Translucent MXene Oxide–Based Bilayered Nanocoating on Woods for Integrated Active and Passive Fire Safety
Intelligent fire‐warning materials and sensors have gained considerable attention due to their excellent passive flame resistance and sensitive active fire‐alarm behaviors. However, current nanofiller‐based fire‐warning composites (e.g., MXene, graphene) still face limitations, including intrinsic d...
Saved in:
Published in | Small structures Vol. 6; no. 7 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Weinheim
John Wiley & Sons, Inc
01.07.2025
Wiley-VCH |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Intelligent fire‐warning materials and sensors have gained considerable attention due to their excellent passive flame resistance and sensitive active fire‐alarm behaviors. However, current nanofiller‐based fire‐warning composites (e.g., MXene, graphene) still face limitations, including intrinsic dark feature, poor structural reliability, and unstable fire‐warning response, hindering their broad use in decorative applications. Herein, a novel MXene derivative‐based bilayered composite nanocoating on wooden substrates with translucent features, exceptional flame resistance, and sensitive fire‐warning response is reported. MXene oxide porous nanoparticles are synthesized by a facile and simple oxidation of MXene and show unexpected network structure and semitransparent feature. Utilizing double‐layer structure and designed cross‐linked interface, the final nanocoatings applied onto the wooden substrates display good mechanical property and tunable optical transparency. Further, such double‐layer design guarantees excellent fire resistance performance through the formation of a compact C/N/P‐dopped TiO2 network during combustion. More interestingly, the resulting composite nanocoatings also display a rapid fire‐responsiveness (≈2.9 s), extended alarm duration (>300 s), and high repeated fire‐alarm capacity (>30 cycles) even after 1 year outdoors. In this work, a novel strategy is provided for designing intelligent semitransparent, fire‐retardant, and fire‐warning coatings for fire safety of wooden architecture.
MXene oxide–based translucent bilayered coatings on wood exhibit excellent fire resistance, rapid fire response (≈2.9 s), long alarm duration (>300 s), and over 30 cycles of fire‐alarm capability even after 1 year outdoors. The coatings feature tunable transparency, good mechanical properties, and provide a novel strategy for fire‐retardant MXene coatings in wooden structures. |
---|---|
AbstractList | Intelligent fire‐warning materials and sensors have gained considerable attention due to their excellent passive flame resistance and sensitive active fire‐alarm behaviors. However, current nanofiller‐based fire‐warning composites (e.g., MXene, graphene) still face limitations, including intrinsic dark feature, poor structural reliability, and unstable fire‐warning response, hindering their broad use in decorative applications. Herein, a novel MXene derivative‐based bilayered composite nanocoating on wooden substrates with translucent features, exceptional flame resistance, and sensitive fire‐warning response is reported. MXene oxide porous nanoparticles are synthesized by a facile and simple oxidation of MXene and show unexpected network structure and semitransparent feature. Utilizing double‐layer structure and designed cross‐linked interface, the final nanocoatings applied onto the wooden substrates display good mechanical property and tunable optical transparency. Further, such double‐layer design guarantees excellent fire resistance performance through the formation of a compact C/N/P‐dopped TiO 2 network during combustion. More interestingly, the resulting composite nanocoatings also display a rapid fire‐responsiveness (≈2.9 s), extended alarm duration (>300 s), and high repeated fire‐alarm capacity (>30 cycles) even after 1 year outdoors. In this work, a novel strategy is provided for designing intelligent semitransparent, fire‐retardant, and fire‐warning coatings for fire safety of wooden architecture. Intelligent fire‐warning materials and sensors have gained considerable attention due to their excellent passive flame resistance and sensitive active fire‐alarm behaviors. However, current nanofiller‐based fire‐warning composites (e.g., MXene, graphene) still face limitations, including intrinsic dark feature, poor structural reliability, and unstable fire‐warning response, hindering their broad use in decorative applications. Herein, a novel MXene derivative‐based bilayered composite nanocoating on wooden substrates with translucent features, exceptional flame resistance, and sensitive fire‐warning response is reported. MXene oxide porous nanoparticles are synthesized by a facile and simple oxidation of MXene and show unexpected network structure and semitransparent feature. Utilizing double‐layer structure and designed cross‐linked interface, the final nanocoatings applied onto the wooden substrates display good mechanical property and tunable optical transparency. Further, such double‐layer design guarantees excellent fire resistance performance through the formation of a compact C/N/P‐dopped TiO2 network during combustion. More interestingly, the resulting composite nanocoatings also display a rapid fire‐responsiveness (≈2.9 s), extended alarm duration (>300 s), and high repeated fire‐alarm capacity (>30 cycles) even after 1 year outdoors. In this work, a novel strategy is provided for designing intelligent semitransparent, fire‐retardant, and fire‐warning coatings for fire safety of wooden architecture. MXene oxide–based translucent bilayered coatings on wood exhibit excellent fire resistance, rapid fire response (≈2.9 s), long alarm duration (>300 s), and over 30 cycles of fire‐alarm capability even after 1 year outdoors. The coatings feature tunable transparency, good mechanical properties, and provide a novel strategy for fire‐retardant MXene coatings in wooden structures. Intelligent fire‐warning materials and sensors have gained considerable attention due to their excellent passive flame resistance and sensitive active fire‐alarm behaviors. However, current nanofiller‐based fire‐warning composites (e.g., MXene, graphene) still face limitations, including intrinsic dark feature, poor structural reliability, and unstable fire‐warning response, hindering their broad use in decorative applications. Herein, a novel MXene derivative‐based bilayered composite nanocoating on wooden substrates with translucent features, exceptional flame resistance, and sensitive fire‐warning response is reported. MXene oxide porous nanoparticles are synthesized by a facile and simple oxidation of MXene and show unexpected network structure and semitransparent feature. Utilizing double‐layer structure and designed cross‐linked interface, the final nanocoatings applied onto the wooden substrates display good mechanical property and tunable optical transparency. Further, such double‐layer design guarantees excellent fire resistance performance through the formation of a compact C/N/P‐dopped TiO2 network during combustion. More interestingly, the resulting composite nanocoatings also display a rapid fire‐responsiveness (≈2.9 s), extended alarm duration (>300 s), and high repeated fire‐alarm capacity (>30 cycles) even after 1 year outdoors. In this work, a novel strategy is provided for designing intelligent semitransparent, fire‐retardant, and fire‐warning coatings for fire safety of wooden architecture. |
Author | Chen, Guangming Chen, Zuan‐Yu Hu, Wan‐Jun Hu, Wen‐Yu Gao, Jie‐Feng Yang, Shihe Yu, Bin Ma, Jun Cao, Cheng‐Fei Tang, Long‐Cheng |
Author_xml | – sequence: 1 givenname: Wen‐Yu surname: Hu fullname: Hu, Wen‐Yu organization: Hangzhou Normal University – sequence: 2 givenname: Cheng‐Fei surname: Cao fullname: Cao, Cheng‐Fei organization: Hangzhou Normal University – sequence: 3 givenname: Zuan‐Yu surname: Chen fullname: Chen, Zuan‐Yu organization: Hangzhou Normal University – sequence: 4 givenname: Wan‐Jun surname: Hu fullname: Hu, Wan‐Jun organization: Hangzhou Normal University – sequence: 5 givenname: Shihe surname: Yang fullname: Yang, Shihe organization: Peking University – sequence: 6 givenname: Bin surname: Yu fullname: Yu, Bin organization: University of Science and Technology of China – sequence: 7 givenname: Guangming orcidid: 0000-0002-9848-9101 surname: Chen fullname: Chen, Guangming email: chengm@szu.edu.cn organization: Shenzhen University – sequence: 8 givenname: Jun surname: Ma fullname: Ma, Jun organization: University of South Australia – sequence: 9 givenname: Jie‐Feng surname: Gao fullname: Gao, Jie‐Feng organization: Yangzhou University – sequence: 10 givenname: Long‐Cheng orcidid: 0000-0002-2382-8850 surname: Tang fullname: Tang, Long‐Cheng email: lctang@hznu.edu.cn organization: Hangzhou Normal University |
BookMark | eNqFkUFvEzEQhS1UJErplbOlnpPaXq-ze2wr2kZqKSJBcLNmPbORo61dbKclN_4D_5Bf0g1BFTdO8zT63puR3lt2EGIgxt5LMZVCqNOcS5oqobQQphKv2KEyTTPRwqiDf_QbdpzzWoyGWspZOztkwzJByMPGUSj89hsF4nc_PNLvn7_OIRPycz_AltKoPkKILkLxYcVj4F9jxMz7mPg8FFolKCNz5op_JA4B-SfIeacvfSK-gJ7K9h173cOQ6fjvPGJfLj8sL64nN3dX84uzm4mrZlpPmg6pctKggQo71XcABkyteuyc0A3OQAI4MK4FQtV2wiAJdHUtSQvZu-qIzfe5GGFtH5K_h7S1Ebz9s4hpZSEV7wayrjG1kxJdR6hRU0egVN8ojaBV08ox62Sf9ZDi9w3lYtdxk8L4vq2UaoVSohUjNd1TLsWcE_UvV6Wwu4LsriD7UtBoqPeGJz_Q9j-0XSyWn6VqKl09AwTfmMo |
Cites_doi | 10.1016/j.matt.2021.12.009 10.1016/j.rse.2020.112282 10.1016/j.compositesb.2023.110816 10.1021/acsaem.2c01992 10.1021/acsapm.3c00940 10.1039/C9TA04187G 10.1021/acsami.9b18858 10.1021/acsami.1c05222 10.1016/j.cej.2022.138031 10.1016/j.snb.2018.11.021 10.1088/1748-9326/aa9ead 10.1002/admt.201800594 10.1016/j.cej.2021.131615 10.1002/adfm.202105043 10.1021/acsnano.0c05931 10.1002/adfm.202213382 10.1016/j.cej.2021.134108 10.1016/j.cej.2023.147187 10.1016/j.jcis.2023.05.119 10.1016/j.matchemphys.2021.124636 10.1039/D3TA07522B 10.1016/j.jhazmat.2022.130450 10.1016/j.cej.2022.139360 10.1016/j.jhazmat.2018.12.077 10.1016/j.compstruct.2023.117203 10.1002/adma.202107554 10.1002/adma.202102500 10.1016/j.cej.2023.141661 10.1021/acs.chemmater.1c03440 10.1016/j.coco.2022.101402 10.1016/j.cej.2024.153163 10.1002/adfm.202303861 10.1126/science.adk4197 10.1016/j.cej.2022.136899 10.1021/acsnano.7b01165 10.1016/j.cej.2023.146951 10.1016/j.mser.2022.100690 10.1016/j.cej.2022.138517 10.1126/science.abe9780 10.1007/s40820-022-00837-1 10.1016/j.compositesa.2022.107061 10.1126/science.361.6406.960 10.1039/C9NR07236E 10.1016/j.memsci.2021.119591 10.1002/adfm.201910048 10.1021/acsnano.1c10144 10.1021/acsnano.2c08368 10.1016/j.cej.2023.141546 10.1007/s11069-021-04901-8 10.1021/acs.nanolett.0c03288 10.1002/adfm.202108556 10.1021/acsami.2c09785 10.1016/j.compscitech.2021.109083 10.1038/s41586-021-03629-6 10.1126/science.aax8240 10.1002/adfm.202208131 10.1038/s41467-018-06776-z 10.1016/j.cej.2022.138308 10.1016/j.cej.2024.155413 10.1016/j.cej.2021.130765 10.1126/science.abb0355 10.1002/advs.202309392 10.1016/j.jcis.2021.06.054 10.1016/j.compositesa.2022.107385 10.1038/s41467-022-31283-7 10.1002/adma.202403835 10.1002/adem.202300233 10.1016/j.cej.2019.123894 10.1002/marc.202100229 10.1021/acsnano.8b00047 10.1016/j.cej.2022.140161 |
ContentType | Journal Article |
Copyright | 2025 The Author(s). Small Structures published by Wiley‐VCH GmbH 2025 Wiley‐VCH GmbH |
Copyright_xml | – notice: 2025 The Author(s). Small Structures published by Wiley‐VCH GmbH – notice: 2025 Wiley‐VCH GmbH |
DBID | 24P AAYXX CITATION 7SR 8FD JG9 DOA |
DOI | 10.1002/sstr.202400630 |
DatabaseName | Wiley Online Library Open Access - NZ CrossRef Engineered Materials Abstracts Technology Research Database Materials Research Database DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Materials Research Database Technology Research Database Engineered Materials Abstracts |
DatabaseTitleList | CrossRef Materials Research Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 2688-4062 |
EndPage | n/a |
ExternalDocumentID | oai_doaj_org_article_c865c11dcbed4d4ebea22f824da42891 10_1002_sstr_202400630 SSTR12834 |
Genre | article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 51973047; 52373033; 52473277 – fundername: Science and Technology Program of Zhejiang Province funderid: LGG20B040002; LZ22E030002 – fundername: Key R&D Program Project of Zhejiang Province funderid: 2024C01194 |
GroupedDBID | 0R~ 1OC 24P 33P AAFWJ AAMMB ABCUV ABDBF ABJNI ACCMX ACCZN ACPOU ACXQS ADKYN ADZMN AEFGJ AFPKN AFWVQ AGXDD AIDQK AIDYY AIURR ALMA_UNASSIGNED_HOLDINGS ALUQN AMYDB AVUZU DCZOG EBS GROUPED_DOAJ LATKE LEEKS M~E OK1 SUPJJ AAYXX CITATION 7SR 8FD JG9 |
ID | FETCH-LOGICAL-c3744-8bde3c16d6a3db2fbaa6a652fdbc048d7a1aaca6c9aed29b06de0dc551e401fc3 |
IEDL.DBID | 24P |
ISSN | 2688-4062 |
IngestDate | Wed Aug 27 01:31:36 EDT 2025 Tue Jul 29 16:33:48 EDT 2025 Thu Jul 10 08:42:26 EDT 2025 Tue Jul 08 09:30:34 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
License | Attribution http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3744-8bde3c16d6a3db2fbaa6a652fdbc048d7a1aaca6c9aed29b06de0dc551e401fc3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-2382-8850 0000-0002-9848-9101 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsstr.202400630 |
PQID | 3229022090 |
PQPubID | 5014762 |
PageCount | 14 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_c865c11dcbed4d4ebea22f824da42891 proquest_journals_3229022090 crossref_primary_10_1002_sstr_202400630 wiley_primary_10_1002_sstr_202400630_SSTR12834 |
PublicationCentury | 2000 |
PublicationDate | July 2025 2025-07-00 20250701 2025-07-01 |
PublicationDateYYYYMMDD | 2025-07-01 |
PublicationDate_xml | – month: 07 year: 2025 text: July 2025 |
PublicationDecade | 2020 |
PublicationPlace | Weinheim |
PublicationPlace_xml | – name: Weinheim |
PublicationTitle | Small structures |
PublicationYear | 2025 |
Publisher | John Wiley & Sons, Inc Wiley-VCH |
Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley-VCH |
References | 2018; 361 2022; 450 2023; 33 2020; 20 2023; 262 2023; 5 2023; 460 2023; 37 2019; 11 2023; 381 2021; 602 2019; 368 2020; 14 2024; 36 2019; 281 2022; 217 2019; 364 2018; 9 2021; 31 2023; 25 2021; 34 2022; 160 2021; 33 2023; 454 2020; 370 2021; 636 2023; 452 2023; 451 2022; 34 2021; 595 2022; 32 2023; 459 2022; 446 2019; 7 2021; 109 2022; 431 2019; 4 2021; 42 2022; 150 2021; 267 2023; 320 2023; 166 2021; 426 2023; 444 2024; 11 2020; 386 2023; 647 2024; 12 2021; 13 2021; 255 2020; 30 2022; 5 2017; 11 2022; 13 2022; 14 2024; 494 2023; 477 2024; 498 2022; 427 2018; 12 2022; 16 2018; 13 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_68_1 e_1_2_8_3_1 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_66_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_64_1 e_1_2_8_62_1 e_1_2_8_41_1 e_1_2_8_60_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_57_1 e_1_2_8_70_1 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_51_1 e_1_2_8_30_1 e_1_2_8_72_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_48_1 e_1_2_8_69_1 e_1_2_8_2_1 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_67_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_65_1 e_1_2_8_63_1 e_1_2_8_40_1 e_1_2_8_61_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_58_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_56_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_54_1 e_1_2_8_52_1 e_1_2_8_50_1 e_1_2_8_71_1 |
References_xml | – volume: 160 start-page: 107061 year: 2022 publication-title: Composites, Part A – volume: 477 start-page: 146951 year: 2023 publication-title: Chem. Eng. J. – volume: 267 start-page: 124636 year: 2021 publication-title: Mater. Chem. Phys. – volume: 12 start-page: 3159 year: 2018 publication-title: ACS Nano – volume: 11 start-page: 2309392 year: 2024 publication-title: Adv. Sci. – volume: 460 start-page: 141661 year: 2023 publication-title: Chem. Eng. J. – volume: 36 start-page: 2403835 year: 2024 publication-title: Adv. Mater. – volume: 7 start-page: 17037 year: 2019 publication-title: J. Mater. Chem. A – volume: 32 start-page: 2108556 year: 2022 publication-title: Adv. Funct. Mater. – volume: 150 start-page: 100690 year: 2022 publication-title: Mater. Sci. Eng. R – volume: 16 start-page: 2953 year: 2022 publication-title: ACS Nano – volume: 13 start-page: 23020 year: 2021 publication-title: ACS Appl. Mater. Interfaces – volume: 31 start-page: 2105043 year: 2021 publication-title: Adv. Funct. Mater. – volume: 25 start-page: 2300233 year: 2023 publication-title: Adv. Eng. Mater. – volume: 320 start-page: 117203 year: 2023 publication-title: Compos. Struct. – volume: 217 start-page: 109083 year: 2022 publication-title: Compos. Sci. Technol. – volume: 4 start-page: 1800594 year: 2019 publication-title: Adv. Mater. Technol. – volume: 13 start-page: 033003 year: 2018 publication-title: Environ. Res. Lett. – volume: 477 start-page: 147187 year: 2023 publication-title: Chem. Eng. J. – volume: 33 start-page: 2102500 year: 2021 publication-title: Adv. Mater. – volume: 427 start-page: 131615 year: 2022 publication-title: Chem. Eng. J. – volume: 494 start-page: 153163 year: 2024 publication-title: Chem. Eng. J. – volume: 255 start-page: 112282 year: 2021 publication-title: Remote Sens. Environ. – volume: 14 start-page: 92 year: 2022 publication-title: Nano‐Micro Lett. – volume: 426 start-page: 130765 year: 2021 publication-title: Chem. Eng. J. – volume: 281 start-page: 920 year: 2019 publication-title: Sens. Actuator B – volume: 444 start-page: 130450 year: 2023 publication-title: J. Hazard. Mater. – volume: 262 start-page: 110816 year: 2023 publication-title: Compos. Pt. B‐Eng. – volume: 11 start-page: 23330 year: 2019 publication-title: Nanoscale – volume: 370 start-page: 13 year: 2020 publication-title: Science – volume: 14 start-page: 16590 year: 2020 publication-title: ACS Nano – volume: 5 start-page: 12388 year: 2022 publication-title: ACS Appl. Energ. Mater. – volume: 364 start-page: 413 year: 2019 publication-title: Science – volume: 16 start-page: 20865 year: 2022 publication-title: ACS Nano – volume: 431 start-page: 134108 year: 2022 publication-title: Chem. Eng. J. – volume: 33 start-page: 2303861 year: 2023 publication-title: Adv. Funct. Mater. – volume: 602 start-page: 756 year: 2021 publication-title: J. Colloid Interface Sci. – volume: 381 start-page: 815 year: 2023 publication-title: Science – volume: 34 start-page: 2107554 year: 2022 publication-title: Adv. Mater. – volume: 451 start-page: 138517 year: 2023 publication-title: Chem. Eng. J. – volume: 459 start-page: 141546 year: 2023 publication-title: Chem. Eng. J. – volume: 451 start-page: 138308 year: 2023 publication-title: Chem. Eng. J. – volume: 33 start-page: 2213382 year: 2023 publication-title: Adv. Funct. Mater. – volume: 12 start-page: 6050 year: 2024 publication-title: J. Mater. Chem. A – volume: 34 start-page: 718 year: 2021 publication-title: Chem. Mater. – volume: 454 start-page: 140161 year: 2023 publication-title: Chem. Eng. J. – volume: 14 start-page: 42645 year: 2022 publication-title: ACS Appl. Mater. Interfaces – volume: 109 start-page: 1849 year: 2021 publication-title: Nat. Hazards – volume: 5 start-page: 5641 year: 2023 publication-title: ACS Appl. Polym. Mater. – volume: 498 start-page: 155413 year: 2024 publication-title: Chem. Eng. J. – volume: 32 start-page: 2208131 year: 2022 publication-title: Adv. Funct. Mater. – volume: 361 start-page: 960 year: 2018 publication-title: Science – volume: 42 start-page: 2100229 year: 2021 publication-title: Macromol. Rapid Commun. – volume: 5 start-page: 911 year: 2022 publication-title: Matter – volume: 11 start-page: 4792 year: 2017 publication-title: ACS Nano – volume: 647 start-page: 467 year: 2023 publication-title: J. Colloid Interface Sci. – volume: 452 start-page: 139360 year: 2023 publication-title: Chem. Eng. J. – volume: 13 start-page: 3680 year: 2022 publication-title: Nat. Commun. – volume: 9 start-page: 4299 year: 2018 publication-title: Nat. Commun. – volume: 636 start-page: 119591 year: 2021 publication-title: J. Membr. Sci. – volume: 450 start-page: 138031 year: 2022 publication-title: Chem. Eng. J. – volume: 446 start-page: 136899 year: 2022 publication-title: Chem. Eng. J. – volume: 20 start-page: 8185 year: 2020 publication-title: Nano Lett. – volume: 386 start-page: 123894 year: 2020 publication-title: Chem. Eng. J. – volume: 166 start-page: 107385 year: 2023 publication-title: Composites, Part A – volume: 11 start-page: 47456 year: 2019 publication-title: ACS Appl. Mater. Interfaces – volume: 370 start-page: eabb0355 year: 2020 publication-title: Science – volume: 595 start-page: 388 year: 2021 publication-title: Nature – volume: 30 start-page: 1910048 year: 2020 publication-title: Adv. Funct. Mater. – volume: 37 start-page: 101402 year: 2023 publication-title: Compos. Commun. – volume: 368 start-page: 115 year: 2019 publication-title: J. Hazard. Mater. – ident: e_1_2_8_22_1 doi: 10.1016/j.matt.2021.12.009 – ident: e_1_2_8_26_1 doi: 10.1016/j.rse.2020.112282 – ident: e_1_2_8_39_1 doi: 10.1016/j.compositesb.2023.110816 – ident: e_1_2_8_48_1 doi: 10.1021/acsaem.2c01992 – ident: e_1_2_8_53_1 doi: 10.1021/acsapm.3c00940 – ident: e_1_2_8_20_1 doi: 10.1039/C9TA04187G – ident: e_1_2_8_35_1 doi: 10.1021/acsami.9b18858 – ident: e_1_2_8_12_1 doi: 10.1021/acsami.1c05222 – ident: e_1_2_8_23_1 doi: 10.1016/j.cej.2022.138031 – ident: e_1_2_8_25_1 doi: 10.1016/j.snb.2018.11.021 – ident: e_1_2_8_15_1 doi: 10.1088/1748-9326/aa9ead – ident: e_1_2_8_52_1 doi: 10.1002/admt.201800594 – ident: e_1_2_8_33_1 doi: 10.1016/j.cej.2021.131615 – ident: e_1_2_8_36_1 doi: 10.1002/adfm.202105043 – ident: e_1_2_8_24_1 doi: 10.1021/acsnano.0c05931 – ident: e_1_2_8_49_1 doi: 10.1002/adfm.202213382 – ident: e_1_2_8_62_1 doi: 10.1016/j.cej.2021.134108 – ident: e_1_2_8_54_1 doi: 10.1016/j.cej.2023.147187 – ident: e_1_2_8_58_1 doi: 10.1016/j.jcis.2023.05.119 – ident: e_1_2_8_21_1 doi: 10.1016/j.matchemphys.2021.124636 – ident: e_1_2_8_70_1 doi: 10.1039/D3TA07522B – ident: e_1_2_8_50_1 doi: 10.1016/j.jhazmat.2022.130450 – ident: e_1_2_8_55_1 doi: 10.1016/j.cej.2022.139360 – ident: e_1_2_8_7_1 doi: 10.1016/j.jhazmat.2018.12.077 – ident: e_1_2_8_13_1 doi: 10.1016/j.compstruct.2023.117203 – ident: e_1_2_8_51_1 doi: 10.1002/adma.202107554 – ident: e_1_2_8_34_1 doi: 10.1002/adma.202102500 – ident: e_1_2_8_67_1 doi: 10.1016/j.cej.2023.141661 – ident: e_1_2_8_30_1 doi: 10.1021/acs.chemmater.1c03440 – ident: e_1_2_8_19_1 doi: 10.1016/j.coco.2022.101402 – ident: e_1_2_8_71_1 doi: 10.1016/j.cej.2024.153163 – ident: e_1_2_8_17_1 doi: 10.1002/adfm.202303861 – ident: e_1_2_8_6_1 doi: 10.1126/science.adk4197 – ident: e_1_2_8_37_1 doi: 10.1016/j.cej.2022.136899 – ident: e_1_2_8_42_1 doi: 10.1021/acsnano.7b01165 – ident: e_1_2_8_63_1 doi: 10.1016/j.cej.2023.146951 – ident: e_1_2_8_18_1 doi: 10.1016/j.mser.2022.100690 – ident: e_1_2_8_66_1 doi: 10.1016/j.cej.2022.138517 – ident: e_1_2_8_16_1 doi: 10.1126/science.abe9780 – ident: e_1_2_8_57_1 doi: 10.1007/s40820-022-00837-1 – ident: e_1_2_8_38_1 doi: 10.1016/j.compositesa.2022.107061 – ident: e_1_2_8_4_1 doi: 10.1126/science.361.6406.960 – ident: e_1_2_8_41_1 doi: 10.1039/C9NR07236E – ident: e_1_2_8_44_1 doi: 10.1016/j.memsci.2021.119591 – ident: e_1_2_8_47_1 doi: 10.1002/adfm.201910048 – ident: e_1_2_8_72_1 doi: 10.1021/acsnano.1c10144 – ident: e_1_2_8_32_1 doi: 10.1021/acsnano.2c08368 – ident: e_1_2_8_68_1 doi: 10.1016/j.cej.2023.141546 – ident: e_1_2_8_27_1 doi: 10.1007/s11069-021-04901-8 – ident: e_1_2_8_43_1 doi: 10.1021/acs.nanolett.0c03288 – ident: e_1_2_8_60_1 doi: 10.1002/adfm.202108556 – ident: e_1_2_8_11_1 doi: 10.1021/acsami.2c09785 – ident: e_1_2_8_29_1 doi: 10.1016/j.compscitech.2021.109083 – ident: e_1_2_8_3_1 doi: 10.1038/s41586-021-03629-6 – ident: e_1_2_8_5_1 doi: 10.1126/science.aax8240 – ident: e_1_2_8_45_1 doi: 10.1002/adfm.202208131 – ident: e_1_2_8_28_1 doi: 10.1038/s41467-018-06776-z – ident: e_1_2_8_10_1 doi: 10.1016/j.cej.2022.138308 – ident: e_1_2_8_8_1 doi: 10.1016/j.cej.2024.155413 – ident: e_1_2_8_46_1 doi: 10.1016/j.cej.2021.130765 – ident: e_1_2_8_2_1 doi: 10.1126/science.abb0355 – ident: e_1_2_8_40_1 doi: 10.1002/advs.202309392 – ident: e_1_2_8_31_1 doi: 10.1016/j.jcis.2021.06.054 – ident: e_1_2_8_61_1 doi: 10.1016/j.compositesa.2022.107385 – ident: e_1_2_8_9_1 doi: 10.1038/s41467-022-31283-7 – ident: e_1_2_8_14_1 doi: 10.1002/adma.202403835 – ident: e_1_2_8_64_1 doi: 10.1002/adem.202300233 – ident: e_1_2_8_59_1 doi: 10.1016/j.cej.2019.123894 – ident: e_1_2_8_56_1 doi: 10.1002/marc.202100229 – ident: e_1_2_8_69_1 doi: 10.1021/acsnano.8b00047 – ident: e_1_2_8_65_1 doi: 10.1016/j.cej.2022.140161 |
SSID | ssj0002511797 |
Score | 2.2961507 |
Snippet | Intelligent fire‐warning materials and sensors have gained considerable attention due to their excellent passive flame resistance and sensitive active... |
SourceID | doaj proquest crossref wiley |
SourceType | Open Website Aggregation Database Index Database Publisher |
SubjectTerms | double‐layer structures fire cyclic warnings Fire prevention Fire resistance flame retardancies Graphene MXene oxides MXenes Optical properties Oxidation Structural reliability Substrates Titanium dioxide translucents Warning |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA7iRS_iE9cXOQieqts0TdujKy4q-MBV3FtIMikISyvuLujN_-A_9Jc4k25lPXnxUkopZJiZzHyByfcxdhgXFtsGIjfS5o6k6xaRJUKAAsErgElcFuiarm_UxaO8GqbDOakvmglr6IEbx524XKUujsFZDxIkrmmEKHMhwSByDvfWBfa8ucMU1WACzlmRtSyNXXEyHk-I_pNGJhWNPM91oUDW_wthzuPU0Gj6q2xlhhD5aWPZGlvw1TpbOmuF2TbYKPSX0ZTmKvn1EIsVv317Bv_18dnDngS89zwy76TBybF21q42NNrM64o_1TWMOcJUftmyRAA_DRWPmwr4HSJpeu9jHeQDU_rJ-yZ77J8_nF1EM9GEyCWZlFFuwScuVqBMAlaU1hhlVCpKsA53K2QmNsYZ5QrjQRS2q8B3wSFw8njUKl2yxRaruvLbjOc-TXwswQtI8Wnz0kLmXGZt6olGpsOOWifql4YbQzcsyEKTu_WPuzusRz7--Ys4rcMHjLSeRVr_FekO22sjpGcbbawT4qsXmAG4xnGI2h-m6MHg4R6zM5E7_2HULlsWpAgcBnj32OLkder3EaZM7EHIyG-1oOe4 priority: 102 providerName: Directory of Open Access Journals |
Title | Translucent MXene Oxide–Based Bilayered Nanocoating on Woods for Integrated Active and Passive Fire Safety |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsstr.202400630 https://www.proquest.com/docview/3229022090 https://doaj.org/article/c865c11dcbed4d4ebea22f824da42891 |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NatwwEBYlPTSXkqYN3TYNOhR6MrElWbaP2ZAlDWwbsgndm5A0cgksdok30FxC3iFv2CfpjLzeZE-lF2GMf8Rofr4Ro28Y-5xVDsMGIjfqzZ0on1aJI0KACsErgJW-iHRN02_69EqdzfP5s1P8PT_EesONLCP6azJw67rDJ9LQrlsSnyfVQGqJSftLOl9LRX1Cna93WQhAF7HDitCoEhi9xMDcmIrDzU9sRKZI4L-BOp9j1xh8Jjvs9Qo18qN-md-wF6HZZa-Oh2Ztb9kixpzFLdVa8ukcHRj__vsawp-HxzHGKeDj64W9o76cHP1p61tL5c68bfiPtoWOI3TlXwfmCOBH0Qty2wA_R3RN1xP0jXxm67C8e8euJieXx6fJqpFC4mWhVFI6CNJnGrSV4ETtrNVW56IG59GCobCZtd5qX9kAonKphpCCRzAVMP2qvdxjW03bhPeMlyGXIVMQBOQ4urJ2UHhfOJcHopYZsS-DEM2vni_D9MzIwpC4zVrcIzYmGa-fIp7reKO9-WlWZmN8qXOfZeBdAAUKNc4KUZdCgcW8qcpGbH9YIbMyvs5I4rAXIq3wH70K_WMqZja7vECNlerD_77wkW0L6ggcC3j32dby5jZ8QpiydAdREw9iko_j9P7kLz3w5S8 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LbtNAFB2VdlE2iKcILTALECur9tge2wsWSSFKaFMQSSBiM8zMHaNKkV3VqSA7_oEv4Zf4Eu71I5AVYtGNZVl-jO7cx5nR9TmMPQsyg2UDkRtpc3uR9TPPECFAhuAVQIc2qemaJmdyNI_eLOLFDvvZ_QvT8ENsNtwoMup8TQFOG9JHf1hDq2pFhJ7UBClDv-2rPHHrr7hqq16OX-EUPxdi-Hp2PPJaYQHPhkkUeakBF9pAgtQhGJEbraWWscjBWPRoSHSgtdXSZtqByIwvwflgEVw4XI7kNsT33mB7BKUwkPb6H-af5puNHcLsSS3qIiR6IRZM0ZFF-uJoe9BbxbDWDNgCun_D5breDW-zWy1Q5f3Gs-6wHVfcZfvHnT7cPbasy9zyito7-WSBOZO__XYO7tf3HwMsjcAH50u9JilQjim8tKWmDmteFvxjWULFES3zcUdWAbxfJ16uC-DvENDT-RDTMZ_q3K3W99n8Wkz8gO0WZeEeMp66OHRBBE5AjEeT5gYSaxNjYkdsNj32ojOiumgoOlRDxiwUmVttzN1jA7Lx5i6i1q4vlJdfVBupyqYytkEA1jiIIEIn10LkqYhA41ItC3rssJsh1cZ7pUKizRfCz_Abjdf-YyhqOp29xyAJo0f_-8BTtj-aTU7V6fjs5IDdFCRIXPcPH7Ld1eWVe4woaWWetH7J2efrDoXfMn0lgw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtNAEB6VVIJeKn5FoMAeQJys2mt7bR96SFqihtJSkQYiLsvuzrqqFNlVnQpy4x14EZ6JJ2HWP4GcEIdeLMvyz2p2Zr5vV-NvAF4GmSbYIObmenN7kfEzTztBgIzIK6IKTVLLNR2fiMNp9HYWzzbgZ_cvTKMPsdpwc5FR52sX4JeY7_4RDa2qhdPzdDWQIvTbssoju_xKi7Zqb3xAM_yK89Gbs_1Dr-0r4JkwiSIv1WhDEwgUKkTNc62UUCLmOWpDDo2JCpQySphMWeSZ9gVaHw1xC0urkdyE9N5bsBkTFPo92Bx8nH6ervZ1HGVP6p4uXJATEl7yTivS57vrg17DwrplwBrP_Zst13A3ugvbLU9lg8ax7sGGLe7Dnf2uPdwDmNcoN7921Z3seEYpk73_doH21_cfQ0JGZMOLuVq6TqCMMnhpSuUKrFlZsE9liRUjsszGnVYFskGdd5kqkJ0Sn3fnI8rGbKJyu1g-hOmNmPgR9IqysI-BpTYObRCh5RjTUae5xsSYROvYOjGbPrzujCgvG4UO2Wgxc-nMLVfm7sPQ2Xh1l1PWri-UV-eyDVRpUhGbIECjLUYYkY8rzvOUR6hopZYFfdjpZki24V7J0Knmc-5n9I3Gaf8xFDmZnH2gGAmjJ__7wAu4fXowku_GJ0dPYYu7dsR19fAO9BZX1_YZcaSFft66JYMvNx0JvwERZySj |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Translucent+MXene+Oxide%E2%80%93Based+Bilayered+Nanocoating+on+Woods+for+Integrated+Active+and+Passive+Fire+Safety&rft.jtitle=Small+structures&rft.au=Hu%2C+Wen%E2%80%90Yu&rft.au=Cao%2C+Cheng%E2%80%90Fei&rft.au=Chen%2C+Zuan%E2%80%90Yu&rft.au=Hu%2C+Wan%E2%80%90Jun&rft.date=2025-07-01&rft.issn=2688-4062&rft.eissn=2688-4062&rft.volume=6&rft.issue=7&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fsstr.202400630&rft.externalDBID=10.1002%252Fsstr.202400630&rft.externalDocID=SSTR12834 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2688-4062&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2688-4062&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2688-4062&client=summon |