A General Fast Registration Framework by Learning Deformation-Appearance Correlation
In this paper, we propose a general framework for performance improvement of the current state-of-the-art registration algorithms in terms of both accuracy and computation time. The key concept involves rapid prediction of a deformation field for registration initialization, which is achieved by a s...
Saved in:
Published in | IEEE transactions on image processing Vol. 21; no. 4; pp. 1823 - 1833 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.04.2012
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this paper, we propose a general framework for performance improvement of the current state-of-the-art registration algorithms in terms of both accuracy and computation time. The key concept involves rapid prediction of a deformation field for registration initialization, which is achieved by a statistical correlation model learned between image appearances and deformation fields. This allows us to immediately bring a template image as close as possible to a subject image that we need to register. The task of the registration algorithm is hence reduced to estimating small deformation between the subject image and the initially warped template image, i.e., the intermediate template (IT). Specifically, to obtain a good subject-specific initial deformation, support vector regression is utilized to determine the correlation between image appearances and their respective deformation fields. When registering a new subject onto the template, an initial deformation field is first predicted based on the subject's image appearance for generating an IT. With the IT, only the residual deformation needs to be estimated, presenting much less challenge to the existing registration algorithms. Our learning-based framework affords two important advantages: 1) by requiring only the estimation of the residual deformation between the IT and the subject image, the computation time can be greatly reduced; 2) by leveraging good deformation initialization, local minima giving suboptimal solution could be avoided. Our framework has been extensively evaluated using medical images from different sources, and the results indicate that, on top of accuracy improvement, significant registration speedup can be achieved, as compared with the case where no prediction of initial deformation is performed. |
---|---|
AbstractList | In this paper, we propose a general framework for performance improvement of the current state-of-the-art registration algorithms in terms of both accuracy and computation time. The key concept involves rapid prediction of a deformation field for registration initialization, which is achieved by a statistical correlation model learned between image appearances and deformation fields. This allows us to immediately bring a template image as close as possible to a subject image that we need to register. The task of the registration algorithm is hence reduced to estimating small deformation between the subject image and the initially warped template image, i.e., the intermediate template (IT). Specifically, to obtain a good subject-specific initial deformation, support vector regression is utilized to determine the correlation between image appearances and their respective deformation fields. When registering a new subject onto the template, an initial deformation field is first predicted based on the subject's image appearance for generating an IT. With the IT, only the residual deformation needs to be estimated, presenting much less challenge to the existing registration algorithms. Our learning-based framework affords two important advantages: 1) by requiring only the estimation of the residual deformation between the IT and the subject image, the computation time can be greatly reduced; 2) by leveraging good deformation initialization, local minima giving suboptimal solution could be avoided. Our framework has been extensively evaluated using medical images from different sources, and the results indicate that, on top of accuracy improvement, significant registration speedup can be achieved, as compared with the case where no prediction of initial deformation is performed. In this paper, we propose a general framework for performance improvement of the current state-of-the-art registration algorithms in terms of both accuracy and computation time. The key concept involves rapid prediction of a deformation field for registration initialization, which is achieved by a statistical correlation model learned between image appearances and deformation fields. This allows us to immediately bring a template image as close as possible to a subject image that we need to register. The task of the registration algorithm is hence reduced to estimating small deformation between the subject image and the initially warped template image, i.e., the intermediate template (IT). Specifically, to obtain a good subject-specific initial deformation, support vector regression is utilized to determine the correlation between image appearances and their respective deformation fields. When registering a new subject onto the template, an initial deformation field is first predicted based on the subject's image appearance for generating an IT. With the IT, only the residual deformation needs to be estimated, presenting much less challenge to the existing registration algorithms. Our learning-based framework affords two important advantages: 1) by requiring only the estimation of the residual deformation between the IT and the subject image, the computation time can be greatly reduced; 2) by leveraging good deformation initialization, local minima giving suboptimal solution could be avoided. Our framework has been extensively evaluated using medical images from different sources, and the results indicate that, on top of accuracy improvement, significant registration speedup can be achieved, as compared with the case where no prediction of initial deformation is performed.In this paper, we propose a general framework for performance improvement of the current state-of-the-art registration algorithms in terms of both accuracy and computation time. The key concept involves rapid prediction of a deformation field for registration initialization, which is achieved by a statistical correlation model learned between image appearances and deformation fields. This allows us to immediately bring a template image as close as possible to a subject image that we need to register. The task of the registration algorithm is hence reduced to estimating small deformation between the subject image and the initially warped template image, i.e., the intermediate template (IT). Specifically, to obtain a good subject-specific initial deformation, support vector regression is utilized to determine the correlation between image appearances and their respective deformation fields. When registering a new subject onto the template, an initial deformation field is first predicted based on the subject's image appearance for generating an IT. With the IT, only the residual deformation needs to be estimated, presenting much less challenge to the existing registration algorithms. Our learning-based framework affords two important advantages: 1) by requiring only the estimation of the residual deformation between the IT and the subject image, the computation time can be greatly reduced; 2) by leveraging good deformation initialization, local minima giving suboptimal solution could be avoided. Our framework has been extensively evaluated using medical images from different sources, and the results indicate that, on top of accuracy improvement, significant registration speedup can be achieved, as compared with the case where no prediction of initial deformation is performed. |
Author | Minjeong Kim Guorong Wu Dinggang Shen Pew-Thian Yap |
Author_xml | – sequence: 1 givenname: Minjeong surname: Kim fullname: Kim, Minjeong organization: Department of Radiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA – sequence: 2 givenname: Guorong surname: Wu fullname: Wu, Guorong – sequence: 3 givenname: Pew-Thian surname: Yap fullname: Yap, Pew-Thian – sequence: 4 givenname: Dinggang surname: Shen fullname: Shen, Dinggang |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/21984505$$D View this record in MEDLINE/PubMed |
BookMark | eNp9UUtrGzEQFiWlebT3QiHsLad1R6_V6lIwTpwEDC3FPQvteuyq2ZVcaZ2Qfx_5kZD00JPEzPeYme-UHPngkZDPFEaUgv46v_0xYkDpiFEFla7fkROqBS0BBDvKf5CqVFToY3Ka0h8AKiStPpBjRnUtJMgTMh8X1-gx2q6Y2jQUP3Hl0hDt4IIvptH2-BDiXdE8FjO00Tu_Ki5xGWK_Q5Tj9TqXrW-xmIQYsduVP5L3S9sl_HR4z8iv6dV8clPOvl_fTsazsuWKDyU2okEhJZe1ZTyP1jKFCpBREE3egEmh6lrYqm4aWFQ6rwZCLdqKNhoWVvEz8m2vu940PS5a9Hnyzqyj6218NME687bj3W-zCveGcyklk1ng4iAQw98NpsH0LrXYddZj2CSTDes8qt4iz19bvXg8XzIDqj2gjSGliEvTumF3jezsOkPBbCMzOTKzjcwcIstE-If4rP0fypc9xSHiC7wCLpXS_AmlW6EM |
CODEN | IIPRE4 |
CitedBy_id | crossref_primary_10_1016_j_neuroimage_2014_10_019 crossref_primary_10_1109_TBME_2018_2874591 crossref_primary_10_1016_j_neucom_2013_11_051 crossref_primary_10_1016_j_media_2017_05_002 crossref_primary_10_1016_j_media_2014_10_007 crossref_primary_10_1109_TMI_2014_2330355 crossref_primary_10_1016_j_cmpb_2018_04_024 crossref_primary_10_1109_LGRS_2014_2309604 crossref_primary_10_1109_TBME_2018_2822826 crossref_primary_10_1109_TMI_2013_2265603 crossref_primary_10_1016_j_neucom_2020_04_122 crossref_primary_10_1109_TPAMI_2021_3115825 crossref_primary_10_1007_s40846_018_0390_1 crossref_primary_10_3389_fnins_2019_00909 crossref_primary_10_1016_j_media_2019_03_006 crossref_primary_10_1109_JBHI_2020_3013126 |
Cites_doi | 10.1162/15324430152733142 10.1023/A:1009715923555 10.1016/j.neuroimage.2009.02.043 10.1136/jnnp.73.6.657 10.1016/j.neuroimage.2006.08.007 10.1016/S1361-8415(98)80022-4 10.1016/j.neuroimage.2008.12.037 10.1016/j.jneumeth.2004.07.014 10.1109/42.974933 10.1109/TMI.2002.803111 10.1006/cviu.1997.0605 10.1162/jocn.2007.19.9.1498 10.1088/0031-9155/39/3/022 10.1016/j.media.2007.06.004 10.1016/S1053-8119(02)00052-6 10.1109/TMI.2002.1009381 10.1016/j.media.2010.07.002 10.1109/83.536892 10.1093/cercor/10.5.464 10.1016/S0920-9964(99)00123-1 10.1007/s11263-009-0299-9 10.1109/TMI.2010.2049497 10.1093/cercor/11.1.1 10.1016/j.neuroimage.2007.09.031 10.1109/34.927467 10.1016/j.neuroimage.2004.07.051 10.1109/TMI.2006.879320 10.1109/42.796284 10.1007/978-3-540-73273-0_14 10.1016/j.media.2006.06.007 10.1006/nimg.2002.1301 10.1097/00004728-199809000-00031 10.1016/S0920-9964(03)00158-0 10.1023/B:STCO.0000035301.49549.88 10.1109/CVPR.2008.4587394 10.1109/TMI.2003.815865 10.1016/j.neuroimage.2008.10.040 10.1109/CVPR.2010.5539822 10.1016/S0734-189X(89)80014-3 10.1109/42.932742 10.1007/11784012_16 |
ContentType | Journal Article |
Copyright | 2011 IEEE 2011 |
Copyright_xml | – notice: 2011 IEEE 2011 |
DBID | 97E RIA RIE AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1109/TIP.2011.2170698 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Engineering |
EISSN | 1941-0042 |
EndPage | 1833 |
ExternalDocumentID | PMC3355525 21984505 10_1109_TIP_2011_2170698 6035779 |
Genre | orig-research Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIBIB NIH HHS grantid: R01 EB006733 – fundername: NIBIB NIH HHS grantid: R01 EB009634 – fundername: NIBIB NIH HHS grantid: EB009634 – fundername: NIBIB NIH HHS grantid: EB006733 – fundername: NIBIB NIH HHS grantid: EB008374 – fundername: NIBIB NIH HHS grantid: R01 EB008374 – fundername: NIMH NIH HHS grantid: RC1 MH088520 |
GroupedDBID | --- -~X .DC 0R~ 29I 4.4 53G 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABFSI ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 E.L EBS EJD F5P HZ~ H~9 ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RNS TAE TN5 VH1 AAYOK AAYXX CITATION RIG CGR CUY CVF ECM EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-c373t-eb4be455358a23451c27e70e2104b0422547884a68bb0d69194047dc61b90da73 |
IEDL.DBID | RIE |
ISSN | 1057-7149 1941-0042 |
IngestDate | Thu Aug 21 18:35:52 EDT 2025 Fri Jul 11 13:11:19 EDT 2025 Thu Apr 03 07:00:56 EDT 2025 Tue Jul 01 02:02:49 EDT 2025 Thu Apr 24 22:55:44 EDT 2025 Tue Aug 26 16:57:54 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c373t-eb4be455358a23451c27e70e2104b0422547884a68bb0d69194047dc61b90da73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 21984505 |
PQID | 940837395 |
PQPubID | 23479 |
PageCount | 11 |
ParticipantIDs | crossref_citationtrail_10_1109_TIP_2011_2170698 crossref_primary_10_1109_TIP_2011_2170698 proquest_miscellaneous_940837395 ieee_primary_6035779 pubmedcentral_primary_oai_pubmedcentral_nih_gov_3355525 pubmed_primary_21984505 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2012-04-01 |
PublicationDateYYYYMMDD | 2012-04-01 |
PublicationDate_xml | – month: 04 year: 2012 text: 2012-04-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | IEEE transactions on image processing |
PublicationTitleAbbrev | TIP |
PublicationTitleAlternate | IEEE Trans Image Process |
PublicationYear | 2012 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
References | ref12 ref15 ref14 ref11 lee (ref32) 2009 ref17 ref16 ref19 ref18 ref50 glocker (ref20) 2009; 5636 ref48 ref47 ref42 ref41 ref44 ardekani (ref27) 2005; 142 shattuck (ref46) 2008; 39 loeckx (ref21) 2003; 2732 andersson (ref26) 2008 ref8 ref7 ref9 ref4 ref3 ref6 ref5 jiang (ref31) 2008 rohr (ref10) 1999 ref40 cherkassky (ref43) 2002; 2415 ref35 ref34 ref37 ref36 ref30 christenson (ref45) 2006; 4057 ref33 ref2 ref1 ref39 ref38 van rijsbergen (ref49) 1979 ref24 ref23 ref25 ref22 shen (ref13) 2004 ref28 ref29 |
References_xml | – ident: ref40 doi: 10.1162/15324430152733142 – ident: ref42 doi: 10.1023/A:1009715923555 – ident: ref36 doi: 10.1016/j.neuroimage.2009.02.043 – start-page: 582 year: 2004 ident: ref13 article-title: Image registration by hierarchical matching of local spatial intensity histograms publication-title: Proc MICCAI – ident: ref2 doi: 10.1136/jnnp.73.6.657 – ident: ref47 doi: 10.1016/j.neuroimage.2006.08.007 – ident: ref9 doi: 10.1016/S1361-8415(98)80022-4 – ident: ref29 doi: 10.1016/j.neuroimage.2008.12.037 – volume: 142 start-page: 67 year: 2005 ident: ref27 article-title: Quantitative comparison of algorithms for inter-subject registration of 3-D volumetric brain MRI scans publication-title: J Neurosci Methods doi: 10.1016/j.jneumeth.2004.07.014 – ident: ref19 doi: 10.1109/42.974933 – ident: ref11 doi: 10.1109/TMI.2002.803111 – volume: 2732 start-page: 463 year: 2003 ident: ref21 article-title: Non-rigid image registration using a statistical spline deformation model publication-title: Proc IPMI – ident: ref16 doi: 10.1006/cviu.1997.0605 – ident: ref50 doi: 10.1162/jocn.2007.19.9.1498 – ident: ref18 doi: 10.1088/0031-9155/39/3/022 – ident: ref28 doi: 10.1016/j.media.2007.06.004 – ident: ref3 doi: 10.1016/S1053-8119(02)00052-6 – ident: ref8 doi: 10.1109/TMI.2002.1009381 – ident: ref14 doi: 10.1016/j.media.2010.07.002 – ident: ref17 doi: 10.1109/83.536892 – ident: ref48 doi: 10.1093/cercor/10.5.464 – ident: ref6 doi: 10.1016/S0920-9964(99)00123-1 – ident: ref30 doi: 10.1007/s11263-009-0299-9 – ident: ref35 doi: 10.1109/TMI.2010.2049497 – ident: ref4 doi: 10.1093/cercor/11.1.1 – volume: 39 start-page: 1064 year: 2008 ident: ref46 article-title: Construction of a 3-D probabilistic atlas of human cortical structures publication-title: NeuroImage doi: 10.1016/j.neuroimage.2007.09.031 – ident: ref39 doi: 10.1109/34.927467 – ident: ref44 doi: 10.1016/j.neuroimage.2004.07.051 – volume: 2415 start-page: 687 year: 2002 ident: ref43 article-title: Selection of meta-parameters for support vector regression publication-title: Proc ICANN – ident: ref33 doi: 10.1109/TMI.2006.879320 – year: 2008 ident: ref26 article-title: FNIRT-FMRIB's non-linear image registration tool publication-title: Proc 14th Annu Meeting Org HBM – ident: ref7 doi: 10.1109/42.796284 – ident: ref34 doi: 10.1007/978-3-540-73273-0_14 – ident: ref22 doi: 10.1016/j.media.2006.06.007 – ident: ref12 doi: 10.1006/nimg.2002.1301 – ident: ref5 doi: 10.1097/00004728-199809000-00031 – start-page: 1174 year: 1999 ident: ref10 article-title: Image registration based on thin plate splines and local estimates of anisotropic landmark localization uncertainties publication-title: Proc MICCAI – ident: ref1 doi: 10.1016/S0920-9964(03)00158-0 – ident: ref41 doi: 10.1023/B:STCO.0000035301.49549.88 – ident: ref24 doi: 10.1109/CVPR.2008.4587394 – ident: ref23 doi: 10.1109/TMI.2003.815865 – ident: ref25 doi: 10.1016/j.neuroimage.2008.10.040 – ident: ref37 doi: 10.1109/CVPR.2010.5539822 – year: 1979 ident: ref49 publication-title: Information Retrieval – start-page: 1 year: 2008 ident: ref31 article-title: Learning based coarse-to-fine image registration publication-title: Proc IEEE Conf CVPR – volume: 5636 start-page: 540 year: 2009 ident: ref20 article-title: Dense registration with deformation priors publication-title: Proc IPMI – ident: ref15 doi: 10.1016/S0734-189X(89)80014-3 – start-page: 186 year: 2009 ident: ref32 article-title: Learning similarity measure for multi-modal 3-D image registration publication-title: Proc IEEE Conf Comput Vis Pattern Recog – ident: ref38 doi: 10.1109/42.932742 – volume: 4057 start-page: 128 year: 2006 ident: ref45 article-title: Introduction to the Non-rigid image registration evaluation project (NIREP) publication-title: Proc 3rd Int Workshop Biomed Image Registration doi: 10.1007/11784012_16 |
SSID | ssj0014516 |
Score | 2.2214272 |
Snippet | In this paper, we propose a general framework for performance improvement of the current state-of-the-art registration algorithms in terms of both accuracy and... |
SourceID | pubmedcentral proquest pubmed crossref ieee |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1823 |
SubjectTerms | Accuracy Algorithms Artificial Intelligence Brain modeling Correlation Deformable models Deformation prediction fast image registration Image Enhancement - methods Image Interpretation, Computer-Assisted - methods Pattern Recognition, Automated - methods Principal component analysis principal component analysis (PCA) Reproducibility of Results Sensitivity and Specificity Subtraction Technique support vector regression (SVR) Training |
Title | A General Fast Registration Framework by Learning Deformation-Appearance Correlation |
URI | https://ieeexplore.ieee.org/document/6035779 https://www.ncbi.nlm.nih.gov/pubmed/21984505 https://www.proquest.com/docview/940837395 https://pubmed.ncbi.nlm.nih.gov/PMC3355525 |
Volume | 21 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB61PcGBQssjvOQDFyS8m_gZH6vCqiCBENpKvUVxMlsQKIvY7KH99YwdJ9pWFeIWOXZk5xsr32TG3wC8KYxZ5QI9Xwk0XK2U5N47xVtyLzy1tbqNCbJfzNm5-nShL_bg3XQWBhFj8hnOwmWM5bfrZht-lc1NLrW1bh_2yXEbzmpNEYNQcDZGNrXllmj_GJLM3Xz58eug1SmCVowrowCwK5UONet2vkaxvMpdTPN2wuTOF2hxCJ_HuQ-JJz9n297Pmutbso7_u7iH8CBRUXYy2M4j2MPuCA4TLWVp02-O4P6OZuExLE9Ykqpmi3rTs294OWnvssWY6sX8FUvSrZfsPU5HJDk9npqDqbHTUBhkSMV7DOeLD8vTM55KM_BGWtlz9Mqj0lrqshaS3n0jLNocCWHlg6xYkAkrVW1K7_PWuMKpXNm2MYV3eVtb-QQOunWHz4A1lpzkWjSlNFLVWvjCeUnEzBcWURVlBvMRoqpJuuWhfMavKvovuasI3yrgWyV8M3g7jfg9aHb8o-9xgGLql1DIgI1WUNF-C0GUusP1dlPRQsinl05n8HQwimnsaFQZ2BvmMnUIUt4373Q_vkdJb0m0Twv9_O7ZvIB7NGcxJAy9hIP-zxZfERfq_eu4Cf4CilcDeg |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VcgAOFFoe4ekDFyS8m_gZH6vCagtthdBW6i2Kk9mCQFnEZg_w6xknTrStKsQtcpzIzjeWv8mMvwF4kxmzTAV6vhRouFoqyb13itfkXnhqq3XdJciemfm5-nihL3bg3XgWBhG75DOchMsull-vqk34VTY1qdTWultwm_Z9nfWntcaYQSg528U2teWWiP8QlEzddHH8uVfrFEEtxuWdBLDLlQ5V67b2o67Ayk1c83rK5NYeNNuD02H0ferJ98mm9ZPqzzVhx_-d3gO4H8koO-yt5yHsYLMPe5GYsrjs1_twb0u18AAWhyyKVbNZuW7ZF7wc1XfZbEj2Yv43i-Ktl-w9jockOb2emoOxsaNQGqRPxnsE57MPi6M5j8UZeCWtbDl65ZFQkDovhaRvXwmLNkXCWPkgLBaEwnJVmtz7tDYucypVtq5M5l1al1Y-ht1m1eBTYJUlN7kUVS6NVKUWPnNeEjXzmUVUWZ7AdICoqKJyeSig8aPoPJjUFYRvEfAtIr4JvB2f-Nmrdvyj70GAYuwXUUiADVZQ0IoLYZSywdVmXdBEyKuXTifwpDeK8dnBqBKwV8xl7BDEvK_eab597US9JRE_LfSzm0fzGu7MF6cnxcnx2afncJfGL_r0oRew2_7a4EtiRq1_1S2IvzVUBsM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+General+Fast+Registration+Framework+by+Learning+Deformation%E2%80%93Appearance+Correlation&rft.jtitle=IEEE+transactions+on+image+processing&rft.au=Kim%2C+Minjeong&rft.au=Wu%2C+Guorong&rft.au=Yap%2C+Pew-Thian&rft.au=Shen%2C+Dinggang&rft.date=2012-04-01&rft.issn=1057-7149&rft.eissn=1941-0042&rft.volume=21&rft.issue=4&rft.spage=1823&rft.epage=1833&rft_id=info:doi/10.1109%2FTIP.2011.2170698&rft_id=info%3Apmid%2F21984505&rft.externalDocID=PMC3355525 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1057-7149&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1057-7149&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1057-7149&client=summon |