Supervised Learning and Large Language Model Benchmarks on Mental Health Datasets: Cognitive Distortions and Suicidal Risks in Chinese Social Media
On social media, users often express their personal feelings, which may exhibit cognitive distortions or even suicidal tendencies on certain specific topics. Early recognition of these signs is critical for effective psychological intervention. In this paper, we introduce two novel datasets from Chi...
Saved in:
Published in | Bioengineering (Basel) Vol. 12; no. 8; p. 882 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
19.08.2025
MDPI |
Subjects | |
Online Access | Get full text |
ISSN | 2306-5354 2306-5354 |
DOI | 10.3390/bioengineering12080882 |
Cover
Loading…
Abstract | On social media, users often express their personal feelings, which may exhibit cognitive distortions or even suicidal tendencies on certain specific topics. Early recognition of these signs is critical for effective psychological intervention. In this paper, we introduce two novel datasets from Chinese social media: SOS-HL-1K for suicidal risk classification, which contains 1249 posts, and SocialCD-3K, a multi-label classification dataset for cognitive distortion detection that contains 3407 posts. We conduct a comprehensive evaluation using two supervised learning methods and eight large language models (LLMs) on the proposed datasets. From the prompt engineering perspective, we experiment with two types of prompt strategies, including four zero-shot and five few-shot strategies. We also evaluate the performance of the LLMs after fine-tuning on the proposed tasks. Experimental results show a significant performance gap between prompted LLMs and supervised learning. Our best supervised model achieves strong results, with an F1-score of 82.76% for the high-risk class in the suicide task and a micro-averaged F1-score of 76.10% for the cognitive distortion task. Without fine-tuning, the best-performing LLM lags by 6.95 percentage points in the suicide task and a more pronounced 31.53 points in the cognitive distortion task. Fine-tuning substantially narrows this performance gap to 4.31% and 3.14% for the respective tasks. While this research highlights the potential of LLMs in psychological contexts, it also shows that supervised learning remains necessary for more challenging tasks. |
---|---|
AbstractList | On social media, users often express their personal feelings, which may exhibit cognitive distortions or even suicidal tendencies on certain specific topics. Early recognition of these signs is critical for effective psychological intervention. In this paper, we introduce two novel datasets from Chinese social media: SOS-HL-1K for suicidal risk classification, which contains 1249 posts, and SocialCD-3K, a multi-label classification dataset for cognitive distortion detection that contains 3407 posts. We conduct a comprehensive evaluation using two supervised learning methods and eight large language models (LLMs) on the proposed datasets. From the prompt engineering perspective, we experiment with two types of prompt strategies, including four zero-shot and five few-shot strategies. We also evaluate the performance of the LLMs after fine-tuning on the proposed tasks. Experimental results show a significant performance gap between prompted LLMs and supervised learning. Our best supervised model achieves strong results, with an F1-score of 82.76% for the high-risk class in the suicide task and a micro-averaged F1-score of 76.10% for the cognitive distortion task. Without fine-tuning, the best-performing LLM lags by 6.95 percentage points in the suicide task and a more pronounced 31.53 points in the cognitive distortion task. Fine-tuning substantially narrows this performance gap to 4.31% and 3.14% for the respective tasks. While this research highlights the potential of LLMs in psychological contexts, it also shows that supervised learning remains necessary for more challenging tasks. On social media, users often express their personal feelings, which may exhibit cognitive distortions or even suicidal tendencies on certain specific topics. Early recognition of these signs is critical for effective psychological intervention. In this paper, we introduce two novel datasets from Chinese social media: SOS-HL-1K for suicidal risk classification, which contains 1249 posts, and SocialCD-3K, a multi-label classification dataset for cognitive distortion detection that contains 3407 posts. We conduct a comprehensive evaluation using two supervised learning methods and eight large language models (LLMs) on the proposed datasets. From the prompt engineering perspective, we experiment with two types of prompt strategies, including four zero-shot and five few-shot strategies. We also evaluate the performance of the LLMs after fine-tuning on the proposed tasks. Experimental results show a significant performance gap between prompted LLMs and supervised learning. Our best supervised model achieves strong results, with an F1-score of 82.76% for the high-risk class in the suicide task and a micro-averaged F1-score of 76.10% for the cognitive distortion task. Without fine-tuning, the best-performing LLM lags by 6.95 percentage points in the suicide task and a more pronounced 31.53 points in the cognitive distortion task. Fine-tuning substantially narrows this performance gap to 4.31% and 3.14% for the respective tasks. While this research highlights the potential of LLMs in psychological contexts, it also shows that supervised learning remains necessary for more challenging tasks.On social media, users often express their personal feelings, which may exhibit cognitive distortions or even suicidal tendencies on certain specific topics. Early recognition of these signs is critical for effective psychological intervention. In this paper, we introduce two novel datasets from Chinese social media: SOS-HL-1K for suicidal risk classification, which contains 1249 posts, and SocialCD-3K, a multi-label classification dataset for cognitive distortion detection that contains 3407 posts. We conduct a comprehensive evaluation using two supervised learning methods and eight large language models (LLMs) on the proposed datasets. From the prompt engineering perspective, we experiment with two types of prompt strategies, including four zero-shot and five few-shot strategies. We also evaluate the performance of the LLMs after fine-tuning on the proposed tasks. Experimental results show a significant performance gap between prompted LLMs and supervised learning. Our best supervised model achieves strong results, with an F1-score of 82.76% for the high-risk class in the suicide task and a micro-averaged F1-score of 76.10% for the cognitive distortion task. Without fine-tuning, the best-performing LLM lags by 6.95 percentage points in the suicide task and a more pronounced 31.53 points in the cognitive distortion task. Fine-tuning substantially narrows this performance gap to 4.31% and 3.14% for the respective tasks. While this research highlights the potential of LLMs in psychological contexts, it also shows that supervised learning remains necessary for more challenging tasks. |
Audience | Academic |
Author | Luo, Dan Qi, Hongzhi Zhao, Qing Fu, Guanghui Song, Changwei Yang, Bingxiang Yu, Yijing Li, Jianqiang Zhai, Wei Liu, Shuo |
AuthorAffiliation | 3 School of Nursing, Wuhan University, Wuhan 430071, China 2 Institut du Cerveau—Paris Brain Institute-ICM, Sorbonne Université, CNRS, Inria, Inserm, AP-HP, Hôpital de la Pitié-Salpêtrière, 75013 Paris, France 1 College of Computer Science, Beijing University of Technology, Beijing 100124, China; qhz123@emails.bjut.edu.cn (H.Q.) |
AuthorAffiliation_xml | – name: 2 Institut du Cerveau—Paris Brain Institute-ICM, Sorbonne Université, CNRS, Inria, Inserm, AP-HP, Hôpital de la Pitié-Salpêtrière, 75013 Paris, France – name: 3 School of Nursing, Wuhan University, Wuhan 430071, China – name: 1 College of Computer Science, Beijing University of Technology, Beijing 100124, China; qhz123@emails.bjut.edu.cn (H.Q.) |
Author_xml | – sequence: 1 givenname: Hongzhi orcidid: 0009-0004-8007-3257 surname: Qi fullname: Qi, Hongzhi – sequence: 2 givenname: Guanghui surname: Fu fullname: Fu, Guanghui – sequence: 3 givenname: Jianqiang orcidid: 0000-0003-1995-9249 surname: Li fullname: Li, Jianqiang – sequence: 4 givenname: Changwei surname: Song fullname: Song, Changwei – sequence: 5 givenname: Wei surname: Zhai fullname: Zhai, Wei – sequence: 6 givenname: Dan surname: Luo fullname: Luo, Dan – sequence: 7 givenname: Shuo surname: Liu fullname: Liu, Shuo – sequence: 8 givenname: Yijing surname: Yu fullname: Yu, Yijing – sequence: 9 givenname: Bingxiang surname: Yang fullname: Yang, Bingxiang – sequence: 10 givenname: Qing surname: Zhao fullname: Zhao, Qing |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40868395$$D View this record in MEDLINE/PubMed |
BookMark | eNptkt9u0zAUxiM0xMbYK0yWuOGmw_-SONyg0QGb1AqJwrXl2CepS2oPO6nEc_DCnK5j2hCKlNgnn38-39H3sjgKMUBRnDN6IURD37Y-Quh9AEg-9IxTRZXiz4oTLmg1K0Upjx6tj4uznDeUUiZ4ySv5ojiWVFVKNOVJ8Xs13ULa-QyOLMCkgEBiAm5M6gHfoZ8MLpbRwUA-QLDrrUk_MomBLCGMZiDXYIZxTa7MaDKM-R2Zxz740e-AXPk8xjT6GPIddDV56x2e-eozMnwg8zXayEBW0XqsL8F586p43pkhw9n997T4_unjt_n1bPHl8838cjGzopZ8JoFT2wmpmOga2qrWslqiSYC2Y6ytpaDONbWVtJUUOt5KcNR0rt6PgrJanBY3B66LZqNvk0dnv3Q0Xt8VYuq1webtAFp2YE1Ja8NcLaVyrTDU4F2yYoorBsh6f2DdTu0WnMXRJDM8gT79E_xa93GnGRdKKFoh4c09IcWfE-RRb322MAwmQJyyFlxWkgla7xt__Y90E6cUcFZ7lWiwpXIPvDioeoMOfOgiXmzxcbD1FhPVeaxfKsxIVTWswQPnjz08NP83LSioDgKbYs4JugcJo3qfTP3_ZIo_xj3ajQ |
Cites_doi | 10.1613/jair.1.13566 10.18653/v1/2025.clpsych-1.17 10.1007/s00330-023-10213-1 10.1109/ICDEW67478.2025.00029 10.2196/57234 10.1007/s13278-021-00737-z 10.1109/JIOT.2020.3004376 10.1177/1178222618792860 10.1111/eip.12229 10.2196/26119 10.1016/j.lindif.2023.102274 10.1007/s13278-021-00776-6 10.1109/ICHI.2017.47 10.1038/s41586-023-06160-y 10.2196/preprints.52656 10.1002/eng2.12189 10.18653/v1/D19-1044 10.1109/CISCE.2019.00146 10.1038/s42256-023-00626-4 10.3350/cmh.2023.0089 10.2105/AJPH.2011.300608 10.1016/S2589-7500(23)00019-5 10.18653/v1/2023.findings-emnlp.680 10.1038/s41562-024-01847-2 10.1080/02673843.2019.1590851 10.1016/S2215-0366(18)30511-X 10.18653/v1/2023.emnlp-main.370 10.1093/jamiaopen/ooaa010 10.18653/v1/2023.acl-long.555 10.1038/s41591-023-02448-8 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2025 MDPI AG 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2025 by the authors. 2025 |
Copyright_xml | – notice: COPYRIGHT 2025 MDPI AG – notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2025 by the authors. 2025 |
DBID | AAYXX CITATION NPM 8FE 8FG 8FH ABJCF ABUWG AFKRA AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO GNUQQ HCIFZ L6V LK8 M7P M7S PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PTHSS 7X8 5PM DOA |
DOI | 10.3390/bioengineering12080882 |
DatabaseName | CrossRef PubMed ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection ProQuest One Community College ProQuest Central Korea ProQuest Central Student SciTech Premium Collection ProQuest Engineering Collection Biological Sciences Biological Science Database Engineering Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Engineering Collection MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ - Directory of Open Access Journals (Some content may be blocked by TCTC IT security protocols) |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) Engineering Collection Engineering Database ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Technology Collection Biological Science Database ProQuest SciTech Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database PubMed MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2306-5354 |
ExternalDocumentID | oai_doaj_org_article_4feca507a1d7448db3a0a0134618281e PMC12383806 A853566919 40868395 10_3390_bioengineering12080882 |
Genre | Journal Article |
GeographicLocations | United Kingdom China |
GeographicLocations_xml | – name: United Kingdom – name: China |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 72174152 and 72474166 – fundername: Beijing Natural Science Foundation grantid: 7254302 – fundername: Fundamental Research Funds for the Central Universities grantid: 2042022kf1218 and 2042022kf1037 – fundername: Young Top-notch Talent Cultivation Program of Hubei Province – fundername: Fundamental Research Funds for the Central Universities grantid: 2042022kf1218; 2042022kf1037 – fundername: National Natural Science Foundation of China grantid: 72174152; 72474166 |
GroupedDBID | 53G 5VS 8FE 8FG 8FH AAFWJ AAYXX ABDBF ABJCF ACUHS ADBBV AFKRA AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS BBNVY BCNDV BENPR BGLVJ BHPHI CCPQU CITATION GROUPED_DOAJ HCIFZ HYE IAO IHR INH ITC KQ8 L6V LK8 M7P M7S MODMG M~E OK1 PGMZT PHGZM PHGZT PIMPY PQGLB PROAC PTHSS PUEGO RPM NPM ABUWG AZQEC DWQXO GNUQQ PKEHL PQEST PQQKQ PQUKI 7X8 5PM |
ID | FETCH-LOGICAL-c3742-4e20cf34813f90b8bc174013eebf11b7430dd97c40b40ef2b4ed0afd700010173 |
IEDL.DBID | DOA |
ISSN | 2306-5354 |
IngestDate | Mon Sep 01 19:38:54 EDT 2025 Fri Aug 29 05:29:48 EDT 2025 Thu Sep 04 12:40:56 EDT 2025 Wed Aug 27 13:32:43 EDT 2025 Tue Sep 02 03:58:31 EDT 2025 Thu Sep 04 05:00:39 EDT 2025 Wed Aug 27 16:39:40 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Keywords | deep learning large language model suicide detection social media mental health cognitive distortions |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3742-4e20cf34813f90b8bc174013eebf11b7430dd97c40b40ef2b4ed0afd700010173 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-1995-9249 0009-0004-8007-3257 |
OpenAccessLink | https://doaj.org/article/4feca507a1d7448db3a0a0134618281e |
PMID | 40868395 |
PQID | 3243982856 |
PQPubID | 2055440 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_4feca507a1d7448db3a0a0134618281e pubmedcentral_primary_oai_pubmedcentral_nih_gov_12383806 proquest_miscellaneous_3246413077 proquest_journals_3243982856 gale_infotracacademiconefile_A853566919 pubmed_primary_40868395 crossref_primary_10_3390_bioengineering12080882 |
PublicationCentury | 2000 |
PublicationDate | 20250819 |
PublicationDateYYYYMMDD | 2025-08-19 |
PublicationDate_xml | – month: 8 year: 2025 text: 20250819 day: 19 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Bioengineering (Basel) |
PublicationTitleAlternate | Bioengineering (Basel) |
PublicationYear | 2025 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | ref_50 Acheampong (ref_9) 2020; 2 ref_14 ref_58 ref_13 ref_11 ref_55 ref_54 ref_53 Srivastava (ref_60) 2014; 15 ref_51 Huang (ref_2) 2019; 6 Keles (ref_4) 2020; 25 ref_19 ref_18 Laparra (ref_12) 2020; 3 ref_17 ref_16 ref_59 Saunders (ref_10) 2022; 75 Vaswani (ref_46) 2017; 30 ref_25 ref_24 ref_23 ref_22 Coppersmith (ref_7) 2018; 10 ref_21 ref_20 Zhang (ref_29) 2020; 7 Lin (ref_56) 2024; 8 ref_28 Yeo (ref_36) 2023; 29 Robinson (ref_5) 2016; 10 Brown (ref_52) 2020; 33 Thirunavukarasu (ref_15) 2023; 29 Luxton (ref_6) 2012; 102 Surameery (ref_34) 2023; 3 ref_33 ref_31 ref_30 Kasneci (ref_35) 2023; 103 ref_39 Jiang (ref_37) 2023; 619 Nandwani (ref_8) 2021; 11 Liebrenz (ref_32) 2023; 5 ref_47 ref_45 ref_44 ref_43 ref_42 ref_41 ref_40 ref_1 Fu (ref_26) 2021; 23 ref_3 Bauer (ref_38) 2024; 11 ref_49 ref_48 Singh (ref_27) 2021; 11 Ding (ref_57) 2023; 5 |
References_xml | – volume: 75 start-page: 351 year: 2022 ident: ref_10 article-title: Domain adaptation and multi-domain adaptation for neural machine translation: A survey publication-title: J. Artif. Intell. Res. doi: 10.1613/jair.1.13566 – volume: 30 start-page: 5998 year: 2017 ident: ref_46 article-title: Attention is all you need publication-title: Adv. Neural Inf. Process. Syst. – ident: ref_49 – ident: ref_55 – ident: ref_22 doi: 10.18653/v1/2025.clpsych-1.17 – ident: ref_33 doi: 10.1007/s00330-023-10213-1 – ident: ref_51 – ident: ref_23 doi: 10.1109/ICDEW67478.2025.00029 – volume: 11 start-page: e57234 year: 2024 ident: ref_38 article-title: Using Large Language Models to Understand Suicidality in a Social Media–Based Taxonomy of Mental Health Disorders: Linguistic Analysis of Reddit Posts publication-title: JMIR Ment. Health doi: 10.2196/57234 – volume: 11 start-page: 33 year: 2021 ident: ref_27 article-title: Sentiment analysis on the impact of coronavirus in social life using the BERT model publication-title: Soc. Netw. Anal. Min. doi: 10.1007/s13278-021-00737-z – volume: 7 start-page: 8133 year: 2020 ident: ref_29 article-title: Emotion detection in online social networks: A multilabel learning approach publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2020.3004376 – ident: ref_16 – ident: ref_39 – volume: 10 start-page: 1178222618792860 year: 2018 ident: ref_7 article-title: Natural language processing of social media as screening for suicide risk publication-title: Biomed. Inform. Insights doi: 10.1177/1178222618792860 – ident: ref_1 – volume: 10 start-page: 103 year: 2016 ident: ref_5 article-title: Social media and suicide prevention: A systematic review publication-title: Early Interv. Psychiatry doi: 10.1111/eip.12229 – ident: ref_58 – volume: 23 start-page: e26119 year: 2021 ident: ref_26 article-title: Distant supervision for mental health management in social media: Suicide risk classification system development study publication-title: J. Med. Internet Res. doi: 10.2196/26119 – ident: ref_31 – volume: 15 start-page: 1929 year: 2014 ident: ref_60 article-title: Dropout: A simple way to prevent neural networks from overfitting publication-title: J. Mach. Learn. Res. – ident: ref_48 – volume: 103 start-page: 102274 year: 2023 ident: ref_35 article-title: ChatGPT for good? On opportunities and challenges of large language models for education publication-title: Learn. Individ. Differ. doi: 10.1016/j.lindif.2023.102274 – ident: ref_41 – volume: 11 start-page: 81 year: 2021 ident: ref_8 article-title: A review on sentiment analysis and emotion detection from text publication-title: Soc. Netw. Anal. Min. doi: 10.1007/s13278-021-00776-6 – ident: ref_25 doi: 10.1109/ICHI.2017.47 – volume: 619 start-page: 357 year: 2023 ident: ref_37 article-title: Health system-scale language models are all-purpose prediction engines publication-title: Nature doi: 10.1038/s41586-023-06160-y – ident: ref_42 doi: 10.2196/preprints.52656 – ident: ref_13 – volume: 33 start-page: 1877 year: 2020 ident: ref_52 article-title: Language models are few-shot learners publication-title: Adv. Neural Inf. Process. Syst. – ident: ref_17 – ident: ref_45 – volume: 2 start-page: e12189 year: 2020 ident: ref_9 article-title: Text-based emotion detection: Advances, challenges, and opportunities publication-title: Eng. Rep. doi: 10.1002/eng2.12189 – ident: ref_20 – ident: ref_44 doi: 10.18653/v1/D19-1044 – ident: ref_59 – ident: ref_28 doi: 10.1109/CISCE.2019.00146 – ident: ref_53 – ident: ref_30 – volume: 5 start-page: 220 year: 2023 ident: ref_57 article-title: Parameter-efficient fine-tuning of large-scale pre-trained language models publication-title: Nat. Mach. Intell. doi: 10.1038/s42256-023-00626-4 – volume: 3 start-page: 17 year: 2023 ident: ref_34 article-title: Use ChatGPT to solve programming bugs publication-title: Int. J. Inf. Technol. Comput. Eng. (IJITC) – ident: ref_3 – ident: ref_24 – volume: 29 start-page: 721 year: 2023 ident: ref_36 article-title: Assessing the performance of ChatGPT in answering questions regarding cirrhosis and hepatocellular carcinoma publication-title: Clin. Mol. Hepatol. doi: 10.3350/cmh.2023.0089 – ident: ref_47 – ident: ref_40 – volume: 102 start-page: S195 year: 2012 ident: ref_6 article-title: Social media and suicide: A public health perspective publication-title: Am. J. Public Health doi: 10.2105/AJPH.2011.300608 – ident: ref_14 – volume: 5 start-page: e105 year: 2023 ident: ref_32 article-title: Generating scholarly content with ChatGPT: Ethical challenges for medical publishing publication-title: Lancet Digit. Health doi: 10.1016/S2589-7500(23)00019-5 – ident: ref_21 – ident: ref_18 doi: 10.18653/v1/2023.findings-emnlp.680 – ident: ref_50 – ident: ref_54 – volume: 8 start-page: 611 year: 2024 ident: ref_56 article-title: How to write effective prompts for large language models publication-title: Nat. Hum. Behav. doi: 10.1038/s41562-024-01847-2 – volume: 25 start-page: 79 year: 2020 ident: ref_4 article-title: A systematic review: The influence of social media on depression, anxiety and psychological distress in adolescents publication-title: Int. J. Adolesc. Youth doi: 10.1080/02673843.2019.1590851 – volume: 6 start-page: 211 year: 2019 ident: ref_2 article-title: Prevalence of mental disorders in China: A cross-sectional epidemiological study publication-title: Lancet Psychiatry doi: 10.1016/S2215-0366(18)30511-X – ident: ref_43 doi: 10.18653/v1/2023.emnlp-main.370 – ident: ref_19 – volume: 3 start-page: 146 year: 2020 ident: ref_12 article-title: Rethinking domain adaptation for machine learning over clinical language publication-title: JAMIA Open doi: 10.1093/jamiaopen/ooaa010 – ident: ref_11 doi: 10.18653/v1/2023.acl-long.555 – volume: 29 start-page: 1930 year: 2023 ident: ref_15 article-title: Large language models in medicine publication-title: Nat. Med. doi: 10.1038/s41591-023-02448-8 |
SSID | ssj0001325264 |
Score | 2.3008244 |
Snippet | On social media, users often express their personal feelings, which may exhibit cognitive distortions or even suicidal tendencies on certain specific topics.... |
SourceID | doaj pubmedcentral proquest gale pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database |
StartPage | 882 |
SubjectTerms | Algorithms Annotations Artificial intelligence Behavior modification Classification cognitive distortions Datasets Deep learning Digital media Distortion Emotions Labeling Language large language model Large language models Learning Machine learning Mental depression Mental disorders Mental health Performance evaluation Professionals Prompt engineering Risk factors Sentiment analysis Social media Social networks Subject specialists Suicidal behavior Suicidal ideation Suicide suicide detection Suicides & suicide attempts Supervised learning Therapy |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB7B9gKHijeBgoyExCnaxHHihAvq9qEKiQq1VOotsmOnjUqTZbP7S_jDzDjeRwTiEilPOZrXN7bnG4CPstaZtFyGvE51KESah6owPKw4jyqR6KRyjDffzrOzK_H1Or32E26931a59onOUZuuojnyKQb-pCC6tezL_FdIXaNoddW30HgIe-iC83QCe7OT8-8X21mWhKcY8ofS4ATz-6luOrtl-os5IqY856Oo5Mj7_3bROzFqvH9yJyCdPoF9jyTZ4SD6p_DAts_g8Q6_4HP4fbmaky_orWGeSPWGqRZPaP83Hoe5SkYN0X6yGSrs7b1a3PWsa9lA7sOGMiV2rJYY7pb9Z3a03m_Ejh3DiNNb99HLVVM1Bt-5aHr8RtMyas5te8uGGmBGi0LqBVydnvw4Ogt9F4awSjBvDoVFqdVUr5vURaRzXcWui5-1uo5jjQgkMqaQlYi0iGzNtbAmUrWRkeOvk8lLmLRda18Di1IjjcoriVYvrERXkCoi_0GYoBApqACmaymU84Fso8QkheRW_ltuAcxIWJuniSzbXegWN6W3vVLUlho_SBUbidmo0YmKFP6ByDC5ymMbwCcSdUkmjfKslK9MwEETOVZ5iJAGUW8RFwEcrLWh9Lbel1vNDODD5jZaKS29qNZ2K_dMRnBBygBeDcqzGbPArBJhahpAPlKr0U-N77TNrWMCR9iRJ3mUvfn_uN7CI05ti4nJtziAyXKxsu8QSy31e28wfwAv0yHk priority: 102 providerName: ProQuest |
Title | Supervised Learning and Large Language Model Benchmarks on Mental Health Datasets: Cognitive Distortions and Suicidal Risks in Chinese Social Media |
URI | https://www.ncbi.nlm.nih.gov/pubmed/40868395 https://www.proquest.com/docview/3243982856 https://www.proquest.com/docview/3246413077 https://pubmed.ncbi.nlm.nih.gov/PMC12383806 https://doaj.org/article/4feca507a1d7448db3a0a0134618281e |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fj5QwEG70fNEH42_Rc1MTE5_IQlto8W25vfVi4sXcecm9kZaWO6Kyl2P3L_EfdqZlV4gmvvgCgQIpzEznG9r5hpB3sjG5dEzGrMlMLESmYl1YFteMJbXghtee8ebzaX5yIT5dZpejUl-4JizQA4cPNxeNQ9Z-qVMrIZSwhutEA24ROSBjlTocfcHnjYIp_3eFswxcfUgJ5hDXz027dr8Z_lIGSEkpNvFGnrT_z6F55Jum6yZHjmj1iDwcECRdhJ4_Jndc94Q8GPEKPiU_z7c3OAb0ztKBQPWK6g4OcN03bMM_SoqF0L7TEhT1-oe-_dbTdUcDqQ8N6Ul0qTfg5jb9B3q0W2dEl55ZxOurf-j5tq1bC_ectT08o-0oFuV2vaMh95fiZJB-Ri5Wx1-PTuKh-kJcc4iXY-FAWg3m6fKmSIwydeqr9zlnmjQ1gDwSawtZi8SIxDXMCGcT3ViZeN46yZ-Tg27duZeEJpmVVqtagrULJ2EIyDSS_gA80IAQdETmOylUN4Fko4LgBOVW_V1uESlRWPurkSTbnwDVqQbVqf6lOhF5j6Ku0JRBnrUeMhKg00iKVS0AygDaLdIiIoc7bagGG-8rgKK8QALAPCJv981gnTjloju33vprcoQJUkbkRVCefZ8FRJMAT7OIqIlaTV5q2tK1154BHOCG4irJX_2Pz_Ca3GdY1Bh5fotDcrC53bo3gLQ2ZkbuqtXHGbm3KJflCvbl8emXs5k3tV-PgCxz |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbG9gA8IO4EBhgJxFPUxHbiBAmhdd3Usa1Cu0h7C3bsbBGQlKYV4nfwP_iNnJNL2wjE214qpUksR-f2HdvnO4S8lpkOpWXSZVmgXSGCyFWxYW7KmJcKrnlaM94cT8Lxufh4EVxskN9dLQweq-x8Yu2oTZniGvkAAj-PkW4t_DD97mLXKNxd7VpoNGpxaH_-gJSten8wAvm-YWx_72x37LZdBdyUQx7oCguzyLD-lGexpyOd-nVXOmt15vsaIqpnTCxT4Wnh2YxpYY2nMiO9mo9Nchj3BtkCmBGDFW0N9yafTlarOpwFADGaUmTOY2-g89KumAV9BggtilgvCtbNAv4OCWsxsX9ecy0A7t8ld1rkSncaVbtHNmxxn9xe4zN8QH6dLqboeypraEvceklVARd43hx-m7VRig3YvtIhGMjVNzX7UtGyoA2ZEG3KouhIzSG8zqt3dLc730RHNaNJbSf1oKeLPM0NvHOSVzBGXlBsBm4rS5uaY4qbUOohOb8W-Twim0VZ2CeEeoGRRkWpBC8jrATXEygkGwJYogCZKIcMOikk04bcI4GkCOWW_FtuDhmisJZPIzl3_Uc5u0xaW09EZrHRhFS-kZD9Gs2Vp-ALRAjJXORbh7xFUSfoQkCeqWorIWDSSMaV7ACEApQd-7FDtjttSFrfUiUrS3DIq-Vt8Aq41aMKWy7qZ0KEJ1I65HGjPMs5C8hiARYHDol6atX7qP6dIr-qmccB5kQ88sKn_5_XS3JzfHZ8lBwdTA6fkVsMWyYji3C8TTbns4V9Djhurl-0xkPJ5-u21z8Qj125 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fa9RAEB_qFUQfxP9Gq66g-BQu2WyyiSDS6_VorR6ltdC3uJvdtEFNzssd4ufw2_jpnEly_1B868tBLsmyYXZmfrM78xuAlzLXkbRcujwPtStEGLsqMdzNOPcyEeggaxhvPo6jgzPx_jw834Lfi1oYSqtc2MTGUJsqoz3yPjr-ICG6taifd2kRx8PRu8l3lzpI0Unrop1Gu0SO7M8fGL7Vbw-HKOtXnI_2P-0duF2HATcLMCZ0hcUZ5VSLGuSJp2Od-U2HOmt17vsavatnTCIz4Wnh2ZxrYY2nciO9hptNBjjuNdjGd6K4B9uD_fHxyWqHJ-Ahwo22LDkIEq-vi8quWAZ9jmgtjvmGR2waB_ztHtb842bu5pozHN2GWx2KZbvtsrsDW7a8CzfXuA3vwa_T-YTsUG0N60hcL5gq8YJyz_G33Sdl1IztKxugslx-U9MvNatK1hILsbZEig3VDF3trH7D9ha5TmzYsJs0OtMMejovssLgOydFjWMUJaPG4La2rK0_ZnQgpe7D2ZXI5wH0yqq0j4B5oZFGxZlEiyOsRDMUKiIeQoiiEKUoB_oLKaSTlugjxQCJ5Jb-W24ODEhYy6eJqLv5o5pepJ3epyK31HRCKt9IjISNDpSn8AtEhIFd7FsHXpOoUzInKM9MdVUROGki5kp3EU4h4k78xIGdxWpIOztTpyutcODF8jZaCDr2UaWt5s0zEUEVKR142C6e5ZwFRrQIkUMH4o1ltfFRm3fK4rJhIUfIEwexFz3-_7yew3XU0_TD4fjoCdzg1D2ZCIWTHejNpnP7FCHdTD_rdIfB56tW1z8VdmHl |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Supervised+Learning+and+Large+Language+Model+Benchmarks+on+Mental+Health+Datasets%3A+Cognitive+Distortions+and+Suicidal+Risks+in+Chinese+Social+Media&rft.jtitle=Bioengineering+%28Basel%29&rft.au=Qi%2C+Hongzhi&rft.au=Fu%2C+Guanghui&rft.au=Li%2C+Jianqiang&rft.au=Song%2C+Changwei&rft.date=2025-08-19&rft.issn=2306-5354&rft.eissn=2306-5354&rft.volume=12&rft.issue=8&rft_id=info:doi/10.3390%2Fbioengineering12080882&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2306-5354&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2306-5354&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2306-5354&client=summon |