A data-driven analytical model for wind turbine wakes using machine learning method

[Display omitted] •A data-driven analytical model for wind turbine wakes is proposed.•The machine learning method is used to model the wake expansion.•Two actual wind farm cases are used to verify the proposed model.•The wake prediction performance of the new model has improved significantly. To red...

Full description

Saved in:
Bibliographic Details
Published inEnergy conversion and management Vol. 252; p. 115130
Main Authors Nai-Zhi, Guo, Ming-Ming, Zhang, Bo, Li
Format Journal Article
LanguageEnglish
Published Oxford Elsevier Ltd 15.01.2022
Elsevier Science Ltd
Subjects
Online AccessGet full text
ISSN0196-8904
1879-2227
DOI10.1016/j.enconman.2021.115130

Cover

Loading…
Abstract [Display omitted] •A data-driven analytical model for wind turbine wakes is proposed.•The machine learning method is used to model the wake expansion.•Two actual wind farm cases are used to verify the proposed model.•The wake prediction performance of the new model has improved significantly. To reduce the wake effect by means of layout optimization or cooperative control, it is significant to modeling wind turbine wakes in an accurate and efficient way. However, existing analytical wake models still have large errors in actual wind farms due to the inadequate consideration of various inflow factors and local environmental characteristics. To satisfy this accuracy requirement, a data-driven analytical wake model is proposed in this paper. In the model, the local inflow information and wake expansion feature are extracted from measured data of wind farms, and a machine learning model is trained to establish the relationship between the two. In this way, the model can be well adapted to the local environment and inflow conditions. Verifications in two actual wind farm cases illustrate that there is a good agreement with the measured velocity and power data. Compared with traditional analytical models, the wake prediction performance of the new model has improved more than 20%. Therefore, the proposed model can serve as a reliable tool for wind farm control and optimization.
AbstractList [Display omitted] •A data-driven analytical model for wind turbine wakes is proposed.•The machine learning method is used to model the wake expansion.•Two actual wind farm cases are used to verify the proposed model.•The wake prediction performance of the new model has improved significantly. To reduce the wake effect by means of layout optimization or cooperative control, it is significant to modeling wind turbine wakes in an accurate and efficient way. However, existing analytical wake models still have large errors in actual wind farms due to the inadequate consideration of various inflow factors and local environmental characteristics. To satisfy this accuracy requirement, a data-driven analytical wake model is proposed in this paper. In the model, the local inflow information and wake expansion feature are extracted from measured data of wind farms, and a machine learning model is trained to establish the relationship between the two. In this way, the model can be well adapted to the local environment and inflow conditions. Verifications in two actual wind farm cases illustrate that there is a good agreement with the measured velocity and power data. Compared with traditional analytical models, the wake prediction performance of the new model has improved more than 20%. Therefore, the proposed model can serve as a reliable tool for wind farm control and optimization.
To reduce the wake effect by means of layout optimization or cooperative control, it is significant to modeling wind turbine wakes in an accurate and efficient way. However, existing analytical wake models still have large errors in actual wind farms due to the inadequate consideration of various inflow factors and local environmental characteristics. To satisfy this accuracy requirement, a data-driven analytical wake model is proposed in this paper. In the model, the local inflow information and wake expansion feature are extracted from measured data of wind farms, and a machine learning model is trained to establish the relationship between the two. In this way, the model can be well adapted to the local environment and inflow conditions. Verifications in two actual wind farm cases illustrate that there is a good agreement with the measured velocity and power data. Compared with traditional analytical models, the wake prediction performance of the new model has improved more than 20%. Therefore, the proposed model can serve as a reliable tool for wind farm control and optimization.
ArticleNumber 115130
Author Nai-Zhi, Guo
Bo, Li
Ming-Ming, Zhang
Author_xml – sequence: 1
  givenname: Guo
  surname: Nai-Zhi
  fullname: Nai-Zhi, Guo
  organization: Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190, China
– sequence: 2
  givenname: Zhang
  surname: Ming-Ming
  fullname: Ming-Ming, Zhang
  email: mmzhang@iet.cn
  organization: Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190, China
– sequence: 3
  givenname: Li
  surname: Bo
  fullname: Bo, Li
  organization: Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190, China
BookMark eNqFkE1P3DAQhq2KSl1o_0JliQuXLP7I2rHUAwjRgoTEgfZszdqT4iWxqe2A-PfNNuXChdNIo-d9NfMckoOYIhLylbM1Z1yd7tYYXYojxLVggq8533DJPpAV77RphBD6gKwYN6rpDGs_kcNSdowxuWFqRe7OqYcKjc_hCSOFCMNLDQ4GOiaPA-1Tps8helqnvA0R6TM8YKFTCfE3HcHd73cDQo7_Fljvk_9MPvYwFPzyfx6RX98vf15cNTe3P64vzm8aJ7WsjVdCe9Fqr2CrgHcddwyN9MD0fK3mZuv7-ZNNrzul2s53fStEbxxK3XoUrTwiJ0vvY05_JizVjqE4HAaImKZihZKqNYpv9ujxG3SXpjw_u1CdksaImfq2UC6nUjL21oUKNaRYM4TBcmb3xu3Ovhq3e-N2MT7H1Zv4Yw4j5Jf3g2dLEGdbTwGzLS7MJPqQ0VXrU3iv4i_-dqAo
CitedBy_id crossref_primary_10_3390_en17163897
crossref_primary_10_1007_s11804_025_00683_8
crossref_primary_10_3390_en15155345
crossref_primary_10_3390_en15176127
crossref_primary_10_1016_j_enconman_2022_115786
crossref_primary_10_3390_jmse12081353
crossref_primary_10_1016_j_ifacol_2023_10_979
crossref_primary_10_1088_1742_6596_2767_8_082002
crossref_primary_10_1016_j_enbuild_2022_112362
crossref_primary_10_1016_j_energy_2022_124845
crossref_primary_10_1016_j_oceaneng_2024_118508
crossref_primary_10_1186_s44147_023_00310_9
crossref_primary_10_1016_j_enconman_2022_116185
crossref_primary_10_1016_j_asej_2024_103086
crossref_primary_10_1109_JSEN_2022_3175866
crossref_primary_10_1080_15435075_2024_2415540
crossref_primary_10_1016_j_energy_2024_130403
crossref_primary_10_1016_j_apenergy_2024_124893
crossref_primary_10_1016_j_jweia_2024_105952
crossref_primary_10_1016_j_segan_2023_101126
crossref_primary_10_1016_j_energy_2023_127525
crossref_primary_10_1063_5_0091980
crossref_primary_10_1080_15435075_2024_2448294
crossref_primary_10_1016_j_energy_2022_125208
crossref_primary_10_1007_s00202_024_02440_6
crossref_primary_10_1016_j_apenergy_2023_121849
Cites_doi 10.1016/0167-6105(92)90551-K
10.1002/we.512
10.3390/en9090741
10.1023/A:1010933404324
10.5194/wes-3-819-2018
10.1002/we.1822
10.1175/JTECH1886.1
10.1016/j.solener.2020.01.034
10.5194/wes-1-1-2016
10.1016/j.enconman.2021.114714
10.1073/pnas.1903680116
10.1017/jfm.2016.595
10.1002/we.380
10.1002/we.1863
10.3390/rs10050668
10.3390/en11030665
10.1016/j.apenergy.2018.05.085
10.3390/machines7040069
10.1016/j.jweia.2021.104548
10.1007/s10546-019-00473-0
10.1016/j.apenergy.2019.01.225
10.1016/j.renene.2014.01.002
10.3390/en13143537
10.1016/j.apenergy.2019.114025
ContentType Journal Article
Copyright 2021 Elsevier Ltd
Copyright Elsevier Science Ltd. Jan 15, 2022
Copyright_xml – notice: 2021 Elsevier Ltd
– notice: Copyright Elsevier Science Ltd. Jan 15, 2022
DBID AAYXX
CITATION
7ST
7TB
8FD
C1K
FR3
H8D
KR7
L7M
SOI
7S9
L.6
DOI 10.1016/j.enconman.2021.115130
DatabaseName CrossRef
Environment Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Aerospace Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Engineering Research Database
Environment Abstracts
Advanced Technologies Database with Aerospace
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
Aerospace Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-2227
ExternalDocumentID 10_1016_j_enconman_2021_115130
S0196890421013066
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABYKQ
ACBEA
ACDAQ
ACGFO
ACGFS
ACIWK
ACNCT
ACRLP
ADBBV
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSR
SST
SSZ
T5K
TN5
XPP
ZMT
~02
~G-
29G
6TJ
8WZ
A6W
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
H~9
R2-
RIG
SAC
SEW
WUQ
7ST
7TB
8FD
C1K
EFKBS
FR3
H8D
KR7
L7M
SOI
7S9
AFXIZ
L.6
ID FETCH-LOGICAL-c373t-d627d247d6ab6a1881c0e93da07019719bdf5135f786648d8f422f9ce374de243
IEDL.DBID .~1
ISSN 0196-8904
IngestDate Fri Jul 11 00:56:09 EDT 2025
Wed Aug 13 04:40:50 EDT 2025
Thu Apr 24 23:04:58 EDT 2025
Tue Jul 01 03:03:17 EDT 2025
Fri Feb 23 02:41:12 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Analytical model
Actual wind farm
SCADA data
Machine learning
Wind turbine wake
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c373t-d627d247d6ab6a1881c0e93da07019719bdf5135f786648d8f422f9ce374de243
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 2636863992
PQPubID 2047472
ParticipantIDs proquest_miscellaneous_2636496154
proquest_journals_2636863992
crossref_citationtrail_10_1016_j_enconman_2021_115130
crossref_primary_10_1016_j_enconman_2021_115130
elsevier_sciencedirect_doi_10_1016_j_enconman_2021_115130
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-01-15
PublicationDateYYYYMMDD 2022-01-15
PublicationDate_xml – month: 01
  year: 2022
  text: 2022-01-15
  day: 15
PublicationDecade 2020
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Energy conversion and management
PublicationYear 2022
Publisher Elsevier Ltd
Elsevier Science Ltd
Publisher_xml – name: Elsevier Ltd
– name: Elsevier Science Ltd
References Archer, Vasel-Be-Hagh, Yan (b0080) 2018; 226
R. J. Barthelmie, J. G. Schepers, S. Pihl
Babar, Luppino, Boström, Anfinsen (b0145) 2020; 198
Hansen, Barthelmie, Jensen (b0155) 2012; 15
Rashid, Khalaji, Rasheed (b0115) 2020
Engie. “The La Haute Borne wind farm.,” 2021; https://opendata-renewables.engie.com/.
Bastankhah, Porté-Agel (b0050) 2016; 806
G.-W. Qian, and T. Ishihara, “A New Analytical Wake Model for Yawed Wind Turbines,”
I. Katic, J. Højstrup, and N. O. Jensen, “A Simple Model for Cluster Efficiency,” 1987.
M. F. Howland, S. K. Lele, and J. O. Dabiri, “Wind farm power optimization through wake steering,”
van Kuik, Peinke, Nijssen, Lekou, Mann, Sørensen (b0010) 2016; 1
N. O. Jensen, “A note on wind generator interaction,” 1983.
Peña, Réthoré, Laan (b0070) 2016; 19
J. Teng, and C. D. Markfort, “A Calibration Procedure for an Analytical Wake Model Using Wind Farm Operational Data,”
vol. 10, no. 5, 2018.
Breiman (b0140) 2001; 45
“Flow and wakes in complex terrain and offshore:Model development and verification in UpWind,” 2007. in 2007 European Wind Energy Conference and Exhibition, 2007.
R. J. Barthelmie, G. C. Larsen, S. T. Frandsen
Comparison of Wake Model Simulations with Offshore Wind Turbine Wake Profiles Measured by Sodar
Bastankhah, Porté-Agel (b0045) 2014; 70
vol. 13, no. 14, 2020.
Liu, Plumlee, Byon (b0090) 2018
Guo, Zhang, Li (b0030) 2021; 211
Yin, Ou, Zhu, Xu, Fan, Meng (b0110) 2021; 247
Gebraad, Teeuwisse, van Wingerden, Fleming, Ruben, Marden (b0135) 2016; 19
Jiménez, Crespo, Migoya (b0035) 2010; 13
vol. 11, no. 3, 2018.
vol. 23, no. 7, pp. 888-901, 2006.
Frandsen (b0065) 1992; 39
“Energies, Vol. 9, Pages 741: Analytical Modeling of Wind Farms: A New Approach for Power Prediction,” 2016.
Annoni, Fleming, Scholbrock, Roadman, Dana, Adcock (b0025) 2018; 3
Cheng, Zhang, Zhang, Xu (b0085) 2019; 239
Niayifar, Amin, PortéAgel
vol. 7, no. 4, 2019.
C. G. W. E., “GWEC| Global Wind Report 2021,” 2021.
G. Iannace, G. Ciaburro, and A. Trematerra, “Wind Turbine Noise Prediction Using Random Forest Regression,”
F. Carbajo Fuertes, C. Markfort, and F. Porté-Agel, “Wind Turbine Wake Characterization with Nacelle-Mounted Wind Lidars for Analytical Wake Model Validation,”
Porté-Agel, Bastankhah, Shamsoddin (b0015) 2020; 174
vol. 116, no. 29, pp. 14495-14500, Jul 16, 2019.
Ti, Deng, Yang (b0105) 2020; 257
Annoni (10.1016/j.enconman.2021.115130_b0025) 2018; 3
van Kuik (10.1016/j.enconman.2021.115130_b0010) 2016; 1
Jiménez (10.1016/j.enconman.2021.115130_b0035) 2010; 13
Bastankhah (10.1016/j.enconman.2021.115130_b0045) 2014; 70
Cheng (10.1016/j.enconman.2021.115130_b0085) 2019; 239
Breiman (10.1016/j.enconman.2021.115130_b0140) 2001; 45
Yin (10.1016/j.enconman.2021.115130_b0110) 2021; 247
10.1016/j.enconman.2021.115130_b0095
10.1016/j.enconman.2021.115130_b0150
10.1016/j.enconman.2021.115130_b0075
10.1016/j.enconman.2021.115130_b0130
10.1016/j.enconman.2021.115130_b0100
10.1016/j.enconman.2021.115130_b0005
10.1016/j.enconman.2021.115130_b0125
Hansen (10.1016/j.enconman.2021.115130_b0155) 2012; 15
Bastankhah (10.1016/j.enconman.2021.115130_b0050) 2016; 806
Guo (10.1016/j.enconman.2021.115130_b0030) 2021; 211
Porté-Agel (10.1016/j.enconman.2021.115130_b0015) 2020; 174
Peña (10.1016/j.enconman.2021.115130_b0070) 2016; 19
Frandsen (10.1016/j.enconman.2021.115130_b0065) 1992; 39
Rashid (10.1016/j.enconman.2021.115130_b0115) 2020
Ti (10.1016/j.enconman.2021.115130_b0105) 2020; 257
10.1016/j.enconman.2021.115130_b0060
10.1016/j.enconman.2021.115130_b0040
10.1016/j.enconman.2021.115130_b0120
10.1016/j.enconman.2021.115130_b0020
10.1016/j.enconman.2021.115130_b0055
Archer (10.1016/j.enconman.2021.115130_b0080) 2018; 226
Liu (10.1016/j.enconman.2021.115130_b0090) 2018
Babar (10.1016/j.enconman.2021.115130_b0145) 2020; 198
Gebraad (10.1016/j.enconman.2021.115130_b0135) 2016; 19
References_xml – volume: 806
  start-page: 506
  year: 2016
  end-page: 541
  ident: b0050
  article-title: Experimental and theoretical study of wind turbine wakes in yawed conditions
  publication-title: J Fluid Mech
– start-page: 391
  year: 2020
  end-page: 395
  ident: b0115
  article-title: Fault Prediction of Wind Turbine Gearbox Based on SCADA Data and Machine Learning
  publication-title: in 2020 10th International Conference on Advanced Computer Information Technologies (ACIT)
– reference: C. G. W. E., “GWEC| Global Wind Report 2021,” 2021.
– reference: Engie. “The La Haute Borne wind farm.,” 2021; https://opendata-renewables.engie.com/.
– reference: vol. 116, no. 29, pp. 14495-14500, Jul 16, 2019.
– reference: , “Energies, Vol. 9, Pages 741: Analytical Modeling of Wind Farms: A New Approach for Power Prediction,” 2016.
– volume: 45
  start-page: 5
  year: 2001
  end-page: 32
  ident: b0140
  article-title: Random forests
  publication-title: Mach Learn
– volume: 239
  start-page: 96
  year: 2019
  end-page: 106
  ident: b0085
  article-title: A new analytical model for wind turbine wakes based on Monin-Obukhov similarity theory
  publication-title: Appl Energy
– volume: 211
  year: 2021
  ident: b0030
  article-title: Influence of atmospheric stability on wind farm layout optimization based on an improved Gaussian wake model
  publication-title: J Wind Eng Ind Aerodyn
– reference: G.-W. Qian, and T. Ishihara, “A New Analytical Wake Model for Yawed Wind Turbines,”
– reference: J. Teng, and C. D. Markfort, “A Calibration Procedure for an Analytical Wake Model Using Wind Farm Operational Data,”
– reference: R. J. Barthelmie, J. G. Schepers, S. Pihl
– year: 2018
  ident: b0090
  article-title: Data-driven Parameter Calibration in Wake Models
  publication-title: in 2018 Wind Energy Symposium
– reference: R. J. Barthelmie, G. C. Larsen, S. T. Frandsen
– volume: 226
  start-page: 1187
  year: 2018
  end-page: 1207
  ident: b0080
  article-title: Review and evaluation of wake loss models for wind energy applications
  publication-title: Appl Energy
– reference: G. Iannace, G. Ciaburro, and A. Trematerra, “Wind Turbine Noise Prediction Using Random Forest Regression,”
– reference: vol. 23, no. 7, pp. 888-901, 2006.
– reference: Niayifar, Amin, PortéAgel
– volume: 174
  start-page: 1
  year: 2020
  end-page: 59
  ident: b0015
  article-title: Wind-Turbine and Wind-Farm Flows: A Review
  publication-title: Boundary Layer Meteorol
– volume: 13
  start-page: 559
  year: 2010
  end-page: 572
  ident: b0035
  article-title: Application of a LES technique to characterize the wake deflection of a wind turbine in yaw
  publication-title: Wind Energy
– reference: vol. 13, no. 14, 2020.
– reference: M. F. Howland, S. K. Lele, and J. O. Dabiri, “Wind farm power optimization through wake steering,”
– volume: 198
  start-page: 81
  year: 2020
  end-page: 92
  ident: b0145
  article-title: Random forest regression for improved mapping of solar irradiance at high latitudes
  publication-title: Sol Energy
– volume: 19
  start-page: 95
  year: 2016
  end-page: 114
  ident: b0135
  article-title: Wind plant power optimization through yaw control using a parametric model for wake effects-a CFD simulation study
  publication-title: Wind Energy
– volume: 70
  start-page: 116
  year: 2014
  end-page: 123
  ident: b0045
  article-title: A new analytical model for wind-turbine wakes
  publication-title: Renewable Energy
– reference: vol. 10, no. 5, 2018.
– volume: 15
  start-page: 183
  year: 2012
  end-page: 196
  ident: b0155
  article-title: The impact of turbulence intensity and atmospheric stability on power deficits due to wind turbine wakes at Horns Rev wind farm
  publication-title: Wind Energy
– reference: vol. 11, no. 3, 2018.
– reference: F. Carbajo Fuertes, C. Markfort, and F. Porté-Agel, “Wind Turbine Wake Characterization with Nacelle-Mounted Wind Lidars for Analytical Wake Model Validation,”
– volume: 257
  start-page: 114025
  year: 2020
  ident: b0105
  article-title: Wake modeling of wind turbines using machine learning
  publication-title: Appl Energy
– volume: 39
  start-page: 251
  year: 1992
  end-page: 265
  ident: b0065
  article-title: On the wind speed reduction in the center of large clusters of wind turbines
  publication-title: J Wind Eng Indus Aerodyn
– volume: 19
  start-page: 763
  year: 2016
  end-page: 776
  ident: b0070
  article-title: On the application of the Jensen wake model using a turbulence-dependent wake decay coefficient: the Sexbierum case
  publication-title: Wind Energy
– reference: vol. 7, no. 4, 2019.
– volume: 247
  start-page: 114714
  year: 2021
  ident: b0110
  article-title: A novel asexual-reproduction evolutionary neural network for wind power prediction based on generative adversarial networks
  publication-title: Energy Convers Manage
– volume: 3
  start-page: 819
  year: 2018
  end-page: 831
  ident: b0025
  article-title: Analysis of control-oriented wake modeling tools using lidar field results
  publication-title: Wind Energy Sci
– reference: , “Flow and wakes in complex terrain and offshore:Model development and verification in UpWind,” 2007. in 2007 European Wind Energy Conference and Exhibition, 2007.
– reference: N. O. Jensen, “A note on wind generator interaction,” 1983.
– reference: , “Comparison of Wake Model Simulations with Offshore Wind Turbine Wake Profiles Measured by Sodar,
– reference: I. Katic, J. Højstrup, and N. O. Jensen, “A Simple Model for Cluster Efficiency,” 1987.
– volume: 1
  start-page: 1
  year: 2016
  end-page: 39
  ident: b0010
  article-title: Long-term research challenges in wind energy – a research agenda by the European Academy of Wind Energy
  publication-title: Wind Energy Science
– volume: 39
  start-page: 251
  issue: 1-3
  year: 1992
  ident: 10.1016/j.enconman.2021.115130_b0065
  article-title: On the wind speed reduction in the center of large clusters of wind turbines
  publication-title: J Wind Eng Indus Aerodyn
  doi: 10.1016/0167-6105(92)90551-K
– volume: 15
  start-page: 183
  issue: 1
  year: 2012
  ident: 10.1016/j.enconman.2021.115130_b0155
  article-title: The impact of turbulence intensity and atmospheric stability on power deficits due to wind turbine wakes at Horns Rev wind farm
  publication-title: Wind Energy
  doi: 10.1002/we.512
– ident: 10.1016/j.enconman.2021.115130_b0075
  doi: 10.3390/en9090741
– volume: 45
  start-page: 5
  issue: 1
  year: 2001
  ident: 10.1016/j.enconman.2021.115130_b0140
  article-title: Random forests
  publication-title: Mach Learn
  doi: 10.1023/A:1010933404324
– ident: 10.1016/j.enconman.2021.115130_b0040
– ident: 10.1016/j.enconman.2021.115130_b0005
– volume: 3
  start-page: 819
  issue: 2
  year: 2018
  ident: 10.1016/j.enconman.2021.115130_b0025
  article-title: Analysis of control-oriented wake modeling tools using lidar field results
  publication-title: Wind Energy Sci
  doi: 10.5194/wes-3-819-2018
– volume: 19
  start-page: 95
  issue: 1
  year: 2016
  ident: 10.1016/j.enconman.2021.115130_b0135
  article-title: Wind plant power optimization through yaw control using a parametric model for wake effects-a CFD simulation study
  publication-title: Wind Energy
  doi: 10.1002/we.1822
– ident: 10.1016/j.enconman.2021.115130_b0130
– ident: 10.1016/j.enconman.2021.115130_b0060
  doi: 10.1175/JTECH1886.1
– volume: 198
  start-page: 81
  year: 2020
  ident: 10.1016/j.enconman.2021.115130_b0145
  article-title: Random forest regression for improved mapping of solar irradiance at high latitudes
  publication-title: Sol Energy
  doi: 10.1016/j.solener.2020.01.034
– volume: 1
  start-page: 1
  issue: 1
  year: 2016
  ident: 10.1016/j.enconman.2021.115130_b0010
  article-title: Long-term research challenges in wind energy – a research agenda by the European Academy of Wind Energy
  publication-title: Wind Energy Science
  doi: 10.5194/wes-1-1-2016
– volume: 247
  start-page: 114714
  year: 2021
  ident: 10.1016/j.enconman.2021.115130_b0110
  article-title: A novel asexual-reproduction evolutionary neural network for wind power prediction based on generative adversarial networks
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2021.114714
– ident: 10.1016/j.enconman.2021.115130_b0095
  doi: 10.1073/pnas.1903680116
– volume: 806
  start-page: 506
  year: 2016
  ident: 10.1016/j.enconman.2021.115130_b0050
  article-title: Experimental and theoretical study of wind turbine wakes in yawed conditions
  publication-title: J Fluid Mech
  doi: 10.1017/jfm.2016.595
– volume: 13
  start-page: 559
  issue: 6
  year: 2010
  ident: 10.1016/j.enconman.2021.115130_b0035
  article-title: Application of a LES technique to characterize the wake deflection of a wind turbine in yaw
  publication-title: Wind Energy
  doi: 10.1002/we.380
– volume: 19
  start-page: 763
  issue: 4
  year: 2016
  ident: 10.1016/j.enconman.2021.115130_b0070
  article-title: On the application of the Jensen wake model using a turbulence-dependent wake decay coefficient: the Sexbierum case
  publication-title: Wind Energy
  doi: 10.1002/we.1863
– ident: 10.1016/j.enconman.2021.115130_b0125
  doi: 10.3390/rs10050668
– ident: 10.1016/j.enconman.2021.115130_b0150
– ident: 10.1016/j.enconman.2021.115130_b0055
  doi: 10.3390/en11030665
– volume: 226
  start-page: 1187
  year: 2018
  ident: 10.1016/j.enconman.2021.115130_b0080
  article-title: Review and evaluation of wake loss models for wind energy applications
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2018.05.085
– ident: 10.1016/j.enconman.2021.115130_b0120
  doi: 10.3390/machines7040069
– volume: 211
  year: 2021
  ident: 10.1016/j.enconman.2021.115130_b0030
  article-title: Influence of atmospheric stability on wind farm layout optimization based on an improved Gaussian wake model
  publication-title: J Wind Eng Ind Aerodyn
  doi: 10.1016/j.jweia.2021.104548
– volume: 174
  start-page: 1
  issue: 1
  year: 2020
  ident: 10.1016/j.enconman.2021.115130_b0015
  article-title: Wind-Turbine and Wind-Farm Flows: A Review
  publication-title: Boundary Layer Meteorol
  doi: 10.1007/s10546-019-00473-0
– ident: 10.1016/j.enconman.2021.115130_b0020
– volume: 239
  start-page: 96
  year: 2019
  ident: 10.1016/j.enconman.2021.115130_b0085
  article-title: A new analytical model for wind turbine wakes based on Monin-Obukhov similarity theory
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2019.01.225
– start-page: 391
  year: 2020
  ident: 10.1016/j.enconman.2021.115130_b0115
  article-title: Fault Prediction of Wind Turbine Gearbox Based on SCADA Data and Machine Learning
– volume: 70
  start-page: 116
  year: 2014
  ident: 10.1016/j.enconman.2021.115130_b0045
  article-title: A new analytical model for wind-turbine wakes
  publication-title: Renewable Energy
  doi: 10.1016/j.renene.2014.01.002
– ident: 10.1016/j.enconman.2021.115130_b0100
  doi: 10.3390/en13143537
– year: 2018
  ident: 10.1016/j.enconman.2021.115130_b0090
  article-title: Data-driven Parameter Calibration in Wake Models
– volume: 257
  start-page: 114025
  year: 2020
  ident: 10.1016/j.enconman.2021.115130_b0105
  article-title: Wake modeling of wind turbines using machine learning
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2019.114025
SSID ssj0003506
Score 2.5261834
Snippet [Display omitted] •A data-driven analytical model for wind turbine wakes is proposed.•The machine learning method is used to model the wake expansion.•Two...
To reduce the wake effect by means of layout optimization or cooperative control, it is significant to modeling wind turbine wakes in an accurate and efficient...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 115130
SubjectTerms Actual wind farm
administrative management
Analytical model
Cooperative control
Data analysis
energy conversion
Feature extraction
Inflow
Learning algorithms
Machine learning
Mathematical analysis
Mathematical models
Optimization
prediction
SCADA data
Turbines
wind
Wind farms
Wind measurement
Wind power
Wind turbine wake
Wind turbines
Title A data-driven analytical model for wind turbine wakes using machine learning method
URI https://dx.doi.org/10.1016/j.enconman.2021.115130
https://www.proquest.com/docview/2636863992
https://www.proquest.com/docview/2636496154
Volume 252
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV05T8MwFLaqssCAOEWhVEZidRsfseOxqqgKSCylUjcriR3E0YCgqBu_HT8n4RISA6tjK8nz8zvsz99D6BRIvr2jk0TFihNRRJwkTgniXGRdJi1jWUD5XsnJTFzM43kLjZq7MACrrG1_ZdODta5bBrU0B0-3t4MpMLsk2isdhdM3CbTbwF7ndbr_9gnz4HGorwmdCfT-ckv4rg9ckeUiBR5URr31iCmgoX93UD9MdfA_4y20WQeOeFh92zZquXIHbXyhE9xF0yEGwCexz2DCcAp8I2GrGod6N9jHp3jlc3Ds3YxPiB1epffuBQP0_QYvAqrS4bqMhG8ItaX30Gx8dj2akLpoAsm54ktiJVOWCWVlmsmUJgnNI6e5TSMgXldUZ7bwvxkXKpFSJDYpBGOFzh1Xwjom-D5ql4-lO0DYRZCM-ABJ-6RDqFznOs6pjQR3ylJrOyhuJGXymlEcCls8mAY6dmcaCRuQsKkk3EGDj3FPFafGnyN0MxHmm3YYb_j_HNttZs7U6_PFMMllAsEZ66CTj8d-ZcFxSVq6x9eqj9A-4hOH_3j9EVpncGMiooTGXdRePr-6Yx_HLLNeUNQeWhueX06u3gEjf_DW
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT9swED915WHjAQ3GRKEbnsSrafwRO36sKlBZWV8AiTcriZ2Jr4DaIv59fIlTsWkSD3t1fEpytn93Z59_B3CEJN_B0CmqUy2orBJBM68l9T5xvlCO86LJ8p2r6ZX8eZ1e92DS3YXBtMqI_S2mN2gdW0ZRm6Onm5vRBTK7ZCZMOoanb0p9gA1kp5J92BifzabzNSCLtCmxif0pCry5KHx7jHSR9UOOVKicBQBJGSZE_9tG_YXWjQk6_Qxb0Xck4_bztqHn6x3YfMMo-AUuxgRzPqlbIIqRHClHmt1q0pS8IcFFJS8hDCfB0oSY2JOX_M4vCWa__yYPTWKlJ7GSRGhoykvvwtXpyeVkSmPdBFoKLVbUKa4dl9qpvFA5yzJWJt4IlyfIva6ZKVwVfjOtdKaUzFxWSc4rU3qhpfNciq_Qrx9rvwfEJxiPBB_JhLhD6tKUJi2ZS6Tw2jHnBpB2mrJlJBXH2hb3tsseu7Wdhi1q2LYaHsBoLffU0mq8K2G6gbB_TBAbsP9d2WE3cjYu0aXlSqgM_TM-gB_rx2Fx4YlJXvvH57aPNMHpk_v_8fpD-Di9_HVuz8_mswP4xPECRcIoS4fQXy2e_bfg1qyK73HavgJnjfOH
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+data-driven+analytical+model+for+wind+turbine+wakes+using+machine+learning+method&rft.jtitle=Energy+conversion+and+management&rft.au=Nai-Zhi%2C+Guo&rft.au=Ming-Ming%2C+Zhang&rft.au=Bo%2C+Li&rft.date=2022-01-15&rft.issn=0196-8904&rft.volume=252&rft.spage=115130&rft_id=info:doi/10.1016%2Fj.enconman.2021.115130&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_enconman_2021_115130
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-8904&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-8904&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-8904&client=summon