Nitrogen input decreases microbial nitrogen use efficiency in surface soils of a temperate forest in northeast China
•N addition decreases microbial NUE by decreasing phosphorus availability and soil pH.•Microbial NUE is positively related to microbial biomass formation and negatively related to soil inorganic N cycling.•Microbial NUE controls the branchpoint between soil microbial N immobilization and inorganic N...
Saved in:
Published in | Geoderma Vol. 453; p. 117159 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.01.2025
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •N addition decreases microbial NUE by decreasing phosphorus availability and soil pH.•Microbial NUE is positively related to microbial biomass formation and negatively related to soil inorganic N cycling.•Microbial NUE controls the branchpoint between soil microbial N immobilization and inorganic N cycling.
Microbial nitrogen use efficiency (NUE) reflects the allocation of microbially-acquired N between growth (anabolism) and the release of inorganic N to the environment (catabolism), and is central to understanding soil N cycling. However, the effects of N addition on microbial NUE are unclear. We determined microbial NUE in surface (0–10 cm) and subsurface (10–20 cm) soils in a temperate forest by the combined substrate-independent 18O-H2O tracer technique and 15N isotope pool dilution in a multi-level N addition experiment. We found that high N treatment (75 kg N ha−1 yr−1 as urea fertilizer) significantly decreased NUE in surface soil, but not in the subsurface soil. The decrease in NUE in surface soil was related to soil acidification, likely induced by N addition, and to reduced phosphorus availability, suggesting increased phosphorus limitation to microbial metabolism with N addition. Microbial NUE was inversely related to inorganic N flux (as NH4+) in both surface and subsurface soils and positively related to microbial biomass in surface soil. Our empirical evidence confirms that microbial NUE is a sensitive proxy and controlling branchpoint between soil microbial N immobilization and inorganic N cycling, which should be explicitly included in biogeochemical models to better predict soil N dynamics. |
---|---|
AbstractList | Microbial nitrogen use efficiency (NUE) reflects the allocation of microbially-acquired N between growth (anabolism) and the release of inorganic N to the environment (catabolism), and is central to understanding soil N cycling. However, the effects of N addition on microbial NUE are unclear. We determined microbial NUE in surface (0–10 cm) and subsurface (10–20 cm) soils in a temperate forest by the combined substrate-independent 18O-H2O tracer technique and 15N isotope pool dilution in a multi-level N addition experiment. We found that high N treatment (75 kg N ha−1 yr−1 as urea fertilizer) significantly decreased NUE in surface soil, but not in the subsurface soil. The decrease in NUE in surface soil was related to soil acidification, likely induced by N addition, and to reduced phosphorus availability, suggesting increased phosphorus limitation to microbial metabolism with N addition. Microbial NUE was inversely related to inorganic N flux (as NH4+) in both surface and subsurface soils and positively related to microbial biomass in surface soil. Our empirical evidence confirms that microbial NUE is a sensitive proxy and controlling branchpoint between soil microbial N immobilization and inorganic N cycling, which should be explicitly included in biogeochemical models to better predict soil N dynamics. •N addition decreases microbial NUE by decreasing phosphorus availability and soil pH.•Microbial NUE is positively related to microbial biomass formation and negatively related to soil inorganic N cycling.•Microbial NUE controls the branchpoint between soil microbial N immobilization and inorganic N cycling. Microbial nitrogen use efficiency (NUE) reflects the allocation of microbially-acquired N between growth (anabolism) and the release of inorganic N to the environment (catabolism), and is central to understanding soil N cycling. However, the effects of N addition on microbial NUE are unclear. We determined microbial NUE in surface (0–10 cm) and subsurface (10–20 cm) soils in a temperate forest by the combined substrate-independent 18O-H2O tracer technique and 15N isotope pool dilution in a multi-level N addition experiment. We found that high N treatment (75 kg N ha−1 yr−1 as urea fertilizer) significantly decreased NUE in surface soil, but not in the subsurface soil. The decrease in NUE in surface soil was related to soil acidification, likely induced by N addition, and to reduced phosphorus availability, suggesting increased phosphorus limitation to microbial metabolism with N addition. Microbial NUE was inversely related to inorganic N flux (as NH4+) in both surface and subsurface soils and positively related to microbial biomass in surface soil. Our empirical evidence confirms that microbial NUE is a sensitive proxy and controlling branchpoint between soil microbial N immobilization and inorganic N cycling, which should be explicitly included in biogeochemical models to better predict soil N dynamics. |
ArticleNumber | 117159 |
Author | Zhang, Tuo Song, Liquan Wanek, Wolfgang Sun, Lifei Moorhead, Daryl L. Peng, Yujiao Li, Shuailin Cui, Yongxing Hu, Baoqing Qiao, Yanci |
Author_xml | – sequence: 1 givenname: Lifei surname: Sun fullname: Sun, Lifei organization: Key Laboratory of Environment Change and Resources Use in Beibu Gulf, Ministry of Education, and Guangxi Key Laboratory of Earth Surface Processes and Intelligent Simulation of Nanning Normal University, Nanning 530001, China – sequence: 2 givenname: Yanci surname: Qiao fullname: Qiao, Yanci organization: Key Laboratory of Environment Change and Resources Use in Beibu Gulf, Ministry of Education, and Guangxi Key Laboratory of Earth Surface Processes and Intelligent Simulation of Nanning Normal University, Nanning 530001, China – sequence: 3 givenname: Wolfgang surname: Wanek fullname: Wanek, Wolfgang organization: Division of Terrestrial Ecosystem Research, Center of Microbiology and Environmental Systems Science, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria – sequence: 4 givenname: Daryl L. surname: Moorhead fullname: Moorhead, Daryl L. organization: Department of Environmental Sciences, University of Toledo, 43606, Toledo, USA – sequence: 5 givenname: Yongxing surname: Cui fullname: Cui, Yongxing organization: Institute of Biology, Freie Universität Berlin, Berlin, Germany – sequence: 6 givenname: Yujiao surname: Peng fullname: Peng, Yujiao organization: Key Laboratory of Environment Change and Resources Use in Beibu Gulf, Ministry of Education, and Guangxi Key Laboratory of Earth Surface Processes and Intelligent Simulation of Nanning Normal University, Nanning 530001, China – sequence: 7 givenname: Liquan surname: Song fullname: Song, Liquan organization: Key Laboratory of Environment Change and Resources Use in Beibu Gulf, Ministry of Education, and Guangxi Key Laboratory of Earth Surface Processes and Intelligent Simulation of Nanning Normal University, Nanning 530001, China – sequence: 8 givenname: Baoqing surname: Hu fullname: Hu, Baoqing organization: Key Laboratory of Environment Change and Resources Use in Beibu Gulf, Ministry of Education, and Guangxi Key Laboratory of Earth Surface Processes and Intelligent Simulation of Nanning Normal University, Nanning 530001, China – sequence: 9 givenname: Tuo surname: Zhang fullname: Zhang, Tuo organization: Key Laboratory of Environment Change and Resources Use in Beibu Gulf, Ministry of Education, and Guangxi Key Laboratory of Earth Surface Processes and Intelligent Simulation of Nanning Normal University, Nanning 530001, China – sequence: 10 givenname: Shuailin surname: Li fullname: Li, Shuailin email: lishuailin007@163.com organization: Institute of Applied Ecology, Chinese Academy of Sciences, 110016 Shenyang, China |
BookMark | eNqFkd1qGzEQhUVJoU7aVyh6gXU1kla7uksw_QmE9qa9FrPakSNjr4wkF_L2leMmt7kaZjjnY2bONbta0kKMfQaxBgHmy269pTRTPuBaCqnXAAP09h1bwTjIzsjeXrGVaMpuEAY-sOtSdq0dhBQrVn_GmtOWFh6X46nymXwmLFT4Ifqcpoh7vrxIToU4hRB9pMU_NQcvpxzQEy8p7gtPgSOvdDhSxko8pEylnmVLyvWxYSvfPMYFP7L3AfeFPv2vN-zPt6-_Nz-6h1_f7zd3D51Xg6odCekBAYVRYIK1ipBo0maU46B7ZS0ZnLXpUQWNg0apcQIQkjzYXs-TumH3F-6ccOeOOR4wP7mE0T0PUt46zDX6PTmphFC2FzZIoW0Y7eAnskErCUHDSI1lLqz2lVIyhVceCHfOwe3cSw7unIO75NCMtxcjtUv_RsquPP-P5pjJ17ZKfAvxD-v1l2I |
Cites_doi | 10.1016/j.soilbio.2011.03.017 10.1038/ncomms4694 10.1016/j.soilbio.2022.108587 10.1111/gcb.13533 10.1111/gcb.15851 10.1016/j.soilbio.2013.03.006 10.2136/sssaj1954.03615995001800010009x 10.1016/j.soilbio.2016.01.016 10.1007/s11104-015-2406-8 10.1111/j.1365-2389.1991.tb00413.x 10.1111/j.1461-0248.2008.01230.x 10.1016/j.scitotenv.2023.163236 10.1016/j.soilbio.2018.06.025 10.1111/geb.12576 10.1016/j.soilbio.2006.09.021 10.1016/j.eehl.2023.12.003 10.1890/12-0976.1 10.1016/j.soilbio.2021.108207 10.1016/S0038-0717(02)00074-3 10.1016/j.eehl.2023.03.001 10.1111/geb.12029 10.1016/j.soilbio.2009.08.013 10.1016/0038-0717(93)90113-P 10.1093/femsre/fuv020 10.1007/s11104-010-0706-6 10.1016/j.jenvman.2024.122198 10.1007/s00374-016-1134-4 10.1007/s00374-019-01379-2 10.1029/2021GB007069 10.1038/nmicrobiol.2017.105 10.1371/journal.pone.0102765 10.1016/S0038-0717(99)00119-4 10.1126/science.1136674 10.1038/s41467-018-05980-1 10.1038/s41396-018-0096-y 10.1111/gcb.16229 10.1111/j.1365-2389.2011.01410.x 10.1016/j.chnaes.2015.04.004 10.1016/j.earscirev.2020.103250 10.1038/s41467-020-17502-z 10.1038/s41586-023-06042-3 10.1016/j.soilbio.2014.01.004 10.1016/j.apsoil.2015.05.008 10.1038/s41561-019-0352-4 10.1016/j.soilbio.2024.109342 10.1111/gcb.15883 10.1016/j.soilbio.2019.05.019 10.1002/hyp.10650 10.2136/sssaj1989.03615995005300060016x 10.1016/j.soilbio.2008.10.032 10.1029/2005GB002672 10.1890/0012-9658(1997)078[0335:NMAPIH]2.0.CO;2 10.1890/03-8002 10.1186/s13717-023-00457-6 10.1111/geb.13378 10.1016/j.apsoil.2022.104417 10.1111/2041-210X.12512 10.1038/ngeo252 10.1016/0038-0717(82)90001-3 10.1016/j.soilbio.2019.107584 10.1016/j.geoderma.2023.116416 10.1016/j.soilbio.2023.109109 10.1186/s13717-021-00337-x 10.1111/j.1469-8137.2012.04225.x 10.1128/mBio.02293-19 10.1111/gcb.14777 10.18637/jss.v035.b01 10.1016/0038-0717(87)90052-6 10.1007/s10533-021-00792-w |
ContentType | Journal Article |
Copyright | 2024 The Author(s) |
Copyright_xml | – notice: 2024 The Author(s) |
DBID | 6I. AAFTH AAYXX CITATION DOA |
DOI | 10.1016/j.geoderma.2024.117159 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Directory of Open Access Journals (DOAJ) |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Open Access Full Text url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
EISSN | 1872-6259 |
ExternalDocumentID | oai_doaj_org_article_230039509f2049f897cbe9f4321f418e 10_1016_j_geoderma_2024_117159 S0016706124003884 |
GroupedDBID | --K --M -DZ -~X .~1 0R~ 1B1 1RT 1~. 1~5 29H 4.4 457 4G. 5GY 5VS 6I. 7-5 71M 8P~ 9JM 9JN AABNK AACTN AAEDT AAEDW AAFTH AAHBH AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AATLK AAXKI AAXUO ABEFU ABFNM ABFRF ABGRD ABJNI ABMAC ABQEM ABQYD ABWVN ABXDB ACDAQ ACGFO ACGFS ACIUM ACLVX ACRLP ACRPL ACSBN ADBBV ADEZE ADMUD ADNMO ADQTV ADVLN AEBSH AEFWE AEGFY AEIPS AEKER AENEX AEQOU AFFNX AFJKZ AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AI. AIEXJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG ATOGT AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GROUPED_DOAJ HLV HMA HMC HVGLF HZ~ H~9 IHE IMUCA J1W K-O KOM LW9 LY3 LY9 M41 MO0 N9A O-L O9- OAUVE OHT OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAB SDF SDG SEN SEP SES SEW SPC SPCBC SSA SSE SSZ T5K VH1 WUQ XPP Y6R ZMT ~02 ~G- AATTM AAYWO AAYXX ACVFH ADCNI AEUPX AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP ANKPU APXCP BNPGV CITATION SSH EFKBS |
ID | FETCH-LOGICAL-c373t-e02c1a1a06316f993eaeeb46828745399e6ad465a3f4a74a24ab1102ec1954db3 |
IEDL.DBID | .~1 |
ISSN | 0016-7061 |
IngestDate | Wed Aug 27 01:26:41 EDT 2025 Tue Jul 01 04:05:04 EDT 2025 Sat Jan 18 16:09:12 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Microbial growth soil N transformation soil C storage Nutrient limitation Soil depth Global change |
Language | English |
License | This is an open access article under the CC BY license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c373t-e02c1a1a06316f993eaeeb46828745399e6ad465a3f4a74a24ab1102ec1954db3 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0016706124003884 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_230039509f2049f897cbe9f4321f418e crossref_primary_10_1016_j_geoderma_2024_117159 elsevier_sciencedirect_doi_10_1016_j_geoderma_2024_117159 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2025 2025-01-00 2025-01-01 |
PublicationDateYYYYMMDD | 2025-01-01 |
PublicationDate_xml | – month: 01 year: 2025 text: January 2025 |
PublicationDecade | 2020 |
PublicationTitle | Geoderma |
PublicationYear | 2025 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Saiya-Cork, Sinsabaugh, Zak (b0230) 2002; 34 Li, Yin, Wang, Fan (b0145) 2015; 95 Malik, Puissant, Buckeridge, Goodall, Jehmlich, Chowdhury, Gweon, Peyton, Mason, van Agtmaal, Blaud, Clark, Whitaker, Pywell, Ostle, Gleixner, Griffiths (b0175) 2018; 9 Brookes, Powlson, Jenkinson (b0020) 1982; 14 Yang, Xie, Mao, Bao, He, Zhang, Liang (b0330) 2022; 167 Reich, Grigal, Aber, Gower (b0225) 1997; 78 Brooks, Stark, McInteer, Preston (b0025) 1989; 53 Li, Zi, Sonne, Li (b0155) 2023; 2 Liu, Peng, Xia, Sun, Gao, Dai, Jiang, Bai (b0165) 2017; 23 Zhang, Chen, Ruan (b0345) 2018; 12 Elrys, Ali, Zhang, Cheng, Zhang, Cai, Müller, Chang (b0060) 2021; 27 Sun, Xia, Sang, Wang, Peng, Wang, Zhang, Müller, Bai (b0260) 2019; 55 Manzoni, Taylor, Richter, Porporato, Ågren (b0180) 2012; 196 Davidson, Hart, Shanks, Firestone (b0040) 1991; 42 Li, Sang, Yang, Qu, Xia, Sun, Jiang, Wang, He, Wang (b0140) 2021; 156 Gao, Kou, Zhang, Müller, Wang, Yang, Li (b0095) 2016; 52 Sun, Moorhead, Cui, Wanek, Li, Wang (b0275) 2023; 12 Domeignoz-Horta, Pold, Liu, Frey, Melillo, DeAngelis (b0055) 2020; 11 Fu, Chen, Xu, Jia, Wang, Wang (b0085) 2016; 30 Allison, LeBauer, Ofrecio, Reyes, Ta, Tran (b0005) 2009; 41 Zhu, Zhang, Chen, Mo (b0375) 2015; 35 Olsson, Thingstrup, Jakobsen, Bååth (b0200) 1999; 31 Pold, Domeignoz-Horta, Morrison, Frey, Sistla, DeAngelis (b0215) 2020; 11 Zhang, Zhu, Cai, Qin, Müller (b0365) 2012; 63 Tao, Huang, Hungate, Manzoni, Frey, Schmidt, Reichstein, Carvalhais, Ciais, Jiang, Lehmann, Wang, Houlton, Ahrens, Mishra, Hugelius, Hocking, Lu, Shi, Viatkin, Vargas, Yigini, Omuto, Malik, Peralta, Cuevas-Corona, Di Paolo, Luotto, Liao, Liang, Saynes, Huang, Luo (b0280) 2023; 618 Zhang, Zhu, Cai, Müller (b0360) 2011; 342 Sang, Xia, Sun, Sun, Jiang, Wang, Bai (b0235) 2021; 10 Yu, Jia, He, Zhu, Chen, Wang, Piao, Liu, He, Guo, Wen, Li, Ding, Goulding (b0335) 2019; 12 Feng, Qin, Zhang, Chen, Hu, Wang, Liu, Wei, Li, Yang, Chen (b0070) 2022; 28 Archer (b0010) 2016; 1 Dai, Peng, Liu, Wang, Wang, Jiang, Bai (b0035) 2021; 154 Shipley (b0250) 2013; 94 Frostegård, Bååth, Tunlio (b0080) 1993; 25 Mooshammer, Wanek, Hämmerle, Fuchslueger, Hofhansl, Knoltsch, Schnecker, Takriti, Watzka, Wild, Keiblinger, Zechmeister-Boltenstern, Richter (b0185) 2014; 5 Wang, Wang, He, Liu, Wu (b0305) 2014; 71 Poeplau, Don, Six, Kaiser, Benbi, Chenu, Cotrufo, Derrien, Gioacchini, Grand, Gregorich, Griepentrog, Gunina, Haddix, Kuzyakov, Kühnel, Macdonald, Soong, Trigalet, Vermeire, Rovira, van Wesemael, Wiesmeier, Yeasmin, Yevdokimov, Nieder (b0210) 2018; 125 Müller, Rütting, Kattge, Laughlin, Stevens (b0195) 2007; 39 Lever, Rogers, Lloyd, Overmann, Schink, Thauer, Hoehler, Jørgensen (b0135) 2015; 39 German, Weintraub, Grandy, Lauber, Rinkes, Allison (b0105) 2011; 43 Jones, Cooledge, Hoyle, Griffiths, Murphy (b0120) 2019; 138 Kirkham, Bartholomew (b0125) 1954; 18 Mooshammer, Wanek, Zechmeister-Boltenstern, Richter (b0190) 2014; 5 Jan, Roberts, Tonheim, Jones (b0115) 2009; 41 Xu, Thornton, Post (b0315) 2013; 22 Gee, Bauder (b0100) 1986 Zhang, Zheng, Noll, Hu, Wanek (b0355) 2019; 135 Zhang, Zhao, Pan, Li, Chen, Wang (b0350) 2015; 391 Galloway, Townsend, Erisman, Bekunda, Cai, Freney, Martinelli, Seitzinger, Sutton (b0090) 2008; 320 Francisco, Duarte, Chelinho, Maleita, Braga, Cunha, Abrantes, de Sousa, Sousa, Morais (b0075) 2022; 174 Valero-Mora (b0295) 2010; 35 Bai, Li, Li, Sun, Peng, Dai, Jiang, Han (b0015) 2014; 9 Sun, Li, Qu, Wang, Sang, Wang, Sun, Wanek, Moorhead, Bai, Wang (b0270) 2023; 432 Wei, Simko, Levy, Xie, Jin, Zemla (b0310) 2017; 56 Li, Zeng, Tian, Wang, Wang, Chen, Quan, Chen, Yang, Meng, Wang, Niu (b0150) 2020; 207 Zhang, Zhu, Meng, Zhang, Yang, Yang, Müller, Cai (b0370) 2013; 62 Liu, Zou, Chen, Delgado-Baquerizo, Wang, Zhang, Ruan (b0170) 2023; n/a(n/a) Cui, Moorhead, Guo, Peng, Wang, Zhang, Fang (b0030) 2021; 30 Liang, Schimel, Jastrow (b0160) 2017; 2 Huygens, Boeckx, Templer, Paulino, Van Cleemput, Oyarzún, Müller, Godoy (b0110) 2008; 1 Xu, Tsang (b0320) 2024; 3 Lefcheck (b0130) 2016; 7 Schimel, Bennett (b0240) 2004; 85 Tian, Schindlbacher, Malo, Shi, Heinzle, Kwatcho Kengdo, Inselsbacher, Borken, Wanek (b0285) 2023; 184 Dentener, Drevet, Lamarque, Bey, Eickhout, Fiore, Hauglustaine, Horowitz, Krol, Kulshrestha, Lawrence, Galy-Lacaux, Rast, Shindell, Stevenson, Van Noije, Atherton, Bell, Bergman, Butler, Cofala, Collins, Doherty, Ellingsen, Galloway, Gauss, Montanaro, Müller, Pitari, Rodriguez, Sanderson, Solmon, Strahan, Schultz, Sudo, Szopa, Wild (b0050) 2006; 20 Yuan, Osei, Mao, Ye, Lin, Fang, Wang, Hao, Ali (b0340) 2024; 368 Vance, Brookes, Jenkinson (b0300) 1987; 19 Deng, Hui, Dennis, Reddy (b0045) 2017; 26 Schroeder, Dǎmǎtîrcǎ, Bölscher, Chenu, Elsgaard, Tebbe, Skadell, Poeplau (b0245) 2024; 191 Elrys, Wang, Metwally, Cheng, Zhang, Cai, Chang, Müller (b0065) 2021; 27 Prommer, Walker, Wanek, Braun, Zezula, Hu, Hofhansl, Richter (b0220) 2020; 26 Sun, Wang, Yu, Liu, Houlton, Wang, Zeng, Bai, Fang, Jia (b0265) 2021; 35 Treseder (b0290) 2008; 11 Pinheiro (b0205) 2011; 3 Spohn, Klaus, Wanek, Richter (b0255) 2016; 96 Yang, Duan, Hicks, Wang, Li (b0325) 2023; 880 Xu (10.1016/j.geoderma.2024.117159_b0315) 2013; 22 Tao (10.1016/j.geoderma.2024.117159_b0280) 2023; 618 Cui (10.1016/j.geoderma.2024.117159_b0030) 2021; 30 Elrys (10.1016/j.geoderma.2024.117159_b0060) 2021; 27 Schimel (10.1016/j.geoderma.2024.117159_b0240) 2004; 85 Wang (10.1016/j.geoderma.2024.117159_b0305) 2014; 71 Brooks (10.1016/j.geoderma.2024.117159_b0025) 1989; 53 Fu (10.1016/j.geoderma.2024.117159_b0085) 2016; 30 Zhang (10.1016/j.geoderma.2024.117159_b0370) 2013; 62 Spohn (10.1016/j.geoderma.2024.117159_b0255) 2016; 96 Huygens (10.1016/j.geoderma.2024.117159_b0110) 2008; 1 Liu (10.1016/j.geoderma.2024.117159_b0165) 2017; 23 Zhang (10.1016/j.geoderma.2024.117159_b0345) 2018; 12 Wei (10.1016/j.geoderma.2024.117159_b0310) 2017; 56 Zhang (10.1016/j.geoderma.2024.117159_b0355) 2019; 135 Valero-Mora (10.1016/j.geoderma.2024.117159_b0295) 2010; 35 Pold (10.1016/j.geoderma.2024.117159_b0215) 2020; 11 Yang (10.1016/j.geoderma.2024.117159_b0330) 2022; 167 Gao (10.1016/j.geoderma.2024.117159_b0095) 2016; 52 Davidson (10.1016/j.geoderma.2024.117159_b0040) 1991; 42 Francisco (10.1016/j.geoderma.2024.117159_b0075) 2022; 174 Li (10.1016/j.geoderma.2024.117159_b0140) 2021; 156 Kirkham (10.1016/j.geoderma.2024.117159_b0125) 1954; 18 Yu (10.1016/j.geoderma.2024.117159_b0335) 2019; 12 Zhang (10.1016/j.geoderma.2024.117159_b0350) 2015; 391 Schroeder (10.1016/j.geoderma.2024.117159_b0245) 2024; 191 Zhu (10.1016/j.geoderma.2024.117159_b0375) 2015; 35 Zhang (10.1016/j.geoderma.2024.117159_b0360) 2011; 342 Vance (10.1016/j.geoderma.2024.117159_b0300) 1987; 19 Gee (10.1016/j.geoderma.2024.117159_b0100) 1986 Liu (10.1016/j.geoderma.2024.117159_b0170) 2023; n/a(n/a) Olsson (10.1016/j.geoderma.2024.117159_b0200) 1999; 31 Brookes (10.1016/j.geoderma.2024.117159_b0020) 1982; 14 Müller (10.1016/j.geoderma.2024.117159_b0195) 2007; 39 Jan (10.1016/j.geoderma.2024.117159_b0115) 2009; 41 Mooshammer (10.1016/j.geoderma.2024.117159_b0190) 2014; 5 Saiya-Cork (10.1016/j.geoderma.2024.117159_b0230) 2002; 34 Reich (10.1016/j.geoderma.2024.117159_b0225) 1997; 78 Manzoni (10.1016/j.geoderma.2024.117159_b0180) 2012; 196 Mooshammer (10.1016/j.geoderma.2024.117159_b0185) 2014; 5 Jones (10.1016/j.geoderma.2024.117159_b0120) 2019; 138 Bai (10.1016/j.geoderma.2024.117159_b0015) 2014; 9 Elrys (10.1016/j.geoderma.2024.117159_b0065) 2021; 27 Zhang (10.1016/j.geoderma.2024.117159_b0365) 2012; 63 Allison (10.1016/j.geoderma.2024.117159_b0005) 2009; 41 Frostegård (10.1016/j.geoderma.2024.117159_b0080) 1993; 25 Archer (10.1016/j.geoderma.2024.117159_b0010) 2016; 1 Lever (10.1016/j.geoderma.2024.117159_b0135) 2015; 39 Sun (10.1016/j.geoderma.2024.117159_b0260) 2019; 55 Li (10.1016/j.geoderma.2024.117159_b0155) 2023; 2 Dentener (10.1016/j.geoderma.2024.117159_b0050) 2006; 20 Shipley (10.1016/j.geoderma.2024.117159_b0250) 2013; 94 Dai (10.1016/j.geoderma.2024.117159_b0035) 2021; 154 Deng (10.1016/j.geoderma.2024.117159_b0045) 2017; 26 Domeignoz-Horta (10.1016/j.geoderma.2024.117159_b0055) 2020; 11 Yang (10.1016/j.geoderma.2024.117159_b0325) 2023; 880 Li (10.1016/j.geoderma.2024.117159_b0150) 2020; 207 Xu (10.1016/j.geoderma.2024.117159_b0320) 2024; 3 Lefcheck (10.1016/j.geoderma.2024.117159_b0130) 2016; 7 Tian (10.1016/j.geoderma.2024.117159_b0285) 2023; 184 Pinheiro (10.1016/j.geoderma.2024.117159_b0205) 2011; 3 Galloway (10.1016/j.geoderma.2024.117159_b0090) 2008; 320 Yuan (10.1016/j.geoderma.2024.117159_b0340) 2024; 368 Sun (10.1016/j.geoderma.2024.117159_b0275) 2023; 12 Poeplau (10.1016/j.geoderma.2024.117159_b0210) 2018; 125 Prommer (10.1016/j.geoderma.2024.117159_b0220) 2020; 26 Sang (10.1016/j.geoderma.2024.117159_b0235) 2021; 10 Sun (10.1016/j.geoderma.2024.117159_b0270) 2023; 432 Treseder (10.1016/j.geoderma.2024.117159_b0290) 2008; 11 German (10.1016/j.geoderma.2024.117159_b0105) 2011; 43 Li (10.1016/j.geoderma.2024.117159_b0145) 2015; 95 Malik (10.1016/j.geoderma.2024.117159_b0175) 2018; 9 Feng (10.1016/j.geoderma.2024.117159_b0070) 2022; 28 Liang (10.1016/j.geoderma.2024.117159_b0160) 2017; 2 Sun (10.1016/j.geoderma.2024.117159_b0265) 2021; 35 |
References_xml | – volume: 20 year: 2006 ident: b0050 article-title: Nitrogen and sulfur deposition on regional and global scales: a multimodel evaluation publication-title: Global Biogeochem. Cycles – volume: 94 start-page: 560 year: 2013 end-page: 564 ident: b0250 article-title: The AIC model selection method applied to path analytic models compared using a d-separation test publication-title: Ecology – volume: 39 start-page: 688 year: 2015 end-page: 728 ident: b0135 article-title: Life under extreme energy limitation: a synthesis of laboratory- and field-based investigations publication-title: FEMS Microbiol. Rev. – volume: 26 start-page: 713 year: 2017 end-page: 728 ident: b0045 article-title: Responses of terrestrial ecosystem phosphorus cycling to nitrogen addition: a meta-analysis publication-title: Global Ecol. Biogeogr. – volume: 31 start-page: 1879 year: 1999 end-page: 1887 ident: b0200 article-title: Estimation of the biomass of arbuscular mycorrhizal fungi in a linseed field publication-title: Soil Biol. Biochem. – volume: 18 start-page: 33 year: 1954 end-page: 34 ident: b0125 article-title: Equations for following nutrient transformations in soil, utilizing tracer data publication-title: Soil Sci. Soc. Am. J. – volume: 618 start-page: 981 year: 2023 end-page: 985 ident: b0280 article-title: Microbial carbon use efficiency promotes global soil carbon storage publication-title: Nature – volume: 167 year: 2022 ident: b0330 article-title: Fungi determine increased soil organic carbon more than bacteria through their necromass inputs in conservation tillage croplands publication-title: Soil Biol. Biochem. – volume: 1 start-page: 543 year: 2008 end-page: 548 ident: b0110 article-title: Mechanisms for retention of bioavailable nitrogen in volcanic rainforest soils publication-title: Nat. Geosci. – volume: 154 start-page: 371 year: 2021 end-page: 383 ident: b0035 article-title: Four years of litter input manipulation changes soil microbial characteristics in a temperate mixed forest publication-title: Biogeochemistry – volume: 207 year: 2020 ident: b0150 article-title: Global variations and controlling factors of soil nitrogen turnover rate publication-title: Earth-Sci. Rev. – volume: 10 start-page: 66 year: 2021 ident: b0235 article-title: Responses of soil microbial communities to freeze–thaw cycles in a Chinese temperate forest publication-title: Ecol. Process. – volume: 12 start-page: 424 year: 2019 end-page: 429 ident: b0335 article-title: Stabilization of atmospheric nitrogen deposition in China over the past decade publication-title: Nat. Geosci. – volume: 125 start-page: 10 year: 2018 end-page: 26 ident: b0210 article-title: Isolating organic carbon fractions with varying turnover rates in temperate agricultural soils – A comprehensive method comparison publication-title: Soil Biol. Biochem. – volume: 2 start-page: 24 year: 2023 end-page: 31 ident: b0155 article-title: Microbiome sustains forest ecosystem functions across hierarchical scales publication-title: Eco-Environ. Health – volume: 53 start-page: 1707 year: 1989 end-page: 1711 ident: b0025 article-title: Diffusion method to prepare soil extracts for automated nitrogen-15 analysis publication-title: Soil Sci. Soc. Am. J. – volume: 34 start-page: 1309 year: 2002 end-page: 1315 ident: b0230 article-title: The effects of long term nitrogen deposition on extracellular enzyme activity in an Acer saccharum forest soil publication-title: Soil Biol. Biochem. – volume: 25 start-page: 723 year: 1993 end-page: 730 ident: b0080 article-title: Shifts in the structure of soil microbial communities in limed forests as revealed by phospholipid fatty acid analysis publication-title: Soil Biol. Biochem. – volume: 41 start-page: 2272 year: 2009 end-page: 2282 ident: b0115 article-title: Protein breakdown represents a major bottleneck in nitrogen cycling in grassland soils publication-title: Soil Biol. Biochem. – volume: 11 start-page: 3684 year: 2020 ident: b0055 article-title: Microbial diversity drives carbon use efficiency in a model soil publication-title: Nat. Commun. – volume: 5 start-page: 3694 year: 2014 ident: b0185 article-title: Adjustment of microbial nitrogen use efficiency to carbon:nitrogen imbalances regulates soil nitrogen cycling publication-title: Nat. Commun. – volume: 11 year: 2020 ident: b0215 article-title: Carbon use efficiency and its temperature sensitivity covary in soil Bacteria publication-title: MBio – volume: 368 year: 2024 ident: b0340 article-title: Determinants of tree population temporal stability in a temperate mixed forest over a gradient of nitrogen addition publication-title: J. Environ. Manage. – volume: 30 start-page: 795 year: 2016 end-page: 811 ident: b0085 article-title: Role of epikarst in near-surface hydrological processes in a soil mantled subtropical dolomite karst slope: implications of field rainfall simulation experiments publication-title: Hydrol. Process. – volume: 3 start-page: 59 year: 2024 end-page: 76 ident: b0320 article-title: Mineral-mediated stability of organic carbon in soil and relevant interaction mechanisms publication-title: Eco-Environ. Health – volume: 26 start-page: 669 year: 2020 end-page: 681 ident: b0220 article-title: Increased microbial growth, biomass, and turnover drive soil organic carbon accumulation at higher plant diversity publication-title: Global Change Biol. – volume: 35 start-page: 35 year: 2015 end-page: 43 ident: b0375 article-title: Impacts of nitrogen deposition on soil nitrogen cycle in forest ecosystems: a review publication-title: Acta Ecol. Sin. – volume: 320 start-page: 889 year: 2008 ident: b0090 article-title: Transformation of the nitrogen cycle: recent trends, questions, and potential solutions publication-title: Science – volume: 27 start-page: 6512 year: 2021 end-page: 6524 ident: b0065 article-title: Global gross nitrification rates are dominantly driven by soil carbon-to-nitrogen stoichiometry and total nitrogen publication-title: Global Change Biol. – volume: 55 start-page: 629 year: 2019 end-page: 641 ident: b0260 article-title: Soil resource status affects the responses of nitrogen processes to changes in temperature and moisture publication-title: Biol. Fert. Soils – volume: 11 start-page: 1111 year: 2008 end-page: 1120 ident: b0290 article-title: Nitrogen additions and microbial biomass: a meta-analysis of ecosystem studies publication-title: Ecol. Lett. – volume: 7 start-page: 573 year: 2016 end-page: 579 ident: b0130 article-title: piecewiseSEM: Piecewise structural equation publication-title: Methods Ecol. Evol. – volume: 138 year: 2019 ident: b0120 article-title: pH and exchangeable aluminum are major regulators of microbial energy flow and carbon use efficiency in soil microbial communities publication-title: Soil Biol. Biochem. – volume: 156 year: 2021 ident: b0140 article-title: Stoichiometric imbalance and microbial community regulate microbial elements use efficiencies under nitrogen addition publication-title: Soil Biol. Biochem. – volume: 2 start-page: 17105 year: 2017 ident: b0160 article-title: The importance of anabolism in microbial control over soil carbon storage publication-title: Nat. Microbiol. – volume: 30 start-page: 2297 year: 2021 end-page: 2311 ident: b0030 article-title: Stoichiometric models of microbial metabolic limitation in soil systems publication-title: Global Ecol. Biogeogr. – volume: 12 start-page: 46 year: 2023 ident: b0275 article-title: Exogenous nitrogen input skews estimates of microbial nitrogen use efficiency by ecoenzymatic stoichiometry publication-title: Ecol. Process. – volume: 135 start-page: 304 year: 2019 end-page: 315 ident: b0355 article-title: Environmental effects on soil microbial nitrogen use efficiency are controlled by allocation of organic nitrogen to microbial growth and regulate gross N mineralization publication-title: Soil Biol. Biochem. – volume: 14 start-page: 319 year: 1982 end-page: 329 ident: b0020 article-title: Measurement of microbial biomass phosphorus in soil publication-title: Soil Biol. Biochem. – volume: 3 start-page: 1 year: 2011 ident: b0205 article-title: nlme: Linear and nonlinear mixed effects models publication-title: R Package Version – volume: 35 start-page: 1 year: 2010 end-page: 3 ident: b0295 article-title: ggplot2: elegant graphics for data analysis publication-title: J. Stat. Softw. – volume: 184 year: 2023 ident: b0285 article-title: Long-term warming of a forest soil reduces microbial biomass and its carbon and nitrogen use efficiencies publication-title: Soil Biol. Biochem. – volume: 62 start-page: 107 year: 2013 end-page: 114 ident: b0370 article-title: Agricultural land use affects nitrate production and conservation in humid subtropical soils in China publication-title: Soil Biol. Biochem. – volume: 43 start-page: 1387 year: 2011 end-page: 1397 ident: b0105 article-title: Optimization of hydrolytic and oxidative enzyme methods for ecosystem studies publication-title: Soil Biol. Biochem. – volume: 196 start-page: 79 year: 2012 end-page: 91 ident: b0180 article-title: Environmental and stoichiometric controls on microbial carbon-use efficiency in soils publication-title: New Phytol. – volume: 5 start-page: 22 year: 2014 ident: b0190 article-title: Stoichiometric imbalances between terrestrial decomposer communities and their resources: mechanisms and implications of microbial adaptations to their resources publication-title: Front. Microbiol. – volume: 28 start-page: 4845 year: 2022 end-page: 4860 ident: b0070 article-title: Nitrogen input enhances microbial carbon use efficiency by altering plant–microbe–mineral interactions publication-title: Global Change Biol. – volume: 1 year: 2016 ident: b0010 article-title: rfPermute: estimate permutation p-values for random forest importance metrics publication-title: R Package Version – volume: 19 start-page: 703 year: 1987 end-page: 707 ident: b0300 article-title: An extraction method for measuring soil microbial biomass C publication-title: Soil Biol. Biochem. – volume: 56 start-page: e24 year: 2017 ident: b0310 article-title: Package ‘corrplot’ publication-title: Statistician – volume: 52 start-page: 977 year: 2016 end-page: 986 ident: b0095 article-title: Enhanced deposition of nitrate alters microbial cycling of N in a subtropical forest soil publication-title: Biol. Fert. Soils – volume: 95 start-page: 15 year: 2015 end-page: 22 ident: b0145 article-title: Litter mass loss and nutrient release influenced by soil fauna of Betula ermanii forest floor of the Changbai Mountains, China publication-title: Appl. Soil Ecol. – volume: 85 start-page: 591 year: 2004 end-page: 602 ident: b0240 article-title: Nitrogen mineralization: challenges of a changing paradigm publication-title: Ecology – volume: 23 start-page: 2441 year: 2017 end-page: 2449 ident: b0165 article-title: Different fates of deposited NH publication-title: Global Change Biol. – volume: 41 start-page: 293 year: 2009 end-page: 302 ident: b0005 article-title: Low levels of nitrogen addition stimulate decomposition by boreal forest fungi publication-title: Soil Biol. Biochem. – volume: 35 year: 2021 ident: b0265 article-title: Biotic and abiotic controls on dinitrogen production in coastal sediments publication-title: Global Biogeochem. Cycles – volume: 191 year: 2024 ident: b0245 article-title: Liming effects on microbial carbon use efficiency and its potential consequences for soil organic carbon stocks publication-title: Soil Biol. Biochem. – volume: 12 start-page: 1817 year: 2018 end-page: 1825 ident: b0345 article-title: Global negative effects of nitrogen deposition on soil microbes publication-title: ISME. J. – volume: 9 year: 2014 ident: b0015 article-title: Pulse increase of soil N2O emission in response to N addition in a temperate forest on Mt Changbai, northeast China publication-title: PLoS One – volume: 39 start-page: 715 year: 2007 end-page: 726 ident: b0195 article-title: Estimation of parameters in complex publication-title: Soil Biol. Biochem. – volume: 71 start-page: 13 year: 2014 end-page: 20 ident: b0305 article-title: Response of organic carbon mineralization and microbial community to leaf litter and nutrient additions in subtropical forest soils publication-title: Soil Biol. Biochem. – volume: 391 start-page: 77 year: 2015 end-page: 91 ident: b0350 article-title: Changes in nitrogen and phosphorus limitation during secondary succession in a karst region in southwest China publication-title: Plant Soil – volume: 27 start-page: 5950 year: 2021 end-page: 5962 ident: b0060 article-title: Patterns and drivers of global gross nitrogen mineralization in soils publication-title: Global Change Biol. – volume: 174 year: 2022 ident: b0075 article-title: Effects of a bionematicide 1,4-naphthoquinone solution on soil microbial community assessed by PLFA: Tracing toxicity indicators publication-title: Appl. Soil Ecol. – volume: n/a(n/a) year: 2023 ident: b0170 article-title: Fungal necromass is reduced by intensive drought in subsoil but not in topsoil publication-title: Global Change Biol. – volume: 78 start-page: 335 year: 1997 end-page: 347 ident: b0225 article-title: Nitrogen mineralization and productivity in 50 hardwood and conifer stands on diverse soils publication-title: Ecology – volume: 63 start-page: 75 year: 2012 end-page: 85 ident: b0365 article-title: Effects of long-term repeated mineral and organic fertilizer applications on soil nitrogen transformations publication-title: Eur. J. Soil Sci. – volume: 22 start-page: 737 year: 2013 end-page: 749 ident: b0315 article-title: A global analysis of soil microbial biomass carbon, nitrogen and phosphorus in terrestrial ecosystems publication-title: Global Ecol. Biogeogr. – volume: 96 start-page: 74 year: 2016 end-page: 81 ident: b0255 article-title: Microbial carbon use efficiency and biomass turnover times depending on soil depth-Implications for carbon cycling publication-title: Soil Biol. Biochem. – volume: 880 year: 2023 ident: b0325 article-title: Mechanisms underlying the responses of microbial carbon and nitrogen use efficiencies to nitrogen addition are mediated by topography in a subtropical forest publication-title: Sci. Total Environ. – volume: 42 start-page: 335 year: 1991 end-page: 349 ident: b0040 article-title: Measuring gross nitrogen mineralization, and nitrification by publication-title: J. Soil Sci. – start-page: 383 year: 1986 end-page: 411 ident: b0100 article-title: Particle-size Analysis, Methods of soil analysis: Part 1 Physical and mineralogical methods, 5 (1986) publication-title: SSSA Book Series – volume: 342 start-page: 419 year: 2011 end-page: 432 ident: b0360 article-title: Nitrogen cycling in forest soils across climate gradients in Eastern China publication-title: Plant Soil – volume: 432 year: 2023 ident: b0270 article-title: Phosphorus limitation reduces microbial nitrogen use efficiency by increasing extracellular enzyme investments publication-title: Geoderma – volume: 9 start-page: 3591 year: 2018 ident: b0175 article-title: Land use driven change in soil pH affects microbial carbon cycling processes publication-title: Nat. Commun. – volume: 43 start-page: 1387 issue: 7 year: 2011 ident: 10.1016/j.geoderma.2024.117159_b0105 article-title: Optimization of hydrolytic and oxidative enzyme methods for ecosystem studies publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2011.03.017 – volume: 5 start-page: 3694 issue: 1 year: 2014 ident: 10.1016/j.geoderma.2024.117159_b0185 article-title: Adjustment of microbial nitrogen use efficiency to carbon:nitrogen imbalances regulates soil nitrogen cycling publication-title: Nat. Commun. doi: 10.1038/ncomms4694 – volume: 167 year: 2022 ident: 10.1016/j.geoderma.2024.117159_b0330 article-title: Fungi determine increased soil organic carbon more than bacteria through their necromass inputs in conservation tillage croplands publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2022.108587 – volume: 23 start-page: 2441 issue: 6 year: 2017 ident: 10.1016/j.geoderma.2024.117159_b0165 article-title: Different fates of deposited NH4+ and NO3- in a temperate forest in northeast China: a 15N tracer study publication-title: Global Change Biol. doi: 10.1111/gcb.13533 – volume: 27 start-page: 5950 issue: 22 year: 2021 ident: 10.1016/j.geoderma.2024.117159_b0060 article-title: Patterns and drivers of global gross nitrogen mineralization in soils publication-title: Global Change Biol. doi: 10.1111/gcb.15851 – volume: 62 start-page: 107 year: 2013 ident: 10.1016/j.geoderma.2024.117159_b0370 article-title: Agricultural land use affects nitrate production and conservation in humid subtropical soils in China publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2013.03.006 – volume: 18 start-page: 33 issue: 1 year: 1954 ident: 10.1016/j.geoderma.2024.117159_b0125 article-title: Equations for following nutrient transformations in soil, utilizing tracer data publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj1954.03615995001800010009x – volume: 96 start-page: 74 year: 2016 ident: 10.1016/j.geoderma.2024.117159_b0255 article-title: Microbial carbon use efficiency and biomass turnover times depending on soil depth-Implications for carbon cycling publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2016.01.016 – volume: 391 start-page: 77 issue: 1 year: 2015 ident: 10.1016/j.geoderma.2024.117159_b0350 article-title: Changes in nitrogen and phosphorus limitation during secondary succession in a karst region in southwest China publication-title: Plant Soil doi: 10.1007/s11104-015-2406-8 – volume: 42 start-page: 335 issue: 3 year: 1991 ident: 10.1016/j.geoderma.2024.117159_b0040 article-title: Measuring gross nitrogen mineralization, and nitrification by 15N isotopic pool dilution in intact soil cores publication-title: J. Soil Sci. doi: 10.1111/j.1365-2389.1991.tb00413.x – volume: 11 start-page: 1111 issue: 10 year: 2008 ident: 10.1016/j.geoderma.2024.117159_b0290 article-title: Nitrogen additions and microbial biomass: a meta-analysis of ecosystem studies publication-title: Ecol. Lett. doi: 10.1111/j.1461-0248.2008.01230.x – volume: 880 year: 2023 ident: 10.1016/j.geoderma.2024.117159_b0325 article-title: Mechanisms underlying the responses of microbial carbon and nitrogen use efficiencies to nitrogen addition are mediated by topography in a subtropical forest publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2023.163236 – volume: 125 start-page: 10 year: 2018 ident: 10.1016/j.geoderma.2024.117159_b0210 article-title: Isolating organic carbon fractions with varying turnover rates in temperate agricultural soils – A comprehensive method comparison publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2018.06.025 – volume: 1 issue: 2 year: 2016 ident: 10.1016/j.geoderma.2024.117159_b0010 article-title: rfPermute: estimate permutation p-values for random forest importance metrics publication-title: R Package Version – volume: 26 start-page: 713 issue: 6 year: 2017 ident: 10.1016/j.geoderma.2024.117159_b0045 article-title: Responses of terrestrial ecosystem phosphorus cycling to nitrogen addition: a meta-analysis publication-title: Global Ecol. Biogeogr. doi: 10.1111/geb.12576 – volume: 39 start-page: 715 issue: 3 year: 2007 ident: 10.1016/j.geoderma.2024.117159_b0195 article-title: Estimation of parameters in complex 15N tracing models by Monte Carlo sampling publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2006.09.021 – volume: 3 start-page: 59 issue: 1 year: 2024 ident: 10.1016/j.geoderma.2024.117159_b0320 article-title: Mineral-mediated stability of organic carbon in soil and relevant interaction mechanisms publication-title: Eco-Environ. Health doi: 10.1016/j.eehl.2023.12.003 – volume: 94 start-page: 560 issue: 3 year: 2013 ident: 10.1016/j.geoderma.2024.117159_b0250 article-title: The AIC model selection method applied to path analytic models compared using a d-separation test publication-title: Ecology doi: 10.1890/12-0976.1 – volume: 156 year: 2021 ident: 10.1016/j.geoderma.2024.117159_b0140 article-title: Stoichiometric imbalance and microbial community regulate microbial elements use efficiencies under nitrogen addition publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2021.108207 – volume: 34 start-page: 1309 issue: 9 year: 2002 ident: 10.1016/j.geoderma.2024.117159_b0230 article-title: The effects of long term nitrogen deposition on extracellular enzyme activity in an Acer saccharum forest soil publication-title: Soil Biol. Biochem. doi: 10.1016/S0038-0717(02)00074-3 – volume: 2 start-page: 24 issue: 1 year: 2023 ident: 10.1016/j.geoderma.2024.117159_b0155 article-title: Microbiome sustains forest ecosystem functions across hierarchical scales publication-title: Eco-Environ. Health doi: 10.1016/j.eehl.2023.03.001 – volume: 22 start-page: 737 issue: 6 year: 2013 ident: 10.1016/j.geoderma.2024.117159_b0315 article-title: A global analysis of soil microbial biomass carbon, nitrogen and phosphorus in terrestrial ecosystems publication-title: Global Ecol. Biogeogr. doi: 10.1111/geb.12029 – volume: 41 start-page: 2272 issue: 11 year: 2009 ident: 10.1016/j.geoderma.2024.117159_b0115 article-title: Protein breakdown represents a major bottleneck in nitrogen cycling in grassland soils publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2009.08.013 – volume: 25 start-page: 723 issue: 6 year: 1993 ident: 10.1016/j.geoderma.2024.117159_b0080 article-title: Shifts in the structure of soil microbial communities in limed forests as revealed by phospholipid fatty acid analysis publication-title: Soil Biol. Biochem. doi: 10.1016/0038-0717(93)90113-P – volume: 39 start-page: 688 issue: 5 year: 2015 ident: 10.1016/j.geoderma.2024.117159_b0135 article-title: Life under extreme energy limitation: a synthesis of laboratory- and field-based investigations publication-title: FEMS Microbiol. Rev. doi: 10.1093/femsre/fuv020 – volume: 342 start-page: 419 issue: 1–2 year: 2011 ident: 10.1016/j.geoderma.2024.117159_b0360 article-title: Nitrogen cycling in forest soils across climate gradients in Eastern China publication-title: Plant Soil doi: 10.1007/s11104-010-0706-6 – volume: 368 year: 2024 ident: 10.1016/j.geoderma.2024.117159_b0340 article-title: Determinants of tree population temporal stability in a temperate mixed forest over a gradient of nitrogen addition publication-title: J. Environ. Manage. doi: 10.1016/j.jenvman.2024.122198 – volume: 52 start-page: 977 issue: 7 year: 2016 ident: 10.1016/j.geoderma.2024.117159_b0095 article-title: Enhanced deposition of nitrate alters microbial cycling of N in a subtropical forest soil publication-title: Biol. Fert. Soils doi: 10.1007/s00374-016-1134-4 – volume: 55 start-page: 629 issue: 6 year: 2019 ident: 10.1016/j.geoderma.2024.117159_b0260 article-title: Soil resource status affects the responses of nitrogen processes to changes in temperature and moisture publication-title: Biol. Fert. Soils doi: 10.1007/s00374-019-01379-2 – volume: 35 issue: 12 year: 2021 ident: 10.1016/j.geoderma.2024.117159_b0265 article-title: Biotic and abiotic controls on dinitrogen production in coastal sediments publication-title: Global Biogeochem. Cycles doi: 10.1029/2021GB007069 – volume: 2 start-page: 17105 issue: 8 year: 2017 ident: 10.1016/j.geoderma.2024.117159_b0160 article-title: The importance of anabolism in microbial control over soil carbon storage publication-title: Nat. Microbiol. doi: 10.1038/nmicrobiol.2017.105 – volume: 56 start-page: e24 issue: 316 year: 2017 ident: 10.1016/j.geoderma.2024.117159_b0310 article-title: Package ‘corrplot’ publication-title: Statistician – volume: 9 issue: 7 year: 2014 ident: 10.1016/j.geoderma.2024.117159_b0015 article-title: Pulse increase of soil N2O emission in response to N addition in a temperate forest on Mt Changbai, northeast China publication-title: PLoS One doi: 10.1371/journal.pone.0102765 – volume: 31 start-page: 1879 issue: 13 year: 1999 ident: 10.1016/j.geoderma.2024.117159_b0200 article-title: Estimation of the biomass of arbuscular mycorrhizal fungi in a linseed field publication-title: Soil Biol. Biochem. doi: 10.1016/S0038-0717(99)00119-4 – volume: 320 start-page: 889 issue: 5878 year: 2008 ident: 10.1016/j.geoderma.2024.117159_b0090 article-title: Transformation of the nitrogen cycle: recent trends, questions, and potential solutions publication-title: Science doi: 10.1126/science.1136674 – volume: 9 start-page: 3591 issue: 1 year: 2018 ident: 10.1016/j.geoderma.2024.117159_b0175 article-title: Land use driven change in soil pH affects microbial carbon cycling processes publication-title: Nat. Commun. doi: 10.1038/s41467-018-05980-1 – volume: 12 start-page: 1817 issue: 7 year: 2018 ident: 10.1016/j.geoderma.2024.117159_b0345 article-title: Global negative effects of nitrogen deposition on soil microbes publication-title: ISME. J. doi: 10.1038/s41396-018-0096-y – volume: 28 start-page: 4845 issue: 16 year: 2022 ident: 10.1016/j.geoderma.2024.117159_b0070 article-title: Nitrogen input enhances microbial carbon use efficiency by altering plant–microbe–mineral interactions publication-title: Global Change Biol. doi: 10.1111/gcb.16229 – start-page: 383 year: 1986 ident: 10.1016/j.geoderma.2024.117159_b0100 article-title: Particle-size Analysis, Methods of soil analysis: Part 1 Physical and mineralogical methods, 5 (1986) publication-title: SSSA Book Series – volume: 63 start-page: 75 issue: 1 year: 2012 ident: 10.1016/j.geoderma.2024.117159_b0365 article-title: Effects of long-term repeated mineral and organic fertilizer applications on soil nitrogen transformations publication-title: Eur. J. Soil Sci. doi: 10.1111/j.1365-2389.2011.01410.x – volume: 35 start-page: 35 issue: 3 year: 2015 ident: 10.1016/j.geoderma.2024.117159_b0375 article-title: Impacts of nitrogen deposition on soil nitrogen cycle in forest ecosystems: a review publication-title: Acta Ecol. Sin. doi: 10.1016/j.chnaes.2015.04.004 – volume: 207 year: 2020 ident: 10.1016/j.geoderma.2024.117159_b0150 article-title: Global variations and controlling factors of soil nitrogen turnover rate publication-title: Earth-Sci. Rev. doi: 10.1016/j.earscirev.2020.103250 – volume: n/a(n/a) year: 2023 ident: 10.1016/j.geoderma.2024.117159_b0170 article-title: Fungal necromass is reduced by intensive drought in subsoil but not in topsoil publication-title: Global Change Biol. – volume: 11 start-page: 3684 issue: 1 year: 2020 ident: 10.1016/j.geoderma.2024.117159_b0055 article-title: Microbial diversity drives carbon use efficiency in a model soil publication-title: Nat. Commun. doi: 10.1038/s41467-020-17502-z – volume: 618 start-page: 981 issue: 7967 year: 2023 ident: 10.1016/j.geoderma.2024.117159_b0280 article-title: Microbial carbon use efficiency promotes global soil carbon storage publication-title: Nature doi: 10.1038/s41586-023-06042-3 – volume: 71 start-page: 13 year: 2014 ident: 10.1016/j.geoderma.2024.117159_b0305 article-title: Response of organic carbon mineralization and microbial community to leaf litter and nutrient additions in subtropical forest soils publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2014.01.004 – volume: 95 start-page: 15 year: 2015 ident: 10.1016/j.geoderma.2024.117159_b0145 article-title: Litter mass loss and nutrient release influenced by soil fauna of Betula ermanii forest floor of the Changbai Mountains, China publication-title: Appl. Soil Ecol. doi: 10.1016/j.apsoil.2015.05.008 – volume: 3 start-page: 1 year: 2011 ident: 10.1016/j.geoderma.2024.117159_b0205 article-title: nlme: Linear and nonlinear mixed effects models publication-title: R Package Version – volume: 12 start-page: 424 issue: 6 year: 2019 ident: 10.1016/j.geoderma.2024.117159_b0335 article-title: Stabilization of atmospheric nitrogen deposition in China over the past decade publication-title: Nat. Geosci. doi: 10.1038/s41561-019-0352-4 – volume: 191 year: 2024 ident: 10.1016/j.geoderma.2024.117159_b0245 article-title: Liming effects on microbial carbon use efficiency and its potential consequences for soil organic carbon stocks publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2024.109342 – volume: 27 start-page: 6512 issue: 24 year: 2021 ident: 10.1016/j.geoderma.2024.117159_b0065 article-title: Global gross nitrification rates are dominantly driven by soil carbon-to-nitrogen stoichiometry and total nitrogen publication-title: Global Change Biol. doi: 10.1111/gcb.15883 – volume: 135 start-page: 304 year: 2019 ident: 10.1016/j.geoderma.2024.117159_b0355 article-title: Environmental effects on soil microbial nitrogen use efficiency are controlled by allocation of organic nitrogen to microbial growth and regulate gross N mineralization publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2019.05.019 – volume: 30 start-page: 795 issue: 5 year: 2016 ident: 10.1016/j.geoderma.2024.117159_b0085 article-title: Role of epikarst in near-surface hydrological processes in a soil mantled subtropical dolomite karst slope: implications of field rainfall simulation experiments publication-title: Hydrol. Process. doi: 10.1002/hyp.10650 – volume: 53 start-page: 1707 issue: 6 year: 1989 ident: 10.1016/j.geoderma.2024.117159_b0025 article-title: Diffusion method to prepare soil extracts for automated nitrogen-15 analysis publication-title: Soil Sci. Soc. Am. J. doi: 10.2136/sssaj1989.03615995005300060016x – volume: 41 start-page: 293 issue: 2 year: 2009 ident: 10.1016/j.geoderma.2024.117159_b0005 article-title: Low levels of nitrogen addition stimulate decomposition by boreal forest fungi publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2008.10.032 – volume: 20 issue: 4 year: 2006 ident: 10.1016/j.geoderma.2024.117159_b0050 article-title: Nitrogen and sulfur deposition on regional and global scales: a multimodel evaluation publication-title: Global Biogeochem. Cycles doi: 10.1029/2005GB002672 – volume: 78 start-page: 335 issue: 2 year: 1997 ident: 10.1016/j.geoderma.2024.117159_b0225 article-title: Nitrogen mineralization and productivity in 50 hardwood and conifer stands on diverse soils publication-title: Ecology doi: 10.1890/0012-9658(1997)078[0335:NMAPIH]2.0.CO;2 – volume: 85 start-page: 591 issue: 3 year: 2004 ident: 10.1016/j.geoderma.2024.117159_b0240 article-title: Nitrogen mineralization: challenges of a changing paradigm publication-title: Ecology doi: 10.1890/03-8002 – volume: 12 start-page: 46 issue: 1 year: 2023 ident: 10.1016/j.geoderma.2024.117159_b0275 article-title: Exogenous nitrogen input skews estimates of microbial nitrogen use efficiency by ecoenzymatic stoichiometry publication-title: Ecol. Process. doi: 10.1186/s13717-023-00457-6 – volume: 30 start-page: 2297 issue: 11 year: 2021 ident: 10.1016/j.geoderma.2024.117159_b0030 article-title: Stoichiometric models of microbial metabolic limitation in soil systems publication-title: Global Ecol. Biogeogr. doi: 10.1111/geb.13378 – volume: 174 year: 2022 ident: 10.1016/j.geoderma.2024.117159_b0075 article-title: Effects of a bionematicide 1,4-naphthoquinone solution on soil microbial community assessed by PLFA: Tracing toxicity indicators publication-title: Appl. Soil Ecol. doi: 10.1016/j.apsoil.2022.104417 – volume: 5 start-page: 22 issue: 22 year: 2014 ident: 10.1016/j.geoderma.2024.117159_b0190 article-title: Stoichiometric imbalances between terrestrial decomposer communities and their resources: mechanisms and implications of microbial adaptations to their resources publication-title: Front. Microbiol. – volume: 7 start-page: 573 issue: 5 year: 2016 ident: 10.1016/j.geoderma.2024.117159_b0130 article-title: piecewiseSEM: Piecewise structural equationmodelling in rfor ecology, evolution, and systematics publication-title: Methods Ecol. Evol. doi: 10.1111/2041-210X.12512 – volume: 1 start-page: 543 issue: 8 year: 2008 ident: 10.1016/j.geoderma.2024.117159_b0110 article-title: Mechanisms for retention of bioavailable nitrogen in volcanic rainforest soils publication-title: Nat. Geosci. doi: 10.1038/ngeo252 – volume: 14 start-page: 319 issue: 4 year: 1982 ident: 10.1016/j.geoderma.2024.117159_b0020 article-title: Measurement of microbial biomass phosphorus in soil publication-title: Soil Biol. Biochem. doi: 10.1016/0038-0717(82)90001-3 – volume: 138 year: 2019 ident: 10.1016/j.geoderma.2024.117159_b0120 article-title: pH and exchangeable aluminum are major regulators of microbial energy flow and carbon use efficiency in soil microbial communities publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2019.107584 – volume: 432 year: 2023 ident: 10.1016/j.geoderma.2024.117159_b0270 article-title: Phosphorus limitation reduces microbial nitrogen use efficiency by increasing extracellular enzyme investments publication-title: Geoderma doi: 10.1016/j.geoderma.2023.116416 – volume: 184 year: 2023 ident: 10.1016/j.geoderma.2024.117159_b0285 article-title: Long-term warming of a forest soil reduces microbial biomass and its carbon and nitrogen use efficiencies publication-title: Soil Biol. Biochem. doi: 10.1016/j.soilbio.2023.109109 – volume: 10 start-page: 66 issue: 1 year: 2021 ident: 10.1016/j.geoderma.2024.117159_b0235 article-title: Responses of soil microbial communities to freeze–thaw cycles in a Chinese temperate forest publication-title: Ecol. Process. doi: 10.1186/s13717-021-00337-x – volume: 196 start-page: 79 issue: 1 year: 2012 ident: 10.1016/j.geoderma.2024.117159_b0180 article-title: Environmental and stoichiometric controls on microbial carbon-use efficiency in soils publication-title: New Phytol. doi: 10.1111/j.1469-8137.2012.04225.x – volume: 11 issue: 1 year: 2020 ident: 10.1016/j.geoderma.2024.117159_b0215 article-title: Carbon use efficiency and its temperature sensitivity covary in soil Bacteria publication-title: MBio doi: 10.1128/mBio.02293-19 – volume: 26 start-page: 669 issue: 2 year: 2020 ident: 10.1016/j.geoderma.2024.117159_b0220 article-title: Increased microbial growth, biomass, and turnover drive soil organic carbon accumulation at higher plant diversity publication-title: Global Change Biol. doi: 10.1111/gcb.14777 – volume: 35 start-page: 1 year: 2010 ident: 10.1016/j.geoderma.2024.117159_b0295 article-title: ggplot2: elegant graphics for data analysis publication-title: J. Stat. Softw. doi: 10.18637/jss.v035.b01 – volume: 19 start-page: 703 issue: 6 year: 1987 ident: 10.1016/j.geoderma.2024.117159_b0300 article-title: An extraction method for measuring soil microbial biomass C publication-title: Soil Biol. Biochem. doi: 10.1016/0038-0717(87)90052-6 – volume: 154 start-page: 371 issue: 2 year: 2021 ident: 10.1016/j.geoderma.2024.117159_b0035 article-title: Four years of litter input manipulation changes soil microbial characteristics in a temperate mixed forest publication-title: Biogeochemistry doi: 10.1007/s10533-021-00792-w |
SSID | ssj0017020 |
Score | 2.4629636 |
Snippet | •N addition decreases microbial NUE by decreasing phosphorus availability and soil pH.•Microbial NUE is positively related to microbial biomass formation and... Microbial nitrogen use efficiency (NUE) reflects the allocation of microbially-acquired N between growth (anabolism) and the release of inorganic N to the... |
SourceID | doaj crossref elsevier |
SourceType | Open Website Index Database Publisher |
StartPage | 117159 |
SubjectTerms | Global change Microbial growth Nutrient limitation soil C storage Soil depth soil N transformation |
SummonAdditionalLinks | – databaseName: Directory of Open Access Journals (DOAJ) dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09a8MwEBUlUzuUftL0Cw1dTWxJtuMxLQ2h0EwNZDOyfCoOrRP88f97J9vFW5euRhLintB7snTvGHuyMS4Uo7QXIdl6CozwtA3nng86Uvk8F9pSovD7Olpt1Ns23I5KfdGbsM4euAvcDCWyLxOkNStQzNp5EpsMEqukCKwK5kC7L3LecJjq7w9iVEGjfOAdokGlxZzTkFB0UxmQO-mIipxj_4iRRiyzPGOnvTzki25a5-wIygt2sviseosMuGTNumiqPeLOi_LQNjx3wq-Gmn8XzlUJ-5dDk7YGDs4lglIssQev28pqA7zeF18131uuOdlTkbcycFSwyBLUrKT7HKrrw12F7Su2Wb5-vKy8vnaCZ2QsGw98YQIdaFQgQWRRhIAGyFTU-dujKoFI5yoKtbRKx0oLpTNUAgIMWcDlmbxmk3Jfwg3j0rfalwhdYkIlIcgyP8axDJ5FsJf2p2w2hDE9dBYZ6fB2bJcOgU8p8GkX-Cl7pmj_tiaLa_cBgU974NO_gJ-yZMAq7dVCpwJwqOKPCdz-xwTu2LGgYsDuf8w9mzRVCw-oUJrs0S3GHxr85MM priority: 102 providerName: Directory of Open Access Journals |
Title | Nitrogen input decreases microbial nitrogen use efficiency in surface soils of a temperate forest in northeast China |
URI | https://dx.doi.org/10.1016/j.geoderma.2024.117159 https://doaj.org/article/230039509f2049f897cbe9f4321f418e |
Volume | 453 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07b9wwDBaCZGmGIukDuTwOGrq6Zz1OtsdLkODaojc1QDZDlqnAQWofbN_a315StoPLlCGrQQoCSYgfLfEjY998goHitI0MJttIg5OR9cs0isEaXaaltJ4ahX9vzPpe_3xYPhywm6kXhp5Vjmf_cKaH03r8shitudhWFfX4CpNQhtZ0vZUSJ6jWCUX5938vzzxEEo_UjMJEJL3XJfyEPqKBY4F_SGq6vxTEWbqXoAKP_16e2ss9dyfs4wga-WrY1yk7gPoTO149tiNxBnxm_abq2wajgVf1dtfzMsDBDjr-twpcS6hfTyK7DjgE7ghqvEQN3u1abx3wrqmeO954bjmRVhHjMnDEtZg7SKymWx6a9sPD3O0v7P7u9s_NOhonKkROJaqPIJZOWGERlwjjEZqABSi0GVjvEauAsaU2S6u8tom2UtsC8YEER8RwZaG-ssO6qeGMcRV7Gyt0aOaWWoEoijjBtRxWKKhl4xlbTGbMtwNxRj69KHvKJ8PnZPh8MPyMXZO1X6SJ-Dp8aNrHfPR8jhVTrDJEOV5ibePTLHEFZF4rKbwWKcxYNvkqfxVHuFT1xgbO36F7wT5Imgwcfs5cssO-3cEVwpW-mId4nLOj1Y9f6808FP3_AZpc7Dk |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOUAPiKe65eUDHMPGjtdJDhzKo9rSdk-t1FtwnHGVCpJVkhXiwp_iDzLjONVy4oB6tcaWNZ74m4lnvmHsjUvRUKwykUawjRRYGRm3yKIYjFZVVknjqFD4bKWXF-rL5eJyh_2eamEorTLc_eOd7m_rMDIP2pyv65pqfIVOCaEVPW9lKmRWnsDPHxi39e-PP-Ehv5Xy6PP5x2UUWgtENkmTIYJYWmGEQYAW2iFGgwEolR7p3xG0QZtK6YVJnDKpMlKZEoFSgiWGtKpMcN077C6KZtQ24d2vm7wSkcaBC1LoiLa3VZZ8jUZBHc484ZFU9GAqiCR1CxF944AtYNwCu6OH7EHwUvnhqIhHbAeax2zv8KoLTB3whA2reuhaND9eN-vNwCvvf_bQ8--1J3fC-c0ksumBgyeroEpPnMH7TeeMBd639beet44bTixZRPEMHB1pBCsSa-hZidoLcd_o-ym7uBU9P2O7TdvAPuNJ7EycoAXldqESEGUZp7iWxZAIZ5l4xuaTGov1yNRRTCls18Wk-IIUX4yKn7EPpO0baWLa9gNtd1UEUyswRIuTHN0qJzGYclme2hJypxIpnBIZzFg-nVXxl-HiUvU_NnDwH3Nfs3vL87PT4vR4dfKc3ZfUltj_GXrBdoduAy_RVxrKV942Oft62x_DHyIXJjk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nitrogen+input+decreases+microbial+nitrogen+use+efficiency+in+surface+soils+of+a+temperate+forest+in+northeast+China&rft.jtitle=Geoderma&rft.au=Sun%2C+Lifei&rft.au=Qiao%2C+Yanci&rft.au=Wanek%2C+Wolfgang&rft.au=Moorhead%2C+Daryl+L.&rft.date=2025-01-01&rft.issn=0016-7061&rft.volume=453&rft.spage=117159&rft_id=info:doi/10.1016%2Fj.geoderma.2024.117159&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_geoderma_2024_117159 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-7061&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-7061&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-7061&client=summon |