A General Fast Registration Framework by Learning Deformation-Appearance Correlation

In this paper, we propose a general framework for performance improvement of the current state-of-the-art registration algorithms in terms of both accuracy and computation time. The key concept involves rapid prediction of a deformation field for registration initialization, which is achieved by a s...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on image processing Vol. 21; no. 4; pp. 1823 - 1833
Main Authors Kim, Minjeong, Wu, Guorong, Yap, Pew-Thian, Shen, Dinggang
Format Journal Article
LanguageEnglish
Published United States IEEE 01.04.2012
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this paper, we propose a general framework for performance improvement of the current state-of-the-art registration algorithms in terms of both accuracy and computation time. The key concept involves rapid prediction of a deformation field for registration initialization, which is achieved by a statistical correlation model learned between image appearances and deformation fields. This allows us to immediately bring a template image as close as possible to a subject image that we need to register. The task of the registration algorithm is hence reduced to estimating small deformation between the subject image and the initially warped template image, i.e., the intermediate template (IT). Specifically, to obtain a good subject-specific initial deformation, support vector regression is utilized to determine the correlation between image appearances and their respective deformation fields. When registering a new subject onto the template, an initial deformation field is first predicted based on the subject's image appearance for generating an IT. With the IT, only the residual deformation needs to be estimated, presenting much less challenge to the existing registration algorithms. Our learning-based framework affords two important advantages: 1) by requiring only the estimation of the residual deformation between the IT and the subject image, the computation time can be greatly reduced; 2) by leveraging good deformation initialization, local minima giving suboptimal solution could be avoided. Our framework has been extensively evaluated using medical images from different sources, and the results indicate that, on top of accuracy improvement, significant registration speedup can be achieved, as compared with the case where no prediction of initial deformation is performed.
AbstractList In this paper, we propose a general framework for performance improvement of the current state-of-the-art registration algorithms in terms of both accuracy and computation time. The key concept involves rapid prediction of a deformation field for registration initialization, which is achieved by a statistical correlation model learned between image appearances and deformation fields. This allows us to immediately bring a template image as close as possible to a subject image that we need to register. The task of the registration algorithm is hence reduced to estimating small deformation between the subject image and the initially warped template image, i.e., the intermediate template (IT). Specifically, to obtain a good subject-specific initial deformation, support vector regression is utilized to determine the correlation between image appearances and their respective deformation fields. When registering a new subject onto the template, an initial deformation field is first predicted based on the subject's image appearance for generating an IT. With the IT, only the residual deformation needs to be estimated, presenting much less challenge to the existing registration algorithms. Our learning-based framework affords two important advantages: 1) by requiring only the estimation of the residual deformation between the IT and the subject image, the computation time can be greatly reduced; 2) by leveraging good deformation initialization, local minima giving suboptimal solution could be avoided. Our framework has been extensively evaluated using medical images from different sources, and the results indicate that, on top of accuracy improvement, significant registration speedup can be achieved, as compared with the case where no prediction of initial deformation is performed.
In this paper, we propose a general framework for performance improvement of the current state-of-the-art registration algorithms in terms of both accuracy and computation time. The key concept involves rapid prediction of a deformation field for registration initialization, which is achieved by a statistical correlation model learned between image appearances and deformation fields. This allows us to immediately bring a template image as close as possible to a subject image that we need to register. The task of the registration algorithm is hence reduced to estimating small deformation between the subject image and the initially warped template image, i.e., the intermediate template (IT). Specifically, to obtain a good subject-specific initial deformation, support vector regression is utilized to determine the correlation between image appearances and their respective deformation fields. When registering a new subject onto the template, an initial deformation field is first predicted based on the subject's image appearance for generating an IT. With the IT, only the residual deformation needs to be estimated, presenting much less challenge to the existing registration algorithms. Our learning-based framework affords two important advantages: 1) by requiring only the estimation of the residual deformation between the IT and the subject image, the computation time can be greatly reduced; 2) by leveraging good deformation initialization, local minima giving suboptimal solution could be avoided. Our framework has been extensively evaluated using medical images from different sources, and the results indicate that, on top of accuracy improvement, significant registration speedup can be achieved, as compared with the case where no prediction of initial deformation is performed.In this paper, we propose a general framework for performance improvement of the current state-of-the-art registration algorithms in terms of both accuracy and computation time. The key concept involves rapid prediction of a deformation field for registration initialization, which is achieved by a statistical correlation model learned between image appearances and deformation fields. This allows us to immediately bring a template image as close as possible to a subject image that we need to register. The task of the registration algorithm is hence reduced to estimating small deformation between the subject image and the initially warped template image, i.e., the intermediate template (IT). Specifically, to obtain a good subject-specific initial deformation, support vector regression is utilized to determine the correlation between image appearances and their respective deformation fields. When registering a new subject onto the template, an initial deformation field is first predicted based on the subject's image appearance for generating an IT. With the IT, only the residual deformation needs to be estimated, presenting much less challenge to the existing registration algorithms. Our learning-based framework affords two important advantages: 1) by requiring only the estimation of the residual deformation between the IT and the subject image, the computation time can be greatly reduced; 2) by leveraging good deformation initialization, local minima giving suboptimal solution could be avoided. Our framework has been extensively evaluated using medical images from different sources, and the results indicate that, on top of accuracy improvement, significant registration speedup can be achieved, as compared with the case where no prediction of initial deformation is performed.
Author Minjeong Kim
Guorong Wu
Dinggang Shen
Pew-Thian Yap
Author_xml – sequence: 1
  givenname: Minjeong
  surname: Kim
  fullname: Kim, Minjeong
  organization: Department of Radiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
– sequence: 2
  givenname: Guorong
  surname: Wu
  fullname: Wu, Guorong
– sequence: 3
  givenname: Pew-Thian
  surname: Yap
  fullname: Yap, Pew-Thian
– sequence: 4
  givenname: Dinggang
  surname: Shen
  fullname: Shen, Dinggang
BackLink https://www.ncbi.nlm.nih.gov/pubmed/21984505$$D View this record in MEDLINE/PubMed
BookMark eNp9UUtrGzEQFiWlebT3QiHsLad1R6_V6lIwTpwEDC3FPQvteuyq2ZVcaZ2Qfx_5kZD00JPEzPeYme-UHPngkZDPFEaUgv46v_0xYkDpiFEFla7fkROqBS0BBDvKf5CqVFToY3Ka0h8AKiStPpBjRnUtJMgTMh8X1-gx2q6Y2jQUP3Hl0hDt4IIvptH2-BDiXdE8FjO00Tu_Ki5xGWK_Q5Tj9TqXrW-xmIQYsduVP5L3S9sl_HR4z8iv6dV8clPOvl_fTsazsuWKDyU2okEhJZe1ZTyP1jKFCpBREE3egEmh6lrYqm4aWFQ6rwZCLdqKNhoWVvEz8m2vu940PS5a9Hnyzqyj6218NME687bj3W-zCveGcyklk1ng4iAQw98NpsH0LrXYddZj2CSTDes8qt4iz19bvXg8XzIDqj2gjSGliEvTumF3jezsOkPBbCMzOTKzjcwcIstE-If4rP0fypc9xSHiC7wCLpXS_AmlW6EM
CODEN IIPRE4
CitedBy_id crossref_primary_10_1016_j_neuroimage_2014_10_019
crossref_primary_10_1109_TBME_2018_2874591
crossref_primary_10_1016_j_neucom_2013_11_051
crossref_primary_10_1016_j_media_2017_05_002
crossref_primary_10_1016_j_media_2014_10_007
crossref_primary_10_1109_TMI_2014_2330355
crossref_primary_10_1016_j_cmpb_2018_04_024
crossref_primary_10_1109_LGRS_2014_2309604
crossref_primary_10_1109_TBME_2018_2822826
crossref_primary_10_1109_TMI_2013_2265603
crossref_primary_10_1016_j_neucom_2020_04_122
crossref_primary_10_1109_TPAMI_2021_3115825
crossref_primary_10_1007_s40846_018_0390_1
crossref_primary_10_3389_fnins_2019_00909
crossref_primary_10_1016_j_media_2019_03_006
crossref_primary_10_1109_JBHI_2020_3013126
Cites_doi 10.1162/15324430152733142
10.1023/A:1009715923555
10.1016/j.neuroimage.2009.02.043
10.1136/jnnp.73.6.657
10.1016/j.neuroimage.2006.08.007
10.1016/S1361-8415(98)80022-4
10.1016/j.neuroimage.2008.12.037
10.1016/j.jneumeth.2004.07.014
10.1109/42.974933
10.1109/TMI.2002.803111
10.1006/cviu.1997.0605
10.1162/jocn.2007.19.9.1498
10.1088/0031-9155/39/3/022
10.1016/j.media.2007.06.004
10.1016/S1053-8119(02)00052-6
10.1109/TMI.2002.1009381
10.1016/j.media.2010.07.002
10.1109/83.536892
10.1093/cercor/10.5.464
10.1016/S0920-9964(99)00123-1
10.1007/s11263-009-0299-9
10.1109/TMI.2010.2049497
10.1093/cercor/11.1.1
10.1016/j.neuroimage.2007.09.031
10.1109/34.927467
10.1016/j.neuroimage.2004.07.051
10.1109/TMI.2006.879320
10.1109/42.796284
10.1007/978-3-540-73273-0_14
10.1016/j.media.2006.06.007
10.1006/nimg.2002.1301
10.1097/00004728-199809000-00031
10.1016/S0920-9964(03)00158-0
10.1023/B:STCO.0000035301.49549.88
10.1109/CVPR.2008.4587394
10.1109/TMI.2003.815865
10.1016/j.neuroimage.2008.10.040
10.1109/CVPR.2010.5539822
10.1016/S0734-189X(89)80014-3
10.1109/42.932742
10.1007/11784012_16
ContentType Journal Article
Copyright 2011 IEEE 2011
Copyright_xml – notice: 2011 IEEE 2011
DBID 97E
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1109/TIP.2011.2170698
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1941-0042
EndPage 1833
ExternalDocumentID PMC3355525
21984505
10_1109_TIP_2011_2170698
6035779
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIBIB NIH HHS
  grantid: R01 EB006733
– fundername: NIBIB NIH HHS
  grantid: R01 EB009634
– fundername: NIBIB NIH HHS
  grantid: EB009634
– fundername: NIBIB NIH HHS
  grantid: EB006733
– fundername: NIBIB NIH HHS
  grantid: EB008374
– fundername: NIBIB NIH HHS
  grantid: R01 EB008374
– fundername: NIMH NIH HHS
  grantid: RC1 MH088520
GroupedDBID ---
-~X
.DC
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
AAYOK
AAYXX
CITATION
RIG
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c373t-eb4be455358a23451c27e70e2104b0422547884a68bb0d69194047dc61b90da73
IEDL.DBID RIE
ISSN 1057-7149
1941-0042
IngestDate Thu Aug 21 18:35:52 EDT 2025
Fri Jul 11 13:11:19 EDT 2025
Thu Apr 03 07:00:56 EDT 2025
Tue Jul 01 02:02:49 EDT 2025
Thu Apr 24 22:55:44 EDT 2025
Tue Aug 26 16:57:54 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c373t-eb4be455358a23451c27e70e2104b0422547884a68bb0d69194047dc61b90da73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 21984505
PQID 940837395
PQPubID 23479
PageCount 11
ParticipantIDs crossref_citationtrail_10_1109_TIP_2011_2170698
crossref_primary_10_1109_TIP_2011_2170698
proquest_miscellaneous_940837395
ieee_primary_6035779
pubmedcentral_primary_oai_pubmedcentral_nih_gov_3355525
pubmed_primary_21984505
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-04-01
PublicationDateYYYYMMDD 2012-04-01
PublicationDate_xml – month: 04
  year: 2012
  text: 2012-04-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle IEEE transactions on image processing
PublicationTitleAbbrev TIP
PublicationTitleAlternate IEEE Trans Image Process
PublicationYear 2012
Publisher IEEE
Publisher_xml – name: IEEE
References ref12
ref15
ref14
ref11
lee (ref32) 2009
ref17
ref16
ref19
ref18
ref50
glocker (ref20) 2009; 5636
ref48
ref47
ref42
ref41
ref44
ardekani (ref27) 2005; 142
shattuck (ref46) 2008; 39
loeckx (ref21) 2003; 2732
andersson (ref26) 2008
ref8
ref7
ref9
ref4
ref3
ref6
ref5
jiang (ref31) 2008
rohr (ref10) 1999
ref40
cherkassky (ref43) 2002; 2415
ref35
ref34
ref37
ref36
ref30
christenson (ref45) 2006; 4057
ref33
ref2
ref1
ref39
ref38
van rijsbergen (ref49) 1979
ref24
ref23
ref25
ref22
shen (ref13) 2004
ref28
ref29
References_xml – ident: ref40
  doi: 10.1162/15324430152733142
– ident: ref42
  doi: 10.1023/A:1009715923555
– ident: ref36
  doi: 10.1016/j.neuroimage.2009.02.043
– start-page: 582
  year: 2004
  ident: ref13
  article-title: Image registration by hierarchical matching of local spatial intensity histograms
  publication-title: Proc MICCAI
– ident: ref2
  doi: 10.1136/jnnp.73.6.657
– ident: ref47
  doi: 10.1016/j.neuroimage.2006.08.007
– ident: ref9
  doi: 10.1016/S1361-8415(98)80022-4
– ident: ref29
  doi: 10.1016/j.neuroimage.2008.12.037
– volume: 142
  start-page: 67
  year: 2005
  ident: ref27
  article-title: Quantitative comparison of algorithms for inter-subject registration of 3-D volumetric brain MRI scans
  publication-title: J Neurosci Methods
  doi: 10.1016/j.jneumeth.2004.07.014
– ident: ref19
  doi: 10.1109/42.974933
– ident: ref11
  doi: 10.1109/TMI.2002.803111
– volume: 2732
  start-page: 463
  year: 2003
  ident: ref21
  article-title: Non-rigid image registration using a statistical spline deformation model
  publication-title: Proc IPMI
– ident: ref16
  doi: 10.1006/cviu.1997.0605
– ident: ref50
  doi: 10.1162/jocn.2007.19.9.1498
– ident: ref18
  doi: 10.1088/0031-9155/39/3/022
– ident: ref28
  doi: 10.1016/j.media.2007.06.004
– ident: ref3
  doi: 10.1016/S1053-8119(02)00052-6
– ident: ref8
  doi: 10.1109/TMI.2002.1009381
– ident: ref14
  doi: 10.1016/j.media.2010.07.002
– ident: ref17
  doi: 10.1109/83.536892
– ident: ref48
  doi: 10.1093/cercor/10.5.464
– ident: ref6
  doi: 10.1016/S0920-9964(99)00123-1
– ident: ref30
  doi: 10.1007/s11263-009-0299-9
– ident: ref35
  doi: 10.1109/TMI.2010.2049497
– ident: ref4
  doi: 10.1093/cercor/11.1.1
– volume: 39
  start-page: 1064
  year: 2008
  ident: ref46
  article-title: Construction of a 3-D probabilistic atlas of human cortical structures
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2007.09.031
– ident: ref39
  doi: 10.1109/34.927467
– ident: ref44
  doi: 10.1016/j.neuroimage.2004.07.051
– volume: 2415
  start-page: 687
  year: 2002
  ident: ref43
  article-title: Selection of meta-parameters for support vector regression
  publication-title: Proc ICANN
– ident: ref33
  doi: 10.1109/TMI.2006.879320
– year: 2008
  ident: ref26
  article-title: FNIRT-FMRIB's non-linear image registration tool
  publication-title: Proc 14th Annu Meeting Org HBM
– ident: ref7
  doi: 10.1109/42.796284
– ident: ref34
  doi: 10.1007/978-3-540-73273-0_14
– ident: ref22
  doi: 10.1016/j.media.2006.06.007
– ident: ref12
  doi: 10.1006/nimg.2002.1301
– ident: ref5
  doi: 10.1097/00004728-199809000-00031
– start-page: 1174
  year: 1999
  ident: ref10
  article-title: Image registration based on thin plate splines and local estimates of anisotropic landmark localization uncertainties
  publication-title: Proc MICCAI
– ident: ref1
  doi: 10.1016/S0920-9964(03)00158-0
– ident: ref41
  doi: 10.1023/B:STCO.0000035301.49549.88
– ident: ref24
  doi: 10.1109/CVPR.2008.4587394
– ident: ref23
  doi: 10.1109/TMI.2003.815865
– ident: ref25
  doi: 10.1016/j.neuroimage.2008.10.040
– ident: ref37
  doi: 10.1109/CVPR.2010.5539822
– year: 1979
  ident: ref49
  publication-title: Information Retrieval
– start-page: 1
  year: 2008
  ident: ref31
  article-title: Learning based coarse-to-fine image registration
  publication-title: Proc IEEE Conf CVPR
– volume: 5636
  start-page: 540
  year: 2009
  ident: ref20
  article-title: Dense registration with deformation priors
  publication-title: Proc IPMI
– ident: ref15
  doi: 10.1016/S0734-189X(89)80014-3
– start-page: 186
  year: 2009
  ident: ref32
  article-title: Learning similarity measure for multi-modal 3-D image registration
  publication-title: Proc IEEE Conf Comput Vis Pattern Recog
– ident: ref38
  doi: 10.1109/42.932742
– volume: 4057
  start-page: 128
  year: 2006
  ident: ref45
  article-title: Introduction to the Non-rigid image registration evaluation project (NIREP)
  publication-title: Proc 3rd Int Workshop Biomed Image Registration
  doi: 10.1007/11784012_16
SSID ssj0014516
Score 2.2214272
Snippet In this paper, we propose a general framework for performance improvement of the current state-of-the-art registration algorithms in terms of both accuracy and...
SourceID pubmedcentral
proquest
pubmed
crossref
ieee
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1823
SubjectTerms Accuracy
Algorithms
Artificial Intelligence
Brain modeling
Correlation
Deformable models
Deformation prediction
fast image registration
Image Enhancement - methods
Image Interpretation, Computer-Assisted - methods
Pattern Recognition, Automated - methods
Principal component analysis
principal component analysis (PCA)
Reproducibility of Results
Sensitivity and Specificity
Subtraction Technique
support vector regression (SVR)
Training
Title A General Fast Registration Framework by Learning Deformation-Appearance Correlation
URI https://ieeexplore.ieee.org/document/6035779
https://www.ncbi.nlm.nih.gov/pubmed/21984505
https://www.proquest.com/docview/940837395
https://pubmed.ncbi.nlm.nih.gov/PMC3355525
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB61PcGBQssjvOQDFyS8m_gZH6vCqiCBENpKvUVxMlsQKIvY7KH99YwdJ9pWFeIWOXZk5xsr32TG3wC8KYxZ5QI9Xwk0XK2U5N47xVtyLzy1tbqNCbJfzNm5-nShL_bg3XQWBhFj8hnOwmWM5bfrZht-lc1NLrW1bh_2yXEbzmpNEYNQcDZGNrXllmj_GJLM3Xz58eug1SmCVowrowCwK5UONet2vkaxvMpdTPN2wuTOF2hxCJ_HuQ-JJz9n297Pmutbso7_u7iH8CBRUXYy2M4j2MPuCA4TLWVp02-O4P6OZuExLE9Ykqpmi3rTs294OWnvssWY6sX8FUvSrZfsPU5HJDk9npqDqbHTUBhkSMV7DOeLD8vTM55KM_BGWtlz9Mqj0lrqshaS3n0jLNocCWHlg6xYkAkrVW1K7_PWuMKpXNm2MYV3eVtb-QQOunWHz4A1lpzkWjSlNFLVWvjCeUnEzBcWURVlBvMRoqpJuuWhfMavKvovuasI3yrgWyV8M3g7jfg9aHb8o-9xgGLql1DIgI1WUNF-C0GUusP1dlPRQsinl05n8HQwimnsaFQZ2BvmMnUIUt4373Q_vkdJb0m0Twv9_O7ZvIB7NGcxJAy9hIP-zxZfERfq_eu4Cf4CilcDeg
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VcgAOFFoe4ekDFyS8m_gZH6vCagtthdBW6i2Kk9mCQFnEZg_w6xknTrStKsQtcpzIzjeWv8mMvwF4kxmzTAV6vhRouFoqyb13itfkXnhqq3XdJciemfm5-nihL3bg3XgWBhG75DOchMsull-vqk34VTY1qdTWultwm_Z9nfWntcaYQSg528U2teWWiP8QlEzddHH8uVfrFEEtxuWdBLDLlQ5V67b2o67Ayk1c83rK5NYeNNuD02H0ferJ98mm9ZPqzzVhx_-d3gO4H8koO-yt5yHsYLMPe5GYsrjs1_twb0u18AAWhyyKVbNZuW7ZF7wc1XfZbEj2Yv43i-Ktl-w9jockOb2emoOxsaNQGqRPxnsE57MPi6M5j8UZeCWtbDl65ZFQkDovhaRvXwmLNkXCWPkgLBaEwnJVmtz7tDYucypVtq5M5l1al1Y-ht1m1eBTYJUlN7kUVS6NVKUWPnNeEjXzmUVUWZ7AdICoqKJyeSig8aPoPJjUFYRvEfAtIr4JvB2f-Nmrdvyj70GAYuwXUUiADVZQ0IoLYZSywdVmXdBEyKuXTifwpDeK8dnBqBKwV8xl7BDEvK_eab597US9JRE_LfSzm0fzGu7MF6cnxcnx2afncJfGL_r0oRew2_7a4EtiRq1_1S2IvzVUBsM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+General+Fast+Registration+Framework+by+Learning+Deformation%E2%80%93Appearance+Correlation&rft.jtitle=IEEE+transactions+on+image+processing&rft.au=Kim%2C+Minjeong&rft.au=Wu%2C+Guorong&rft.au=Yap%2C+Pew-Thian&rft.au=Shen%2C+Dinggang&rft.date=2012-04-01&rft.issn=1057-7149&rft.eissn=1941-0042&rft.volume=21&rft.issue=4&rft.spage=1823&rft.epage=1833&rft_id=info:doi/10.1109%2FTIP.2011.2170698&rft_id=info%3Apmid%2F21984505&rft.externalDocID=PMC3355525
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1057-7149&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1057-7149&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1057-7149&client=summon