A data-driven analytical model for wind turbine wakes using machine learning method
[Display omitted] •A data-driven analytical model for wind turbine wakes is proposed.•The machine learning method is used to model the wake expansion.•Two actual wind farm cases are used to verify the proposed model.•The wake prediction performance of the new model has improved significantly. To red...
Saved in:
Published in | Energy conversion and management Vol. 252; p. 115130 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Oxford
Elsevier Ltd
15.01.2022
Elsevier Science Ltd |
Subjects | |
Online Access | Get full text |
ISSN | 0196-8904 1879-2227 |
DOI | 10.1016/j.enconman.2021.115130 |
Cover
Loading…
Abstract | [Display omitted]
•A data-driven analytical model for wind turbine wakes is proposed.•The machine learning method is used to model the wake expansion.•Two actual wind farm cases are used to verify the proposed model.•The wake prediction performance of the new model has improved significantly.
To reduce the wake effect by means of layout optimization or cooperative control, it is significant to modeling wind turbine wakes in an accurate and efficient way. However, existing analytical wake models still have large errors in actual wind farms due to the inadequate consideration of various inflow factors and local environmental characteristics. To satisfy this accuracy requirement, a data-driven analytical wake model is proposed in this paper. In the model, the local inflow information and wake expansion feature are extracted from measured data of wind farms, and a machine learning model is trained to establish the relationship between the two. In this way, the model can be well adapted to the local environment and inflow conditions. Verifications in two actual wind farm cases illustrate that there is a good agreement with the measured velocity and power data. Compared with traditional analytical models, the wake prediction performance of the new model has improved more than 20%. Therefore, the proposed model can serve as a reliable tool for wind farm control and optimization. |
---|---|
AbstractList | [Display omitted]
•A data-driven analytical model for wind turbine wakes is proposed.•The machine learning method is used to model the wake expansion.•Two actual wind farm cases are used to verify the proposed model.•The wake prediction performance of the new model has improved significantly.
To reduce the wake effect by means of layout optimization or cooperative control, it is significant to modeling wind turbine wakes in an accurate and efficient way. However, existing analytical wake models still have large errors in actual wind farms due to the inadequate consideration of various inflow factors and local environmental characteristics. To satisfy this accuracy requirement, a data-driven analytical wake model is proposed in this paper. In the model, the local inflow information and wake expansion feature are extracted from measured data of wind farms, and a machine learning model is trained to establish the relationship between the two. In this way, the model can be well adapted to the local environment and inflow conditions. Verifications in two actual wind farm cases illustrate that there is a good agreement with the measured velocity and power data. Compared with traditional analytical models, the wake prediction performance of the new model has improved more than 20%. Therefore, the proposed model can serve as a reliable tool for wind farm control and optimization. To reduce the wake effect by means of layout optimization or cooperative control, it is significant to modeling wind turbine wakes in an accurate and efficient way. However, existing analytical wake models still have large errors in actual wind farms due to the inadequate consideration of various inflow factors and local environmental characteristics. To satisfy this accuracy requirement, a data-driven analytical wake model is proposed in this paper. In the model, the local inflow information and wake expansion feature are extracted from measured data of wind farms, and a machine learning model is trained to establish the relationship between the two. In this way, the model can be well adapted to the local environment and inflow conditions. Verifications in two actual wind farm cases illustrate that there is a good agreement with the measured velocity and power data. Compared with traditional analytical models, the wake prediction performance of the new model has improved more than 20%. Therefore, the proposed model can serve as a reliable tool for wind farm control and optimization. |
ArticleNumber | 115130 |
Author | Nai-Zhi, Guo Bo, Li Ming-Ming, Zhang |
Author_xml | – sequence: 1 givenname: Guo surname: Nai-Zhi fullname: Nai-Zhi, Guo organization: Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190, China – sequence: 2 givenname: Zhang surname: Ming-Ming fullname: Ming-Ming, Zhang email: mmzhang@iet.cn organization: Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190, China – sequence: 3 givenname: Li surname: Bo fullname: Bo, Li organization: Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190, China |
BookMark | eNqFkE1P3DAQhq2KSl1o_0JliQuXLP7I2rHUAwjRgoTEgfZszdqT4iWxqe2A-PfNNuXChdNIo-d9NfMckoOYIhLylbM1Z1yd7tYYXYojxLVggq8533DJPpAV77RphBD6gKwYN6rpDGs_kcNSdowxuWFqRe7OqYcKjc_hCSOFCMNLDQ4GOiaPA-1Tps8helqnvA0R6TM8YKFTCfE3HcHd73cDQo7_Fljvk_9MPvYwFPzyfx6RX98vf15cNTe3P64vzm8aJ7WsjVdCe9Fqr2CrgHcddwyN9MD0fK3mZuv7-ZNNrzul2s53fStEbxxK3XoUrTwiJ0vvY05_JizVjqE4HAaImKZihZKqNYpv9ujxG3SXpjw_u1CdksaImfq2UC6nUjL21oUKNaRYM4TBcmb3xu3Ovhq3e-N2MT7H1Zv4Yw4j5Jf3g2dLEGdbTwGzLS7MJPqQ0VXrU3iv4i_-dqAo |
CitedBy_id | crossref_primary_10_3390_en17163897 crossref_primary_10_1007_s11804_025_00683_8 crossref_primary_10_3390_en15155345 crossref_primary_10_3390_en15176127 crossref_primary_10_1016_j_enconman_2022_115786 crossref_primary_10_3390_jmse12081353 crossref_primary_10_1016_j_ifacol_2023_10_979 crossref_primary_10_1088_1742_6596_2767_8_082002 crossref_primary_10_1016_j_enbuild_2022_112362 crossref_primary_10_1016_j_energy_2022_124845 crossref_primary_10_1016_j_oceaneng_2024_118508 crossref_primary_10_1186_s44147_023_00310_9 crossref_primary_10_1016_j_enconman_2022_116185 crossref_primary_10_1016_j_asej_2024_103086 crossref_primary_10_1109_JSEN_2022_3175866 crossref_primary_10_1080_15435075_2024_2415540 crossref_primary_10_1016_j_energy_2024_130403 crossref_primary_10_1016_j_apenergy_2024_124893 crossref_primary_10_1016_j_jweia_2024_105952 crossref_primary_10_1016_j_segan_2023_101126 crossref_primary_10_1016_j_energy_2023_127525 crossref_primary_10_1063_5_0091980 crossref_primary_10_1080_15435075_2024_2448294 crossref_primary_10_1016_j_energy_2022_125208 crossref_primary_10_1007_s00202_024_02440_6 crossref_primary_10_1016_j_apenergy_2023_121849 |
Cites_doi | 10.1016/0167-6105(92)90551-K 10.1002/we.512 10.3390/en9090741 10.1023/A:1010933404324 10.5194/wes-3-819-2018 10.1002/we.1822 10.1175/JTECH1886.1 10.1016/j.solener.2020.01.034 10.5194/wes-1-1-2016 10.1016/j.enconman.2021.114714 10.1073/pnas.1903680116 10.1017/jfm.2016.595 10.1002/we.380 10.1002/we.1863 10.3390/rs10050668 10.3390/en11030665 10.1016/j.apenergy.2018.05.085 10.3390/machines7040069 10.1016/j.jweia.2021.104548 10.1007/s10546-019-00473-0 10.1016/j.apenergy.2019.01.225 10.1016/j.renene.2014.01.002 10.3390/en13143537 10.1016/j.apenergy.2019.114025 |
ContentType | Journal Article |
Copyright | 2021 Elsevier Ltd Copyright Elsevier Science Ltd. Jan 15, 2022 |
Copyright_xml | – notice: 2021 Elsevier Ltd – notice: Copyright Elsevier Science Ltd. Jan 15, 2022 |
DBID | AAYXX CITATION 7ST 7TB 8FD C1K FR3 H8D KR7 L7M SOI 7S9 L.6 |
DOI | 10.1016/j.enconman.2021.115130 |
DatabaseName | CrossRef Environment Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Aerospace Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace Environment Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Technology Research Database Mechanical & Transportation Engineering Abstracts Engineering Research Database Environment Abstracts Advanced Technologies Database with Aerospace Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA Aerospace Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1879-2227 |
ExternalDocumentID | 10_1016_j_enconman_2021_115130 S0196890421013066 |
GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AAXUO ABFNM ABFRF ABJNI ABMAC ABYKQ ACBEA ACDAQ ACGFO ACGFS ACIWK ACNCT ACRLP ADBBV ADEZE AEBSH AEFWE AEKER AENEX AFKWA AFRAH AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AHJVU AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JARJE KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SDP SES SPC SPCBC SSR SST SSZ T5K TN5 XPP ZMT ~02 ~G- 29G 6TJ 8WZ A6W AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFFNX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HVGLF HZ~ H~9 R2- RIG SAC SEW WUQ 7ST 7TB 8FD C1K EFKBS FR3 H8D KR7 L7M SOI 7S9 AFXIZ L.6 |
ID | FETCH-LOGICAL-c373t-d627d247d6ab6a1881c0e93da07019719bdf5135f786648d8f422f9ce374de243 |
IEDL.DBID | .~1 |
ISSN | 0196-8904 |
IngestDate | Fri Jul 11 00:56:09 EDT 2025 Wed Aug 13 04:40:50 EDT 2025 Thu Apr 24 23:04:58 EDT 2025 Tue Jul 01 03:03:17 EDT 2025 Fri Feb 23 02:41:12 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Analytical model Actual wind farm SCADA data Machine learning Wind turbine wake |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c373t-d627d247d6ab6a1881c0e93da07019719bdf5135f786648d8f422f9ce374de243 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PQID | 2636863992 |
PQPubID | 2047472 |
ParticipantIDs | proquest_miscellaneous_2636496154 proquest_journals_2636863992 crossref_citationtrail_10_1016_j_enconman_2021_115130 crossref_primary_10_1016_j_enconman_2021_115130 elsevier_sciencedirect_doi_10_1016_j_enconman_2021_115130 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-01-15 |
PublicationDateYYYYMMDD | 2022-01-15 |
PublicationDate_xml | – month: 01 year: 2022 text: 2022-01-15 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford |
PublicationTitle | Energy conversion and management |
PublicationYear | 2022 |
Publisher | Elsevier Ltd Elsevier Science Ltd |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier Science Ltd |
References | Archer, Vasel-Be-Hagh, Yan (b0080) 2018; 226 R. J. Barthelmie, J. G. Schepers, S. Pihl Babar, Luppino, Boström, Anfinsen (b0145) 2020; 198 Hansen, Barthelmie, Jensen (b0155) 2012; 15 Rashid, Khalaji, Rasheed (b0115) 2020 Engie. “The La Haute Borne wind farm.,” 2021; https://opendata-renewables.engie.com/. Bastankhah, Porté-Agel (b0050) 2016; 806 G.-W. Qian, and T. Ishihara, “A New Analytical Wake Model for Yawed Wind Turbines,” I. Katic, J. Højstrup, and N. O. Jensen, “A Simple Model for Cluster Efficiency,” 1987. M. F. Howland, S. K. Lele, and J. O. Dabiri, “Wind farm power optimization through wake steering,” van Kuik, Peinke, Nijssen, Lekou, Mann, Sørensen (b0010) 2016; 1 N. O. Jensen, “A note on wind generator interaction,” 1983. Peña, Réthoré, Laan (b0070) 2016; 19 J. Teng, and C. D. Markfort, “A Calibration Procedure for an Analytical Wake Model Using Wind Farm Operational Data,” vol. 10, no. 5, 2018. Breiman (b0140) 2001; 45 “Flow and wakes in complex terrain and offshore:Model development and verification in UpWind,” 2007. in 2007 European Wind Energy Conference and Exhibition, 2007. R. J. Barthelmie, G. C. Larsen, S. T. Frandsen Comparison of Wake Model Simulations with Offshore Wind Turbine Wake Profiles Measured by Sodar Bastankhah, Porté-Agel (b0045) 2014; 70 vol. 13, no. 14, 2020. Liu, Plumlee, Byon (b0090) 2018 Guo, Zhang, Li (b0030) 2021; 211 Yin, Ou, Zhu, Xu, Fan, Meng (b0110) 2021; 247 Gebraad, Teeuwisse, van Wingerden, Fleming, Ruben, Marden (b0135) 2016; 19 Jiménez, Crespo, Migoya (b0035) 2010; 13 vol. 11, no. 3, 2018. vol. 23, no. 7, pp. 888-901, 2006. Frandsen (b0065) 1992; 39 “Energies, Vol. 9, Pages 741: Analytical Modeling of Wind Farms: A New Approach for Power Prediction,” 2016. Annoni, Fleming, Scholbrock, Roadman, Dana, Adcock (b0025) 2018; 3 Cheng, Zhang, Zhang, Xu (b0085) 2019; 239 Niayifar, Amin, PortéAgel vol. 7, no. 4, 2019. C. G. W. E., “GWEC| Global Wind Report 2021,” 2021. G. Iannace, G. Ciaburro, and A. Trematerra, “Wind Turbine Noise Prediction Using Random Forest Regression,” F. Carbajo Fuertes, C. Markfort, and F. Porté-Agel, “Wind Turbine Wake Characterization with Nacelle-Mounted Wind Lidars for Analytical Wake Model Validation,” Porté-Agel, Bastankhah, Shamsoddin (b0015) 2020; 174 vol. 116, no. 29, pp. 14495-14500, Jul 16, 2019. Ti, Deng, Yang (b0105) 2020; 257 Annoni (10.1016/j.enconman.2021.115130_b0025) 2018; 3 van Kuik (10.1016/j.enconman.2021.115130_b0010) 2016; 1 Jiménez (10.1016/j.enconman.2021.115130_b0035) 2010; 13 Bastankhah (10.1016/j.enconman.2021.115130_b0045) 2014; 70 Cheng (10.1016/j.enconman.2021.115130_b0085) 2019; 239 Breiman (10.1016/j.enconman.2021.115130_b0140) 2001; 45 Yin (10.1016/j.enconman.2021.115130_b0110) 2021; 247 10.1016/j.enconman.2021.115130_b0095 10.1016/j.enconman.2021.115130_b0150 10.1016/j.enconman.2021.115130_b0075 10.1016/j.enconman.2021.115130_b0130 10.1016/j.enconman.2021.115130_b0100 10.1016/j.enconman.2021.115130_b0005 10.1016/j.enconman.2021.115130_b0125 Hansen (10.1016/j.enconman.2021.115130_b0155) 2012; 15 Bastankhah (10.1016/j.enconman.2021.115130_b0050) 2016; 806 Guo (10.1016/j.enconman.2021.115130_b0030) 2021; 211 Porté-Agel (10.1016/j.enconman.2021.115130_b0015) 2020; 174 Peña (10.1016/j.enconman.2021.115130_b0070) 2016; 19 Frandsen (10.1016/j.enconman.2021.115130_b0065) 1992; 39 Rashid (10.1016/j.enconman.2021.115130_b0115) 2020 Ti (10.1016/j.enconman.2021.115130_b0105) 2020; 257 10.1016/j.enconman.2021.115130_b0060 10.1016/j.enconman.2021.115130_b0040 10.1016/j.enconman.2021.115130_b0120 10.1016/j.enconman.2021.115130_b0020 10.1016/j.enconman.2021.115130_b0055 Archer (10.1016/j.enconman.2021.115130_b0080) 2018; 226 Liu (10.1016/j.enconman.2021.115130_b0090) 2018 Babar (10.1016/j.enconman.2021.115130_b0145) 2020; 198 Gebraad (10.1016/j.enconman.2021.115130_b0135) 2016; 19 |
References_xml | – volume: 806 start-page: 506 year: 2016 end-page: 541 ident: b0050 article-title: Experimental and theoretical study of wind turbine wakes in yawed conditions publication-title: J Fluid Mech – start-page: 391 year: 2020 end-page: 395 ident: b0115 article-title: Fault Prediction of Wind Turbine Gearbox Based on SCADA Data and Machine Learning publication-title: in 2020 10th International Conference on Advanced Computer Information Technologies (ACIT) – reference: C. G. W. E., “GWEC| Global Wind Report 2021,” 2021. – reference: Engie. “The La Haute Borne wind farm.,” 2021; https://opendata-renewables.engie.com/. – reference: vol. 116, no. 29, pp. 14495-14500, Jul 16, 2019. – reference: , “Energies, Vol. 9, Pages 741: Analytical Modeling of Wind Farms: A New Approach for Power Prediction,” 2016. – volume: 45 start-page: 5 year: 2001 end-page: 32 ident: b0140 article-title: Random forests publication-title: Mach Learn – volume: 239 start-page: 96 year: 2019 end-page: 106 ident: b0085 article-title: A new analytical model for wind turbine wakes based on Monin-Obukhov similarity theory publication-title: Appl Energy – volume: 211 year: 2021 ident: b0030 article-title: Influence of atmospheric stability on wind farm layout optimization based on an improved Gaussian wake model publication-title: J Wind Eng Ind Aerodyn – reference: G.-W. Qian, and T. Ishihara, “A New Analytical Wake Model for Yawed Wind Turbines,” – reference: J. Teng, and C. D. Markfort, “A Calibration Procedure for an Analytical Wake Model Using Wind Farm Operational Data,” – reference: R. J. Barthelmie, J. G. Schepers, S. Pihl – year: 2018 ident: b0090 article-title: Data-driven Parameter Calibration in Wake Models publication-title: in 2018 Wind Energy Symposium – reference: R. J. Barthelmie, G. C. Larsen, S. T. Frandsen – volume: 226 start-page: 1187 year: 2018 end-page: 1207 ident: b0080 article-title: Review and evaluation of wake loss models for wind energy applications publication-title: Appl Energy – reference: G. Iannace, G. Ciaburro, and A. Trematerra, “Wind Turbine Noise Prediction Using Random Forest Regression,” – reference: vol. 23, no. 7, pp. 888-901, 2006. – reference: Niayifar, Amin, PortéAgel – volume: 174 start-page: 1 year: 2020 end-page: 59 ident: b0015 article-title: Wind-Turbine and Wind-Farm Flows: A Review publication-title: Boundary Layer Meteorol – volume: 13 start-page: 559 year: 2010 end-page: 572 ident: b0035 article-title: Application of a LES technique to characterize the wake deflection of a wind turbine in yaw publication-title: Wind Energy – reference: vol. 13, no. 14, 2020. – reference: M. F. Howland, S. K. Lele, and J. O. Dabiri, “Wind farm power optimization through wake steering,” – volume: 198 start-page: 81 year: 2020 end-page: 92 ident: b0145 article-title: Random forest regression for improved mapping of solar irradiance at high latitudes publication-title: Sol Energy – volume: 19 start-page: 95 year: 2016 end-page: 114 ident: b0135 article-title: Wind plant power optimization through yaw control using a parametric model for wake effects-a CFD simulation study publication-title: Wind Energy – volume: 70 start-page: 116 year: 2014 end-page: 123 ident: b0045 article-title: A new analytical model for wind-turbine wakes publication-title: Renewable Energy – reference: vol. 10, no. 5, 2018. – volume: 15 start-page: 183 year: 2012 end-page: 196 ident: b0155 article-title: The impact of turbulence intensity and atmospheric stability on power deficits due to wind turbine wakes at Horns Rev wind farm publication-title: Wind Energy – reference: vol. 11, no. 3, 2018. – reference: F. Carbajo Fuertes, C. Markfort, and F. Porté-Agel, “Wind Turbine Wake Characterization with Nacelle-Mounted Wind Lidars for Analytical Wake Model Validation,” – volume: 257 start-page: 114025 year: 2020 ident: b0105 article-title: Wake modeling of wind turbines using machine learning publication-title: Appl Energy – volume: 39 start-page: 251 year: 1992 end-page: 265 ident: b0065 article-title: On the wind speed reduction in the center of large clusters of wind turbines publication-title: J Wind Eng Indus Aerodyn – volume: 19 start-page: 763 year: 2016 end-page: 776 ident: b0070 article-title: On the application of the Jensen wake model using a turbulence-dependent wake decay coefficient: the Sexbierum case publication-title: Wind Energy – reference: vol. 7, no. 4, 2019. – volume: 247 start-page: 114714 year: 2021 ident: b0110 article-title: A novel asexual-reproduction evolutionary neural network for wind power prediction based on generative adversarial networks publication-title: Energy Convers Manage – volume: 3 start-page: 819 year: 2018 end-page: 831 ident: b0025 article-title: Analysis of control-oriented wake modeling tools using lidar field results publication-title: Wind Energy Sci – reference: , “Flow and wakes in complex terrain and offshore:Model development and verification in UpWind,” 2007. in 2007 European Wind Energy Conference and Exhibition, 2007. – reference: N. O. Jensen, “A note on wind generator interaction,” 1983. – reference: , “Comparison of Wake Model Simulations with Offshore Wind Turbine Wake Profiles Measured by Sodar, – reference: I. Katic, J. Højstrup, and N. O. Jensen, “A Simple Model for Cluster Efficiency,” 1987. – volume: 1 start-page: 1 year: 2016 end-page: 39 ident: b0010 article-title: Long-term research challenges in wind energy – a research agenda by the European Academy of Wind Energy publication-title: Wind Energy Science – volume: 39 start-page: 251 issue: 1-3 year: 1992 ident: 10.1016/j.enconman.2021.115130_b0065 article-title: On the wind speed reduction in the center of large clusters of wind turbines publication-title: J Wind Eng Indus Aerodyn doi: 10.1016/0167-6105(92)90551-K – volume: 15 start-page: 183 issue: 1 year: 2012 ident: 10.1016/j.enconman.2021.115130_b0155 article-title: The impact of turbulence intensity and atmospheric stability on power deficits due to wind turbine wakes at Horns Rev wind farm publication-title: Wind Energy doi: 10.1002/we.512 – ident: 10.1016/j.enconman.2021.115130_b0075 doi: 10.3390/en9090741 – volume: 45 start-page: 5 issue: 1 year: 2001 ident: 10.1016/j.enconman.2021.115130_b0140 article-title: Random forests publication-title: Mach Learn doi: 10.1023/A:1010933404324 – ident: 10.1016/j.enconman.2021.115130_b0040 – ident: 10.1016/j.enconman.2021.115130_b0005 – volume: 3 start-page: 819 issue: 2 year: 2018 ident: 10.1016/j.enconman.2021.115130_b0025 article-title: Analysis of control-oriented wake modeling tools using lidar field results publication-title: Wind Energy Sci doi: 10.5194/wes-3-819-2018 – volume: 19 start-page: 95 issue: 1 year: 2016 ident: 10.1016/j.enconman.2021.115130_b0135 article-title: Wind plant power optimization through yaw control using a parametric model for wake effects-a CFD simulation study publication-title: Wind Energy doi: 10.1002/we.1822 – ident: 10.1016/j.enconman.2021.115130_b0130 – ident: 10.1016/j.enconman.2021.115130_b0060 doi: 10.1175/JTECH1886.1 – volume: 198 start-page: 81 year: 2020 ident: 10.1016/j.enconman.2021.115130_b0145 article-title: Random forest regression for improved mapping of solar irradiance at high latitudes publication-title: Sol Energy doi: 10.1016/j.solener.2020.01.034 – volume: 1 start-page: 1 issue: 1 year: 2016 ident: 10.1016/j.enconman.2021.115130_b0010 article-title: Long-term research challenges in wind energy – a research agenda by the European Academy of Wind Energy publication-title: Wind Energy Science doi: 10.5194/wes-1-1-2016 – volume: 247 start-page: 114714 year: 2021 ident: 10.1016/j.enconman.2021.115130_b0110 article-title: A novel asexual-reproduction evolutionary neural network for wind power prediction based on generative adversarial networks publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2021.114714 – ident: 10.1016/j.enconman.2021.115130_b0095 doi: 10.1073/pnas.1903680116 – volume: 806 start-page: 506 year: 2016 ident: 10.1016/j.enconman.2021.115130_b0050 article-title: Experimental and theoretical study of wind turbine wakes in yawed conditions publication-title: J Fluid Mech doi: 10.1017/jfm.2016.595 – volume: 13 start-page: 559 issue: 6 year: 2010 ident: 10.1016/j.enconman.2021.115130_b0035 article-title: Application of a LES technique to characterize the wake deflection of a wind turbine in yaw publication-title: Wind Energy doi: 10.1002/we.380 – volume: 19 start-page: 763 issue: 4 year: 2016 ident: 10.1016/j.enconman.2021.115130_b0070 article-title: On the application of the Jensen wake model using a turbulence-dependent wake decay coefficient: the Sexbierum case publication-title: Wind Energy doi: 10.1002/we.1863 – ident: 10.1016/j.enconman.2021.115130_b0125 doi: 10.3390/rs10050668 – ident: 10.1016/j.enconman.2021.115130_b0150 – ident: 10.1016/j.enconman.2021.115130_b0055 doi: 10.3390/en11030665 – volume: 226 start-page: 1187 year: 2018 ident: 10.1016/j.enconman.2021.115130_b0080 article-title: Review and evaluation of wake loss models for wind energy applications publication-title: Appl Energy doi: 10.1016/j.apenergy.2018.05.085 – ident: 10.1016/j.enconman.2021.115130_b0120 doi: 10.3390/machines7040069 – volume: 211 year: 2021 ident: 10.1016/j.enconman.2021.115130_b0030 article-title: Influence of atmospheric stability on wind farm layout optimization based on an improved Gaussian wake model publication-title: J Wind Eng Ind Aerodyn doi: 10.1016/j.jweia.2021.104548 – volume: 174 start-page: 1 issue: 1 year: 2020 ident: 10.1016/j.enconman.2021.115130_b0015 article-title: Wind-Turbine and Wind-Farm Flows: A Review publication-title: Boundary Layer Meteorol doi: 10.1007/s10546-019-00473-0 – ident: 10.1016/j.enconman.2021.115130_b0020 – volume: 239 start-page: 96 year: 2019 ident: 10.1016/j.enconman.2021.115130_b0085 article-title: A new analytical model for wind turbine wakes based on Monin-Obukhov similarity theory publication-title: Appl Energy doi: 10.1016/j.apenergy.2019.01.225 – start-page: 391 year: 2020 ident: 10.1016/j.enconman.2021.115130_b0115 article-title: Fault Prediction of Wind Turbine Gearbox Based on SCADA Data and Machine Learning – volume: 70 start-page: 116 year: 2014 ident: 10.1016/j.enconman.2021.115130_b0045 article-title: A new analytical model for wind-turbine wakes publication-title: Renewable Energy doi: 10.1016/j.renene.2014.01.002 – ident: 10.1016/j.enconman.2021.115130_b0100 doi: 10.3390/en13143537 – year: 2018 ident: 10.1016/j.enconman.2021.115130_b0090 article-title: Data-driven Parameter Calibration in Wake Models – volume: 257 start-page: 114025 year: 2020 ident: 10.1016/j.enconman.2021.115130_b0105 article-title: Wake modeling of wind turbines using machine learning publication-title: Appl Energy doi: 10.1016/j.apenergy.2019.114025 |
SSID | ssj0003506 |
Score | 2.5261834 |
Snippet | [Display omitted]
•A data-driven analytical model for wind turbine wakes is proposed.•The machine learning method is used to model the wake expansion.•Two... To reduce the wake effect by means of layout optimization or cooperative control, it is significant to modeling wind turbine wakes in an accurate and efficient... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 115130 |
SubjectTerms | Actual wind farm administrative management Analytical model Cooperative control Data analysis energy conversion Feature extraction Inflow Learning algorithms Machine learning Mathematical analysis Mathematical models Optimization prediction SCADA data Turbines wind Wind farms Wind measurement Wind power Wind turbine wake Wind turbines |
Title | A data-driven analytical model for wind turbine wakes using machine learning method |
URI | https://dx.doi.org/10.1016/j.enconman.2021.115130 https://www.proquest.com/docview/2636863992 https://www.proquest.com/docview/2636496154 |
Volume | 252 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV05T8MwFLaqssCAOEWhVEZidRsfseOxqqgKSCylUjcriR3E0YCgqBu_HT8n4RISA6tjK8nz8zvsz99D6BRIvr2jk0TFihNRRJwkTgniXGRdJi1jWUD5XsnJTFzM43kLjZq7MACrrG1_ZdODta5bBrU0B0-3t4MpMLsk2isdhdM3CbTbwF7ndbr_9gnz4HGorwmdCfT-ckv4rg9ckeUiBR5URr31iCmgoX93UD9MdfA_4y20WQeOeFh92zZquXIHbXyhE9xF0yEGwCexz2DCcAp8I2GrGod6N9jHp3jlc3Ds3YxPiB1epffuBQP0_QYvAqrS4bqMhG8ItaX30Gx8dj2akLpoAsm54ktiJVOWCWVlmsmUJgnNI6e5TSMgXldUZ7bwvxkXKpFSJDYpBGOFzh1Xwjom-D5ql4-lO0DYRZCM-ABJ-6RDqFznOs6pjQR3ylJrOyhuJGXymlEcCls8mAY6dmcaCRuQsKkk3EGDj3FPFafGnyN0MxHmm3YYb_j_HNttZs7U6_PFMMllAsEZ66CTj8d-ZcFxSVq6x9eqj9A-4hOH_3j9EVpncGMiooTGXdRePr-6Yx_HLLNeUNQeWhueX06u3gEjf_DW |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT9swED915WHjAQ3GRKEbnsSrafwRO36sKlBZWV8AiTcriZ2Jr4DaIv59fIlTsWkSD3t1fEpytn93Z59_B3CEJN_B0CmqUy2orBJBM68l9T5xvlCO86LJ8p2r6ZX8eZ1e92DS3YXBtMqI_S2mN2gdW0ZRm6Onm5vRBTK7ZCZMOoanb0p9gA1kp5J92BifzabzNSCLtCmxif0pCry5KHx7jHSR9UOOVKicBQBJGSZE_9tG_YXWjQk6_Qxb0Xck4_bztqHn6x3YfMMo-AUuxgRzPqlbIIqRHClHmt1q0pS8IcFFJS8hDCfB0oSY2JOX_M4vCWa__yYPTWKlJ7GSRGhoykvvwtXpyeVkSmPdBFoKLVbUKa4dl9qpvFA5yzJWJt4IlyfIva6ZKVwVfjOtdKaUzFxWSc4rU3qhpfNciq_Qrx9rvwfEJxiPBB_JhLhD6tKUJi2ZS6Tw2jHnBpB2mrJlJBXH2hb3tsseu7Wdhi1q2LYaHsBoLffU0mq8K2G6gbB_TBAbsP9d2WE3cjYu0aXlSqgM_TM-gB_rx2Fx4YlJXvvH57aPNMHpk_v_8fpD-Di9_HVuz8_mswP4xPECRcIoS4fQXy2e_bfg1qyK73HavgJnjfOH |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+data-driven+analytical+model+for+wind+turbine+wakes+using+machine+learning+method&rft.jtitle=Energy+conversion+and+management&rft.au=Nai-Zhi%2C+Guo&rft.au=Ming-Ming%2C+Zhang&rft.au=Bo%2C+Li&rft.date=2022-01-15&rft.issn=0196-8904&rft.volume=252&rft.spage=115130&rft_id=info:doi/10.1016%2Fj.enconman.2021.115130&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_enconman_2021_115130 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-8904&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-8904&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-8904&client=summon |