A connected driver advisory system framework for merging freight trains
•We propose a Driver Advisory System framework for merging freight trains at junctions.•We specify basic requirements for merging Driver Advisory System functionalities.•We present a Connected-DAS architecture for merging freight trains.•We develop a merging window detection algorithm to facilitate...
Saved in:
Published in | Transportation research. Part C, Emerging technologies Vol. 105; pp. 203 - 221 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.08.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •We propose a Driver Advisory System framework for merging freight trains at junctions.•We specify basic requirements for merging Driver Advisory System functionalities.•We present a Connected-DAS architecture for merging freight trains.•We develop a merging window detection algorithm to facilitate smooth merging.•We provide a proof-of-concept by an application to a Dutch railway corridor.
This paper proposes an approach to facilitate smooth merging of freight trains into a stream of passenger trains with short headways, to help drivers better control freight trains and avoid red signals. An algorithm architecture is proposed for Driver Advisory Systems (DASs) to compute time/speed advice for freight train drivers. The framework includes four parts: buffer stairway prediction, freight train movement prediction, merging window detection and merging optimization. The basic idea is to predict the traffic state in the merging area regularly and find the feasible merging time window. Proper advice can be presented to freight train drivers and help them to merge smoothly, by comparing the freight train movement to the feasible merging window. The performance of the proposed algorithms is illustrated on examples of merging freight trains in the Meteren and Kijfhoek areas on the Dutch railway network. The experimental results show the efficiency and quality of the proposed algorithms on real world size problems. |
---|---|
AbstractList | •We propose a Driver Advisory System framework for merging freight trains at junctions.•We specify basic requirements for merging Driver Advisory System functionalities.•We present a Connected-DAS architecture for merging freight trains.•We develop a merging window detection algorithm to facilitate smooth merging.•We provide a proof-of-concept by an application to a Dutch railway corridor.
This paper proposes an approach to facilitate smooth merging of freight trains into a stream of passenger trains with short headways, to help drivers better control freight trains and avoid red signals. An algorithm architecture is proposed for Driver Advisory Systems (DASs) to compute time/speed advice for freight train drivers. The framework includes four parts: buffer stairway prediction, freight train movement prediction, merging window detection and merging optimization. The basic idea is to predict the traffic state in the merging area regularly and find the feasible merging time window. Proper advice can be presented to freight train drivers and help them to merge smoothly, by comparing the freight train movement to the feasible merging window. The performance of the proposed algorithms is illustrated on examples of merging freight trains in the Meteren and Kijfhoek areas on the Dutch railway network. The experimental results show the efficiency and quality of the proposed algorithms on real world size problems. |
Author | Goverde, Rob M.P. van Luipen, Jelle Wang, Pengling |
Author_xml | – sequence: 1 givenname: Pengling surname: Wang fullname: Wang, Pengling email: pengling.wang@ivt.baug.ethz.ch organization: Department of Transport and Planning, Delft University Technology, Delft, the Netherlands – sequence: 2 givenname: Rob M.P. surname: Goverde fullname: Goverde, Rob M.P. email: R.M.P.Goverde@tudelft.nl organization: Department of Transport and Planning, Delft University Technology, Delft, the Netherlands – sequence: 3 givenname: Jelle surname: van Luipen fullname: van Luipen, Jelle email: Jelle.vanLuipen@prorail.nl organization: Innovatie and Ontwikkeling, ProRail, Utrecht, the Netherlands |
BookMark | eNp9kMFKAzEQhoNUsK0-gLe8wK6TTXe3wVMpWoWCFwVvIU0mNbWbSBIqfXtT6smDp4GZ-YZ_vgkZ-eCRkFsGNQPW3e3qHHXdABM1tDXM-AUZs3kvqoa3YkTGILp5BQLer8gkpR1A2Wz7MVktqA7eo85oqInugJEqc3ApxCNNx5RxoDaqAb9D_KQ2RDpg3Dq_LV10249Mc1TOp2tyadU-4c1vnZK3x4fX5VO1flk9LxfrSvOe58p2iKbXpum5tpu2s8bMuEZjW7vpRAPWctaYMhDCMBAaGtXN1MZ0et4qjYJPSX--q2NIKaKV2mWVXfCnHHvJQJ58yJ0sPuTJh4RWFh-FZH_Ir-gGFY__MvdnBstLB4dRJu3Ql8AuFmXSBPcP_QMXj32I |
CitedBy_id | crossref_primary_10_1108_IJLM_07_2021_0360 crossref_primary_10_1155_2022_8674538 crossref_primary_10_1016_j_cie_2023_109865 crossref_primary_10_1016_j_jrtpm_2023_100392 crossref_primary_10_1109_TITS_2023_3236062 crossref_primary_10_1016_j_trc_2021_102982 crossref_primary_10_1016_j_jrtpm_2022_100352 crossref_primary_10_1016_j_trc_2021_103167 crossref_primary_10_3390_s22072491 |
Cites_doi | 10.1016/j.trb.2006.02.005 10.1016/j.ejor.2016.09.044 10.1016/j.jrtpm.2011.06.001 10.1016/j.trb.2009.07.007 10.1016/j.cor.2012.01.003 10.1080/03081060.2018.1453916 10.1016/j.cor.2017.06.009 10.1016/j.trc.2016.06.008 10.1016/j.trb.2013.10.013 10.1016/j.trb.2017.09.012 10.1016/j.trb.2014.01.009 10.1007/s10618-005-0024-4 10.1016/j.ejor.2014.08.036 10.1007/s12469-015-0106-7 10.1016/j.trc.2016.08.011 10.1016/j.trc.2016.02.004 10.1016/j.tre.2010.05.002 10.1243/09544097JRRT391 10.1109/TITS.2014.2347136 10.1016/j.trb.2015.10.005 10.1109/MTITS.2017.8005654 10.1016/j.jrtpm.2013.10.005 10.1016/j.trc.2015.11.014 10.1109/TITS.2014.2358392 |
ContentType | Journal Article |
Copyright | 2019 Elsevier Ltd |
Copyright_xml | – notice: 2019 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.trc.2019.05.043 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Economics Engineering |
EISSN | 1879-2359 |
EndPage | 221 |
ExternalDocumentID | 10_1016_j_trc_2019_05_043 S0968090X18315778 |
GroupedDBID | --K --M -~X .DC .~1 0R~ 123 1B1 1RT 1~. 1~5 29Q 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN 9JO AAAKF AAAKG AACTN AAEDT AAEDW AAFJI AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARIN AAXUO AAYFN ABBOA ABLJU ABMAC ABMMH ABUCO ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEKER AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV AKYCK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOMHK AOUOD APLSM ASPBG AVARZ AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HAMUX HMY HVGLF HZ~ H~9 IHE J1W JJJVA KOM LY1 LY7 M3Y M41 MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PRBVW Q38 R2- RIG ROL RPZ SDF SDG SDS SES SET SEW SPC SPCBC SSB SSD SSO SSS SST SSV SSZ T5K TN5 WUQ XPP ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ADNMO AEIPS AFJKZ AFXIZ AGCQF AGQPQ AGRNS AIIUN ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c373t-f6eed7cd273cfb56fdd43cedf5fb6920ff312db5699d109c02a64abd6c85ace93 |
IEDL.DBID | .~1 |
ISSN | 0968-090X |
IngestDate | Tue Jul 01 01:45:10 EDT 2025 Thu Apr 24 23:02:27 EDT 2025 Fri Feb 23 02:16:18 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Freight train transport Driver advisory system Train traffic prediction Optimization |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c373t-f6eed7cd273cfb56fdd43cedf5fb6920ff312db5699d109c02a64abd6c85ace93 |
PageCount | 19 |
ParticipantIDs | crossref_citationtrail_10_1016_j_trc_2019_05_043 crossref_primary_10_1016_j_trc_2019_05_043 elsevier_sciencedirect_doi_10_1016_j_trc_2019_05_043 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-08-01 |
PublicationDateYYYYMMDD | 2019-08-01 |
PublicationDate_xml | – month: 08 year: 2019 text: 2019-08-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Transportation research. Part C, Emerging technologies |
PublicationYear | 2019 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Chen, Schmid, Dasigi, Ning, Roberts, Tang (b0030) 2010; 224 Wang, P., Goverde, R.M.P., 2017. Development of a train driver advisory system: ETO. In: 2017 5th IEEE International Conference on Models and Technologies for Intelligent Transportation Systems (MT-ITS). IEEE, pp. 140–145. Lagos (b0085) 2011; 167 Quaglietta, Pellegrini, Goverde, Albrecht, Jaekel, Marlière, Rodriguez, Dollevoet, Ambrogio, Carcasole (b0130) 2016; 63 Kecman, Goverde (b0075) 2015; 7 van Leijen, M., 2018. Netherlands saw plunge in rail freight traffic 2017. Albrecht, A., Koelewijn, J., Pudney, P., et al., 2011. Energy-efficient recovery of delays in a rail network. Aust. Transp. Res. Forum. Mazzarello, Ottaviani (b0100) 2007; 41 Corman, Quaglietta, Goverde (b0045) 2018; 41 Zhou, Pudney, Howlett (b0185) 2013 Rao, Montigel, Weidmann (b0135) 2016; 71 Panou, Tzieropoulos, Emery (b0110) 2013; 3 Pellegrini, Marlière, Rodriguez (b0115) 2014; 59 Ursavas, Zhu (b0160) 2017 Hansen, Pachl (b0055) 2014 Talebian, Zou (b0150) 2015; 82 Kecman, Goverde (b0070) 2015; 16 Corman, Meng (b0040) 2015; 16 Goverde, Bešinović, Binder, Cacchiani, Quaglietta, Roberti, Toth (b0050) 2016; 67 Cacchiani, Huisman, Kidd, Kroon, Toth, Veelenturf, Wagenaar (b0020) 2014; 63 Kuo, Miller-Hooks, Mahmassani (b0080) 2010; 46 Qu, Corman, Lodewijks (b0125) 2015 Scheepmaker, Goverde, Kroon (b0145) 2017; 257 (accessed March 2). Caimi, Fuchsberger, Laumanns, Lüthi (b0025) 2012; 39 Cacchiani, Caprara, Toth (b0015) 2010; 44 Kecman, Corman, Meng (b0060) 2015 Montigel (b0105) 2009; 2 Liu, Dessouky (b0090) 2017; 87 Rousseeuw, Van Driessen (b0140) 2006; 12 Wang, Goverde (b0170) 2016; 69 Wang, Goverde (b0180) 2017; 105 Bach, Gendreau, Wøhlk (b0010) 2015; 241 Luijt, van den Berge, Willeboordse, Hoogenraad (b0095) 2017; 98 Corman, DAriano, Hansen, Pacciarelli (b0035) 2011; 1 Kecman, Goverde (b0065) 2013; 127 UITP, 2011. International association of public transport, a global bid for automation: Uitp observatory of automated metros confirms sustained growth rates for the coming years. Pudney, Howlett, Albrecht, Coleman, Vu, Koelewijn (b0120) 2011 Scheepmaker (10.1016/j.trc.2019.05.043_b0145) 2017; 257 Bach (10.1016/j.trc.2019.05.043_b0010) 2015; 241 Hansen (10.1016/j.trc.2019.05.043_b0055) 2014 Goverde (10.1016/j.trc.2019.05.043_b0050) 2016; 67 Lagos (10.1016/j.trc.2019.05.043_b0085) 2011; 167 Mazzarello (10.1016/j.trc.2019.05.043_b0100) 2007; 41 Panou (10.1016/j.trc.2019.05.043_b0110) 2013; 3 Chen (10.1016/j.trc.2019.05.043_b0030) 2010; 224 Montigel (10.1016/j.trc.2019.05.043_b0105) 2009; 2 Luijt (10.1016/j.trc.2019.05.043_b0095) 2017; 98 Quaglietta (10.1016/j.trc.2019.05.043_b0130) 2016; 63 Rao (10.1016/j.trc.2019.05.043_b0135) 2016; 71 Talebian (10.1016/j.trc.2019.05.043_b0150) 2015; 82 Cacchiani (10.1016/j.trc.2019.05.043_b0020) 2014; 63 Kecman (10.1016/j.trc.2019.05.043_b0070) 2015; 16 10.1016/j.trc.2019.05.043_b0175 Cacchiani (10.1016/j.trc.2019.05.043_b0015) 2010; 44 10.1016/j.trc.2019.05.043_b0155 Wang (10.1016/j.trc.2019.05.043_b0170) 2016; 69 Corman (10.1016/j.trc.2019.05.043_b0045) 2018; 41 Corman (10.1016/j.trc.2019.05.043_b0040) 2015; 16 Pudney (10.1016/j.trc.2019.05.043_b0120) 2011 Rousseeuw (10.1016/j.trc.2019.05.043_b0140) 2006; 12 Ursavas (10.1016/j.trc.2019.05.043_b0160) 2017 Kecman (10.1016/j.trc.2019.05.043_b0065) 2013; 127 Zhou (10.1016/j.trc.2019.05.043_b0185) 2013 Caimi (10.1016/j.trc.2019.05.043_b0025) 2012; 39 Kuo (10.1016/j.trc.2019.05.043_b0080) 2010; 46 Liu (10.1016/j.trc.2019.05.043_b0090) 2017; 87 Pellegrini (10.1016/j.trc.2019.05.043_b0115) 2014; 59 Wang (10.1016/j.trc.2019.05.043_b0180) 2017; 105 Corman (10.1016/j.trc.2019.05.043_b0035) 2011; 1 Kecman (10.1016/j.trc.2019.05.043_b0060) 2015 Qu (10.1016/j.trc.2019.05.043_b0125) 2015 10.1016/j.trc.2019.05.043_b0165 10.1016/j.trc.2019.05.043_b0005 Kecman (10.1016/j.trc.2019.05.043_b0075) 2015; 7 |
References_xml | – volume: 98 start-page: 46 year: 2017 end-page: 63 ident: b0095 article-title: 5 years of dutch eco-driving: managing behavioural change publication-title: Transp. Res. Part A: Policy Pract. – volume: 257 start-page: 355 year: 2017 end-page: 376 ident: b0145 article-title: Review of energy-efficient train control and timetabling publication-title: Eur. J. Oper. Res. – volume: 63 start-page: 23 year: 2016 end-page: 50 ident: b0130 article-title: The on-time real-time railway traffic management framework: a proof-of-concept using a scalable standardised data communication architecture publication-title: Transp. Res. Part C: Emerg. Technol. – volume: 71 start-page: 382 year: 2016 end-page: 405 ident: b0135 article-title: A new rail optimisation model by integration of traffic management and train automation publication-title: Transp. Res. Part C: Emerg. Technol. – volume: 224 start-page: 547 year: 2010 end-page: 557 ident: b0030 article-title: Real-time train rescheduling in junction areas publication-title: Proc. Inst. Mech. Eng. Part F: J. Rail Rapid Transit – volume: 3 start-page: 150 year: 2013 end-page: 162 ident: b0110 article-title: Railway driver advice systems: evaluation of methods, tools and systems publication-title: J. Rail Transp. Plann. Manage. – volume: 12 start-page: 29 year: 2006 end-page: 45 ident: b0140 article-title: Computing lts regression for large data sets publication-title: Data Min. Knowl. Discov. – volume: 16 start-page: 465 year: 2015 end-page: 474 ident: b0070 article-title: Online data-driven adaptive prediction of train event times publication-title: IEEE Trans. Intell. Transp. Syst. – reference: van Leijen, M., 2018. Netherlands saw plunge in rail freight traffic 2017. – reference: Albrecht, A., Koelewijn, J., Pudney, P., et al., 2011. Energy-efficient recovery of delays in a rail network. Aust. Transp. Res. Forum. – volume: 105 start-page: 340 year: 2017 end-page: 361 ident: b0180 article-title: Multi-train trajectory optimization for energy efficiency and delay recovery on single-track railway lines publication-title: Transp. Res. Part B: Methodol. – volume: 1 start-page: 14 year: 2011 end-page: 24 ident: b0035 article-title: Optimal multi-class rescheduling of railway traffic publication-title: J. Rail Transp. Plann. Manage. – volume: 127 start-page: 227 year: 2013 end-page: 238 ident: b0065 article-title: Process mining of train describer event data and automatic conflict identification publication-title: Comput. Railways XIII, WIT Trans. Built Environ. – volume: 69 start-page: 255 year: 2016 end-page: 275 ident: b0170 article-title: Multiple-phase train trajectory optimization with signalling and operational constraints publication-title: Transp. Res. Part C: Emerg. Technol. – volume: 39 start-page: 2578 year: 2012 end-page: 2593 ident: b0025 article-title: A model predictive control approach for discrete-time rescheduling in complex central railway station areas publication-title: Comput. Oper. Res. – volume: 16 start-page: 1274 year: 2015 end-page: 1284 ident: b0040 article-title: A review of online dynamic models and algorithms for railway traffic management publication-title: IEEE Trans. Intell. Transp. Syst. – year: 2011 ident: b0120 article-title: Optimal driving strategies with intermediate timing points – volume: 44 start-page: 215 year: 2010 end-page: 231 ident: b0015 article-title: Scheduling extra freight trains on railway networks publication-title: Transp. Res. Part B: Methodol. – year: 2017 ident: b0160 article-title: Integrated passenger and freight train planning on shared-use corridors publication-title: Transp. Sci. – volume: 46 start-page: 1057 year: 2010 end-page: 1070 ident: b0080 article-title: Freight train scheduling with elastic demand publication-title: Transp. Res. Part E: Logist. Transp. Rev. – reference: UITP, 2011. International association of public transport, a global bid for automation: Uitp observatory of automated metros confirms sustained growth rates for the coming years. – volume: 2 start-page: 42 year: 2009 ident: b0105 article-title: Operations control system in the lotschberg base tunnel publication-title: Railway Tech. Rev. – volume: 87 start-page: 165 year: 2017 end-page: 182 ident: b0090 article-title: A decomposition based hybrid heuristic algorithm for the joint passenger and freight train scheduling problem publication-title: Comput. Oper. Res. – volume: 41 start-page: 246 year: 2007 end-page: 274 ident: b0100 article-title: A traffic management system for real-time traffic optimisation in railways publication-title: Transp. Res. Part B: Methodol. – reference: (accessed March 2). – volume: 241 start-page: 309 year: 2015 end-page: 319 ident: b0010 article-title: Freight railway operator timetabling and engine scheduling publication-title: Eur. J. Oper. Res. – year: 2015 ident: b0060 article-title: Train delay evolution as a stochastic process publication-title: 6th International Conference on Railway Operations Modelling and Analysis-RailTokyo – volume: 82 start-page: 114 year: 2015 end-page: 140 ident: b0150 article-title: Integrated modeling of high performance passenger and freight train planning on shared-use corridors in the us publication-title: Transp. Res. Part B: Methodol. – volume: 67 start-page: 62 year: 2016 end-page: 83 ident: b0050 article-title: A three-level framework for performance-based railway timetabling publication-title: Transp. Res. Part C: Emerg. Technol. – volume: 7 start-page: 295 year: 2015 end-page: 319 ident: b0075 article-title: Predictive modelling of running and dwell times in railway traffic publication-title: Public Transp. – volume: 41 start-page: 421 year: 2018 end-page: 447 ident: b0045 article-title: Automated real-time railway traffic control: an experimental analysis of reliability, resilience and robustness publication-title: Transp. Plann. Technol. – volume: 63 start-page: 15 year: 2014 end-page: 37 ident: b0020 article-title: An overview of recovery models and algorithms for real-time railway rescheduling publication-title: Transp. Res. Part B: Methodol. – year: 2014 ident: b0055 article-title: Railway Timetabling & Operations – start-page: 658 year: 2015 end-page: 672 ident: b0125 article-title: A review of real time railway traffic management during disturbances publication-title: International Conference on Computational Logistics – volume: 59 start-page: 58 year: 2014 end-page: 80 ident: b0115 article-title: Optimal train routing and scheduling for managing traffic perturbations in complex junctions publication-title: Transp. Res. Part B: Methodol. – year: 2013 ident: b0185 article-title: In-train forces from energy-efficient driving strategies – reference: Wang, P., Goverde, R.M.P., 2017. Development of a train driver advisory system: ETO. In: 2017 5th IEEE International Conference on Models and Technologies for Intelligent Transportation Systems (MT-ITS). IEEE, pp. 140–145. – volume: 167 year: 2011 ident: b0085 article-title: Cato offers energy savings publication-title: Railway Gazette Int. – volume: 41 start-page: 246 issue: 2 year: 2007 ident: 10.1016/j.trc.2019.05.043_b0100 article-title: A traffic management system for real-time traffic optimisation in railways publication-title: Transp. Res. Part B: Methodol. doi: 10.1016/j.trb.2006.02.005 – volume: 257 start-page: 355 issue: 2 year: 2017 ident: 10.1016/j.trc.2019.05.043_b0145 article-title: Review of energy-efficient train control and timetabling publication-title: Eur. J. Oper. Res. doi: 10.1016/j.ejor.2016.09.044 – year: 2013 ident: 10.1016/j.trc.2019.05.043_b0185 – volume: 1 start-page: 14 issue: 1 year: 2011 ident: 10.1016/j.trc.2019.05.043_b0035 article-title: Optimal multi-class rescheduling of railway traffic publication-title: J. Rail Transp. Plann. Manage. doi: 10.1016/j.jrtpm.2011.06.001 – volume: 44 start-page: 215 issue: 2 year: 2010 ident: 10.1016/j.trc.2019.05.043_b0015 article-title: Scheduling extra freight trains on railway networks publication-title: Transp. Res. Part B: Methodol. doi: 10.1016/j.trb.2009.07.007 – year: 2017 ident: 10.1016/j.trc.2019.05.043_b0160 article-title: Integrated passenger and freight train planning on shared-use corridors publication-title: Transp. Sci. – volume: 39 start-page: 2578 issue: 11 year: 2012 ident: 10.1016/j.trc.2019.05.043_b0025 article-title: A model predictive control approach for discrete-time rescheduling in complex central railway station areas publication-title: Comput. Oper. Res. doi: 10.1016/j.cor.2012.01.003 – volume: 41 start-page: 421 issue: 4 year: 2018 ident: 10.1016/j.trc.2019.05.043_b0045 article-title: Automated real-time railway traffic control: an experimental analysis of reliability, resilience and robustness publication-title: Transp. Plann. Technol. doi: 10.1080/03081060.2018.1453916 – volume: 87 start-page: 165 year: 2017 ident: 10.1016/j.trc.2019.05.043_b0090 article-title: A decomposition based hybrid heuristic algorithm for the joint passenger and freight train scheduling problem publication-title: Comput. Oper. Res. doi: 10.1016/j.cor.2017.06.009 – volume: 69 start-page: 255 year: 2016 ident: 10.1016/j.trc.2019.05.043_b0170 article-title: Multiple-phase train trajectory optimization with signalling and operational constraints publication-title: Transp. Res. Part C: Emerg. Technol. doi: 10.1016/j.trc.2016.06.008 – volume: 167 issue: 5 year: 2011 ident: 10.1016/j.trc.2019.05.043_b0085 article-title: Cato offers energy savings publication-title: Railway Gazette Int. – volume: 59 start-page: 58 year: 2014 ident: 10.1016/j.trc.2019.05.043_b0115 article-title: Optimal train routing and scheduling for managing traffic perturbations in complex junctions publication-title: Transp. Res. Part B: Methodol. doi: 10.1016/j.trb.2013.10.013 – volume: 105 start-page: 340 year: 2017 ident: 10.1016/j.trc.2019.05.043_b0180 article-title: Multi-train trajectory optimization for energy efficiency and delay recovery on single-track railway lines publication-title: Transp. Res. Part B: Methodol. doi: 10.1016/j.trb.2017.09.012 – volume: 127 start-page: 227 year: 2013 ident: 10.1016/j.trc.2019.05.043_b0065 article-title: Process mining of train describer event data and automatic conflict identification publication-title: Comput. Railways XIII, WIT Trans. Built Environ. – ident: 10.1016/j.trc.2019.05.043_b0005 – volume: 63 start-page: 15 year: 2014 ident: 10.1016/j.trc.2019.05.043_b0020 article-title: An overview of recovery models and algorithms for real-time railway rescheduling publication-title: Transp. Res. Part B: Methodol. doi: 10.1016/j.trb.2014.01.009 – start-page: 658 year: 2015 ident: 10.1016/j.trc.2019.05.043_b0125 article-title: A review of real time railway traffic management during disturbances – volume: 12 start-page: 29 issue: 1 year: 2006 ident: 10.1016/j.trc.2019.05.043_b0140 article-title: Computing lts regression for large data sets publication-title: Data Min. Knowl. Discov. doi: 10.1007/s10618-005-0024-4 – volume: 241 start-page: 309 issue: 2 year: 2015 ident: 10.1016/j.trc.2019.05.043_b0010 article-title: Freight railway operator timetabling and engine scheduling publication-title: Eur. J. Oper. Res. doi: 10.1016/j.ejor.2014.08.036 – year: 2014 ident: 10.1016/j.trc.2019.05.043_b0055 – volume: 7 start-page: 295 issue: 3 year: 2015 ident: 10.1016/j.trc.2019.05.043_b0075 article-title: Predictive modelling of running and dwell times in railway traffic publication-title: Public Transp. doi: 10.1007/s12469-015-0106-7 – volume: 71 start-page: 382 year: 2016 ident: 10.1016/j.trc.2019.05.043_b0135 article-title: A new rail optimisation model by integration of traffic management and train automation publication-title: Transp. Res. Part C: Emerg. Technol. doi: 10.1016/j.trc.2016.08.011 – volume: 67 start-page: 62 year: 2016 ident: 10.1016/j.trc.2019.05.043_b0050 article-title: A three-level framework for performance-based railway timetabling publication-title: Transp. Res. Part C: Emerg. Technol. doi: 10.1016/j.trc.2016.02.004 – volume: 46 start-page: 1057 issue: 6 year: 2010 ident: 10.1016/j.trc.2019.05.043_b0080 article-title: Freight train scheduling with elastic demand publication-title: Transp. Res. Part E: Logist. Transp. Rev. doi: 10.1016/j.tre.2010.05.002 – volume: 224 start-page: 547 issue: 6 year: 2010 ident: 10.1016/j.trc.2019.05.043_b0030 article-title: Real-time train rescheduling in junction areas publication-title: Proc. Inst. Mech. Eng. Part F: J. Rail Rapid Transit doi: 10.1243/09544097JRRT391 – volume: 16 start-page: 465 issue: 1 year: 2015 ident: 10.1016/j.trc.2019.05.043_b0070 article-title: Online data-driven adaptive prediction of train event times publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2014.2347136 – volume: 82 start-page: 114 year: 2015 ident: 10.1016/j.trc.2019.05.043_b0150 article-title: Integrated modeling of high performance passenger and freight train planning on shared-use corridors in the us publication-title: Transp. Res. Part B: Methodol. doi: 10.1016/j.trb.2015.10.005 – volume: 2 start-page: 42 year: 2009 ident: 10.1016/j.trc.2019.05.043_b0105 article-title: Operations control system in the lotschberg base tunnel publication-title: Railway Tech. Rev. – ident: 10.1016/j.trc.2019.05.043_b0165 – ident: 10.1016/j.trc.2019.05.043_b0175 doi: 10.1109/MTITS.2017.8005654 – year: 2011 ident: 10.1016/j.trc.2019.05.043_b0120 – volume: 3 start-page: 150 issue: 4 year: 2013 ident: 10.1016/j.trc.2019.05.043_b0110 article-title: Railway driver advice systems: evaluation of methods, tools and systems publication-title: J. Rail Transp. Plann. Manage. doi: 10.1016/j.jrtpm.2013.10.005 – volume: 63 start-page: 23 year: 2016 ident: 10.1016/j.trc.2019.05.043_b0130 article-title: The on-time real-time railway traffic management framework: a proof-of-concept using a scalable standardised data communication architecture publication-title: Transp. Res. Part C: Emerg. Technol. doi: 10.1016/j.trc.2015.11.014 – ident: 10.1016/j.trc.2019.05.043_b0155 – year: 2015 ident: 10.1016/j.trc.2019.05.043_b0060 article-title: Train delay evolution as a stochastic process – volume: 16 start-page: 1274 issue: 3 year: 2015 ident: 10.1016/j.trc.2019.05.043_b0040 article-title: A review of online dynamic models and algorithms for railway traffic management publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2014.2358392 – volume: 98 start-page: 46 year: 2017 ident: 10.1016/j.trc.2019.05.043_b0095 article-title: 5 years of dutch eco-driving: managing behavioural change publication-title: Transp. Res. Part A: Policy Pract. |
SSID | ssj0001957 |
Score | 2.303229 |
Snippet | •We propose a Driver Advisory System framework for merging freight trains at junctions.•We specify basic requirements for merging Driver Advisory System... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 203 |
SubjectTerms | Driver advisory system Freight train transport Optimization Train traffic prediction |
Title | A connected driver advisory system framework for merging freight trains |
URI | https://dx.doi.org/10.1016/j.trc.2019.05.043 |
Volume | 105 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA6lHtSDaFWsL3LwJKzNNo9tjqVYq2IvWthb2LygIrW0q-DF3-5kH1pBPXjcbAbCxzCZJN98g9CZYRkPXbkj53gSMettlIUqEK3hQOTAA3RRW3U3FqMJu0l52kCDuhYm0Cqr2F_G9CJaVyOdCs3OfDrt3EPy3SOSpOCUMU-SUPDLWBK8_OL9i-YRy1LtEyaHO4m0ftksOF75IqgYxrIQ72T0571pZb8ZbqOtKlHE_XItO6jhZi20XtcRL1toc0VKcBdd9bEJnBUDGSS2i8C2wJl9Ddqab7iUa8a-JmJhyFRxqLsEUxgtbkdx0SxiuYcmw8uHwSiqmiREhiY0j7yAXS4xFtIQ4zUX3lpGATzPvRayS7yncdfCDyltTKQh3UywTFthejwzTtJ91Jw9z9wBwnBW4paKzBBhWJASdD1PObVOc-IItW1EaniUqRTEw9qeVE0Ve1SAqAqIKsIVINpG558m81I-46_JrMZcffMBBeH9d7PD_5kdoY3wVZL5jlEzX7y4E0gwcn1aeNApWutf347GH95y0QQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB5qe6geRKtifebgSViabTa73WMp1q19XGxhb2E3D6hILW0V_PdO9lEqqAevSQbCxzCZJN98A3AnvYTbrtyO1jxwPGWUk9gqkDTFC5FGD0iz2qrxxI9m3lPM4wr0yloYS6ssYn8e07NoXYy0CjRby_m89YzJd4eGNEandHkQdPagZtWpeBVq3cEwmmwDshvmgp-43j5LxOXnZkbz2qyskKEbZvqdHvv5eNo5cvpHcFjkiqSbb-cYKnrRgHpZSrxuwMGOmuAJPHaJtLQViUkkUStLuCCJ-rDymp8kV2wmpuRiEUxWiS29RFMczR5ISdYvYn0Ks_7DtBc5RZ8ER7KAbRzj40EXSIWZiDQp941SHkP8DDepH7apMcxtK5wIQ-XSUNJ24ntJqnzZ4YnUITuD6uJtoc-B4HWJK-YnkvrSs2qCumMYZ0qnnGrKVBNoCY-QhYi43durKNliLwIRFRZRQblARJtwvzVZ5goafy32SszFNzcQGOF_N7v4n9kt1KPpeCRGg8nwEvbtTM7tu4LqZvWurzHf2KQ3hT99ARX907U |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+connected+driver+advisory+system+framework+for+merging+freight+trains&rft.jtitle=Transportation+research.+Part+C%2C+Emerging+technologies&rft.au=Wang%2C+Pengling&rft.au=Goverde%2C+Rob+M.P.&rft.au=van+Luipen%2C+Jelle&rft.date=2019-08-01&rft.issn=0968-090X&rft.volume=105&rft.spage=203&rft.epage=221&rft_id=info:doi/10.1016%2Fj.trc.2019.05.043&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_trc_2019_05_043 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0968-090X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0968-090X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0968-090X&client=summon |