Simulating Federated Transfer Learning for Lung Segmentation using Modified UNet Model

Lung segmentation helps doctors in analyzing and diagnosing lung diseases effectively. Covid -19 pandemic highlighted the need for such artificial intelligence (AI) model to segment Lung X-ray images and diagnose patient covid conditions, in a short time, which was not possible due to huge number of...

Full description

Saved in:
Bibliographic Details
Published inProcedia computer science Vol. 218; pp. 1485 - 1496
Main Authors Ambesange, Sateesh, Annappa, B, Koolagudi, Shashidhar G
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.01.2023
The Author(s). Published by Elsevier B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Lung segmentation helps doctors in analyzing and diagnosing lung diseases effectively. Covid -19 pandemic highlighted the need for such artificial intelligence (AI) model to segment Lung X-ray images and diagnose patient covid conditions, in a short time, which was not possible due to huge number of patient influx at hospitals with the limited radiologist to diagnose based on test report in short time. AI models developed to assist doctors to diagnose faster, faces another challenge of data privacy. Such AI Models, for better performance, need huge data collected from multiple hospitals/diagnostic centres across the globe into single place to train the AI models. Federated Learning (FL) framework, using transfer learning approach addresses these concerns as FL framework doesn't need data to be shared to outside hospital ecosystem, as AI model get trained on local system and AI model get trained on distributed data. FL with Transfer learning doesn't need the parallel training of the model at all participants nodes like other FL. Paper simulates Federated Transfer learning for Image segmentation using transfer learning technique with few participating nodes and each nodes having different size dataset. The proposed method also leverages other healthcare data available at local system to train the proposed model to overcome lack of more data. Paper uses pre-trained weights of U-net Segmentation Model trained for MRI image segmentation to lung segmentation model. Paper demonstrates using such similar healthcare data available at local system helps improving the performance of the model. The paper uses Explainable AI approach to explain the result. Using above three techniques, Lung segmentation AI model gets near perfect segmentation accuracy.
AbstractList Lung segmentation helps doctors in analyzing and diagnosing lung diseases effectively. Covid -19 pandemic highlighted the need for such artificial intelligence (AI) model to segment Lung X-ray images and diagnose patient covid conditions, in a short time, which was not possible due to huge number of patient influx at hospitals with the limited radiologist to diagnose based on test report in short time. AI models developed to assist doctors to diagnose faster, faces another challenge of data privacy. Such AI Models, for better performance, need huge data collected from multiple hospitals/diagnostic centres across the globe into single place to train the AI models. Federated Learning (FL) framework, using transfer learning approach addresses these concerns as FL framework doesn't need data to be shared to outside hospital ecosystem, as AI model get trained on local system and AI model get trained on distributed data. FL with Transfer learning doesn't need the parallel training of the model at all participants nodes like other FL. Paper simulates Federated Transfer learning for Image segmentation using transfer learning technique with few participating nodes and each nodes having different size dataset. The proposed method also leverages other healthcare data available at local system to train the proposed model to overcome lack of more data. Paper uses pre-trained weights of U-net Segmentation Model trained for MRI image segmentation to lung segmentation model. Paper demonstrates using such similar healthcare data available at local system helps improving the performance of the model. The paper uses Explainable AI approach to explain the result. Using above three techniques, Lung segmentation AI model gets near perfect segmentation accuracy.
Author Ambesange, Sateesh
Annappa, B
Koolagudi, Shashidhar G
Author_xml – sequence: 1
  givenname: Sateesh
  surname: Ambesange
  fullname: Ambesange, Sateesh
  organization: Computer Science Engineering Dept, National Institute of Technology Karnataka, Surathkal, Mangalore, Karnataka state, India-575025
– sequence: 2
  givenname: B
  surname: Annappa
  fullname: Annappa, B
  organization: Computer Science Engineering Dept, National Institute of Technology Karnataka, Surathkal, Mangalore, Karnataka state, India-575025
– sequence: 3
  givenname: Shashidhar G
  surname: Koolagudi
  fullname: Koolagudi, Shashidhar G
  organization: Computer Science Engineering Dept, National Institute of Technology Karnataka, Surathkal, Mangalore, Karnataka state, India-575025
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36743787$$D View this record in MEDLINE/PubMed
BookMark eNp9UUtP4zAQthArXssvQEI9cmnwK7FzAAkhXlJ391DgarnOuLhK7GInSPx7nG1B7GV98Yy-x4zmO0S7PnhA6ITggmBSna-KdQwmFRRTVmBSECp20AGRQkxxievdb_U-Ok5phfNjUtZE7KF9VgnOhBQH6HnuuqHVvfPLyS00EHUPzeQxap8sxMkMdPQjZkNuhlzMYdmB77Mi-MmQRuxXaJx1Wfb0G_qxg_Yn-mF1m-B4-x-hp9ubx-v76ezP3cP11WxqmOBiWtqSAzasrPlCGym0rQUuLZWkFsZqTrisDVuUlOIFrwW12nBSMag006UklB2hy43velh00Ji8WdStWkfX6fiugnbqX8S7F7UMb6qWsmKMZ4OzrUEMrwOkXnUuGWhb7SEMSVEhmCCyqnCmsg3VxJBSBPs1hmA1hqJW6m8oagxFYaJyKFl1-n3DL81nBJlwsSFAvtObg6iSceANNC6C6VUT3H8HfAC6zaEe
CitedBy_id crossref_primary_10_3389_frai_2024_1406806
crossref_primary_10_3934_mbe_2024191
Cites_doi 10.1016/j.eswa.2022.116873
10.1007/978-3-319-24574-4_28
10.1016/j.compbiomed.2022.105236
ContentType Journal Article
Copyright 2023
2023 The Author(s). Published by Elsevier B.V.
2023 The Author(s). Published by Elsevier B.V. 2023
Copyright_xml – notice: 2023
– notice: 2023 The Author(s). Published by Elsevier B.V.
– notice: 2023 The Author(s). Published by Elsevier B.V. 2023
DBID 6I.
AAFTH
NPM
AAYXX
CITATION
7X8
5PM
DOI 10.1016/j.procs.2023.01.127
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
PubMed
CrossRef
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle PubMed
CrossRef
MEDLINE - Academic
DatabaseTitleList
PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1877-0509
EndPage 1496
ExternalDocumentID 10_1016_j_procs_2023_01_127
36743787
S1877050923001278
Genre Journal Article
GroupedDBID --K
0R~
0SF
1B1
457
5VS
6I.
71M
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AALRI
AAQFI
AAXUO
ABMAC
ACGFS
ADBBV
ADEZE
ADVLN
AEXQZ
AFTJW
AGHFR
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
E3Z
EBS
EJD
EP3
FDB
FNPLU
HZ~
IXB
KQ8
M41
M~E
NCXOZ
O-L
O9-
OK1
P2P
RIG
ROL
SES
SSZ
NPM
AAYXX
CITATION
7X8
5PM
ID FETCH-LOGICAL-c3747-5f54e0c3594bac87af9705f28197cfa41489c3b5220b4972fac4163e6a3a58123
IEDL.DBID IXB
ISSN 1877-0509
IngestDate Tue Sep 17 21:30:50 EDT 2024
Wed Jul 24 17:47:17 EDT 2024
Fri Aug 23 01:32:29 EDT 2024
Sat Sep 28 08:22:47 EDT 2024
Tue Jul 16 04:31:24 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Transfer Learning
X-ray Image segmentation
Lung image segmentation
Federated Learning
data privacy
U-net Architecture
Federated Transfer Learning
MRI image segmentation
Language English
License This is an open access article under the CC BY-NC-ND license.
2023 The Author(s). Published by Elsevier B.V.
Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3747-5f54e0c3594bac87af9705f28197cfa41489c3b5220b4972fac4163e6a3a58123
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S1877050923001278
PMID 36743787
PQID 2773718660
PQPubID 23479
PageCount 12
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_9886334
proquest_miscellaneous_2773718660
crossref_primary_10_1016_j_procs_2023_01_127
pubmed_primary_36743787
elsevier_sciencedirect_doi_10_1016_j_procs_2023_01_127
PublicationCentury 2000
PublicationDate 20230101
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 1
  year: 2023
  text: 20230101
  day: 1
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Procedia computer science
PublicationTitleAlternate Procedia Comput Sci
PublicationYear 2023
Publisher Elsevier B.V
The Author(s). Published by Elsevier B.V
Publisher_xml – name: Elsevier B.V
– name: The Author(s). Published by Elsevier B.V
References Selvaraju, Cogswell, Das, Vedantam, Parikh, Batra (bib0007) 2017
H. Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, Blaise Agüera y Arcas,(2017) “Communication-Efficient Learning of Deep Networks from Decentralised Data”
Uppin, Ambesange, Sangameshwar, M. (bib0006) 2021
Rastogi, Khanna, Singh (bib0009) 2021
Rastogi, Khanna, Singh (bib0008) 2022; 142
Jaeger, Candemir, Antani, Wáng, Lu, Thoma (bib0005) 2014; 4
Chaoyang He, Songze Li, Jinhyun So, Xiao Zeng, Mi Zhang, Hongyi Wang, Xiaoyang Wang, Praneeth Vepakomma, Abhishek Singh, Hang Qiu, Xinghua Zhu, Jianzong Wang, Li Shen, Peilin Zhao, Yan Kang, Yang Liu, Ramesh Raskar, Qiang Yang, Murali Annavaram∗,(2020) Salman Avestimehr, “FedML: A Research Library and Benchmark for Federated Machine Learning”
Ronneberger, O., Fischer, P., Brox, T. (2015). U-Net: Convolutional Networks for Biomedical Image Segmentation. In: Navab, N., Hornegger, J., Wells, W., Frangi, A. (eds) Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015. MICCAI 2015. Lecture Notes in Computer Science( ), vol 9351. Springer, Cham. https://doi.org/10.1007/978-3-319-24574-4_28
Dimitriadis, Kumatani, Gmyr, Gaur (bib0004) 2020
Peng, Gu, Ye, Cheng, Wang (bib0011) 2022; 198
.
Jakub Konecn´y, H. Brendan McMahan, Daniel Ramage, Peter Richt´arik, (2016) “Federated Optimization: Distributed Machine Learning for On-Device Intelligence”
Jaeger (10.1016/j.procs.2023.01.127_bib0005) 2014; 4
10.1016/j.procs.2023.01.127_bib0010
10.1016/j.procs.2023.01.127_bib0001
10.1016/j.procs.2023.01.127_bib0002
Rastogi (10.1016/j.procs.2023.01.127_bib0009) 2021
10.1016/j.procs.2023.01.127_bib0003
Dimitriadis (10.1016/j.procs.2023.01.127_bib0004) 2020
Rastogi (10.1016/j.procs.2023.01.127_bib0008) 2022; 142
Peng (10.1016/j.procs.2023.01.127_bib0011) 2022; 198
Uppin (10.1016/j.procs.2023.01.127_bib0006) 2021
Selvaraju (10.1016/j.procs.2023.01.127_bib0007) 2017
References_xml – start-page: 903
  year: 2021
  end-page: 915
  ident: bib0006
  article-title: Respiratory Sound Abnormality Classification using Multipath Deep Learning Method
  publication-title: 2021 Third International Conference on Inventive Research in Computing Applications (ICIRCA)
  contributor:
    fullname: M.
– volume: 142
  year: 2022
  ident: bib0008
  article-title: LeuFeatx: Deep learning–based feature extractor for the diagnosis of acute leukemia from microscopic images of peripheral blood smear
  publication-title: Computers in Biology and Medicine
  contributor:
    fullname: Singh
– start-page: 1
  year: 2021
  end-page: 12
  ident: bib0009
  article-title: Gland segmentation in colorectal cancer histopathological images using U-net inspired convolutional network
  publication-title: Neural Computation and Application
  contributor:
    fullname: Singh
– year: 2020
  ident: bib0004
  article-title: Federated Transfer Learning with Dynamic Gradient Aggregation
  publication-title: Sefik Emre Eskimez
  contributor:
    fullname: Gaur
– start-page: 618
  year: 2017
  end-page: 626
  ident: bib0007
  article-title: Grad-CAM: Visual Explanations from Deep Networks via Gradient-Based Localization
  publication-title: 2017 IEEE International Conference on Computer Vision (ICCV
  contributor:
    fullname: Batra
– volume: 198
  year: 2022
  ident: bib0011
  article-title: A-LugSeg: Automatic and explainability-guided multi-site lung detection in chest X-ray images
  publication-title: Expert Systems with Applications
  contributor:
    fullname: Wang
– volume: 4
  start-page: 475
  year: 2014
  end-page: 477
  ident: bib0005
  article-title: Two public chest X-ray datasets for computer-aided screening of pulmonary diseases
  publication-title: Quant Imaging Med Surg
  contributor:
    fullname: Thoma
– volume: 4
  start-page: 475
  issue: 6
  year: 2014
  ident: 10.1016/j.procs.2023.01.127_bib0005
  article-title: Two public chest X-ray datasets for computer-aided screening of pulmonary diseases
  publication-title: Quant Imaging Med Surg
  contributor:
    fullname: Jaeger
– year: 2020
  ident: 10.1016/j.procs.2023.01.127_bib0004
  article-title: Federated Transfer Learning with Dynamic Gradient Aggregation
  publication-title: Sefik Emre Eskimez
  contributor:
    fullname: Dimitriadis
– start-page: 618
  year: 2017
  ident: 10.1016/j.procs.2023.01.127_bib0007
  article-title: Grad-CAM: Visual Explanations from Deep Networks via Gradient-Based Localization
  contributor:
    fullname: Selvaraju
– volume: 198
  year: 2022
  ident: 10.1016/j.procs.2023.01.127_bib0011
  article-title: A-LugSeg: Automatic and explainability-guided multi-site lung detection in chest X-ray images
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2022.116873
  contributor:
    fullname: Peng
– ident: 10.1016/j.procs.2023.01.127_bib0010
  doi: 10.1007/978-3-319-24574-4_28
– ident: 10.1016/j.procs.2023.01.127_bib0001
– ident: 10.1016/j.procs.2023.01.127_bib0002
– ident: 10.1016/j.procs.2023.01.127_bib0003
– start-page: 1
  year: 2021
  ident: 10.1016/j.procs.2023.01.127_bib0009
  article-title: Gland segmentation in colorectal cancer histopathological images using U-net inspired convolutional network
  publication-title: Neural Computation and Application
  contributor:
    fullname: Rastogi
– start-page: 903
  year: 2021
  ident: 10.1016/j.procs.2023.01.127_bib0006
  article-title: Respiratory Sound Abnormality Classification using Multipath Deep Learning Method
  contributor:
    fullname: Uppin
– volume: 142
  year: 2022
  ident: 10.1016/j.procs.2023.01.127_bib0008
  article-title: LeuFeatx: Deep learning–based feature extractor for the diagnosis of acute leukemia from microscopic images of peripheral blood smear
  publication-title: Computers in Biology and Medicine
  doi: 10.1016/j.compbiomed.2022.105236
  contributor:
    fullname: Rastogi
SSID ssj0000388917
Score 2.3195608
Snippet Lung segmentation helps doctors in analyzing and diagnosing lung diseases effectively. Covid -19 pandemic highlighted the need for such artificial intelligence...
SourceID pubmedcentral
proquest
crossref
pubmed
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 1485
SubjectTerms data privacy
Federated Learning
Federated Transfer Learning
Lung image segmentation
MRI image segmentation
Transfer Learning
U-net Architecture
X-ray Image segmentation
Title Simulating Federated Transfer Learning for Lung Segmentation using Modified UNet Model
URI https://dx.doi.org/10.1016/j.procs.2023.01.127
https://www.ncbi.nlm.nih.gov/pubmed/36743787
https://search.proquest.com/docview/2773718660
https://pubmed.ncbi.nlm.nih.gov/PMC9886334
Volume 218
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NbxMxELWq9sIFaPkKtJGROLLKbmyv7WOpGkUUeiAEcrNsr50uIpuoSv9_Z7y7ESmIQ4_eHUvW2J55tmfeEPKhiKyUMopsbK3OuFMuczkvssq6qK0vSu9TlO91OZ3zzwuxOCAXfS4MhlV2tr-16clad19GnTZHm7oezQolJbKXAIjG91NM-GXgnTGJb_Fpd8-CbCc6Fd5F-Qw79ORDKcwL_QTSdo8Z0nem6jL_dlB_A9CHcZR_OKbJc_K0Q5T0vB30MTkIzQl51ldroN3mfUF-zOpVqtXVLOkEKSQAZVY0-aoIch3R6pICiqVfwATQWViuusykhmJ8_JJ-XVd1BNBK59dhi63w-yWZTy6_X0yzrqpC5hmcHTIRBQ-5Z0JzZ72SNmpQY8QHNemj5XA-0p45wGW541qOo_UI2kJpmRUAB9grctism_CGUPBuyikr4IyiuNDBKaGrCjCFExrONfmAfOxVaTYteYbpo8p-maR5g5o3eWFA8wNS9uo2e2vAgHn_f8f3_eQY2B345GGbsL4DISmZRE4_GMvrdrJ2I2GYfwH2akDk3jTuBJB5e_9PU98kBm6tVMkYf_vYAb8jT7DVXuWcksPt7V04A3CzdUNydH717efVMK3ie30K-ao
link.rule.ids 230,315,783,787,888,3515,27938,27939,45888
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxshEEZpcmgvSdNXnL6o1GNX3jWwwLGJajmt44vjyjcELLhbNesocv5_Zthdq06rHnrcBaTRADMfMPMNIR-LyEopo8hG1uqMO-Uyl_Miq6yL2vqi9D5F-c7KyYJ_XYrlHjnvc2EwrLKz_a1NT9a6-zPstDm8qevhvFBSInsJgGh8P1WPyAGmXWJc18XybHvRgnQnOlXexQEZjujZh1KcFzoK5O0eMeTvTOVl_u6h_kSgDwMpf_NM46fksIOU9HMr9THZC80zctSXa6Dd7n1Ovs_r61Ssq1nRMXJIAMysaHJWEfp1TKsrCjCWTsEG0HlYXXepSQ3FAPkVvVxXdQTUShezsMGv8OsFWYy_XJ1Psq6sQuYZHB4yEQUPuWdCc2e9kjZq0GPEFzXpo-VwQNKeOQBmueNajqL1iNpCaZkVgAfYS7LfrJtwQii4N-WUFXBIUVzo4JTQVQWgwgkNB5t8QD71qjQ3LXuG6cPKfpqkeYOaN3lhQPMDUvbqNjuLwIB9__fAD_3kGNge-OZhm7C-g05SMomkfiDLq3aytpIwTMAAgzUgcmcatx2Qenu3pal_JApurVTJGD_9X4Hfk8eTq8upmV7Mvr0mT7Clvdd5Q_Y3t3fhLSCdjXuXVvI9W0T7NQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Simulating+Federated+Transfer+Learning+for+Lung+Segmentation+using+Modified+UNet+Model&rft.jtitle=Procedia+computer+science&rft.au=Ambesange%2C+Sateesh&rft.au=Annappa%2C+B&rft.au=Koolagudi%2C+Shashidhar+G&rft.date=2023-01-01&rft.pub=The+Author%28s%29.+Published+by+Elsevier+B.V&rft.eissn=1877-0509&rft.volume=218&rft.spage=1485&rft.epage=1496&rft_id=info:doi/10.1016%2Fj.procs.2023.01.127&rft.externalDBID=PMC9886334
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1877-0509&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1877-0509&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1877-0509&client=summon