Interpretable machine learning methods to explain on-farm yield variability of high productivity wheat in Northwest India

The increasing availability of complex, geo-referenced on-farm data demands analytical frameworks that can guide crop management recommendations. Recent developments in interpretable machine learning techniques offer opportunities to use these methods in agronomic studies. Our objectives were two-fo...

Full description

Saved in:
Bibliographic Details
Published inField crops research Vol. 287; p. 108640
Main Authors Nayak, Hari Sankar, Silva, João Vasco, Parihar, Chiter Mal, Krupnik, Timothy J., Sena, Dipaka Ranjan, Kakraliya, Suresh K., Jat, Hanuman Sahay, Sidhu, Harminder Singh, Sharma, Parbodh C., Jat, Mangi Lal, Sapkota, Tek B.
Format Journal Article
LanguageEnglish
Published Elsevier B.V 15.10.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The increasing availability of complex, geo-referenced on-farm data demands analytical frameworks that can guide crop management recommendations. Recent developments in interpretable machine learning techniques offer opportunities to use these methods in agronomic studies. Our objectives were two-fold: (1) to assess the performance of different machine learning methods to explain on-farm wheat yield variability in the Northwestern Indo-Gangetic Plains of India, and (2) to identify the most important drivers and interactions explaining wheat yield variability. A suite of fine-tuned machine learning models (ridge and lasso regression, classification and regression trees, k-nearest neighbor, support vector machines, gradient boosting, extreme gradient boosting, and random forest) were statistically compared using the R2, root mean square error (RMSE), and mean absolute error (MAE). The best performing model was again fine-tuned using a grid search approach for the bias-variance trade-off. Three post-hoc model agnostic techniques were used to interpret the best performing model: variable importance (a variable was considered “important” if shuffling its values increased or decreased the model error considerably), interaction strength (based on Friedman’s H-statistic), and two-way interaction (i.e., how much of the total variability in wheat yield was explained by a particular two-way interaction). Model outputs were compared against empirical data to contextualize results and provide a blueprint for future analysis in other production systems. Tree-based and decision boundary-based methods outperformed regression-based methods in explaining wheat yield variability. Random forest was the best performing method in terms of goodness-of-fit and model precision and accuracy with RMSE, MAE, and R2 ranging between 367 and 470 kg ha−1, 276–345 kg ha−1, and 0.44–0.63, respectively. Random forest was then used for selection of important variables and interactions. The most important management variables explaining wheat yield variability were nitrogen application rate and crop residue management, whereas the average of monthly cumulative solar radiation during February and March (coinciding with reproductive phase of wheat) was the most important biophysical variable. The effect size of these variables on wheat yield ranged between 227 kg ha−1 for nitrogen application rate to 372 kg ha−1 for cumulative solar radiation during February and March. The effect of important interactions on wheat yield was detected in the data namely the interaction between crop residue management and disease management and, nitrogen application rate and seeding rate. For instance, farmers’ fields with moderate disease incidence yielded 750 kg ha−1 less when crop residues were removed than when crop residues were retained. Similarly, wheat yield response to residue retention was higher under low seed and N application rates. As an inductive research approach, the appropriate application of interpretable machine learning methods can be used to extract agronomically actionable information from large-scale farmer field data. [Display omitted] •Data-driven agronomic research requires new analytical and methodological approaches.•Machine learning methods were used to disentangle complex relationships in farmer field data.•Model-agnostic tools were used to derive agronomic interpretations.•Residue management and N application rate were important management variables for wheat yield.•Residue management interacted with other practices to explain wheat yield variability.
AbstractList The increasing availability of complex, geo-referenced on-farm data demands analytical frameworks that can guide crop management recommendations. Recent developments in interpretable machine learning techniques offer opportunities to use these methods in agronomic studies. Our objectives were two-fold: (1) to assess the performance of different machine learning methods to explain on-farm wheat yield variability in the Northwestern Indo-Gangetic Plains of India, and (2) to identify the most important drivers and interactions explaining wheat yield variability. A suite of fine-tuned machine learning models (ridge and lasso regression, classification and regression trees, k-nearest neighbor, support vector machines, gradient boosting, extreme gradient boosting, and random forest) were statistically compared using the R2, root mean square error (RMSE), and mean absolute error (MAE). The best performing model was again fine-tuned using a grid search approach for the bias-variance trade-off. Three post-hoc model agnostic techniques were used to interpret the best performing model: variable importance (a variable was considered “important” if shuffling its values increased or decreased the model error considerably), interaction strength (based on Friedman’s H-statistic), and two-way interaction (i.e., how much of the total variability in wheat yield was explained by a particular two-way interaction). Model outputs were compared against empirical data to contextualize results and provide a blueprint for future analysis in other production systems. Tree-based and decision boundary-based methods outperformed regression-based methods in explaining wheat yield variability. Random forest was the best performing method in terms of goodness-of-fit and model precision and accuracy with RMSE, MAE, and R2 ranging between 367 and 470 kg ha−1, 276–345 kg ha−1, and 0.44–0.63, respectively. Random forest was then used for selection of important variables and interactions. The most important management variables explaining wheat yield variability were nitrogen application rate and crop residue management, whereas the average of monthly cumulative solar radiation during February and March (coinciding with reproductive phase of wheat) was the most important biophysical variable. The effect size of these variables on wheat yield ranged between 227 kg ha−1 for nitrogen application rate to 372 kg ha−1 for cumulative solar radiation during February and March. The effect of important interactions on wheat yield was detected in the data namely the interaction between crop residue management and disease management and, nitrogen application rate and seeding rate. For instance, farmers’ fields with moderate disease incidence yielded 750 kg ha−1 less when crop residues were removed than when crop residues were retained. Similarly, wheat yield response to residue retention was higher under low seed and N application rates. As an inductive research approach, the appropriate application of interpretable machine learning methods can be used to extract agronomically actionable information from large-scale farmer field data. [Display omitted] •Data-driven agronomic research requires new analytical and methodological approaches.•Machine learning methods were used to disentangle complex relationships in farmer field data.•Model-agnostic tools were used to derive agronomic interpretations.•Residue management and N application rate were important management variables for wheat yield.•Residue management interacted with other practices to explain wheat yield variability.
The increasing availability of complex, geo-referenced on-farm data demands analytical frameworks that can guide crop management recommendations. Recent developments in interpretable machine learning techniques offer opportunities to use these methods in agronomic studies. Our objectives were two-fold: (1) to assess the performance of different machine learning methods to explain on-farm wheat yield variability in the Northwestern Indo-Gangetic Plains of India, and (2) to identify the most important drivers and interactions explaining wheat yield variability. A suite of fine-tuned machine learning models (ridge and lasso regression, classification and regression trees, k-nearest neighbor, support vector machines, gradient boosting, extreme gradient boosting, and random forest) were statistically compared using the R², root mean square error (RMSE), and mean absolute error (MAE). The best performing model was again fine-tuned using a grid search approach for the bias-variance trade-off. Three post-hoc model agnostic techniques were used to interpret the best performing model: variable importance (a variable was considered “important” if shuffling its values increased or decreased the model error considerably), interaction strength (based on Friedman’s H-statistic), and two-way interaction (i.e., how much of the total variability in wheat yield was explained by a particular two-way interaction). Model outputs were compared against empirical data to contextualize results and provide a blueprint for future analysis in other production systems. Tree-based and decision boundary-based methods outperformed regression-based methods in explaining wheat yield variability. Random forest was the best performing method in terms of goodness-of-fit and model precision and accuracy with RMSE, MAE, and R² ranging between 367 and 470 kg ha⁻¹, 276–345 kg ha⁻¹, and 0.44–0.63, respectively. Random forest was then used for selection of important variables and interactions. The most important management variables explaining wheat yield variability were nitrogen application rate and crop residue management, whereas the average of monthly cumulative solar radiation during February and March (coinciding with reproductive phase of wheat) was the most important biophysical variable. The effect size of these variables on wheat yield ranged between 227 kg ha⁻¹ for nitrogen application rate to 372 kg ha⁻¹ for cumulative solar radiation during February and March. The effect of important interactions on wheat yield was detected in the data namely the interaction between crop residue management and disease management and, nitrogen application rate and seeding rate. For instance, farmers’ fields with moderate disease incidence yielded 750 kg ha⁻¹ less when crop residues were removed than when crop residues were retained. Similarly, wheat yield response to residue retention was higher under low seed and N application rates. As an inductive research approach, the appropriate application of interpretable machine learning methods can be used to extract agronomically actionable information from large-scale farmer field data.
ArticleNumber 108640
Author Krupnik, Timothy J.
Kakraliya, Suresh K.
Sena, Dipaka Ranjan
Jat, Hanuman Sahay
Sharma, Parbodh C.
Sapkota, Tek B.
Nayak, Hari Sankar
Silva, João Vasco
Sidhu, Harminder Singh
Jat, Mangi Lal
Parihar, Chiter Mal
Author_xml – sequence: 1
  givenname: Hari Sankar
  surname: Nayak
  fullname: Nayak, Hari Sankar
  organization: ICAR-Indian Agricultural Research Institute (IARI), New Delhi, India
– sequence: 2
  givenname: João Vasco
  surname: Silva
  fullname: Silva, João Vasco
  organization: International Maize and Wheat Improvement Center (CIMMYT), Harare, Zimbabwe
– sequence: 3
  givenname: Chiter Mal
  surname: Parihar
  fullname: Parihar, Chiter Mal
  email: pariharcm@gmail.com
  organization: ICAR-Indian Agricultural Research Institute (IARI), New Delhi, India
– sequence: 4
  givenname: Timothy J.
  surname: Krupnik
  fullname: Krupnik, Timothy J.
  organization: International Maize and Wheat Improvement Center (CIMMYT), Dhaka, Bangladesh
– sequence: 5
  givenname: Dipaka Ranjan
  surname: Sena
  fullname: Sena, Dipaka Ranjan
  organization: ICAR-Indian Agricultural Research Institute (IARI), New Delhi, India
– sequence: 6
  givenname: Suresh K.
  surname: Kakraliya
  fullname: Kakraliya, Suresh K.
  organization: International Maize and Wheat Improvement Center (CIMMYT), New Delhi, India
– sequence: 7
  givenname: Hanuman Sahay
  surname: Jat
  fullname: Jat, Hanuman Sahay
  organization: ICAR-Central Soil Salinity Research Institute (CSSRI), Karnal, India
– sequence: 8
  givenname: Harminder Singh
  surname: Sidhu
  fullname: Sidhu, Harminder Singh
  organization: Borlaug Institute for South Asia (BISA), Ludhiana, India
– sequence: 9
  givenname: Parbodh C.
  surname: Sharma
  fullname: Sharma, Parbodh C.
  organization: Borlaug Institute for South Asia (BISA), Ludhiana, India
– sequence: 10
  givenname: Mangi Lal
  surname: Jat
  fullname: Jat, Mangi Lal
  organization: International Maize and Wheat Improvement Center (CIMMYT), New Delhi, India
– sequence: 11
  givenname: Tek B.
  surname: Sapkota
  fullname: Sapkota, Tek B.
  email: T.Sapkota@cgiar.org
  organization: International Maize and Wheat Improvement Center (CIMMYT), El-Batan, Mexico
BookMark eNp9kEuP0zAUhS00SHQGfgA7L9mk-BUnESs0gqHSCDawtm7sm4krxy6226H_nlRlxWJWV-fqfPdxbslNTBEJec_ZljOuP-63k81bwYRYda8Ve0U2vO9Eo_tW3JANk13fKDGwN-S2lD1jTGuuN-S8ixXzIWOFMSBdwM4-Ig0IOfr4RBesc3KF1kTxzyGAjzTFZoK80LPH4OgJsofRB1_PNE109k8zPeTkjrb606X5PCNUunLfU67zM5ZKd9F5eEteTxAKvvtX78ivr19-3n9rHn887O4_PzZWdrI2CFy2Vg99r4R1ymmleYsaFLQcnBu0tEyuWiqhxhZGpaUakY1CdKAG28s78uE6d73q93FdbxZfLIYAEdOxGNHxXqpBMbZau6vV5lRKxslYX6H6FGsGHwxn5hK22Zs1bHMJ21zDXkn-H3nIfoF8fpH5dGVw_f7kMZtiPUaLzme01bjkX6D_AqGqm10
CitedBy_id crossref_primary_10_1002_agj2_70010
crossref_primary_10_1016_j_fcr_2024_109619
crossref_primary_10_1007_s11119_024_10153_w
crossref_primary_10_1016_j_eja_2024_127193
crossref_primary_10_1016_j_eja_2024_127492
crossref_primary_10_1016_j_fcr_2024_109689
crossref_primary_10_1186_s13007_025_01358_9
crossref_primary_10_1016_j_fcr_2023_109088
crossref_primary_10_1016_j_fcr_2023_109063
crossref_primary_10_1016_j_resconrec_2024_107467
crossref_primary_10_1016_j_fcr_2023_109170
crossref_primary_10_1111_ejss_70033
crossref_primary_10_3389_fpls_2024_1302435
crossref_primary_10_1038_s41467_024_52448_6
crossref_primary_10_3390_rs16244723
crossref_primary_10_1016_j_fcr_2023_109038
crossref_primary_10_1109_MGRS_2024_3467001
crossref_primary_10_1016_j_eja_2024_127461
crossref_primary_10_1016_j_fcr_2024_109519
crossref_primary_10_3390_rs17050774
crossref_primary_10_1016_j_compag_2023_108076
crossref_primary_10_1080_17457300_2024_2351972
crossref_primary_10_1016_j_compag_2023_107663
crossref_primary_10_1007_s43621_024_00292_5
crossref_primary_10_3390_rs16101815
Cites_doi 10.1371/journal.pone.0156571
10.1016/j.eja.2018.04.012
10.1016/j.fcr.2019.107570
10.1016/j.compag.2022.106965
10.1371/journal.pone.0252402
10.1016/j.agee.2013.06.002
10.1017/S001447971400012X
10.1214/ss/1009213726
10.1016/j.gfs.2021.100552
10.4141/cjps96-113
10.1016/j.fcr.2021.108328
10.1109/JPROC.2011.2155130
10.1016/j.gfs.2018.03.001
10.15302/J-FASE-2020351
10.1038/s41598-019-38971-3
10.1016/j.fcr.2021.108097
10.1016/j.agrformet.2017.07.010
10.1016/j.fcr.2021.108331
10.1016/j.fcr.2021.108287
10.1016/j.agsy.2017.06.005
10.1016/j.eja.2021.126417
10.2136/sssaj2006.0403
10.1098/rstb.2007.2169
10.1126/science.aaw4085
10.1109/TIT.1967.1053964
10.1016/j.agsy.2020.103016
10.1016/B978-0-12-800131-8.00004-2
10.1016/j.agsy.2021.103194
10.1023/A:1010933404324
10.1016/j.fcr.2020.108033
10.1145/2939672.2939785
10.1016/B978-0-12-394278-4.00006-4
10.1371/journal.pone.0169748
10.1016/j.geoderma.2017.10.041
10.1111/jac.12146
10.1016/j.scitotenv.2018.05.405
10.1016/0308-521X(92)90018-J
10.1016/bs.agron.2018.11.002
10.3389/fagro.2022.903340
10.2136/sssaj2010.0362
10.1016/j.compag.2020.105709
10.1016/j.fcr.2019.03.017
10.1016/j.agsy.2020.102946
10.3389/fpls.2019.00621
10.1016/j.fcr.2020.107984
10.1016/j.fcr.2018.02.024
10.21105/joss.00786
10.1016/j.fcr.2020.107828
10.1016/j.eja.2020.126204
10.1016/j.scitotenv.2018.11.225
10.3389/fpls.2020.00054
10.1016/j.agsy.2015.05.007
10.1002/widm.1301
10.1097/00010694-196604000-00016
10.2134/agronj2005.0350
10.1080/00401706.1970.10488634
10.1038/s41598-021-98230-2
10.1007/BF00994018
10.1111/sum.12473
10.1111/j.2517-6161.1996.tb02080.x
10.1007/s10705-008-9233-8
10.2135/cropsci2018.04.0249
10.1016/j.compag.2019.104872
10.1109/ICIIP47207.2019.8985951
10.1108/LR-06-2015-0061
ContentType Journal Article
Copyright 2022 The Authors
Copyright_xml – notice: 2022 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.fcr.2022.108640
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 1872-6852
ExternalDocumentID 10_1016_j_fcr_2022_108640
S0378429022002118
GeographicLocations Indo-Gangetic Plain
India
GeographicLocations_xml – name: Indo-Gangetic Plain
– name: India
GroupedDBID --K
--M
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
9JM
AABVA
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATLK
AAXUO
ABFRF
ABGRD
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIUM
ACRLP
ADBBV
ADEZE
ADQTV
AEBSH
AEFWE
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CBWCG
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
LW9
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SAB
SDF
SDG
SES
SPCBC
SSA
SSZ
T5K
UNMZH
Y6R
~G-
~KM
29H
AAHBH
AALCJ
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HLV
HMC
HVGLF
HZ~
R2-
RIG
SEN
SEW
SSH
WUQ
7S9
L.6
ID FETCH-LOGICAL-c373t-ea135c698842cd4d64615e6a4a51add963c03e6a3424b5ab4634be0b227a49c83
IEDL.DBID .~1
ISSN 0378-4290
IngestDate Fri Jul 11 05:31:07 EDT 2025
Tue Jul 01 01:32:41 EDT 2025
Thu Apr 24 23:07:36 EDT 2025
Fri Feb 23 02:39:00 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Interaction strength
Variable importance
Random forest
Big data
Partial dependency plot
Quantile regression
Accumulated local effect plot
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c373t-ea135c698842cd4d64615e6a4a51add963c03e6a3424b5ab4634be0b227a49c83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0378429022002118
PQID 2718349400
PQPubID 24069
ParticipantIDs proquest_miscellaneous_2718349400
crossref_citationtrail_10_1016_j_fcr_2022_108640
crossref_primary_10_1016_j_fcr_2022_108640
elsevier_sciencedirect_doi_10_1016_j_fcr_2022_108640
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-10-15
PublicationDateYYYYMMDD 2022-10-15
PublicationDate_xml – month: 10
  year: 2022
  text: 2022-10-15
  day: 15
PublicationDecade 2020
PublicationTitle Field crops research
PublicationYear 2022
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Hobbs, Sayre, Gupta (bib30) 2008; 363
Jaenisch, Munaro, Bastos, Moraes, Lin, Lollato (bib32) 2021; 272
Cao, Zhang, Luo, Zhang, Zhang, Li, Tao (bib9) 2021; 123
Tibshirani (bib72) 1996; 58
Fisher, Rudin, Dominici (bib22) 2019; 20
Nayak, Silva, Parihar, Kakraliya, Krupnik, Bijarniya, Jat, Sharma, Jat, Sidhu, Sapkota (bib49) 2022; 275
Villegas, Alfaro, Ammar, Cátedra, Crossa, García del Moral, Royo (bib77) 2016; 202
Bhatt, Singh, Hossain, Timsina (bib5) 2021
Deane-Mayer, Knowles (bib19) 2019; 2
Molnar, Casalicchio, Bischl (bib44) 2018; 3
Parihar, Nayak, Rai, Jat, Parihar, Aggarwal, Mishra (bib52) 2019; 241
Silva, Tenreiro, Spätjens, Anten, van Ittersum, Reidsma (bib66) 2020; 255
Linquist, Brouder, Hill (bib42) 2006; 98
Sapkota, Vetter, Jat, Sirohi, Shirsath, Singh, Jat, Smith, Hillier, Stirling (bib59) 2019; 655
Cortes, Vapnik (bib14) 1995; 20
Kaur, Ram (bib36) 2017; 9
Jat, Parihar, Singh, Nayak, Meena, Kumar, Parihar, Jat (bib34) 2019; 236
Thuy, Shan, Wang, Cai, Buresh (bib71) 2008; 72
Basso, Liu (bib3) 2019; 154
Fischer, Honsdorf, Lilley, Mondal, Monasterio, Verhulst (bib21) 2022; 275
Shah, Butts, Mourtzinis, Rattalino Edreira, Grassini, Conley, Esker (bib61) 2021; 11
Mourtzinis, Edreira, Grassini, Roth, Casteel, Ciampitti, Kandel, Kyveryga, Licht, Lindsey, Mueller (bib46) 2018; 221
Silva, Reidsma, van Ittersum (bib65) 2017; 158
Hoerl, Kennard (bib31) 1970; 12
Kumar, Gathala, Saharawat, Parihar, Kumar, Kumar, Jat, Jat, Mahala, Kumar, Nayak (bib40) 2019; 35
Bastos, Carciochi, Lollato, Jaenisch, Rezende, Schwalbert, Vara Prasad, Zhang, Fritz, Foster, Wright (bib4) 2020; 11
Kuhn, Johnson (bib39) 2019
Breiman (bib7) 2001; 16
Molnar, C., Gruber, S., Koer, P., 2020. Limitations of interpretable machine learning methods.
Tolle, Tansley, Hey (bib73) 2011; 99
Gathala, Ladha, Saharawat, Kumar, Kumar, Sharma (bib26) 2011; 75
Van Klompenburg, Kassahun, Catal (bib75) 2020; 177
Jeong, Resop, Mueller, Fleisher, Yun, Butler, Timlin, Shim, Gerber, Reddy, Kim (bib35) 2016; 11
Rattalino Edreira, Mourtzinis, Conley, Roth, Ciampitti, Licht, Kandel, Kyveryga, Lindsey, Mueller, Naeve, Nafziger, Specht, Stanley, Staton, Grassini (bib57) 2017; 247
Breiman, L., 2001, Random forests. Mach. Learn. 45, 5–32. 〈https://link.springer.com/content/pdf/10.1023%2FA%3A1010933404324.pdf〉.
Hengl, Mendes de Jesus, Heuvelink, Ruiperez Gonzalez, Kilibarda, Blagotić, Kempen (bib28) 2017; 12
Mourtzinis, Specht, Conley (bib47) 2019; 9
Correndo, Hefley, Holzworth, Ciampitti (bib13) 2021; 192
Gathala, Kumar, Sharma, Saharawat, Jat, Singh, Kumar, Jat, Humphreys, Sharma, Sharma, Ladha (bib27) 2013; 177
Choudhary, Datta, Jat, Yadav, Gathala, Sapkota, Das, Sharma, Jat, Singh, Ladha (bib11) 2018; 313
Hastie, Tibshirani, Friedman (bib29) 2009
Aryal, Sapkota, Jat, Bishnoi (bib1) 2015; 51
Devkota, Yigezu (bib20) 2020; 185
Tisdale, Nelson (bib70) 1966; 101
Probst, Wright, Boulesteix (bib55) 2019
Silva, Reidsma, Baudron, Laborte, Giller, van Ittersum (bib67) 2021; 30
de Wit (bib18) 1992; 40
Lawes, Chen, Whish, Meier, Ouzman, Gobbett, Vadakattu, Ota, van Rees (bib41) 2021; 262
Sabater, M.J. 2019, ERA5-Land hourly data from 1981 to present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS).
Nayak, Parihar, Mandal, Patra, Jat, Singh, Singh, Jat, Garnaik, Nayak, Abdallah (bib48) 2022; 133
Sadras, Giordano, Correndo, Cossani, Ferreyra, Caviglia, Coulter, Ciampitti, Lollato (bib60) 2022; 4
Cover, Hart (bib15) 1967; 13
Lollato, Ruiz Diaz, DeWolf, Kna, Peterson, Fritz (bib43) 2019; 59
Khaki, Wang (bib37) 2019; 10
Paudel, Boogaard, de Wit, Janssen, Osinga, Pylianidis, Athanasiadis (bib54) 2021; 187
Shendryk, Davy, Thorburn (bib62) 2021; 260
Singh, Gupta, Singh, Singh, Sidhu, Singh (bib68) 2009; 84
Parihar, Parihar, Sapkota, Nanwal, Singh, Jat, Nayak, Mahala, Singh, Kakraliya, Stirling (bib51) 2018; 640
Ransom, Kitchen, Camberato, Carter, Ferguson, Fern´andez, Franzen, Laboski, Myers, Nafziger, Sawyer, Shanahan (bib56) 2019; 164
Park, Davis, McDonald (bib53) 2018; 17
James, Witten, Hastie, Tibshirani (bib33) 2013; Vol. 112
Vanlauwe, Dobermann (bib76) 2020; 7
Chauhan, Mahajan, Sardana, Timsina, Jat (bib10) 2012; 117
Chen, T., Guestrin, C., 2016, Xgboost: A scalable tree boosting system. In Proceedings of the 2nd international conference on knowledge discovery and data mining, 785–794.
Singh, Kukal, Jat, Sidhu (bib69) 2014; 127
Nigam, A., Garg, S., Agrawal, A., Agrawal, P., 2019, Crop yield prediction using machine learning algorithms. In 2019 Fifth International Conference on Image Information Processing (ICIIP), 125–130. IEEE.
Friedman (bib23) 2001
Friedman, Popescu (bib24) 2008; 2
Garnaik, Samant, Mandal, Mohanty, Dwibedi, Patra, Mohapatra, Wanjari, Sethi, Sena, Sapkota (bib25) 2022; 197
Di Mauro, Cipriotti, Gallo, Rotundo (bib17) 2018; 99
Krupnik, Ahmed, Timsina, Yasmin, Hossain, Al Mamun, Mridha, McDonald (bib38) 2015; 139
Breiman, Friedman, Olshen, Stone (bib8) 2017
Bailey (bib2) 1996; 76
Shook, Gangopadhyay, Wu, Ganapathy subramanian, Sarkar, Singh (bib63) 2021; 16
Shyamsundar, Springer, Tallis, Polasky, Jat, Sidhu, Krishnapriya, Skiba, Ginn, Ahuja, Cummins (bib64) 2019; 365
Tseng, Roel, Macedo, Marella, Terra, Zorrilla, Pittelkow (bib74) 2021; 264
de Mauro, Greco, Grimaldi (bib16) 2016; 65
Kuhn (10.1016/j.fcr.2022.108640_bib39) 2019
James (10.1016/j.fcr.2022.108640_bib33) 2013; Vol. 112
Sadras (10.1016/j.fcr.2022.108640_bib60) 2022; 4
Vanlauwe (10.1016/j.fcr.2022.108640_bib76) 2020; 7
Choudhary (10.1016/j.fcr.2022.108640_bib11) 2018; 313
Molnar (10.1016/j.fcr.2022.108640_bib44) 2018; 3
Singh (10.1016/j.fcr.2022.108640_bib69) 2014; 127
Ransom (10.1016/j.fcr.2022.108640_bib56) 2019; 164
Paudel (10.1016/j.fcr.2022.108640_bib54) 2021; 187
Correndo (10.1016/j.fcr.2022.108640_bib13) 2021; 192
Probst (10.1016/j.fcr.2022.108640_bib55) 2019
Khaki (10.1016/j.fcr.2022.108640_bib37) 2019; 10
Friedman (10.1016/j.fcr.2022.108640_bib24) 2008; 2
Hengl (10.1016/j.fcr.2022.108640_bib28) 2017; 12
Basso (10.1016/j.fcr.2022.108640_bib3) 2019; 154
Fisher (10.1016/j.fcr.2022.108640_bib22) 2019; 20
Cortes (10.1016/j.fcr.2022.108640_bib14) 1995; 20
Breiman (10.1016/j.fcr.2022.108640_bib8) 2017
Shyamsundar (10.1016/j.fcr.2022.108640_bib64) 2019; 365
Shendryk (10.1016/j.fcr.2022.108640_bib62) 2021; 260
Devkota (10.1016/j.fcr.2022.108640_bib20) 2020; 185
Hobbs (10.1016/j.fcr.2022.108640_bib30) 2008; 363
Thuy (10.1016/j.fcr.2022.108640_bib71) 2008; 72
Bhatt (10.1016/j.fcr.2022.108640_bib5) 2021
de Mauro (10.1016/j.fcr.2022.108640_bib16) 2016; 65
Silva (10.1016/j.fcr.2022.108640_bib65) 2017; 158
Deane-Mayer (10.1016/j.fcr.2022.108640_bib19) 2019; 2
Mourtzinis (10.1016/j.fcr.2022.108640_bib46) 2018; 221
Bastos (10.1016/j.fcr.2022.108640_bib4) 2020; 11
Friedman (10.1016/j.fcr.2022.108640_bib23) 2001
Silva (10.1016/j.fcr.2022.108640_bib66) 2020; 255
Lawes (10.1016/j.fcr.2022.108640_bib41) 2021; 262
Nayak (10.1016/j.fcr.2022.108640_bib49) 2022; 275
Linquist (10.1016/j.fcr.2022.108640_bib42) 2006; 98
Lollato (10.1016/j.fcr.2022.108640_bib43) 2019; 59
Rattalino Edreira (10.1016/j.fcr.2022.108640_bib57) 2017; 247
Cao (10.1016/j.fcr.2022.108640_bib9) 2021; 123
Tseng (10.1016/j.fcr.2022.108640_bib74) 2021; 264
Mourtzinis (10.1016/j.fcr.2022.108640_bib47) 2019; 9
Silva (10.1016/j.fcr.2022.108640_bib67) 2021; 30
Parihar (10.1016/j.fcr.2022.108640_bib52) 2019; 241
Krupnik (10.1016/j.fcr.2022.108640_bib38) 2015; 139
Hoerl (10.1016/j.fcr.2022.108640_bib31) 1970; 12
Shah (10.1016/j.fcr.2022.108640_bib61) 2021; 11
Di Mauro (10.1016/j.fcr.2022.108640_bib17) 2018; 99
Garnaik (10.1016/j.fcr.2022.108640_bib25) 2022; 197
10.1016/j.fcr.2022.108640_bib58
10.1016/j.fcr.2022.108640_bib12
de Wit (10.1016/j.fcr.2022.108640_bib18) 1992; 40
Jaenisch (10.1016/j.fcr.2022.108640_bib32) 2021; 272
Bailey (10.1016/j.fcr.2022.108640_bib2) 1996; 76
Parihar (10.1016/j.fcr.2022.108640_bib51) 2018; 640
10.1016/j.fcr.2022.108640_bib50
Villegas (10.1016/j.fcr.2022.108640_bib77) 2016; 202
Van Klompenburg (10.1016/j.fcr.2022.108640_bib75) 2020; 177
Gathala (10.1016/j.fcr.2022.108640_bib27) 2013; 177
Shook (10.1016/j.fcr.2022.108640_bib63) 2021; 16
Cover (10.1016/j.fcr.2022.108640_bib15) 1967; 13
Jat (10.1016/j.fcr.2022.108640_bib34) 2019; 236
10.1016/j.fcr.2022.108640_bib6
Tolle (10.1016/j.fcr.2022.108640_bib73) 2011; 99
Breiman (10.1016/j.fcr.2022.108640_bib7) 2001; 16
Kaur (10.1016/j.fcr.2022.108640_bib36) 2017; 9
Park (10.1016/j.fcr.2022.108640_bib53) 2018; 17
Fischer (10.1016/j.fcr.2022.108640_bib21) 2022; 275
Hastie (10.1016/j.fcr.2022.108640_bib29) 2009
Singh (10.1016/j.fcr.2022.108640_bib68) 2009; 84
Jeong (10.1016/j.fcr.2022.108640_bib35) 2016; 11
10.1016/j.fcr.2022.108640_bib45
Sapkota (10.1016/j.fcr.2022.108640_bib59) 2019; 655
Gathala (10.1016/j.fcr.2022.108640_bib26) 2011; 75
Tibshirani (10.1016/j.fcr.2022.108640_bib72) 1996; 58
Chauhan (10.1016/j.fcr.2022.108640_bib10) 2012; 117
Tisdale (10.1016/j.fcr.2022.108640_bib70) 1966; 101
Aryal (10.1016/j.fcr.2022.108640_bib1) 2015; 51
Kumar (10.1016/j.fcr.2022.108640_bib40) 2019; 35
Nayak (10.1016/j.fcr.2022.108640_bib48) 2022; 133
References_xml – volume: 2
  start-page: 916
  year: 2008
  end-page: 954
  ident: bib24
  article-title: Predictive learning via rule ensembles
  publication-title: Ann. Alied Stat.
– volume: 255
  year: 2020
  ident: bib66
  article-title: Can big data explain yield variability and water productivity in intensive croing systems?
  publication-title: Field Crops Res.
– volume: 264
  year: 2021
  ident: bib74
  article-title: Field-level factors for closing yield gaps in high-yielding rice systems of Uruguay
  publication-title: Field Crops Res.
– volume: 12
  year: 2017
  ident: bib28
  article-title: SoilGrids250m: Global gridded soil information based on machine learning
  publication-title: PLoS One
– volume: 84
  start-page: 141
  year: 2009
  end-page: 154
  ident: bib68
  article-title: Nitrogen and residue management effects on agronomic productivity and nitrogen use efficiency in rice–wheat system in Indian Punjab
  publication-title: Nutr. Cycl. Agroecosyst.
– year: 2009
  ident: bib29
  article-title: The Elements of Statistical Learning: Data Mining, Inference, and Prediction
– volume: 101
  start-page: 346
  year: 1966
  ident: bib70
  article-title: Soil fertility and fertilizers
  publication-title: Soil Sci.
– reference: Breiman, L., 2001, Random forests. Mach. Learn. 45, 5–32. 〈https://link.springer.com/content/pdf/10.1023%2FA%3A1010933404324.pdf〉.
– volume: 12
  start-page: 55
  year: 1970
  end-page: 67
  ident: bib31
  article-title: Ridge regression: Biased estimation for nonorthogonal problems
  publication-title: Technometrics
– volume: 99
  start-page: 186
  year: 2018
  end-page: 194
  ident: bib17
  article-title: Environmental and management variables explain soybean yield gap variability in Central Argentina
  publication-title: Eur. J. Agron.
– volume: 11
  start-page: 1
  year: 2021
  end-page: 11
  ident: bib61
  article-title: A machine learning interpretation of the contribution of foliar fungicides to soybean yield in the north‐central United States
  publication-title: . Sci. Rep.
– volume: 9
  start-page: 133
  year: 2017
  end-page: 143
  ident: bib36
  article-title: Nitrogen management of wheat cultivars for higher productivity-A review
  publication-title: J. Alied Nat. Sci.
– volume: 58
  start-page: 267
  year: 1996
  end-page: 288
  ident: bib72
  article-title: Regression shrinkage and selection via the lasso
  publication-title: J. R. Stat. Soc.: Ser. B (Methodol. )
– volume: 51
  start-page: 1
  year: 2015
  end-page: 16
  ident: bib1
  article-title: On-farm economic and environmental impact of zero-tillage wheat: a case of North-West India
  publication-title: Exp. Agric.
– volume: 117
  start-page: 315
  year: 2012
  end-page: 369
  ident: bib10
  article-title: Productivity and sustainability of the rice–wheat croing system in the Indo-Gangetic Plains of the Indian subcontinent: problems, opportunities, and strategies
  publication-title: Adv. Agron.
– volume: 154
  start-page: 201
  year: 2019
  end-page: 255
  ident: bib3
  article-title: Seasonal crop yield forecast: Methods, alications, and accuracies
  publication-title: Adv. Agron.
– volume: 123
  year: 2021
  ident: bib9
  article-title: Wheat yield predictions at a county and field scale with deep learning, machine learning, and google earth engine
  publication-title: Eur. J. Agron.
– volume: 75
  start-page: 1851
  year: 2011
  end-page: 1862
  ident: bib26
  article-title: Effect of tillage and crop establishment methods on physical properties of a medium‐textured soil under a seven‐year rice− wheat rotation
  publication-title: Soil Sci. Soc. Am. J.
– volume: 3
  start-page: 786
  year: 2018
  ident: bib44
  article-title: iml: An R package for interpretable machine learning
  publication-title: J. Open-Source Softw.
– volume: 177
  year: 2020
  ident: bib75
  article-title: Crop yield prediction using machine learning: A systematic literature review
  publication-title: Comput. Electron. Agric.
– volume: 20
  start-page: 1
  year: 2019
  end-page: 81
  ident: bib22
  article-title: All Models are Wrong, but Many are Useful: Learning a Variable's Importance by Studying an Entire Class of Prediction Models Simultaneously
  publication-title: J. Mach. Learn. Res.
– volume: 192
  year: 2021
  ident: bib13
  article-title: Revisiting linear regression to test agreement in continuous predicted-observed datasets
  publication-title: Agric. Syst.
– volume: 127
  start-page: 157
  year: 2014
  end-page: 258
  ident: bib69
  article-title: Improving water productivity of wheat-based croing systems in South Asia for sustained productivity
  publication-title: Adv. Agron.
– start-page: 1
  year: 2021
  end-page: 21
  ident: bib5
  article-title: Rice–wheat system in the northwest Indo-Gangetic plains of South Asia: issues and technological interventions for increasing productivity and sustainability
  publication-title: Paddy Water Environ.
– volume: Vol. 112
  year: 2013
  ident: bib33
  publication-title: An Introduction to Statistical Learning
– volume: 2
  start-page: 35
  year: 2019
  ident: bib19
  article-title: caretEnsemble: Ensembles of Caret Models
  publication-title: R. Package Version
– volume: 40
  start-page: 125
  year: 1992
  end-page: 151
  ident: bib18
  article-title: Resource use efficiency in agriculture
  publication-title: Agric. Syst.
– volume: 11
  start-page: 54
  year: 2020
  ident: bib4
  article-title: Winter wheat yield response to plant density as a function of yield environment and tillering potential: A review and field studies
  publication-title: Front. Plant Sci.
– volume: 363
  start-page: 543
  year: 2008
  end-page: 555
  ident: bib30
  article-title: The role of conservation agriculture in sustainable agriculture
  publication-title: Philos. Trans. R. Soc. B: Biol. Sci.
– volume: 4
  year: 2022
  ident: bib60
  article-title: Temperature-Driven Developmental Modulation of Yield Response to Nitrogen in Wheat and Maize
  publication-title: Front. Agron.
– reference: Chen, T., Guestrin, C., 2016, Xgboost: A scalable tree boosting system. In Proceedings of the 2nd international conference on knowledge discovery and data mining, 785–794.
– volume: 65
  start-page: 122
  year: 2016
  end-page: 135
  ident: bib16
  article-title: A formal definition of big data based on its essential features
  publication-title: Libr. Rev.
– volume: 197
  year: 2022
  ident: bib25
  article-title: Untangling the effect of soil quality on rice productivity under a 16-years long-term fertilizer experiment using conditional random forest
  publication-title: Comput. Electron. Agric.
– volume: 177
  start-page: 85
  year: 2013
  end-page: 97
  ident: bib27
  article-title: Optimizing intensive cereal-based cropping systems addressing current and future drivers of agricultural change in the northwestern Indo-Gangetic Plains of India
  publication-title: Agric., Ecosyst. Environ.
– reference: Molnar, C., Gruber, S., Koer, P., 2020. Limitations of interpretable machine learning methods.
– reference: Nigam, A., Garg, S., Agrawal, A., Agrawal, P., 2019, Crop yield prediction using machine learning algorithms. In 2019 Fifth International Conference on Image Information Processing (ICIIP), 125–130. IEEE.
– volume: 98
  start-page: 1050
  year: 2006
  end-page: 1059
  ident: bib42
  article-title: Winter straw and water management effects on soil nitrogen dynamics in California rice systems
  publication-title: Agron. J.
– volume: 158
  start-page: 78
  year: 2017
  end-page: 92
  ident: bib65
  article-title: Yield gaps in Dutch arable farming systems: Analysis at crop and crop rotation level
  publication-title: Agric. Syst.
– volume: 7
  start-page: 376
  year: 2020
  end-page: 382
  ident: bib76
  article-title: Sustainable intensification of agriculture in sub-Saharan Africa: first things first
  publication-title: Front. Agric. Sci. Eng.
– volume: 16
  year: 2021
  ident: bib63
  article-title: Crop yield prediction integrating genotype and weather variables using deep learning
  publication-title: Plos One
– volume: 313
  start-page: 193
  year: 2018
  end-page: 204
  ident: bib11
  article-title: Changes in soil biology under conservation agriculture based sustainable intensification of cereal systems in Indo-Gangetic Plains
  publication-title: Geoderma
– volume: 275
  year: 2022
  ident: bib49
  article-title: Rice yield gaps and nitrogen-use efficiency in the Northwestern Indo-Gangetic Plains of India: Evidence based insights from heterogeneous farmers’ practices
  publication-title: Field Crops Res.
– volume: 247
  start-page: 170
  year: 2017
  end-page: 180
  ident: bib57
  article-title: Assessing causes of yield gaps in agricultural areas with diversity in climate and soils
  publication-title: Agric. . Meteorol.
– volume: 187
  year: 2021
  ident: bib54
  article-title: Machine learning for large-scale crop yield forecasting
  publication-title: Agric. Syst.
– volume: 30
  year: 2021
  ident: bib67
  article-title: How sustainable is sustainable intensification? Assessing yield gaps at field and farm level across the globe
  publication-title: Glob. Food Secur.
– volume: 262
  year: 2021
  ident: bib41
  article-title: Applying more nitrogen is not always sufficient to address dryland wheat yield gaps in Australia
  publication-title: Field Crops Res.
– year: 2019
  ident: bib39
  article-title: Feature Engineering and Selection: A Practical Approach for Predictive Models
– start-page: 1189
  year: 2001
  end-page: 1232
  ident: bib23
  article-title: Greedy function aroximation: a gradient boosting machine
  publication-title: Ann. Stat.
– volume: 99
  start-page: 1334
  year: 2011
  end-page: 1337
  ident: bib73
  article-title: The fourth paradigm: data-intensive scientific discovery
  publication-title: Proc. IEEE
– year: 2017
  ident: bib8
  publication-title: Classification and Regression Trees
– volume: 260
  year: 2021
  ident: bib62
  article-title: Integrating satellite imagery and environmental data to predict field-level cane and sugar yields in Australia using machine learning
  publication-title: Field Crops Res.
– volume: 164
  year: 2019
  ident: bib56
  article-title: Statistical and machine learning methods evaluated for incorporating soil and weather into corn nitrogen recommendations
  publication-title: Comput. Electron. Agric.
– volume: 640
  start-page: 1382
  year: 2018
  end-page: 1392
  ident: bib51
  article-title: Long-term impact of conservation agriculture and diversified maize rotations on carbon pools and stocks, mineral nitrogen fractions and nitrous oxide fluxes in inceptisol of India
  publication-title: Sci. Total Environ.
– volume: 17
  start-page: 1
  year: 2018
  end-page: 8
  ident: bib53
  article-title: Priorities for wheat intensification in the Eastern Indo-Gangetic Plains
  publication-title: Glob. Food Secur.
– volume: 275
  year: 2022
  ident: bib21
  article-title: Increase in irrigated wheat yield in north-west Mexico from 1960 to 2019: Unravelling the negative relationship to minimum temperature
  publication-title: Field Crops Res.
– volume: 133
  year: 2022
  ident: bib48
  article-title: Point placement of late vegetative stage nitrogen splits increase the productivity, N-use efficiency and profitability of tropical maize under decade long conservation agriculture
  publication-title: Eur. J. Agron.
– volume: 272
  year: 2021
  ident: bib32
  article-title: On-farm data-rich analysis explains yield and quantifies yield gaps of winter wheat in the US central Great Plains
  publication-title: Field Crops Res.
– volume: 13
  start-page: 21
  year: 1967
  end-page: 27
  ident: bib15
  article-title: Nearest neighbour pattern classification
  publication-title: IEEE Trans. Inf. Theory
– volume: 185
  year: 2020
  ident: bib20
  article-title: Explaining yield and gross margin gaps for sustainable intensification of the wheat-based systems in a Mediterranean climate
  publication-title: Agric. Syst.
– volume: 10
  start-page: 621
  year: 2019
  ident: bib37
  article-title: Crop yield prediction using deep neural networks
  publication-title: Front. Plant Sci.
– volume: 236
  start-page: 96
  year: 2019
  end-page: 110
  ident: bib34
  article-title: Differential response from nitrogen sources with and without residue management under conservation agriculture on crop yields, water-use and economics in maize-based rotations
  publication-title: Field Crops Res.
– volume: 11
  year: 2016
  ident: bib35
  article-title: Random forests for global and regional crop yield predictions
  publication-title: PLoS One
– volume: 655
  start-page: 1342
  year: 2019
  end-page: 1354
  ident: bib59
  article-title: Cost-effective oortunities for climate change mitigation in Indian agriculture
  publication-title: Sci. Total Environ.
– volume: 76
  start-page: 635
  year: 1996
  end-page: 639
  ident: bib2
  article-title: Diseases under conservation tillage systems
  publication-title: Can. J. Plant Sci.
– year: 2019
  ident: bib55
  article-title: Hyperparameters and tuning strategies for random forest
  publication-title: WIREs Data Min. Knowl. Disco
– volume: 35
  start-page: 303
  year: 2019
  end-page: 313
  ident: bib40
  article-title: Impact of tillage and crop establishment methods on crop yields, profitability and soil physical properties in rice–wheat system of Indo‐Gangetic Plains of India
  publication-title: Soil Use Manag.
– volume: 365
  start-page: 536
  year: 2019
  end-page: 538
  ident: bib64
  article-title: Fields on fire: Alternatives to crop residue burning in India
  publication-title: Science
– volume: 16
  start-page: 199
  year: 2001
  end-page: 231
  ident: bib7
  article-title: Statistical modeling: The two cultures (with comments and a rejoinder by the author)
  publication-title: Stat. Sci.
– volume: 202
  start-page: 203
  year: 2016
  end-page: 216
  ident: bib77
  article-title: Daylength, temperature and solar radiation effects on the phenology and yield formation of spring durum wheat
  publication-title: J. Agron. Crop Sci.
– volume: 59
  start-page: 333
  year: 2019
  end-page: 350
  ident: bib43
  article-title: Agronomic practices for reducing wheat yield gaps: a quantitative appraisal of progressive producers
  publication-title: Crop Sci.
– volume: 221
  start-page: 130
  year: 2018
  end-page: 141
  ident: bib46
  article-title: Sifting and winnowing: Analysis of farmer field data for soybean in the US North-Central region
  publication-title: Field Crops Res.
– reference: Sabater, M.J. 2019, ERA5-Land hourly data from 1981 to present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS).
– volume: 9
  start-page: 1
  year: 2019
  end-page: 7
  ident: bib47
  article-title: Defining optimal soybean sowing dates across the US
  publication-title: Sci. Rep.
– volume: 20
  start-page: 273
  year: 1995
  end-page: 297
  ident: bib14
  article-title: Suort-vector networks
  publication-title: Mach. Learn.
– volume: 139
  start-page: 166
  year: 2015
  end-page: 179
  ident: bib38
  article-title: Untangling crop management and environmental influences on wheat yield variability in Bangladesh: an application of non-parametric approaches
  publication-title: Agric. Syst.
– volume: 72
  start-page: 514
  year: 2008
  end-page: 523
  ident: bib71
  article-title: Nitrogen supply in rice‐based cropping systems as affected by crop residue management
  publication-title: Soil Sci. Soc. Am. J.
– volume: 241
  year: 2019
  ident: bib52
  article-title: Soil water dynamics, water productivity and radiation use efficiency of maize under multi-year conservation agriculture during contrasting rainfall events
  publication-title: Field Crops Res.
– volume: 11
  issue: 6
  year: 2016
  ident: 10.1016/j.fcr.2022.108640_bib35
  article-title: Random forests for global and regional crop yield predictions
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0156571
– volume: 99
  start-page: 186
  year: 2018
  ident: 10.1016/j.fcr.2022.108640_bib17
  article-title: Environmental and management variables explain soybean yield gap variability in Central Argentina
  publication-title: Eur. J. Agron.
  doi: 10.1016/j.eja.2018.04.012
– volume: 241
  year: 2019
  ident: 10.1016/j.fcr.2022.108640_bib52
  article-title: Soil water dynamics, water productivity and radiation use efficiency of maize under multi-year conservation agriculture during contrasting rainfall events
  publication-title: Field Crops Res.
  doi: 10.1016/j.fcr.2019.107570
– volume: 197
  year: 2022
  ident: 10.1016/j.fcr.2022.108640_bib25
  article-title: Untangling the effect of soil quality on rice productivity under a 16-years long-term fertilizer experiment using conditional random forest
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2022.106965
– volume: 16
  issue: 6
  year: 2021
  ident: 10.1016/j.fcr.2022.108640_bib63
  article-title: Crop yield prediction integrating genotype and weather variables using deep learning
  publication-title: Plos One
  doi: 10.1371/journal.pone.0252402
– volume: 177
  start-page: 85
  year: 2013
  ident: 10.1016/j.fcr.2022.108640_bib27
  article-title: Optimizing intensive cereal-based cropping systems addressing current and future drivers of agricultural change in the northwestern Indo-Gangetic Plains of India
  publication-title: Agric., Ecosyst. Environ.
  doi: 10.1016/j.agee.2013.06.002
– volume: 51
  start-page: 1
  issue: 1
  year: 2015
  ident: 10.1016/j.fcr.2022.108640_bib1
  article-title: On-farm economic and environmental impact of zero-tillage wheat: a case of North-West India
  publication-title: Exp. Agric.
  doi: 10.1017/S001447971400012X
– start-page: 1189
  year: 2001
  ident: 10.1016/j.fcr.2022.108640_bib23
  article-title: Greedy function aroximation: a gradient boosting machine
  publication-title: Ann. Stat.
– volume: 16
  start-page: 199
  issue: 3
  year: 2001
  ident: 10.1016/j.fcr.2022.108640_bib7
  article-title: Statistical modeling: The two cultures (with comments and a rejoinder by the author)
  publication-title: Stat. Sci.
  doi: 10.1214/ss/1009213726
– volume: 30
  year: 2021
  ident: 10.1016/j.fcr.2022.108640_bib67
  article-title: How sustainable is sustainable intensification? Assessing yield gaps at field and farm level across the globe
  publication-title: Glob. Food Secur.
  doi: 10.1016/j.gfs.2021.100552
– volume: 76
  start-page: 635
  issue: 4
  year: 1996
  ident: 10.1016/j.fcr.2022.108640_bib2
  article-title: Diseases under conservation tillage systems
  publication-title: Can. J. Plant Sci.
  doi: 10.4141/cjps96-113
– volume: 2
  start-page: 916
  issue: 3
  year: 2008
  ident: 10.1016/j.fcr.2022.108640_bib24
  article-title: Predictive learning via rule ensembles
  publication-title: Ann. Alied Stat.
– volume: 275
  year: 2022
  ident: 10.1016/j.fcr.2022.108640_bib49
  article-title: Rice yield gaps and nitrogen-use efficiency in the Northwestern Indo-Gangetic Plains of India: Evidence based insights from heterogeneous farmers’ practices
  publication-title: Field Crops Res.
  doi: 10.1016/j.fcr.2021.108328
– volume: 99
  start-page: 1334
  year: 2011
  ident: 10.1016/j.fcr.2022.108640_bib73
  article-title: The fourth paradigm: data-intensive scientific discovery
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.2011.2155130
– volume: 17
  start-page: 1
  year: 2018
  ident: 10.1016/j.fcr.2022.108640_bib53
  article-title: Priorities for wheat intensification in the Eastern Indo-Gangetic Plains
  publication-title: Glob. Food Secur.
  doi: 10.1016/j.gfs.2018.03.001
– volume: 7
  start-page: 376
  issue: 4
  year: 2020
  ident: 10.1016/j.fcr.2022.108640_bib76
  article-title: Sustainable intensification of agriculture in sub-Saharan Africa: first things first
  publication-title: Front. Agric. Sci. Eng.
  doi: 10.15302/J-FASE-2020351
– volume: 9
  start-page: 1
  issue: 1
  year: 2019
  ident: 10.1016/j.fcr.2022.108640_bib47
  article-title: Defining optimal soybean sowing dates across the US
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-38971-3
– volume: 264
  year: 2021
  ident: 10.1016/j.fcr.2022.108640_bib74
  article-title: Field-level factors for closing yield gaps in high-yielding rice systems of Uruguay
  publication-title: Field Crops Res.
  doi: 10.1016/j.fcr.2021.108097
– volume: 247
  start-page: 170
  year: 2017
  ident: 10.1016/j.fcr.2022.108640_bib57
  article-title: Assessing causes of yield gaps in agricultural areas with diversity in climate and soils
  publication-title: Agric. . Meteorol.
  doi: 10.1016/j.agrformet.2017.07.010
– year: 2017
  ident: 10.1016/j.fcr.2022.108640_bib8
– volume: 275
  year: 2022
  ident: 10.1016/j.fcr.2022.108640_bib21
  article-title: Increase in irrigated wheat yield in north-west Mexico from 1960 to 2019: Unravelling the negative relationship to minimum temperature
  publication-title: Field Crops Res.
  doi: 10.1016/j.fcr.2021.108331
– volume: 272
  year: 2021
  ident: 10.1016/j.fcr.2022.108640_bib32
  article-title: On-farm data-rich analysis explains yield and quantifies yield gaps of winter wheat in the US central Great Plains
  publication-title: Field Crops Res.
  doi: 10.1016/j.fcr.2021.108287
– volume: 158
  start-page: 78
  year: 2017
  ident: 10.1016/j.fcr.2022.108640_bib65
  article-title: Yield gaps in Dutch arable farming systems: Analysis at crop and crop rotation level
  publication-title: Agric. Syst.
  doi: 10.1016/j.agsy.2017.06.005
– year: 2009
  ident: 10.1016/j.fcr.2022.108640_bib29
– volume: 133
  year: 2022
  ident: 10.1016/j.fcr.2022.108640_bib48
  article-title: Point placement of late vegetative stage nitrogen splits increase the productivity, N-use efficiency and profitability of tropical maize under decade long conservation agriculture
  publication-title: Eur. J. Agron.
  doi: 10.1016/j.eja.2021.126417
– volume: 72
  start-page: 514
  issue: 2
  year: 2008
  ident: 10.1016/j.fcr.2022.108640_bib71
  article-title: Nitrogen supply in rice‐based cropping systems as affected by crop residue management
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj2006.0403
– volume: 363
  start-page: 543
  issue: 1491
  year: 2008
  ident: 10.1016/j.fcr.2022.108640_bib30
  article-title: The role of conservation agriculture in sustainable agriculture
  publication-title: Philos. Trans. R. Soc. B: Biol. Sci.
  doi: 10.1098/rstb.2007.2169
– volume: 365
  start-page: 536
  issue: 6453
  year: 2019
  ident: 10.1016/j.fcr.2022.108640_bib64
  article-title: Fields on fire: Alternatives to crop residue burning in India
  publication-title: Science
  doi: 10.1126/science.aaw4085
– volume: 9
  start-page: 133
  issue: 1
  year: 2017
  ident: 10.1016/j.fcr.2022.108640_bib36
  article-title: Nitrogen management of wheat cultivars for higher productivity-A review
  publication-title: J. Alied Nat. Sci.
– volume: 13
  start-page: 21
  issue: 1
  year: 1967
  ident: 10.1016/j.fcr.2022.108640_bib15
  article-title: Nearest neighbour pattern classification
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.1967.1053964
– volume: 187
  year: 2021
  ident: 10.1016/j.fcr.2022.108640_bib54
  article-title: Machine learning for large-scale crop yield forecasting
  publication-title: Agric. Syst.
  doi: 10.1016/j.agsy.2020.103016
– volume: 127
  start-page: 157
  year: 2014
  ident: 10.1016/j.fcr.2022.108640_bib69
  article-title: Improving water productivity of wheat-based croing systems in South Asia for sustained productivity
  publication-title: Adv. Agron.
  doi: 10.1016/B978-0-12-800131-8.00004-2
– volume: 192
  year: 2021
  ident: 10.1016/j.fcr.2022.108640_bib13
  article-title: Revisiting linear regression to test agreement in continuous predicted-observed datasets
  publication-title: Agric. Syst.
  doi: 10.1016/j.agsy.2021.103194
– volume: 20
  start-page: 1
  issue: 177
  year: 2019
  ident: 10.1016/j.fcr.2022.108640_bib22
  article-title: All Models are Wrong, but Many are Useful: Learning a Variable's Importance by Studying an Entire Class of Prediction Models Simultaneously
  publication-title: J. Mach. Learn. Res.
– ident: 10.1016/j.fcr.2022.108640_bib6
  doi: 10.1023/A:1010933404324
– volume: 262
  year: 2021
  ident: 10.1016/j.fcr.2022.108640_bib41
  article-title: Applying more nitrogen is not always sufficient to address dryland wheat yield gaps in Australia
  publication-title: Field Crops Res.
  doi: 10.1016/j.fcr.2020.108033
– ident: 10.1016/j.fcr.2022.108640_bib12
  doi: 10.1145/2939672.2939785
– volume: 117
  start-page: 315
  year: 2012
  ident: 10.1016/j.fcr.2022.108640_bib10
  article-title: Productivity and sustainability of the rice–wheat croing system in the Indo-Gangetic Plains of the Indian subcontinent: problems, opportunities, and strategies
  publication-title: Adv. Agron.
  doi: 10.1016/B978-0-12-394278-4.00006-4
– year: 2019
  ident: 10.1016/j.fcr.2022.108640_bib39
– volume: 12
  issue: 2
  year: 2017
  ident: 10.1016/j.fcr.2022.108640_bib28
  article-title: SoilGrids250m: Global gridded soil information based on machine learning
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0169748
– volume: 313
  start-page: 193
  year: 2018
  ident: 10.1016/j.fcr.2022.108640_bib11
  article-title: Changes in soil biology under conservation agriculture based sustainable intensification of cereal systems in Indo-Gangetic Plains
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2017.10.041
– volume: 202
  start-page: 203
  issue: 3
  year: 2016
  ident: 10.1016/j.fcr.2022.108640_bib77
  article-title: Daylength, temperature and solar radiation effects on the phenology and yield formation of spring durum wheat
  publication-title: J. Agron. Crop Sci.
  doi: 10.1111/jac.12146
– volume: 640
  start-page: 1382
  year: 2018
  ident: 10.1016/j.fcr.2022.108640_bib51
  article-title: Long-term impact of conservation agriculture and diversified maize rotations on carbon pools and stocks, mineral nitrogen fractions and nitrous oxide fluxes in inceptisol of India
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2018.05.405
– volume: Vol. 112
  year: 2013
  ident: 10.1016/j.fcr.2022.108640_bib33
– volume: 40
  start-page: 125
  issue: 1–3
  year: 1992
  ident: 10.1016/j.fcr.2022.108640_bib18
  article-title: Resource use efficiency in agriculture
  publication-title: Agric. Syst.
  doi: 10.1016/0308-521X(92)90018-J
– ident: 10.1016/j.fcr.2022.108640_bib58
– volume: 154
  start-page: 201
  year: 2019
  ident: 10.1016/j.fcr.2022.108640_bib3
  article-title: Seasonal crop yield forecast: Methods, alications, and accuracies
  publication-title: Adv. Agron.
  doi: 10.1016/bs.agron.2018.11.002
– volume: 4
  year: 2022
  ident: 10.1016/j.fcr.2022.108640_bib60
  article-title: Temperature-Driven Developmental Modulation of Yield Response to Nitrogen in Wheat and Maize
  publication-title: Front. Agron.
  doi: 10.3389/fagro.2022.903340
– volume: 75
  start-page: 1851
  issue: 5
  year: 2011
  ident: 10.1016/j.fcr.2022.108640_bib26
  article-title: Effect of tillage and crop establishment methods on physical properties of a medium‐textured soil under a seven‐year rice− wheat rotation
  publication-title: Soil Sci. Soc. Am. J.
  doi: 10.2136/sssaj2010.0362
– volume: 177
  year: 2020
  ident: 10.1016/j.fcr.2022.108640_bib75
  article-title: Crop yield prediction using machine learning: A systematic literature review
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2020.105709
– volume: 236
  start-page: 96
  year: 2019
  ident: 10.1016/j.fcr.2022.108640_bib34
  article-title: Differential response from nitrogen sources with and without residue management under conservation agriculture on crop yields, water-use and economics in maize-based rotations
  publication-title: Field Crops Res.
  doi: 10.1016/j.fcr.2019.03.017
– ident: 10.1016/j.fcr.2022.108640_bib45
– volume: 185
  year: 2020
  ident: 10.1016/j.fcr.2022.108640_bib20
  article-title: Explaining yield and gross margin gaps for sustainable intensification of the wheat-based systems in a Mediterranean climate
  publication-title: Agric. Syst.
  doi: 10.1016/j.agsy.2020.102946
– volume: 10
  start-page: 621
  year: 2019
  ident: 10.1016/j.fcr.2022.108640_bib37
  article-title: Crop yield prediction using deep neural networks
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2019.00621
– volume: 260
  year: 2021
  ident: 10.1016/j.fcr.2022.108640_bib62
  article-title: Integrating satellite imagery and environmental data to predict field-level cane and sugar yields in Australia using machine learning
  publication-title: Field Crops Res.
  doi: 10.1016/j.fcr.2020.107984
– volume: 221
  start-page: 130
  year: 2018
  ident: 10.1016/j.fcr.2022.108640_bib46
  article-title: Sifting and winnowing: Analysis of farmer field data for soybean in the US North-Central region
  publication-title: Field Crops Res.
  doi: 10.1016/j.fcr.2018.02.024
– volume: 3
  start-page: 786
  issue: 26
  year: 2018
  ident: 10.1016/j.fcr.2022.108640_bib44
  article-title: iml: An R package for interpretable machine learning
  publication-title: J. Open-Source Softw.
  doi: 10.21105/joss.00786
– volume: 255
  year: 2020
  ident: 10.1016/j.fcr.2022.108640_bib66
  article-title: Can big data explain yield variability and water productivity in intensive croing systems?
  publication-title: Field Crops Res.
  doi: 10.1016/j.fcr.2020.107828
– volume: 123
  year: 2021
  ident: 10.1016/j.fcr.2022.108640_bib9
  article-title: Wheat yield predictions at a county and field scale with deep learning, machine learning, and google earth engine
  publication-title: Eur. J. Agron.
  doi: 10.1016/j.eja.2020.126204
– volume: 655
  start-page: 1342
  year: 2019
  ident: 10.1016/j.fcr.2022.108640_bib59
  article-title: Cost-effective oortunities for climate change mitigation in Indian agriculture
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2018.11.225
– volume: 11
  start-page: 54
  year: 2020
  ident: 10.1016/j.fcr.2022.108640_bib4
  article-title: Winter wheat yield response to plant density as a function of yield environment and tillering potential: A review and field studies
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2020.00054
– volume: 2
  start-page: 35
  issue: 1
  year: 2019
  ident: 10.1016/j.fcr.2022.108640_bib19
  article-title: caretEnsemble: Ensembles of Caret Models
  publication-title: R. Package Version
– volume: 139
  start-page: 166
  year: 2015
  ident: 10.1016/j.fcr.2022.108640_bib38
  article-title: Untangling crop management and environmental influences on wheat yield variability in Bangladesh: an application of non-parametric approaches
  publication-title: Agric. Syst.
  doi: 10.1016/j.agsy.2015.05.007
– year: 2019
  ident: 10.1016/j.fcr.2022.108640_bib55
  article-title: Hyperparameters and tuning strategies for random forest
  publication-title: WIREs Data Min. Knowl. Disco
  doi: 10.1002/widm.1301
– volume: 101
  start-page: 346
  issue: 4
  year: 1966
  ident: 10.1016/j.fcr.2022.108640_bib70
  article-title: Soil fertility and fertilizers
  publication-title: Soil Sci.
  doi: 10.1097/00010694-196604000-00016
– volume: 98
  start-page: 1050
  year: 2006
  ident: 10.1016/j.fcr.2022.108640_bib42
  article-title: Winter straw and water management effects on soil nitrogen dynamics in California rice systems
  publication-title: Agron. J.
  doi: 10.2134/agronj2005.0350
– volume: 12
  start-page: 55
  issue: 1
  year: 1970
  ident: 10.1016/j.fcr.2022.108640_bib31
  article-title: Ridge regression: Biased estimation for nonorthogonal problems
  publication-title: Technometrics
  doi: 10.1080/00401706.1970.10488634
– volume: 11
  start-page: 1
  issue: 1
  year: 2021
  ident: 10.1016/j.fcr.2022.108640_bib61
  article-title: A machine learning interpretation of the contribution of foliar fungicides to soybean yield in the north‐central United States
  publication-title: . Sci. Rep.
  doi: 10.1038/s41598-021-98230-2
– start-page: 1
  year: 2021
  ident: 10.1016/j.fcr.2022.108640_bib5
  article-title: Rice–wheat system in the northwest Indo-Gangetic plains of South Asia: issues and technological interventions for increasing productivity and sustainability
  publication-title: Paddy Water Environ.
– volume: 20
  start-page: 273
  issue: 3
  year: 1995
  ident: 10.1016/j.fcr.2022.108640_bib14
  article-title: Suort-vector networks
  publication-title: Mach. Learn.
  doi: 10.1007/BF00994018
– volume: 35
  start-page: 303
  issue: 2
  year: 2019
  ident: 10.1016/j.fcr.2022.108640_bib40
  article-title: Impact of tillage and crop establishment methods on crop yields, profitability and soil physical properties in rice–wheat system of Indo‐Gangetic Plains of India
  publication-title: Soil Use Manag.
  doi: 10.1111/sum.12473
– volume: 58
  start-page: 267
  issue: 1
  year: 1996
  ident: 10.1016/j.fcr.2022.108640_bib72
  article-title: Regression shrinkage and selection via the lasso
  publication-title: J. R. Stat. Soc.: Ser. B (Methodol. )
  doi: 10.1111/j.2517-6161.1996.tb02080.x
– volume: 84
  start-page: 141
  issue: 2
  year: 2009
  ident: 10.1016/j.fcr.2022.108640_bib68
  article-title: Nitrogen and residue management effects on agronomic productivity and nitrogen use efficiency in rice–wheat system in Indian Punjab
  publication-title: Nutr. Cycl. Agroecosyst.
  doi: 10.1007/s10705-008-9233-8
– volume: 59
  start-page: 333
  issue: 1
  year: 2019
  ident: 10.1016/j.fcr.2022.108640_bib43
  article-title: Agronomic practices for reducing wheat yield gaps: a quantitative appraisal of progressive producers
  publication-title: Crop Sci.
  doi: 10.2135/cropsci2018.04.0249
– volume: 164
  year: 2019
  ident: 10.1016/j.fcr.2022.108640_bib56
  article-title: Statistical and machine learning methods evaluated for incorporating soil and weather into corn nitrogen recommendations
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2019.104872
– ident: 10.1016/j.fcr.2022.108640_bib50
  doi: 10.1109/ICIIP47207.2019.8985951
– volume: 65
  start-page: 122
  year: 2016
  ident: 10.1016/j.fcr.2022.108640_bib16
  article-title: A formal definition of big data based on its essential features
  publication-title: Libr. Rev.
  doi: 10.1108/LR-06-2015-0061
SSID ssj0006616
Score 2.510375
Snippet The increasing availability of complex, geo-referenced on-farm data demands analytical frameworks that can guide crop management recommendations. Recent...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 108640
SubjectTerms Accumulated local effect plot
Big data
crop residue management
disease control
disease incidence
farmers
fertilizer rates
georeferencing
India
Indo-Gangetic Plain
Interaction strength
Partial dependency plot
Quantile regression
Random forest
solar radiation
Variable importance
wheat
Title Interpretable machine learning methods to explain on-farm yield variability of high productivity wheat in Northwest India
URI https://dx.doi.org/10.1016/j.fcr.2022.108640
https://www.proquest.com/docview/2718349400
Volume 287
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA5SL3oQn1hfRPAkrN1Nsq9jEaUqelGht5Bk01Jpd0sfai_-dmeyu4oiPXjMkmSXmck8dibfEHKWxIngKrVeZIANIgwSLwHH1xMpVzEzkbYuULx_iDrP4rYbdlfIZX0XBssqK91f6nSnrasnrYqarfFg0Hr0ObyHpXhVFAxVgBd-hYhRyi8-vss8wP6U-UqIlnB2ndl0NV49g5CgjLl-Q_j_42_b9EtLO9NzvUk2Kp-RtsvP2iIrNt8m6-3-pMLNsDtk8V08qIeWjlyJpKVVT4g-LRtFT-msoPZ9PFSDnBa511OTEV1gDRt9hZi5hOxe0KJHEcWYjks0WNdegr6h1qawzmV6EGCB3uQgXLvk-frq6bLjVV0VPMNjPvOsCnhoojQB4plMZJEAp8ZGSqgwAGUHB9L4HMZcMKFDpUXEhba-ZixWIjUJ3yONvMjtPqE-x51ilimIqrKe1RrcOR2kimXAicRvEr-mpzQV5Dh2vhjKurbsRQILJLJAlixokvOvJeMSb2PZZFEzSf4QGgn2YNmy05qhEg4TZkhUbov5VDKw1IjX4_sH_9v6kKzhCI1bEB6Rxmwyt8fgtcz0iRPLE7LavrnrPHwCdYDruw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwELYoPbQcKvpSoQWmUnuplG5iO68DBwRFu-VxKUjcXNvxoq2WZLW7lO6lf4o_yIzjFBVVHCpxzMOTaMaebyaefMPYhyIvpNClizKLZpBpUkQFBr6RLIXOuc2M84ni0XHWP5Vfz9KzJXbd_QtDZZXB97c-3XvrcKYXtNmbjEa9b7HA5_CSfhVFoEqKUFl54BZXmLfNtgd7aOSPnO9_OdntR6G1QGRFLuaR04lIbVYWKMFWssokIrvLtNRpgiseZ6WNBR4LyaVJtZGZkMbFhvNcy9IWAuU-Yo8lugtqm_D5921dCQJeu0GK6Rm9XreV6ovKhpY4SDn3DY7og8u_wfAOLHis219lz0KQCjutHp6zJVe_YCs759NA1OFessVttaIZO7jwNZkOQhOKc2g7U89g3oD7NRnrUQ1NHQ319AIWVDQHPzFJbznCF9AMgWiTYdLSz_p-FnBFMAE4zm8tEaMDDGqcza_Y6YPo-jVbrpvavWEQC5KU80pjGlcNnTEYP5qk1LySMi_iNRZ3-lQ2cJxTq42x6orZfig0gSITqNYEa-zTnyGTluDjvptlZyT11yxVCED3DXvfGVTh6qUtGV275nKmOIYGRBAUx-v_J3qLPemfHB2qw8HxwVv2lK4QsibpO7Y8n166DQyZ5mbTT1Fg3x96TdwAEAomsg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Interpretable+machine+learning+methods+to+explain+on-farm+yield+variability+of+high+productivity+wheat+in+Northwest+India&rft.jtitle=Field+crops+research&rft.au=Nayak%2C+Hari+Sankar&rft.au=Silva%2C+Jo%C3%A3o+Vasco&rft.au=Parihar%2C+Chiter+Mal&rft.au=Krupnik%2C+Timothy+J&rft.date=2022-10-15&rft.issn=0378-4290&rft.volume=287+p.108640-&rft_id=info:doi/10.1016%2Fj.fcr.2022.108640&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-4290&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-4290&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-4290&client=summon