACIWK
ACLDK
ADMRA
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRDS
AFVBQ
AGEGJ
AGRSR
AGSTE
AHGCF
AKBGW
ALMA_UNASSIGNED_HOLDINGS
ANUXI
APEMP
ASKNT
AUDPV
AZFZN
BLAPV
BSQNT
C6K
DU5
EBS
ECGLT
EE0
EF-
F5P
GGIMP
H13
HZ~
H~N
J3I
O-G
O9-
OK1
P2P
RAOCF
RCNCU
RNS
RPMJG
RRC
RSCEA
RVUXY
AAYXX
AFRZK
AKMSF
ALUYA
CITATION
NPM
7SR
7U5
8BQ
8FD
F28
FR3
JG9
L7M
7X8
ID FETCH-LOGICAL-c374t-24e3fe31ecb6bbf22f168027c4c9e5b47ca958d9a527316cedb832624cb423023
ISSN 2040-3364
2040-3372
IngestDate Fri Jul 11 06:17:00 EDT 2025
Sun Jun 29 15:30:11 EDT 2025
Wed Feb 19 02:31:16 EST 2025
Thu Apr 24 23:12:35 EDT 2025
Tue Jul 01 01:13:50 EDT 2025
Tue Dec 17 20:58:26 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c374t-24e3fe31ecb6bbf22f168027c4c9e5b47ca958d9a527316cedb832624cb423023
Notes Electronic supplementary information (ESI) available. See DOI
10.1039/c9nr10396a
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-8606-8986
0000-0003-3979-4146
PMID 32016240
PQID 2353947417
PQPubID 2047485
PageCount 11
ParticipantIDs crossref_primary_10_1039_C9NR10396A
rsc_primary_c9nr10396a
proquest_journals_2353947417
pubmed_primary_32016240
crossref_citationtrail_10_1039_C9NR10396A
proquest_miscellaneous_2350900954
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-02-14
PublicationDateYYYYMMDD 2020-02-14
PublicationDate_xml – month: 02
  year: 2020
  text: 2020-02-14
  day: 14
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Cambridge
PublicationTitle Nanoscale
PublicationTitleAlternate Nanoscale
PublicationYear 2020
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Chen (C9NR10396A-(cit27)/*[position()=1]) 2019; 17
He (C9NR10396A-(cit38)/*[position()=1]) 2018; 3
Simon (C9NR10396A-(cit7)/*[position()=1]) 2014; 343
Shi (C9NR10396A-(cit42)/*[position()=1]) 2019; 364
Xia (C9NR10396A-(cit22)/*[position()=1]) 2016; 24
Zhu (C9NR10396A-(cit47)/*[position()=1]) 2018; 269
Zuo (C9NR10396A-(cit12)/*[position()=1]) 2017; 4
Ling (C9NR10396A-(cit19)/*[position()=1]) 2016; 26
Chen (C9NR10396A-(cit3)/*[position()=1]) 2015; 44
Simon (C9NR10396A-(cit1)/*[position()=1]) 2008; 7
Guan (C9NR10396A-(cit21)/*[position()=1]) 2017; 29
Sajedi-Moghaddam (C9NR10396A-(cit23)/*[position()=1]) 2019; 16
Nitta (C9NR10396A-(cit16)/*[position()=1]) 2015; 18
Wang (C9NR10396A-(cit4)/*[position()=1]) 2018; 47
Sun (C9NR10396A-(cit8)/*[position()=1]) 2004; 43
Shen (C9NR10396A-(cit33)/*[position()=1]) 2015; 6
Hou (C9NR10396A-(cit31)/*[position()=1]) 2018; 28
Arico (C9NR10396A-(cit2)/*[position()=1]) 2005; 4
Liu (C9NR10396A-(cit9)/*[position()=1]) 2019; 11
Chen (C9NR10396A-(cit28)/*[position()=1]) 2018; 14
Wen (C9NR10396A-(cit5)/*[position()=1]) 2016; 28
Wang (C9NR10396A-(cit43)/*[position()=1]) 2019; 11
Xiao (C9NR10396A-(cit41)/*[position()=1]) 2019; 55
Chen (C9NR10396A-(cit49)/*[position()=1]) 2018; 29
Luo (C9NR10396A-(cit17)/*[position()=1]) 2016; 49
Peng (C9NR10396A-(cit53)/*[position()=1]) 2017; 5
Gong (C9NR10396A-(cit35)/*[position()=1]) 2012; 134
An (C9NR10396A-(cit52)/*[position()=1]) 2016; 6
Kim (C9NR10396A-(cit18)/*[position()=1]) 2018; 8
Chen (C9NR10396A-(cit30)/*[position()=1]) 2019; 13
Zhang (C9NR10396A-(cit13)/*[position()=1]) 2013; 6
Zhai (C9NR10396A-(cit10)/*[position()=1]) 2018; 47
Zhang (C9NR10396A-(cit36)/*[position()=1]) 2012; 134
Li (C9NR10396A-(cit26)/*[position()=1]) 2018; 4
Lu (C9NR10396A-(cit34)/*[position()=1]) 2018; 57
Quan (C9NR10396A-(cit45)/*[position()=1]) 2018; 281
Lin (C9NR10396A-(cit44)/*[position()=1]) 2018; 6
Gong (C9NR10396A-(cit46)/*[position()=1]) 2016; 362
Yang (C9NR10396A-(cit24)/*[position()=1]) 2019; 58
Dunn (C9NR10396A-(cit6)/*[position()=1]) 2011; 334
Dubal (C9NR10396A-(cit11)/*[position()=1]) 2015; 44
Lv (C9NR10396A-(cit37)/*[position()=1]) 2019; 11
Liu (C9NR10396A-(cit14)/*[position()=1]) 2018; 30
Wang (C9NR10396A-(cit15)/*[position()=1]) 2014; 14
Liu (C9NR10396A-(cit20)/*[position()=1]) 2019; 61
Zhao (C9NR10396A-(cit51)/*[position()=1]) 2017; 697
Huang (C9NR10396A-(cit39)/*[position()=1]) 2018; 6
Li (C9NR10396A-(cit40)/*[position()=1]) 2018; 402
Chen (C9NR10396A-(cit32)/*[position()=1]) 2015; 3
Liu (C9NR10396A-(cit25)/*[position()=1]) 2019; 22
Nagaraju (C9NR10396A-(cit50)/*[position()=1]) 2017; 7
Ye (C9NR10396A-(cit48)/*[position()=1]) 2018; 5
Zhang (C9NR10396A-(cit29)/*[position()=1]) 2017; 8
References_xml – volume: 61
  start-page: 18
  year: 2019
  ident: C9NR10396A-(cit20)/*[position()=1]
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.04.003
– volume: 29
  start-page: 1605051
  year: 2017
  ident: C9NR10396A-(cit21)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201605051
– volume: 8
  start-page: 28
  year: 2017
  ident: C9NR10396A-(cit29)/*[position()=1]
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2017.03.005
– volume: 3
  start-page: 1373
  year: 2018
  ident: C9NR10396A-(cit38)/*[position()=1]
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.8b00515
– volume: 29
  start-page: 205401
  year: 2018
  ident: C9NR10396A-(cit49)/*[position()=1]
  publication-title: Nanotechnology
  doi: 10.1088/1361-6528/aab19b
– volume: 57
  start-page: 2899
  year: 2018
  ident: C9NR10396A-(cit34)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201800363
– volume: 11
  start-page: 7946
  year: 2019
  ident: C9NR10396A-(cit43)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b19386
– volume: 18
  start-page: 252
  year: 2015
  ident: C9NR10396A-(cit16)/*[position()=1]
  publication-title: Mater. Today
  doi: 10.1016/j.mattod.2014.10.040
– volume: 47
  start-page: 89
  year: 2018
  ident: C9NR10396A-(cit10)/*[position()=1]
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.02.059
– volume: 134
  start-page: 10953
  year: 2012
  ident: C9NR10396A-(cit35)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja303034w
– volume: 4
  start-page: 1600539
  year: 2017
  ident: C9NR10396A-(cit12)/*[position()=1]
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201600539
– volume: 26
  start-page: 111
  year: 2016
  ident: C9NR10396A-(cit19)/*[position()=1]
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201504004
– volume: 364
  start-page: 320
  year: 2019
  ident: C9NR10396A-(cit42)/*[position()=1]
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.01.156
– volume: 44
  start-page: 1777
  year: 2015
  ident: C9NR10396A-(cit11)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C4CS00266K
– volume: 6
  start-page: 7420
  year: 2018
  ident: C9NR10396A-(cit39)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA11364A
– volume: 11
  start-page: 9984
  year: 2019
  ident: C9NR10396A-(cit9)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b21803
– volume: 8
  start-page: 1702384
  year: 2018
  ident: C9NR10396A-(cit18)/*[position()=1]
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201702384
– volume: 28
  start-page: 4306
  year: 2016
  ident: C9NR10396A-(cit5)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201504225
– volume: 697
  start-page: 124
  year: 2017
  ident: C9NR10396A-(cit51)/*[position()=1]
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2016.12.124
– volume: 3
  start-page: 23653
  year: 2015
  ident: C9NR10396A-(cit32)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C5TA08366D
– volume: 14
  start-page: 1700979
  year: 2018
  ident: C9NR10396A-(cit28)/*[position()=1]
  publication-title: Small
  doi: 10.1002/smll.201700979
– volume: 47
  start-page: 7426
  year: 2018
  ident: C9NR10396A-(cit4)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C8CS00561C
– volume: 134
  start-page: 11908
  year: 2012
  ident: C9NR10396A-(cit36)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja3046603
– volume: 55
  start-page: 2513
  year: 2019
  ident: C9NR10396A-(cit41)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/C8CC09553A
– volume: 11
  start-page: 13996
  year: 2019
  ident: C9NR10396A-(cit37)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/C9NR03088C
– volume: 4
  start-page: 366
  year: 2005
  ident: C9NR10396A-(cit2)/*[position()=1]
  publication-title: Nat. Mater.
  doi: 10.1038/nmat1368
– volume: 4
  start-page: 2168
  year: 2018
  ident: C9NR10396A-(cit26)/*[position()=1]
  publication-title: Chem
  doi: 10.1016/j.chempr.2018.06.007
– volume: 5
  start-page: 507
  year: 2018
  ident: C9NR10396A-(cit48)/*[position()=1]
  publication-title: ChemElectroChem
  doi: 10.1002/celc.201701033
– volume: 281
  start-page: 109
  year: 2018
  ident: C9NR10396A-(cit45)/*[position()=1]
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2018.05.100
– volume: 14
  start-page: 1987
  year: 2014
  ident: C9NR10396A-(cit15)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/nl500011d
– volume: 362
  start-page: 469
  year: 2016
  ident: C9NR10396A-(cit46)/*[position()=1]
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2015.11.194
– volume: 5
  start-page: 5951
  year: 2017
  ident: C9NR10396A-(cit53)/*[position()=1]
  publication-title: ACS Sustainable Chem. Eng.
  doi: 10.1021/acssuschemeng.7b00729
– volume: 24
  start-page: 78
  year: 2016
  ident: C9NR10396A-(cit22)/*[position()=1]
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2016.04.012
– volume: 58
  start-page: 455
  year: 2019
  ident: C9NR10396A-(cit24)/*[position()=1]
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.01.071
– volume: 22
  start-page: 384
  year: 2019
  ident: C9NR10396A-(cit25)/*[position()=1]
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2019.02.014
– volume: 6
  start-page: 1623
  year: 2013
  ident: C9NR10396A-(cit13)/*[position()=1]
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c3ee40509e
– volume: 17
  start-page: 194
  year: 2019
  ident: C9NR10396A-(cit27)/*[position()=1]
  publication-title: Energy Storage Mater.
  doi: 10.1016/j.ensm.2018.07.018
– volume: 44
  start-page: 6230
  year: 2015
  ident: C9NR10396A-(cit3)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C5CS00147A
– volume: 7
  start-page: 845
  year: 2008
  ident: C9NR10396A-(cit1)/*[position()=1]
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2297
– volume: 7
  start-page: 1601362
  year: 2017
  ident: C9NR10396A-(cit50)/*[position()=1]
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201601362
– volume: 43
  start-page: 597
  year: 2004
  ident: C9NR10396A-(cit8)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200352386
– volume: 402
  start-page: 116
  year: 2018
  ident: C9NR10396A-(cit40)/*[position()=1]
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2018.09.021
– volume: 49
  start-page: 231
  year: 2016
  ident: C9NR10396A-(cit17)/*[position()=1]
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.5b00482
– volume: 6
  start-page: 6694
  year: 2015
  ident: C9NR10396A-(cit33)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms7694
– volume: 334
  start-page: 928
  year: 2011
  ident: C9NR10396A-(cit6)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.1212741
– volume: 28
  start-page: 1705921
  year: 2018
  ident: C9NR10396A-(cit31)/*[position()=1]
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201705921
– volume: 343
  start-page: 1210
  year: 2014
  ident: C9NR10396A-(cit7)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.1249625
– volume: 16
  start-page: 280
  year: 2019
  ident: C9NR10396A-(cit23)/*[position()=1]
  publication-title: Appl. Mater. Today
  doi: 10.1016/j.apmt.2019.06.002
– volume: 6
  start-page: 75251
  year: 2016
  ident: C9NR10396A-(cit52)/*[position()=1]
  publication-title: RSC Adv.
  doi: 10.1039/C6RA17825A
– volume: 13
  start-page: 9376
  year: 2019
  ident: C9NR10396A-(cit30)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/acsnano.9b04005
– volume: 6
  start-page: 19151
  year: 2018
  ident: C9NR10396A-(cit44)/*[position()=1]
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA08263D
– volume: 30
  start-page: 1800295
  year: 2018
  ident: C9NR10396A-(cit14)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201800295
– volume: 269
  start-page: 30
  year: 2018
  ident: C9NR10396A-(cit47)/*[position()=1]
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2018.02.146
SSID ssj0069363
Score 2.5524573
Snippet The continuous exploration of advanced electrode materials is of remarkable significance to revolutionize next-generation high-performance energy storage...
SourceID proquest
pubmed
crossref
rsc
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 44
SubjectTerms Activated carbon
Bimetals
Cathodes
Core-shell structure
Current density
Electrical resistivity
Electrochemical analysis
Electrode materials
Electrodes
Electron transport
Electronic devices
Energy conversion
Energy storage
Flux density
Intermetallic compounds
Nanostructure
Nickel
Selenides
Selenium
Supercapacitors
Title Selenium-rich nickel cobalt bimetallic selenides with core-shell architecture enable superior hybrid energy storage devices
URI https://www.ncbi.nlm.nih.gov/pubmed/32016240
https://www.proquest.com/docview/2353947417
https://www.proquest.com/docview/2350900954
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLZgk9A4IH4NCgMZwQVVZm3sOPWxTKwTlB1gE-NU2c6rFmlNp6Y5AP88z3Z-dRsScIkix4mlfJ-fn-33PhPyBgDm0UgrFkmImcARkhn0WxmkiYoHQpto7iaKn4_l0an4eBafXckuWZt39ueNeSX_gyqWIa4uS_YfkG0-igV4j_jiFRHG619h_NWNGVm5YGjMzvt5hj3SqX0YfbHum2wB6Fg7DevCV0uhqAPNV8AKFwDa39hGgJBGVZRO_Hi56p__cNlcfQjZgS6K0sX3pOBtS9epRQu9LBDrhiPTrPSmPWPTrCHfd13t70M1WPpl_GBqJmXGJm1S2tSHGBxC1l2TwAmoOyElrAuAt12RC1TkPNk0tFGHUF2rKQZBsumaOR9wp4ZqVb5yt1J3KyEUlwsPLEcnRkbhE1fEs-tHt8l2hPMINITb40_vJ9_qwVoqLnmtWsvVftvUDrlTv7zpslybh6BXsqpPi_Feycl9cq-aTtBx4MYDcgvyh-RuR2TyEfm1wRIaWEIDS2jLEtqwhDqW0JYltMsSGlhCa5bQwBIaWEIrltCKJY_J6eGHk4MjVh25wSxPxJpFAvgc-BCskcbMI-ypcjSIEiusgtiIxGoVj1KlnW7fUFpIDQ4J-JOsQb8c_b9dspUvc3hKqBRWpzqRqUytmBttkpHQieVaD0dOBLFH3tZ_dWYrPXp3LMrFzMdFcDU7UMdfPBjjHnnd1L0MKiw31tqrwZlVvbSYRTzmSqDfjA2-ah6jDXUbYzqHZenrDJSbbIgeeRJAbZqpSdAju4hyU9wS5dkfX3lOdtrOsUe21qsSXqALuzYvKxr-BvUln8g
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Selenium-rich+nickel+cobalt+bimetallic+selenides+with+core-shell+architecture+enable+superior+hybrid+energy+storage+devices&rft.jtitle=Nanoscale&rft.au=Liu%2C+Yi-Lin&rft.au=Yan%2C+Cheng&rft.au=Wang%2C+Gui-Gen&rft.au=Li%2C+Fei&rft.date=2020-02-14&rft.eissn=2040-3372&rft.volume=12&rft.issue=6&rft.spage=4040&rft_id=info:doi/10.1039%2Fc9nr10396a&rft_id=info%3Apmid%2F32016240&rft.externalDocID=32016240
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2040-3364&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2040-3364&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2040-3364&client=summon