A connected driver advisory system framework for merging freight trains

•We propose a Driver Advisory System framework for merging freight trains at junctions.•We specify basic requirements for merging Driver Advisory System functionalities.•We present a Connected-DAS architecture for merging freight trains.•We develop a merging window detection algorithm to facilitate...

Full description

Saved in:
Bibliographic Details
Published inTransportation research. Part C, Emerging technologies Vol. 105; pp. 203 - 221
Main Authors Wang, Pengling, Goverde, Rob M.P., van Luipen, Jelle
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.08.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •We propose a Driver Advisory System framework for merging freight trains at junctions.•We specify basic requirements for merging Driver Advisory System functionalities.•We present a Connected-DAS architecture for merging freight trains.•We develop a merging window detection algorithm to facilitate smooth merging.•We provide a proof-of-concept by an application to a Dutch railway corridor. This paper proposes an approach to facilitate smooth merging of freight trains into a stream of passenger trains with short headways, to help drivers better control freight trains and avoid red signals. An algorithm architecture is proposed for Driver Advisory Systems (DASs) to compute time/speed advice for freight train drivers. The framework includes four parts: buffer stairway prediction, freight train movement prediction, merging window detection and merging optimization. The basic idea is to predict the traffic state in the merging area regularly and find the feasible merging time window. Proper advice can be presented to freight train drivers and help them to merge smoothly, by comparing the freight train movement to the feasible merging window. The performance of the proposed algorithms is illustrated on examples of merging freight trains in the Meteren and Kijfhoek areas on the Dutch railway network. The experimental results show the efficiency and quality of the proposed algorithms on real world size problems.
AbstractList •We propose a Driver Advisory System framework for merging freight trains at junctions.•We specify basic requirements for merging Driver Advisory System functionalities.•We present a Connected-DAS architecture for merging freight trains.•We develop a merging window detection algorithm to facilitate smooth merging.•We provide a proof-of-concept by an application to a Dutch railway corridor. This paper proposes an approach to facilitate smooth merging of freight trains into a stream of passenger trains with short headways, to help drivers better control freight trains and avoid red signals. An algorithm architecture is proposed for Driver Advisory Systems (DASs) to compute time/speed advice for freight train drivers. The framework includes four parts: buffer stairway prediction, freight train movement prediction, merging window detection and merging optimization. The basic idea is to predict the traffic state in the merging area regularly and find the feasible merging time window. Proper advice can be presented to freight train drivers and help them to merge smoothly, by comparing the freight train movement to the feasible merging window. The performance of the proposed algorithms is illustrated on examples of merging freight trains in the Meteren and Kijfhoek areas on the Dutch railway network. The experimental results show the efficiency and quality of the proposed algorithms on real world size problems.
Author Goverde, Rob M.P.
van Luipen, Jelle
Wang, Pengling
Author_xml – sequence: 1
  givenname: Pengling
  surname: Wang
  fullname: Wang, Pengling
  email: pengling.wang@ivt.baug.ethz.ch
  organization: Department of Transport and Planning, Delft University Technology, Delft, the Netherlands
– sequence: 2
  givenname: Rob M.P.
  surname: Goverde
  fullname: Goverde, Rob M.P.
  email: R.M.P.Goverde@tudelft.nl
  organization: Department of Transport and Planning, Delft University Technology, Delft, the Netherlands
– sequence: 3
  givenname: Jelle
  surname: van Luipen
  fullname: van Luipen, Jelle
  email: Jelle.vanLuipen@prorail.nl
  organization: Innovatie and Ontwikkeling, ProRail, Utrecht, the Netherlands
BookMark eNp9kMFKAzEQhoNUsK0-gLe8wK6TTXe3wVMpWoWCFwVvIU0mNbWbSBIqfXtT6smDp4GZ-YZ_vgkZ-eCRkFsGNQPW3e3qHHXdABM1tDXM-AUZs3kvqoa3YkTGILp5BQLer8gkpR1A2Wz7MVktqA7eo85oqInugJEqc3ApxCNNx5RxoDaqAb9D_KQ2RDpg3Dq_LV10249Mc1TOp2tyadU-4c1vnZK3x4fX5VO1flk9LxfrSvOe58p2iKbXpum5tpu2s8bMuEZjW7vpRAPWctaYMhDCMBAaGtXN1MZ0et4qjYJPSX--q2NIKaKV2mWVXfCnHHvJQJ58yJ0sPuTJh4RWFh-FZH_Ir-gGFY__MvdnBstLB4dRJu3Ql8AuFmXSBPcP_QMXj32I
CitedBy_id crossref_primary_10_1108_IJLM_07_2021_0360
crossref_primary_10_1155_2022_8674538
crossref_primary_10_1016_j_cie_2023_109865
crossref_primary_10_1016_j_jrtpm_2023_100392
crossref_primary_10_1109_TITS_2023_3236062
crossref_primary_10_1016_j_trc_2021_102982
crossref_primary_10_1016_j_jrtpm_2022_100352
crossref_primary_10_1016_j_trc_2021_103167
crossref_primary_10_3390_s22072491
Cites_doi 10.1016/j.trb.2006.02.005
10.1016/j.ejor.2016.09.044
10.1016/j.jrtpm.2011.06.001
10.1016/j.trb.2009.07.007
10.1016/j.cor.2012.01.003
10.1080/03081060.2018.1453916
10.1016/j.cor.2017.06.009
10.1016/j.trc.2016.06.008
10.1016/j.trb.2013.10.013
10.1016/j.trb.2017.09.012
10.1016/j.trb.2014.01.009
10.1007/s10618-005-0024-4
10.1016/j.ejor.2014.08.036
10.1007/s12469-015-0106-7
10.1016/j.trc.2016.08.011
10.1016/j.trc.2016.02.004
10.1016/j.tre.2010.05.002
10.1243/09544097JRRT391
10.1109/TITS.2014.2347136
10.1016/j.trb.2015.10.005
10.1109/MTITS.2017.8005654
10.1016/j.jrtpm.2013.10.005
10.1016/j.trc.2015.11.014
10.1109/TITS.2014.2358392
ContentType Journal Article
Copyright 2019 Elsevier Ltd
Copyright_xml – notice: 2019 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.trc.2019.05.043
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Engineering
EISSN 1879-2359
EndPage 221
ExternalDocumentID 10_1016_j_trc_2019_05_043
S0968090X18315778
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
29Q
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AAAKG
AACTN
AAEDT
AAEDW
AAFJI
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
AAYFN
ABBOA
ABLJU
ABMAC
ABMMH
ABUCO
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKYCK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOMHK
AOUOD
APLSM
ASPBG
AVARZ
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HAMUX
HMY
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
LY1
LY7
M3Y
M41
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PRBVW
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDS
SES
SET
SEW
SPC
SPCBC
SSB
SSD
SSO
SSS
SST
SSV
SSZ
T5K
TN5
WUQ
XPP
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ADNMO
AEIPS
AFJKZ
AFXIZ
AGCQF
AGQPQ
AGRNS
AIIUN
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c373t-f6eed7cd273cfb56fdd43cedf5fb6920ff312db5699d109c02a64abd6c85ace93
IEDL.DBID .~1
ISSN 0968-090X
IngestDate Tue Jul 01 01:45:10 EDT 2025
Thu Apr 24 23:02:27 EDT 2025
Fri Feb 23 02:16:18 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Freight train transport
Driver advisory system
Train traffic prediction
Optimization
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c373t-f6eed7cd273cfb56fdd43cedf5fb6920ff312db5699d109c02a64abd6c85ace93
PageCount 19
ParticipantIDs crossref_citationtrail_10_1016_j_trc_2019_05_043
crossref_primary_10_1016_j_trc_2019_05_043
elsevier_sciencedirect_doi_10_1016_j_trc_2019_05_043
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-08-01
PublicationDateYYYYMMDD 2019-08-01
PublicationDate_xml – month: 08
  year: 2019
  text: 2019-08-01
  day: 01
PublicationDecade 2010
PublicationTitle Transportation research. Part C, Emerging technologies
PublicationYear 2019
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Chen, Schmid, Dasigi, Ning, Roberts, Tang (b0030) 2010; 224
Wang, P., Goverde, R.M.P., 2017. Development of a train driver advisory system: ETO. In: 2017 5th IEEE International Conference on Models and Technologies for Intelligent Transportation Systems (MT-ITS). IEEE, pp. 140–145.
Lagos (b0085) 2011; 167
Quaglietta, Pellegrini, Goverde, Albrecht, Jaekel, Marlière, Rodriguez, Dollevoet, Ambrogio, Carcasole (b0130) 2016; 63
Kecman, Goverde (b0075) 2015; 7
van Leijen, M., 2018. Netherlands saw plunge in rail freight traffic 2017.
Albrecht, A., Koelewijn, J., Pudney, P., et al., 2011. Energy-efficient recovery of delays in a rail network. Aust. Transp. Res. Forum.
Mazzarello, Ottaviani (b0100) 2007; 41
Corman, Quaglietta, Goverde (b0045) 2018; 41
Zhou, Pudney, Howlett (b0185) 2013
Rao, Montigel, Weidmann (b0135) 2016; 71
Panou, Tzieropoulos, Emery (b0110) 2013; 3
Pellegrini, Marlière, Rodriguez (b0115) 2014; 59
Ursavas, Zhu (b0160) 2017
Hansen, Pachl (b0055) 2014
Talebian, Zou (b0150) 2015; 82
Kecman, Goverde (b0070) 2015; 16
Corman, Meng (b0040) 2015; 16
Goverde, Bešinović, Binder, Cacchiani, Quaglietta, Roberti, Toth (b0050) 2016; 67
Cacchiani, Huisman, Kidd, Kroon, Toth, Veelenturf, Wagenaar (b0020) 2014; 63
Kuo, Miller-Hooks, Mahmassani (b0080) 2010; 46
Qu, Corman, Lodewijks (b0125) 2015
Scheepmaker, Goverde, Kroon (b0145) 2017; 257
(accessed March 2).
Caimi, Fuchsberger, Laumanns, Lüthi (b0025) 2012; 39
Cacchiani, Caprara, Toth (b0015) 2010; 44
Kecman, Corman, Meng (b0060) 2015
Montigel (b0105) 2009; 2
Liu, Dessouky (b0090) 2017; 87
Rousseeuw, Van Driessen (b0140) 2006; 12
Wang, Goverde (b0170) 2016; 69
Wang, Goverde (b0180) 2017; 105
Bach, Gendreau, Wøhlk (b0010) 2015; 241
Luijt, van den Berge, Willeboordse, Hoogenraad (b0095) 2017; 98
Corman, DAriano, Hansen, Pacciarelli (b0035) 2011; 1
Kecman, Goverde (b0065) 2013; 127
UITP, 2011. International association of public transport, a global bid for automation: Uitp observatory of automated metros confirms sustained growth rates for the coming years.
Pudney, Howlett, Albrecht, Coleman, Vu, Koelewijn (b0120) 2011
Scheepmaker (10.1016/j.trc.2019.05.043_b0145) 2017; 257
Bach (10.1016/j.trc.2019.05.043_b0010) 2015; 241
Hansen (10.1016/j.trc.2019.05.043_b0055) 2014
Goverde (10.1016/j.trc.2019.05.043_b0050) 2016; 67
Lagos (10.1016/j.trc.2019.05.043_b0085) 2011; 167
Mazzarello (10.1016/j.trc.2019.05.043_b0100) 2007; 41
Panou (10.1016/j.trc.2019.05.043_b0110) 2013; 3
Chen (10.1016/j.trc.2019.05.043_b0030) 2010; 224
Montigel (10.1016/j.trc.2019.05.043_b0105) 2009; 2
Luijt (10.1016/j.trc.2019.05.043_b0095) 2017; 98
Quaglietta (10.1016/j.trc.2019.05.043_b0130) 2016; 63
Rao (10.1016/j.trc.2019.05.043_b0135) 2016; 71
Talebian (10.1016/j.trc.2019.05.043_b0150) 2015; 82
Cacchiani (10.1016/j.trc.2019.05.043_b0020) 2014; 63
Kecman (10.1016/j.trc.2019.05.043_b0070) 2015; 16
10.1016/j.trc.2019.05.043_b0175
Cacchiani (10.1016/j.trc.2019.05.043_b0015) 2010; 44
10.1016/j.trc.2019.05.043_b0155
Wang (10.1016/j.trc.2019.05.043_b0170) 2016; 69
Corman (10.1016/j.trc.2019.05.043_b0045) 2018; 41
Corman (10.1016/j.trc.2019.05.043_b0040) 2015; 16
Pudney (10.1016/j.trc.2019.05.043_b0120) 2011
Rousseeuw (10.1016/j.trc.2019.05.043_b0140) 2006; 12
Ursavas (10.1016/j.trc.2019.05.043_b0160) 2017
Kecman (10.1016/j.trc.2019.05.043_b0065) 2013; 127
Zhou (10.1016/j.trc.2019.05.043_b0185) 2013
Caimi (10.1016/j.trc.2019.05.043_b0025) 2012; 39
Kuo (10.1016/j.trc.2019.05.043_b0080) 2010; 46
Liu (10.1016/j.trc.2019.05.043_b0090) 2017; 87
Pellegrini (10.1016/j.trc.2019.05.043_b0115) 2014; 59
Wang (10.1016/j.trc.2019.05.043_b0180) 2017; 105
Corman (10.1016/j.trc.2019.05.043_b0035) 2011; 1
Kecman (10.1016/j.trc.2019.05.043_b0060) 2015
Qu (10.1016/j.trc.2019.05.043_b0125) 2015
10.1016/j.trc.2019.05.043_b0165
10.1016/j.trc.2019.05.043_b0005
Kecman (10.1016/j.trc.2019.05.043_b0075) 2015; 7
References_xml – volume: 98
  start-page: 46
  year: 2017
  end-page: 63
  ident: b0095
  article-title: 5 years of dutch eco-driving: managing behavioural change
  publication-title: Transp. Res. Part A: Policy Pract.
– volume: 257
  start-page: 355
  year: 2017
  end-page: 376
  ident: b0145
  article-title: Review of energy-efficient train control and timetabling
  publication-title: Eur. J. Oper. Res.
– volume: 63
  start-page: 23
  year: 2016
  end-page: 50
  ident: b0130
  article-title: The on-time real-time railway traffic management framework: a proof-of-concept using a scalable standardised data communication architecture
  publication-title: Transp. Res. Part C: Emerg. Technol.
– volume: 71
  start-page: 382
  year: 2016
  end-page: 405
  ident: b0135
  article-title: A new rail optimisation model by integration of traffic management and train automation
  publication-title: Transp. Res. Part C: Emerg. Technol.
– volume: 224
  start-page: 547
  year: 2010
  end-page: 557
  ident: b0030
  article-title: Real-time train rescheduling in junction areas
  publication-title: Proc. Inst. Mech. Eng. Part F: J. Rail Rapid Transit
– volume: 3
  start-page: 150
  year: 2013
  end-page: 162
  ident: b0110
  article-title: Railway driver advice systems: evaluation of methods, tools and systems
  publication-title: J. Rail Transp. Plann. Manage.
– volume: 12
  start-page: 29
  year: 2006
  end-page: 45
  ident: b0140
  article-title: Computing lts regression for large data sets
  publication-title: Data Min. Knowl. Discov.
– volume: 16
  start-page: 465
  year: 2015
  end-page: 474
  ident: b0070
  article-title: Online data-driven adaptive prediction of train event times
  publication-title: IEEE Trans. Intell. Transp. Syst.
– reference: van Leijen, M., 2018. Netherlands saw plunge in rail freight traffic 2017.
– reference: Albrecht, A., Koelewijn, J., Pudney, P., et al., 2011. Energy-efficient recovery of delays in a rail network. Aust. Transp. Res. Forum.
– volume: 105
  start-page: 340
  year: 2017
  end-page: 361
  ident: b0180
  article-title: Multi-train trajectory optimization for energy efficiency and delay recovery on single-track railway lines
  publication-title: Transp. Res. Part B: Methodol.
– volume: 1
  start-page: 14
  year: 2011
  end-page: 24
  ident: b0035
  article-title: Optimal multi-class rescheduling of railway traffic
  publication-title: J. Rail Transp. Plann. Manage.
– volume: 127
  start-page: 227
  year: 2013
  end-page: 238
  ident: b0065
  article-title: Process mining of train describer event data and automatic conflict identification
  publication-title: Comput. Railways XIII, WIT Trans. Built Environ.
– volume: 69
  start-page: 255
  year: 2016
  end-page: 275
  ident: b0170
  article-title: Multiple-phase train trajectory optimization with signalling and operational constraints
  publication-title: Transp. Res. Part C: Emerg. Technol.
– volume: 39
  start-page: 2578
  year: 2012
  end-page: 2593
  ident: b0025
  article-title: A model predictive control approach for discrete-time rescheduling in complex central railway station areas
  publication-title: Comput. Oper. Res.
– volume: 16
  start-page: 1274
  year: 2015
  end-page: 1284
  ident: b0040
  article-title: A review of online dynamic models and algorithms for railway traffic management
  publication-title: IEEE Trans. Intell. Transp. Syst.
– year: 2011
  ident: b0120
  article-title: Optimal driving strategies with intermediate timing points
– volume: 44
  start-page: 215
  year: 2010
  end-page: 231
  ident: b0015
  article-title: Scheduling extra freight trains on railway networks
  publication-title: Transp. Res. Part B: Methodol.
– year: 2017
  ident: b0160
  article-title: Integrated passenger and freight train planning on shared-use corridors
  publication-title: Transp. Sci.
– volume: 46
  start-page: 1057
  year: 2010
  end-page: 1070
  ident: b0080
  article-title: Freight train scheduling with elastic demand
  publication-title: Transp. Res. Part E: Logist. Transp. Rev.
– reference: UITP, 2011. International association of public transport, a global bid for automation: Uitp observatory of automated metros confirms sustained growth rates for the coming years.
– volume: 2
  start-page: 42
  year: 2009
  ident: b0105
  article-title: Operations control system in the lotschberg base tunnel
  publication-title: Railway Tech. Rev.
– volume: 87
  start-page: 165
  year: 2017
  end-page: 182
  ident: b0090
  article-title: A decomposition based hybrid heuristic algorithm for the joint passenger and freight train scheduling problem
  publication-title: Comput. Oper. Res.
– volume: 41
  start-page: 246
  year: 2007
  end-page: 274
  ident: b0100
  article-title: A traffic management system for real-time traffic optimisation in railways
  publication-title: Transp. Res. Part B: Methodol.
– reference: (accessed March 2).
– volume: 241
  start-page: 309
  year: 2015
  end-page: 319
  ident: b0010
  article-title: Freight railway operator timetabling and engine scheduling
  publication-title: Eur. J. Oper. Res.
– year: 2015
  ident: b0060
  article-title: Train delay evolution as a stochastic process
  publication-title: 6th International Conference on Railway Operations Modelling and Analysis-RailTokyo
– volume: 82
  start-page: 114
  year: 2015
  end-page: 140
  ident: b0150
  article-title: Integrated modeling of high performance passenger and freight train planning on shared-use corridors in the us
  publication-title: Transp. Res. Part B: Methodol.
– volume: 67
  start-page: 62
  year: 2016
  end-page: 83
  ident: b0050
  article-title: A three-level framework for performance-based railway timetabling
  publication-title: Transp. Res. Part C: Emerg. Technol.
– volume: 7
  start-page: 295
  year: 2015
  end-page: 319
  ident: b0075
  article-title: Predictive modelling of running and dwell times in railway traffic
  publication-title: Public Transp.
– volume: 41
  start-page: 421
  year: 2018
  end-page: 447
  ident: b0045
  article-title: Automated real-time railway traffic control: an experimental analysis of reliability, resilience and robustness
  publication-title: Transp. Plann. Technol.
– volume: 63
  start-page: 15
  year: 2014
  end-page: 37
  ident: b0020
  article-title: An overview of recovery models and algorithms for real-time railway rescheduling
  publication-title: Transp. Res. Part B: Methodol.
– year: 2014
  ident: b0055
  article-title: Railway Timetabling & Operations
– start-page: 658
  year: 2015
  end-page: 672
  ident: b0125
  article-title: A review of real time railway traffic management during disturbances
  publication-title: International Conference on Computational Logistics
– volume: 59
  start-page: 58
  year: 2014
  end-page: 80
  ident: b0115
  article-title: Optimal train routing and scheduling for managing traffic perturbations in complex junctions
  publication-title: Transp. Res. Part B: Methodol.
– year: 2013
  ident: b0185
  article-title: In-train forces from energy-efficient driving strategies
– reference: Wang, P., Goverde, R.M.P., 2017. Development of a train driver advisory system: ETO. In: 2017 5th IEEE International Conference on Models and Technologies for Intelligent Transportation Systems (MT-ITS). IEEE, pp. 140–145.
– volume: 167
  year: 2011
  ident: b0085
  article-title: Cato offers energy savings
  publication-title: Railway Gazette Int.
– volume: 41
  start-page: 246
  issue: 2
  year: 2007
  ident: 10.1016/j.trc.2019.05.043_b0100
  article-title: A traffic management system for real-time traffic optimisation in railways
  publication-title: Transp. Res. Part B: Methodol.
  doi: 10.1016/j.trb.2006.02.005
– volume: 257
  start-page: 355
  issue: 2
  year: 2017
  ident: 10.1016/j.trc.2019.05.043_b0145
  article-title: Review of energy-efficient train control and timetabling
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/j.ejor.2016.09.044
– year: 2013
  ident: 10.1016/j.trc.2019.05.043_b0185
– volume: 1
  start-page: 14
  issue: 1
  year: 2011
  ident: 10.1016/j.trc.2019.05.043_b0035
  article-title: Optimal multi-class rescheduling of railway traffic
  publication-title: J. Rail Transp. Plann. Manage.
  doi: 10.1016/j.jrtpm.2011.06.001
– volume: 44
  start-page: 215
  issue: 2
  year: 2010
  ident: 10.1016/j.trc.2019.05.043_b0015
  article-title: Scheduling extra freight trains on railway networks
  publication-title: Transp. Res. Part B: Methodol.
  doi: 10.1016/j.trb.2009.07.007
– year: 2017
  ident: 10.1016/j.trc.2019.05.043_b0160
  article-title: Integrated passenger and freight train planning on shared-use corridors
  publication-title: Transp. Sci.
– volume: 39
  start-page: 2578
  issue: 11
  year: 2012
  ident: 10.1016/j.trc.2019.05.043_b0025
  article-title: A model predictive control approach for discrete-time rescheduling in complex central railway station areas
  publication-title: Comput. Oper. Res.
  doi: 10.1016/j.cor.2012.01.003
– volume: 41
  start-page: 421
  issue: 4
  year: 2018
  ident: 10.1016/j.trc.2019.05.043_b0045
  article-title: Automated real-time railway traffic control: an experimental analysis of reliability, resilience and robustness
  publication-title: Transp. Plann. Technol.
  doi: 10.1080/03081060.2018.1453916
– volume: 87
  start-page: 165
  year: 2017
  ident: 10.1016/j.trc.2019.05.043_b0090
  article-title: A decomposition based hybrid heuristic algorithm for the joint passenger and freight train scheduling problem
  publication-title: Comput. Oper. Res.
  doi: 10.1016/j.cor.2017.06.009
– volume: 69
  start-page: 255
  year: 2016
  ident: 10.1016/j.trc.2019.05.043_b0170
  article-title: Multiple-phase train trajectory optimization with signalling and operational constraints
  publication-title: Transp. Res. Part C: Emerg. Technol.
  doi: 10.1016/j.trc.2016.06.008
– volume: 167
  issue: 5
  year: 2011
  ident: 10.1016/j.trc.2019.05.043_b0085
  article-title: Cato offers energy savings
  publication-title: Railway Gazette Int.
– volume: 59
  start-page: 58
  year: 2014
  ident: 10.1016/j.trc.2019.05.043_b0115
  article-title: Optimal train routing and scheduling for managing traffic perturbations in complex junctions
  publication-title: Transp. Res. Part B: Methodol.
  doi: 10.1016/j.trb.2013.10.013
– volume: 105
  start-page: 340
  year: 2017
  ident: 10.1016/j.trc.2019.05.043_b0180
  article-title: Multi-train trajectory optimization for energy efficiency and delay recovery on single-track railway lines
  publication-title: Transp. Res. Part B: Methodol.
  doi: 10.1016/j.trb.2017.09.012
– volume: 127
  start-page: 227
  year: 2013
  ident: 10.1016/j.trc.2019.05.043_b0065
  article-title: Process mining of train describer event data and automatic conflict identification
  publication-title: Comput. Railways XIII, WIT Trans. Built Environ.
– ident: 10.1016/j.trc.2019.05.043_b0005
– volume: 63
  start-page: 15
  year: 2014
  ident: 10.1016/j.trc.2019.05.043_b0020
  article-title: An overview of recovery models and algorithms for real-time railway rescheduling
  publication-title: Transp. Res. Part B: Methodol.
  doi: 10.1016/j.trb.2014.01.009
– start-page: 658
  year: 2015
  ident: 10.1016/j.trc.2019.05.043_b0125
  article-title: A review of real time railway traffic management during disturbances
– volume: 12
  start-page: 29
  issue: 1
  year: 2006
  ident: 10.1016/j.trc.2019.05.043_b0140
  article-title: Computing lts regression for large data sets
  publication-title: Data Min. Knowl. Discov.
  doi: 10.1007/s10618-005-0024-4
– volume: 241
  start-page: 309
  issue: 2
  year: 2015
  ident: 10.1016/j.trc.2019.05.043_b0010
  article-title: Freight railway operator timetabling and engine scheduling
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/j.ejor.2014.08.036
– year: 2014
  ident: 10.1016/j.trc.2019.05.043_b0055
– volume: 7
  start-page: 295
  issue: 3
  year: 2015
  ident: 10.1016/j.trc.2019.05.043_b0075
  article-title: Predictive modelling of running and dwell times in railway traffic
  publication-title: Public Transp.
  doi: 10.1007/s12469-015-0106-7
– volume: 71
  start-page: 382
  year: 2016
  ident: 10.1016/j.trc.2019.05.043_b0135
  article-title: A new rail optimisation model by integration of traffic management and train automation
  publication-title: Transp. Res. Part C: Emerg. Technol.
  doi: 10.1016/j.trc.2016.08.011
– volume: 67
  start-page: 62
  year: 2016
  ident: 10.1016/j.trc.2019.05.043_b0050
  article-title: A three-level framework for performance-based railway timetabling
  publication-title: Transp. Res. Part C: Emerg. Technol.
  doi: 10.1016/j.trc.2016.02.004
– volume: 46
  start-page: 1057
  issue: 6
  year: 2010
  ident: 10.1016/j.trc.2019.05.043_b0080
  article-title: Freight train scheduling with elastic demand
  publication-title: Transp. Res. Part E: Logist. Transp. Rev.
  doi: 10.1016/j.tre.2010.05.002
– volume: 224
  start-page: 547
  issue: 6
  year: 2010
  ident: 10.1016/j.trc.2019.05.043_b0030
  article-title: Real-time train rescheduling in junction areas
  publication-title: Proc. Inst. Mech. Eng. Part F: J. Rail Rapid Transit
  doi: 10.1243/09544097JRRT391
– volume: 16
  start-page: 465
  issue: 1
  year: 2015
  ident: 10.1016/j.trc.2019.05.043_b0070
  article-title: Online data-driven adaptive prediction of train event times
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2014.2347136
– volume: 82
  start-page: 114
  year: 2015
  ident: 10.1016/j.trc.2019.05.043_b0150
  article-title: Integrated modeling of high performance passenger and freight train planning on shared-use corridors in the us
  publication-title: Transp. Res. Part B: Methodol.
  doi: 10.1016/j.trb.2015.10.005
– volume: 2
  start-page: 42
  year: 2009
  ident: 10.1016/j.trc.2019.05.043_b0105
  article-title: Operations control system in the lotschberg base tunnel
  publication-title: Railway Tech. Rev.
– ident: 10.1016/j.trc.2019.05.043_b0165
– ident: 10.1016/j.trc.2019.05.043_b0175
  doi: 10.1109/MTITS.2017.8005654
– year: 2011
  ident: 10.1016/j.trc.2019.05.043_b0120
– volume: 3
  start-page: 150
  issue: 4
  year: 2013
  ident: 10.1016/j.trc.2019.05.043_b0110
  article-title: Railway driver advice systems: evaluation of methods, tools and systems
  publication-title: J. Rail Transp. Plann. Manage.
  doi: 10.1016/j.jrtpm.2013.10.005
– volume: 63
  start-page: 23
  year: 2016
  ident: 10.1016/j.trc.2019.05.043_b0130
  article-title: The on-time real-time railway traffic management framework: a proof-of-concept using a scalable standardised data communication architecture
  publication-title: Transp. Res. Part C: Emerg. Technol.
  doi: 10.1016/j.trc.2015.11.014
– ident: 10.1016/j.trc.2019.05.043_b0155
– year: 2015
  ident: 10.1016/j.trc.2019.05.043_b0060
  article-title: Train delay evolution as a stochastic process
– volume: 16
  start-page: 1274
  issue: 3
  year: 2015
  ident: 10.1016/j.trc.2019.05.043_b0040
  article-title: A review of online dynamic models and algorithms for railway traffic management
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2014.2358392
– volume: 98
  start-page: 46
  year: 2017
  ident: 10.1016/j.trc.2019.05.043_b0095
  article-title: 5 years of dutch eco-driving: managing behavioural change
  publication-title: Transp. Res. Part A: Policy Pract.
SSID ssj0001957
Score 2.303229
Snippet •We propose a Driver Advisory System framework for merging freight trains at junctions.•We specify basic requirements for merging Driver Advisory System...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 203
SubjectTerms Driver advisory system
Freight train transport
Optimization
Train traffic prediction
Title A connected driver advisory system framework for merging freight trains
URI https://dx.doi.org/10.1016/j.trc.2019.05.043
Volume 105
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA6lHtSDaFWsL3LwJKzNNo9tjqVYq2IvWthb2LygIrW0q-DF3-5kH1pBPXjcbAbCxzCZJN98g9CZYRkPXbkj53gSMettlIUqEK3hQOTAA3RRW3U3FqMJu0l52kCDuhYm0Cqr2F_G9CJaVyOdCs3OfDrt3EPy3SOSpOCUMU-SUPDLWBK8_OL9i-YRy1LtEyaHO4m0ftksOF75IqgYxrIQ72T0571pZb8ZbqOtKlHE_XItO6jhZi20XtcRL1toc0VKcBdd9bEJnBUDGSS2i8C2wJl9Ddqab7iUa8a-JmJhyFRxqLsEUxgtbkdx0SxiuYcmw8uHwSiqmiREhiY0j7yAXS4xFtIQ4zUX3lpGATzPvRayS7yncdfCDyltTKQh3UywTFthejwzTtJ91Jw9z9wBwnBW4paKzBBhWJASdD1PObVOc-IItW1EaniUqRTEw9qeVE0Ve1SAqAqIKsIVINpG558m81I-46_JrMZcffMBBeH9d7PD_5kdoY3wVZL5jlEzX7y4E0gwcn1aeNApWutf347GH95y0QQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEB5qe6geRKtifebgSViabTa73WMp1q19XGxhb2E3D6hILW0V_PdO9lEqqAevSQbCxzCZJN98A3AnvYTbrtyO1jxwPGWUk9gqkDTFC5FGD0iz2qrxxI9m3lPM4wr0yloYS6ssYn8e07NoXYy0CjRby_m89YzJd4eGNEandHkQdPagZtWpeBVq3cEwmmwDshvmgp-43j5LxOXnZkbz2qyskKEbZvqdHvv5eNo5cvpHcFjkiqSbb-cYKnrRgHpZSrxuwMGOmuAJPHaJtLQViUkkUStLuCCJ-rDymp8kV2wmpuRiEUxWiS29RFMczR5ISdYvYn0Ks_7DtBc5RZ8ER7KAbRzj40EXSIWZiDQp941SHkP8DDepH7apMcxtK5wIQ-XSUNJ24ntJqnzZ4YnUITuD6uJtoc-B4HWJK-YnkvrSs2qCumMYZ0qnnGrKVBNoCY-QhYi43durKNliLwIRFRZRQblARJtwvzVZ5goafy32SszFNzcQGOF_N7v4n9kt1KPpeCRGg8nwEvbtTM7tu4LqZvWurzHf2KQ3hT99ARX907U
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+connected+driver+advisory+system+framework+for+merging+freight+trains&rft.jtitle=Transportation+research.+Part+C%2C+Emerging+technologies&rft.au=Wang%2C+Pengling&rft.au=Goverde%2C+Rob+M.P.&rft.au=van+Luipen%2C+Jelle&rft.date=2019-08-01&rft.issn=0968-090X&rft.volume=105&rft.spage=203&rft.epage=221&rft_id=info:doi/10.1016%2Fj.trc.2019.05.043&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_trc_2019_05_043
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0968-090X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0968-090X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0968-090X&client=summon