Oligodendrocyte‐specific deletion of Xbp1 exacerbates the endoplasmic reticulum stress response and restricts locomotor recovery after thoracic spinal cord injury
The endoplasmic reticulum stress response (ERSR) is activated in various neurodegenerative diseases and/or after CNS traumatic injuries. The ERSR is comprised of three major arms, PERK, IRE‐1, and activating transcription factor‐6, with the latter two contributing to the unfolded protein response (U...
Saved in:
Published in | Glia Vol. 69; no. 2; pp. 424 - 435 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken, USA
John Wiley & Sons, Inc
01.02.2021
Wiley Subscription Services, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The endoplasmic reticulum stress response (ERSR) is activated in various neurodegenerative diseases and/or after CNS traumatic injuries. The ERSR is comprised of three major arms, PERK, IRE‐1, and activating transcription factor‐6, with the latter two contributing to the unfolded protein response (UPR). PERK activity overlaps with the integrated stress response (ISR) kinases, PKR, HRI, and GCN2 which all signal through, eukaryotic initiation factor 2α, ATF4, and CHOP. All initially attempt to restore endoplasmic reticulum (ER) homeostasis, but if ER stress is unresolved, ATF4/CHOP‐mediated cell death is initiated. Here, we investigate the contribution of the inositol‐requiring protein‐1α‐X‐box binding protein‐1 (XBP1)‐mediated UPR signaling pathway to the pathogenesis of spinal cord injury (SCI). We demonstrate that deletion of Xbp1 caused an exacerbated ATF4/CHOP signaling in cultured mouse oligodendrocyte (OL) progenitor cells and enhanced their sensitivity to ER stress. Similar effects were also observed with the Xbp1 pathway inhibitor toyocamycin. Furthermore, OL lineage‐specific loss of Xbp1 resulted in enhanced ISR in mice that underwent moderate contusive SCI at the T9 level. Consistently, post‐injury recovery of hindlimb locomotion and white matter sparing were reduced in OL Xbp1‐deficient mice, which correlated with chronically decreased relative density of OPCs and OLs at the injury epicenter at 6 weeks post‐SCI. We conclude that the IRE1‐XBP1‐mediated UPR signaling pathway contributes to restoration of ER homeostasis in OLs and is necessary for enhanced white matter sparing and functional recovery post‐SCI.
Main Points
The IRE1α‐XBP1‐mediated UPR signaling pathway contributes to restoration of ER homeostasis in oligodendrocytes and thereby limits white matter loss and promotes locomotor recovery post‐SCI. |
---|---|
AbstractList | Abstract
The endoplasmic reticulum stress response (ERSR) is activated in various neurodegenerative diseases and/or after CNS traumatic injuries. The ERSR is comprised of three major arms, PERK, IRE‐1, and activating transcription factor‐6, with the latter two contributing to the unfolded protein response (UPR). PERK activity overlaps with the integrated stress response (ISR) kinases, PKR, HRI, and GCN2 which all signal through, eukaryotic initiation factor 2α, ATF4, and CHOP. All initially attempt to restore endoplasmic reticulum (ER) homeostasis, but if ER stress is unresolved, ATF4/CHOP‐mediated cell death is initiated. Here, we investigate the contribution of the inositol‐requiring protein‐1α‐X‐box binding protein‐1 (XBP1)‐mediated UPR signaling pathway to the pathogenesis of spinal cord injury (SCI). We demonstrate that deletion of
Xbp1
caused an exacerbated ATF4/CHOP signaling in cultured mouse oligodendrocyte (OL) progenitor cells and enhanced their sensitivity to ER stress. Similar effects were also observed with the
Xbp1
pathway inhibitor toyocamycin. Furthermore, OL lineage‐specific loss of
Xbp1
resulted in enhanced ISR in mice that underwent moderate contusive SCI at the T9 level. Consistently, post‐injury recovery of hindlimb locomotion and white matter sparing were reduced in OL
Xbp1
‐deficient mice, which correlated with chronically decreased relative density of OPCs and OLs at the injury epicenter at 6 weeks post‐SCI. We conclude that the IRE1‐XBP1‐mediated UPR signaling pathway contributes to restoration of ER homeostasis in OLs and is necessary for enhanced white matter sparing and functional recovery post‐SCI. The endoplasmic reticulum stress response (ERSR) is activated in various neurodegenerative diseases and/or after CNS traumatic injuries. The ERSR is comprised of three major arms, PERK, IRE‐1, and activating transcription factor‐6, with the latter two contributing to the unfolded protein response (UPR). PERK activity overlaps with the integrated stress response (ISR) kinases, PKR, HRI, and GCN2 which all signal through, eukaryotic initiation factor 2α, ATF4, and CHOP. All initially attempt to restore endoplasmic reticulum (ER) homeostasis, but if ER stress is unresolved, ATF4/CHOP‐mediated cell death is initiated. Here, we investigate the contribution of the inositol‐requiring protein‐1α‐X‐box binding protein‐1 (XBP1)‐mediated UPR signaling pathway to the pathogenesis of spinal cord injury (SCI). We demonstrate that deletion of Xbp1 caused an exacerbated ATF4/CHOP signaling in cultured mouse oligodendrocyte (OL) progenitor cells and enhanced their sensitivity to ER stress. Similar effects were also observed with the Xbp1 pathway inhibitor toyocamycin. Furthermore, OL lineage‐specific loss of Xbp1 resulted in enhanced ISR in mice that underwent moderate contusive SCI at the T9 level. Consistently, post‐injury recovery of hindlimb locomotion and white matter sparing were reduced in OL Xbp1‐deficient mice, which correlated with chronically decreased relative density of OPCs and OLs at the injury epicenter at 6 weeks post‐SCI. We conclude that the IRE1‐XBP1‐mediated UPR signaling pathway contributes to restoration of ER homeostasis in OLs and is necessary for enhanced white matter sparing and functional recovery post‐SCI. The endoplasmic reticulum stress response (ERSR) is activated in various neurodegenerative diseases and/or after CNS traumatic injuries. The ERSR is comprised of three major arms, PERK, IRE‐1, and activating transcription factor‐6, with the latter two contributing to the unfolded protein response (UPR). PERK activity overlaps with the integrated stress response (ISR) kinases, PKR, HRI, and GCN2 which all signal through, eukaryotic initiation factor 2α, ATF4, and CHOP. All initially attempt to restore endoplasmic reticulum (ER) homeostasis, but if ER stress is unresolved, ATF4/CHOP‐mediated cell death is initiated. Here, we investigate the contribution of the inositol‐requiring protein‐1α‐X‐box binding protein‐1 (XBP1)‐mediated UPR signaling pathway to the pathogenesis of spinal cord injury (SCI). We demonstrate that deletion of Xbp1 caused an exacerbated ATF4/CHOP signaling in cultured mouse oligodendrocyte (OL) progenitor cells and enhanced their sensitivity to ER stress. Similar effects were also observed with the Xbp1 pathway inhibitor toyocamycin. Furthermore, OL lineage‐specific loss of Xbp1 resulted in enhanced ISR in mice that underwent moderate contusive SCI at the T9 level. Consistently, post‐injury recovery of hindlimb locomotion and white matter sparing were reduced in OL Xbp1‐deficient mice, which correlated with chronically decreased relative density of OPCs and OLs at the injury epicenter at 6 weeks post‐SCI. We conclude that the IRE1‐XBP1‐mediated UPR signaling pathway contributes to restoration of ER homeostasis in OLs and is necessary for enhanced white matter sparing and functional recovery post‐SCI. Main Points The IRE1α‐XBP1‐mediated UPR signaling pathway contributes to restoration of ER homeostasis in oligodendrocytes and thereby limits white matter loss and promotes locomotor recovery post‐SCI. |
Author | Hetman, Michal Liu, Yu Andres, Kariena R. Saraswat Ohri, Sujata Shepard, Courtney T. Howard, Russell M. Whittemore, Scott R. |
Author_xml | – sequence: 1 givenname: Sujata orcidid: 0000-0003-4161-2516 surname: Saraswat Ohri fullname: Saraswat Ohri, Sujata email: sujata.saraswat@louisville.edu organization: University of Louisville, School of Medicine – sequence: 2 givenname: Russell M. surname: Howard fullname: Howard, Russell M. organization: University of Louisville, School of Medicine – sequence: 3 givenname: Yu surname: Liu fullname: Liu, Yu organization: University of Louisville, School of Medicine – sequence: 4 givenname: Kariena R. surname: Andres fullname: Andres, Kariena R. organization: University of Louisville, School of Medicine – sequence: 5 givenname: Courtney T. surname: Shepard fullname: Shepard, Courtney T. organization: University of Louisville, School of Medicine – sequence: 6 givenname: Michal surname: Hetman fullname: Hetman, Michal organization: University of Louisville, School of Medicine – sequence: 7 givenname: Scott R. surname: Whittemore fullname: Whittemore, Scott R. email: swhittemore@louisville.edu organization: University of Louisville, School of Medicine |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32926479$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kcFq3DAQhkVJaTZpL3mAIOgt4FSyvbZ1DKFJAwu5tNCbkaVxqkX2uCO5rW99hDxEnixPEm036THMQczwzceI_4gdjDgCYydSnEsh8k933unzvFCifsNWUqgmk7KoDthKNKrMZKnkITsKYSuETE39jh0WucqrslYr9nDr3R1aGC2hWSI8_r0PExjXO8MteIgOR449_95NksMfbYA6HSHw-AN42sLJ6zAkmBJqZj8PPESCENIgTDgG4Hq0uyaSMzFwjwYHjEhpZvAX0MJ1H4GSEEmbZAqTG7XnBslyN25nWt6zt732AT48v8fs29Xnr5dfss3t9c3lxSYzRV3WmU6f69W6V1o3sAaoZF6URgsjmqbvpLKVWKsCpFSys9bouhOpqkpDUZVKqOKYfdx7J8Kfczq53eJM6ZjQ5mXVrFVTN2WizvaUIQyBoG8ncoOmpZWi3QXS7gJp_wWS4NNn5dwNYP-jLwkkQO6B387D8oqqvd7cXOylT5brnag |
CitedBy_id | crossref_primary_10_1002_glia_24303 crossref_primary_10_1016_j_neures_2023_05_005 crossref_primary_10_3389_fphar_2022_860757 crossref_primary_10_1155_2022_5433860 crossref_primary_10_1089_neu_2020_7258 crossref_primary_10_1177_09603271231168761 crossref_primary_10_1089_neu_2022_0177 crossref_primary_10_3389_fnmol_2022_950586 crossref_primary_10_3389_fncel_2022_1049562 crossref_primary_10_3390_cells11213339 crossref_primary_10_1007_s12035_023_03905_8 crossref_primary_10_3390_biomedicines9020156 crossref_primary_10_1007_s12035_022_02935_y |
Cites_doi | 10.3109/10520295.2015.1057765 10.1016/j.molcel.2017.06.017 10.1002/glia.20491 10.1111/j.1460-9568.2007.05390.x 10.1038/ncb0311-184 10.1523/JNEUROSCI.3547-03.2004 10.1083/jcb.123.2.443 10.1523/JNEUROSCI.0679-17.2018 10.1128/MCB.23.21.7448-7459.2003 10.1016/j.nbd.2013.04.021 10.1038/s41467-018-05473-1 10.1089/neu.2005.22.1018 10.2174/156720212803530627 10.1523/JNEUROSCI.22-03-00876.2002 10.1247/csf.06028 10.1016/j.jneumeth.2012.06.017 10.1016/j.celrep.2013.03.024 10.1523/JNEUROSCI.11-06-01691.1991 10.1038/nrdp.2017.18 10.1016/j.neuron.2011.11.026 10.1038/cddis.2012.8 10.1038/cddis.2017.329 10.1089/neu.2005.22.529 10.1002/glia.23646 10.3171/spi.2000.93.2.0266 10.1016/S0092-8674(01)00611-0 10.1523/JNEUROSCI.22-01-00315.2002 10.1016/j.cell.2016.11.048 10.1038/bcj.2012.26 10.1172/JCI90608 10.1089/neu.2006.23.635 10.1089/neu.2015.3993 10.1111/j.1471-4159.2007.04671.x 10.1006/exnr.2002.7909 10.1002/gene.10154 10.1038/nrm2199 10.1038/nn.2273 10.1146/annurev-biochem-060614-033955 10.1074/jbc.M116.728949 10.1038/srep21709 10.1089/08977150360547099 10.1007/s00018-007-7383-5 10.1016/j.nbd.2018.12.008 10.1016/0968-0004(81)90080-3 10.1074/jbc.274.32.22569 10.1006/mcne.2001.1011 10.1006/exnr.1996.0098 10.1083/jcb.153.5.1011 10.1101/gad.964702 10.1007/BF01788366 10.1146/annurev.biochem.73.011303.074134 10.1089/neu.2011.1940 10.1101/gad.6.3.439 |
ContentType | Journal Article |
Copyright | 2020 Wiley Periodicals LLC 2020 Wiley Periodicals LLC. 2021 Wiley Periodicals LLC. |
Copyright_xml | – notice: 2020 Wiley Periodicals LLC – notice: 2020 Wiley Periodicals LLC. – notice: 2021 Wiley Periodicals LLC. |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QL 7T7 7TK 7U9 8FD C1K FR3 H94 K9. M7N P64 |
DOI | 10.1002/glia.23907 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef Bacteriology Abstracts (Microbiology B) Industrial and Applied Microbiology Abstracts (Microbiology A) Neurosciences Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Virology and AIDS Abstracts Technology Research Database Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | CrossRef Virology and AIDS Abstracts MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 1098-1136 |
EndPage | 435 |
ExternalDocumentID | 10_1002_glia_23907 32926479 GLIA23907 |
Genre | article Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: Leona M. and Harry B. Helmsley Charitable Trust – fundername: Commonwealth of Kentucky Research Challenge for Excellence Trust Fund – fundername: Center for Scientific Review funderid: NS045734; GM10350 – fundername: Norton Healthcare – fundername: CSR NIH HHS grantid: GM10350 – fundername: CSR NIH HHS grantid: NS045734 – fundername: NINDS NIH HHS grantid: R01 NS108529 |
GroupedDBID | --- -~X .3N .55 .GA .GJ .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEML ABIJN ABIVO ABJNI ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AHMBA AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 C45 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 F5P FEDTE G-S G.N GAKWD GNP GODZA H.T H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M6M MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OVD P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RWD RWI RX1 RYL SAMSI SUPJJ SV3 TEORI UB1 V2E W8V W99 WBKPD WIB WIH WIK WJL WNSPC WOHZO WQJ WRC WUP WXSBR WYISQ X7M XG1 XV2 ZGI ZXP ZZTAW ~IA ~WT CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QL 7T7 7TK 7U9 8FD C1K FR3 H94 K9. M7N P64 |
ID | FETCH-LOGICAL-c3747-a497f95f9aa8e5ee61234ca0c088fb19d60593e1191bddca7b0b0b66ae3649093 |
IEDL.DBID | DR2 |
ISSN | 0894-1491 |
IngestDate | Thu Oct 10 22:07:59 EDT 2024 Fri Aug 23 03:36:38 EDT 2024 Sat Nov 02 12:30:14 EDT 2024 Sat Aug 24 01:03:59 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | SCI ISR Xbp1 oligodendrocytes ERSR UPR |
Language | English |
License | 2020 Wiley Periodicals LLC. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3747-a497f95f9aa8e5ee61234ca0c088fb19d60593e1191bddca7b0b0b66ae3649093 |
Notes | Funding information Center for Scientific Review, Grant/Award Numbers: NS045734, GM10350; Leona M. and Harry B. Helmsley Charitable Trust; Commonwealth of Kentucky Research Challenge for Excellence Trust Fund; Norton Healthcare |
ORCID | 0000-0003-4161-2516 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8931742 |
PMID | 32926479 |
PQID | 2468598784 |
PQPubID | 996331 |
PageCount | 12 |
ParticipantIDs | proquest_journals_2468598784 crossref_primary_10_1002_glia_23907 pubmed_primary_32926479 wiley_primary_10_1002_glia_23907_GLIA23907 |
PublicationCentury | 2000 |
PublicationDate | February 2021 |
PublicationDateYYYYMMDD | 2021-02-01 |
PublicationDate_xml | – month: 02 year: 2021 text: February 2021 |
PublicationDecade | 2020 |
PublicationPlace | Hoboken, USA |
PublicationPlace_xml | – name: Hoboken, USA – name: United States – name: Hoboken |
PublicationTitle | Glia |
PublicationTitleAlternate | Glia |
PublicationYear | 2021 |
Publisher | John Wiley & Sons, Inc Wiley Subscription Services, Inc |
Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley Subscription Services, Inc |
References | 2002; 16 2017; 8 2007; 102 2013; 3 2017; 3 1991; 11 2004; 24 2019; 124 2000; 93 2011; 13 2011; 59 2012; 16 2001; 107 2005; 22 1993; 123 2009; 12 1992; 6 2018; 9 2013; 58 2006; 23 2015; 84 2019; 67 2007; 8 2005; 74 2012; 29 2008; 65 2001; 18 2015; 90 2018; 38 2007; 25 2017; 127 1996; 139 2018; 35 2002; 176 1995; 15 2003; 35 2016; 167 1981; 6 2007; 55 2012; 30 2018; 69 2012; 73 2009; 34 2016; 6 2012; 2 2001; 153 2002; 22 1999; 274 2016; 291 2003; 20 2012; 9 2003; 23 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_3_1 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_9_1 Saraswat‐Ohri S. (e_1_2_8_42_1) 2011; 59 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_41_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_51_1 e_1_2_8_30_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_48_1 e_1_2_8_2_1 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_40_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_54_1 e_1_2_8_52_1 e_1_2_8_50_1 |
References_xml | – volume: 69 start-page: 169 year: 2018 end-page: 181 article-title: The unfolded response and cell fate control publication-title: Molecular Cell – volume: 55 start-page: 698 issue: 7 year: 2007 end-page: 711 article-title: Prominent oligodendrocyte genesis along the border of spinal contusion lesions publication-title: Glia – volume: 38 start-page: 5900 issue: 26 year: 2018 end-page: 5912 article-title: Blocking autophagy in oligodendrocytes limits functional recovery after spinal cord injury publication-title: Journal of Neuroscience – volume: 73 start-page: 445 issue: 3 year: 2012 end-page: 452 article-title: Differential effects of unfolded protein response pathways on axon injury‐induced death of retinal ganglion cells publication-title: Neuron – volume: 23 start-page: 7448 year: 2003 end-page: 7459 article-title: XBP‐1 regulates a subset of endoplasmic reticulum resident chaperone genes in the unfolded protein response publication-title: Molecular and Cellular Biology – volume: 30 start-page: 219 year: 2012 end-page: 226 article-title: Isolation of cortical mouse oligodendrocyte precursor cells publication-title: Journal of Neuroscience Methods – volume: 22 start-page: 315 year: 2002 end-page: 323 article-title: Functional redundancy of ventral spinal locomotor pathways publication-title: Journal of Neuroscience – volume: 74 start-page: 739 year: 2005 end-page: 789 article-title: The mammalian unfolded protein response publication-title: Annual Review of Biochemistry – volume: 22 start-page: 876 year: 2002 end-page: 885 article-title: Proteolipid promoter activity distinguishes two populations of NG2‐positive cells throughout neonatal cortical development publication-title: Journal of Neuroscience – volume: 24 start-page: 2143 year: 2004 end-page: 2155 article-title: Reactive astrocytes protect tissue and preserve function after spinal cord injury publication-title: Journal of Neuroscience – volume: 16 year: 2012 article-title: Activation of the unfolded protein response enhances motor recovery after spinal cord injury publication-title: Cell Death and Disease – volume: 22 start-page: 529 year: 2005 end-page: 543 article-title: Functional consequences of lumbar spinal cord contusion injuries in the adult rat publication-title: Journal of Neurotrauma – volume: 18 start-page: 221 year: 2001 end-page: 234 article-title: Normal CNS myelination in transgenic mice overexpressing MHC class I H‐21(d) in oligodendrocytes publication-title: Molecular and Cellular Neuroscience – volume: 34 start-page: 1 year: 2009 end-page: 10 article-title: pXBP1(U), a negative regulator of the unfolded protein response activator pXBP1(S), targets ATF6 but not ATF4 in proteasome‐mediated degradation publication-title: Cell Structure and Function – volume: 6 year: 2016 article-title: Activation of the unfolded protein response promotes axonal regeneration after peripheral nerve injury publication-title: Scientific Reports – volume: 124 start-page: 353 year: 2019 end-page: 363 article-title: Following spinal cord injury, PDE4B drives an acute, local inflammatory response and a chronic, systemic response exacerbated by gut dysbiosis and endotoxemia publication-title: Neurobiology of Disease – volume: 35 start-page: 601 year: 2003 end-page: 607 article-title: Inducible site‐specific recombination in myelinating cells publication-title: Genesis – volume: 29 start-page: 579 issue: 3 year: 2012 end-page: 588 article-title: Deletion of the pro‐apoptotic endoplasmic reticulum stress response effector CHOP does not result in improved locomotor function after severe contusive spinal cord injury publication-title: Journal of Neurotrauma – volume: 9 start-page: 3066 issue: 1 year: 2018 article-title: Locomotor recovery following contusive spinal cord injury does not require oligodendrocyte remyelination publication-title: Nature Communications – volume: 274 start-page: 22569 year: 1999 end-page: 22580 article-title: Neuroprotection by brain‐derived neurotrophic factor is mediated by extracellular‐signal‐regulated kinase and phosphatidylinositol‐3 kinase publication-title: The Journal of Biological Chemistry – volume: 139 start-page: 244 year: 1996 end-page: 256 article-title: Graded histological and locomotor outcomes after spinal cord contusion using the NYU weight‐drop device versus transection publication-title: Experimental Neurology – volume: 20 start-page: 179 year: 2003 end-page: 193 article-title: Experimental modeling of spinal cord injury characterization of a force‐defined injury device publication-title: Journal of Neurotrauma – volume: 11 start-page: 1691 year: 1991 end-page: 1700 article-title: The effect of selective brainstem or spinal cord lesions on treadmill locomotion evoked by stimulation of the mesencephalic or pontomedullary locomotor regions publication-title: Journal of Neuroscience – volume: 35 start-page: 486 year: 2018 end-page: 491 article-title: Activating transcription factor‐6a modulates the endoplasmic reticulum stress response after spinal cord injury but does not affect locomotor recovery publication-title: Journal of Neurotrauma – volume: 8 start-page: 519 year: 2007 end-page: 529 article-title: Signal integration in the endoplasmic reticulum unfolded protein response publication-title: Nature Reviews Molecular Cell Biology – volume: 12 start-page: 379 year: 2009 end-page: 385 article-title: Endoplasmic reticulum stress in disorders of myelinating cells publication-title: Nature Neuroscience – volume: 3 year: 2017 article-title: Traumatic spinal cord injury publication-title: Nature Reviews, Disease Primers – volume: 8 year: 2017 article-title: Neuroprotection by eIF2a‐CHOP inhibition and XBP‐1 activation in EAE/optic neuritiss publication-title: Cell Death and Disease – volume: 167 start-page: 1867 year: 2016 end-page: 1882 article-title: A multiplexed single‐cell CRISPR screening platform enables systematic dissection of the unfolded protein response publication-title: Cell – volume: 127 start-page: 3259 year: 2017 end-page: 3270 article-title: Cell biology of spinal cord injury and repair publication-title: Journal of Clinical Investigation – volume: 22 start-page: 1018 year: 2005 end-page: 1024 article-title: Spinal cord trauma activates processing of XBP1 mRNA indicative of endoplasmic reticulum dysfunction publication-title: Journal of Neurotrauma – volume: 58 start-page: 29 year: 2013 end-page: 37 article-title: Restoring endoplasmic reticulum homeostasis improves functional recovery after spinal cord injury publication-title: Neurobiology of Disease – volume: 107 start-page: 881 year: 2001 end-page: 891 article-title: XBP1 mRNA is induced by ATF6 and spliced by IRE1 in response to ER stress to produce a highly active transcription factor publication-title: Cell – volume: 9 start-page: 274 year: 2012 end-page: 281 article-title: Deletion of endoplasmic reticulum stress‐induced CHOP protects microvasculature post‐spinal cord injury publication-title: Current Neurovascular Research – volume: 16 start-page: 452 year: 2002 end-page: 466 article-title: IRE1‐mediated unconventional mRNA splicing and S2P‐mediated ATF6 cleavage merge to regulate XBP1 in signaling the unfolded protein response publication-title: Genes & Development – volume: 2 year: 2012 article-title: Identification of toyocamycin, an agent cytotoxic for multiple myeloma cells, as a potent inhibitor of ER stress‐induced XBP1 mRNA splicing publication-title: Blood Cancer Journal – volume: 176 start-page: 143 year: 2002 end-page: 153 article-title: Anatomical correlates of locomotor recovery following dorsal and ventral lesions of the rat spinal cord publication-title: Experimental Neurology – volume: 84 start-page: 435 year: 2015 end-page: 464 article-title: The biology of proteostasis in aging and disease publication-title: Annual Review of Biochemistry – volume: 65 start-page: 862 year: 2008 end-page: 894 article-title: Endoplasmic reticulum stress responses publication-title: Cellular and Molecular Life Sciences – volume: 153 start-page: 1011 year: 2001 end-page: 1022 article-title: Feedback inhibition of the unfolded protein response by GADD34‐mediated dephosphorylation of eIF2alpha publication-title: The Journal of Cell Biology – volume: 67 start-page: 1745 issue: 9 year: 2019 end-page: 1759 article-title: Autophagy is essential for oligodendrocyte differentiation, survival, and proper myelination publication-title: Glia – volume: 3 start-page: 1279 year: 2013 end-page: 1292 article-title: Stress‐independent activation of XBP1s and/or ATF6 reveals three functionally diverse ER proteostasis environments publication-title: Cell Reports – volume: 6 start-page: 219 year: 1981 end-page: 221 article-title: The tunicamycins – Useful tools for studies on glycoproteins publication-title: Trends in Biochemical Sciences – volume: 93 start-page: 266 year: 2000 end-page: 275 article-title: Lasting paraplegia caused by loss of lumbar spinal cord interneurons in rats: No direct correlation with motor neuron loss publication-title: Journal of Neurosurgery – volume: 13 start-page: 184 year: 2011 end-page: 190 article-title: Integrating mechanisms of apoptosis induced by endoplasmic reticulum stress publication-title: Nature Cell Biology – volume: 15 start-page: 341 year: 1995 end-page: 349 article-title: Use of thapsigargin to study Ca2+ homeostasis in cardiac cells publication-title: Bioscience Reports – volume: 25 start-page: 1711 year: 2007 end-page: 1724 article-title: Glial cell loss, proliferation and replacement in the contused murine spinal cord publication-title: The European Journal of Neuroscience – volume: 23 start-page: 635 year: 2006 end-page: 665 article-title: Basso mouse scale for locomotion detects differences in recovery after spinal cord injury in five common mouse strains publication-title: Journal of Neurotrauma – volume: 291 start-page: 17394 year: 2016 end-page: 17404 article-title: XBP1s is an anti‐lipogenic protein publication-title: The Journal of Biological Chemistry – volume: 123 start-page: 443 year: 1993 end-page: 454 article-title: A myelin proteolipid protein‐LacZ fusion protein is developmentally regulated and targeted to the myelin membrane in transgenic mice publication-title: Journal of Cell Biology – volume: 90 start-page: 461 issue: 6 year: 2015 end-page: 469 article-title: Use of Eriochrome cyanine R in routine histology and histopathology: Is it time to say goodbye to hematoxylin ? publication-title: Biotechnic & Histochemistry – volume: 102 start-page: 1242 year: 2007 end-page: 1255 article-title: Spinal cord injury induces endoplasmic reticulum stress with different cell‐type dependent response publication-title: Journal of Neurochemistry – volume: 59 start-page: 489 year: 2011 end-page: 1502 article-title: Attenuating the endoplasmic reticulum stress response improves functional recovery after spinal cord injury publication-title: Glia – volume: 6 start-page: 439 year: 1992 end-page: 453 article-title: CHOP, a novel developmentally regulated nuclear protein dimerizes with transcription factors C/EBP and LAP, functions as a dominant‐negative inhibitor of gene transcription publication-title: Genes & Development – ident: e_1_2_8_49_1 doi: 10.3109/10520295.2015.1057765 – ident: e_1_2_8_18_1 doi: 10.1016/j.molcel.2017.06.017 – ident: e_1_2_8_51_1 doi: 10.1002/glia.20491 – ident: e_1_2_8_26_1 doi: 10.1111/j.1460-9568.2007.05390.x – ident: e_1_2_8_50_1 doi: 10.1038/ncb0311-184 – ident: e_1_2_8_13_1 doi: 10.1523/JNEUROSCI.3547-03.2004 – ident: e_1_2_8_53_1 doi: 10.1083/jcb.123.2.443 – ident: e_1_2_8_39_1 doi: 10.1523/JNEUROSCI.0679-17.2018 – ident: e_1_2_8_22_1 doi: 10.1128/MCB.23.21.7448-7459.2003 – ident: e_1_2_8_41_1 doi: 10.1016/j.nbd.2013.04.021 – ident: e_1_2_8_10_1 doi: 10.1038/s41467-018-05473-1 – ident: e_1_2_8_4_1 doi: 10.1089/neu.2005.22.1018 – ident: e_1_2_8_12_1 doi: 10.2174/156720212803530627 – ident: e_1_2_8_28_1 doi: 10.1523/JNEUROSCI.22-03-00876.2002 – ident: e_1_2_8_55_1 doi: 10.1247/csf.06028 – ident: e_1_2_8_8_1 doi: 10.1016/j.jneumeth.2012.06.017 – ident: e_1_2_8_48_1 doi: 10.1016/j.celrep.2013.03.024 – ident: e_1_2_8_30_1 doi: 10.1523/JNEUROSCI.11-06-01691.1991 – ident: e_1_2_8_3_1 doi: 10.1038/nrdp.2017.18 – ident: e_1_2_8_19_1 doi: 10.1016/j.neuron.2011.11.026 – ident: e_1_2_8_52_1 doi: 10.1038/cddis.2012.8 – ident: e_1_2_8_20_1 doi: 10.1038/cddis.2017.329 – ident: e_1_2_8_27_1 doi: 10.1089/neu.2005.22.529 – ident: e_1_2_8_5_1 doi: 10.1002/glia.23646 – ident: e_1_2_8_15_1 doi: 10.3171/spi.2000.93.2.0266 – ident: e_1_2_8_54_1 doi: 10.1016/S0092-8674(01)00611-0 – ident: e_1_2_8_25_1 doi: 10.1523/JNEUROSCI.22-01-00315.2002 – ident: e_1_2_8_2_1 doi: 10.1016/j.cell.2016.11.048 – ident: e_1_2_8_35_1 doi: 10.1038/bcj.2012.26 – ident: e_1_2_8_33_1 doi: 10.1172/JCI90608 – ident: e_1_2_8_7_1 doi: 10.1089/neu.2006.23.635 – ident: e_1_2_8_43_1 doi: 10.1089/neu.2015.3993 – ident: e_1_2_8_34_1 doi: 10.1111/j.1471-4159.2007.04671.x – ident: e_1_2_8_47_1 doi: 10.1006/exnr.2002.7909 – ident: e_1_2_8_9_1 doi: 10.1002/gene.10154 – ident: e_1_2_8_38_1 doi: 10.1038/nrm2199 – ident: e_1_2_8_24_1 doi: 10.1038/nn.2273 – ident: e_1_2_8_21_1 doi: 10.1146/annurev-biochem-060614-033955 – ident: e_1_2_8_16_1 doi: 10.1074/jbc.M116.728949 – ident: e_1_2_8_32_1 doi: 10.1038/srep21709 – ident: e_1_2_8_44_1 doi: 10.1089/08977150360547099 – volume: 59 start-page: 489 year: 2011 ident: e_1_2_8_42_1 article-title: Attenuating the endoplasmic reticulum stress response improves functional recovery after spinal cord injury publication-title: Glia contributor: fullname: Saraswat‐Ohri S. – ident: e_1_2_8_45_1 doi: 10.1007/s00018-007-7383-5 – ident: e_1_2_8_29_1 doi: 10.1016/j.nbd.2018.12.008 – ident: e_1_2_8_11_1 doi: 10.1016/0968-0004(81)90080-3 – ident: e_1_2_8_17_1 doi: 10.1074/jbc.274.32.22569 – ident: e_1_2_8_14_1 doi: 10.1006/mcne.2001.1011 – ident: e_1_2_8_6_1 doi: 10.1006/exnr.1996.0098 – ident: e_1_2_8_31_1 doi: 10.1083/jcb.153.5.1011 – ident: e_1_2_8_23_1 doi: 10.1101/gad.964702 – ident: e_1_2_8_36_1 doi: 10.1007/BF01788366 – ident: e_1_2_8_46_1 doi: 10.1146/annurev.biochem.73.011303.074134 – ident: e_1_2_8_40_1 doi: 10.1089/neu.2011.1940 – ident: e_1_2_8_37_1 doi: 10.1101/gad.6.3.439 |
SSID | ssj0011497 |
Score | 2.4611466 |
Snippet | The endoplasmic reticulum stress response (ERSR) is activated in various neurodegenerative diseases and/or after CNS traumatic injuries. The ERSR is comprised... Abstract The endoplasmic reticulum stress response (ERSR) is activated in various neurodegenerative diseases and/or after CNS traumatic injuries. The ERSR is... |
SourceID | proquest crossref pubmed wiley |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 424 |
SubjectTerms | Animals Cell death Cells (biology) Deletion Endoplasmic reticulum Endoplasmic Reticulum Stress ERSR Glial stem cells Homeostasis Injuries Injury prevention Inositol ISR Kinases Locomotion Mice Mice, Inbred C57BL Mice, Knockout Neurodegenerative diseases oligodendrocytes Oligodendroglia Pathogenesis Progenitor cells Protein folding Proteins Recovery Recovery (Medical) Recovery of function SCI Sensitivity enhancement Signal transduction Signaling Spinal cord injuries Spinal Cord Injuries - genetics Substantia alba Thorax UPR Xbp1 |
Title | Oligodendrocyte‐specific deletion of Xbp1 exacerbates the endoplasmic reticulum stress response and restricts locomotor recovery after thoracic spinal cord injury |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fglia.23907 https://www.ncbi.nlm.nih.gov/pubmed/32926479 https://www.proquest.com/docview/2468598784 |
Volume | 69 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3bSsNAEF3EJ1-8X-qNAcUHITWXzWXBl-JdREEU-iJhd7ORekmLjWB98hP8CL_ML3Fm01ZUEJS-bEsypJnZ7JnNmTOMrZOkmCe1cjyJKQoPcu1IQ6_YYzc0uCAR853YFqfR4SU_bobNEbY9qIWp9CGGG240M-zzmia4VN2tT9HQ67uWrPuYslMpuRfExOfaPR9qRyHOF5XMp-AOjr2hNqm_9Xnq19XoB8T8iljtkrM_wa4GF1sxTW7rj6Wq6-dvOo7__TeTbLyPRaFRBc8UGzHFNJtpFJiH3_dgAyw71G67z7C3s7sWprCG9A10rzTvL69UpElEI6BeOuRfaOfQVB0PzJPU6C6CsYAAE_Csdgdh-j0ebKsmacsRqjIV_MGydA3IIqMv1DKg7AIuskQUbD8A5ew44Xpg-5mjQYxajZa6HeroBZQ-Q6u4weCYZZf7exc7h06_w4OjA8xjHIk-ykWYCykTExpDWjBcS1fjsy9Xnsgi6jhoSIROZZmWsXLxE0XSBBEXrgjm2GjRLswCAwRyiatF5gfK8DyXSmLmJ3NtMp1xoXiNrQ08nXYqIY-0kmz2U7r5qb35NbY8CIK0P5m7qc-jJBRJnKCR-SowhiYCXyCkjEWNbVr3_mI7PTg5atjR4l8OXmJjPvFoLFN8mY2WD49mBYFQqVZtwH8A6QUJyQ |
link.rule.ids | 315,783,787,1378,27936,27937,46306,46730 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTuNAEG0xcJi5sAwzENaSZsQByYmX9tLHiC0wGUZCIOVmdbfbKCxORIxEOPEJfARfxpdQ1Q5BDBISyBfbskuyq8r9qv36FWO_SVLMk1o5nsQShQe5dqShX-yxGxockIj5TmyLw6h1wg86YWfEzaG1MJU-xHjCjTLDfq8pwWlCuvGiGnp60ZV1H2v2-AubwnwPqHPD9tFYPQqRvqiEPgV3cN8bq5P6jZd7X49Hb0Dma8xqB53dmaqz6sBqFRLX5Lx-Xaq6vv1PyfHTzzPLpkdwFJpV_MyxCVN8Z_PNAkvxyyFsgCWI2pn3efbw76KLVawhiQM9LM3j3T2t0ySuEVA7HXIx9HLoqL4H5kZq9BghWUCMCXhXr49I_RIvtgsnadYRqpUqeMISdQ3IIqMD6hpQDgDHWeIK9q6AynbMuSHYluZoEANXo6VBn5p6AVXQ0C3OMD5-sJPdneOtljNq8uDoAEsZR6KTchHmQsrEhMaQHAzX0tX4-cuVJ7KImg4a0qFTWaZlrFzcokiaIOLCFcFPNln0CrPIALFc4mqR-YEyPM-lklj8yVybTGdcKF5jv55dnfYrLY-0Um32U3r5qX35NbbyHAXpKJ8Hqc-jJBRJnKCRhSoyxiYCXyCqjEWNbVr_vmM73WvvN-3e0kcuXmdfW8d_22l7__DPMvvmE63GEsdX2GR5dW1WEReVas1G_xNWLA3h |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3datRAFD7UCuJNW63W1aoHFC-EbPMz-RnozaKurZYqYmFvJMxMZmRrmw3dFLpe-Qg-hE_mk3jOZHdLFQQlN5OQHJKcM5nvTL75DsBTlhSLlNFBpChFEYkzgbL8iz0PU0sDEjPfmW1xmO0diTejdLQCu4u1MJ0-xHLCjXuG_15zB28qt3MpGvr5ZKz6MaXs-TW4LjKCvgyJPizFowjoy07nU4qA2tFSnDTeubz26nD0B8a8Cln9mDNch0-Lu-2oJl_6563um6-_CTn-7-NswNocjOKgi55bsGLr27A5qCkRP53hM_T0UD_vvgk_3p2MKYe1LHBgZq39-e07r9JkphFyMR12ME4cjnQTob1QhvzFOBYJYSJdNWkIp5_SyX7ZJM85YrdOhQ54mq5FVVe8wzUD2inSKMtMwckZctJOPW6GvqA5GaSwNWRp2nBJL-T8Gcf1MUXHHTgavvr4Yi-Yl3gITEKJTKDIR06mTipV2NRaFoMRRoWGPn5OR7LKuOSgZRU6XVVG5TqkLcuUTTIhQ5nchdV6Utt7gITkitDIKk60Fc4prSj1U87YylRCatGDJwtPl02n5FF2ms1xyS-_9C-_B9uLICjnvXlaxiIrUlnkBRnZ6gJjaSKJJWHKXPbguXfvX2yXrw_2B751_19Ofgw33r8clgf7h28fwM2YOTWeNb4Nq-3ZuX1IoKjVj3zs_wI4uAyQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Oligodendrocyte%E2%80%90specific+deletion+of+Xbp1+exacerbates+the+endoplasmic+reticulum+stress+response+and+restricts+locomotor+recovery+after+thoracic+spinal+cord+injury&rft.jtitle=Glia&rft.au=Saraswat+Ohri%2C+Sujata&rft.au=Howard%2C+Russell+M.&rft.au=Liu%2C+Yu&rft.au=Andres%2C+Kariena+R.&rft.date=2021-02-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=0894-1491&rft.eissn=1098-1136&rft.volume=69&rft.issue=2&rft.spage=424&rft.epage=435&rft_id=info:doi/10.1002%2Fglia.23907&rft.externalDBID=10.1002%252Fglia.23907&rft.externalDocID=GLIA23907 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0894-1491&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0894-1491&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0894-1491&client=summon |