Optimal homotopic strategy for thermal and mass transport in Williamson model flow PDEs under heat generation/absorption and Joule heating

In current paper, we considered the 3-D occurrence of magneto Williamson fluid subjected to linear penetrating expanding sheet. The Williamson liquid is taken into account under the essence of bio convection bordering with Joule heating, heat production. Moreover, Brownian movement combined with the...

Full description

Saved in:
Bibliographic Details
Published inAdvances in mechanical engineering Vol. 16; no. 11
Main Authors Akbar, Sana, Sohail, Muhammad, Abbas, Syed Tehseen, Badi, Nacer
Format Journal Article
LanguageEnglish
Published London, England SAGE Publications 01.11.2024
Sage Publications Ltd
SAGE Publishing
Subjects
Online AccessGet full text
ISSN1687-8132
1687-8140
DOI10.1177/16878132241294262

Cover

Loading…
Abstract In current paper, we considered the 3-D occurrence of magneto Williamson fluid subjected to linear penetrating expanding sheet. The Williamson liquid is taken into account under the essence of bio convection bordering with Joule heating, heat production. Moreover, Brownian movement combined with thermophoresis diffusion was also analyzed in current study. Central PDEs are modified into system of ODEs on the basis of appropriate similarity transformation utilization. For solution purpose, an optimal approach namely HAM was opted. The critical review based on all involved multifarious constraints across the non- dimensional velocity contour ( along x − axes and also y − axes ) , energy and concentration distribution. Moreover, across the motile organism distribution was also conducted graphically and depicts total covenant with the former published research work. The drag force effect, Nusselt number, Sherwood number, and motile organism density in tabular form is also proposed in this study. Moreover, Motile organism profile graphically demonstrates decreased demeanor for considered bio convection Lewis number, Peclet number, and also temperature difference constraint whereas results of motile organism density augmented in tabular version for the considered bio convection Lewis number, Peclet number, and also temperature difference constraint.
AbstractList In current paper, we considered the 3-D occurrence of magneto Williamson fluid subjected to linear penetrating expanding sheet. The Williamson liquid is taken into account under the essence of bio convection bordering with Joule heating, heat production. Moreover, Brownian movement combined with thermophoresis diffusion was also analyzed in current study. Central PDEs are modified into system of ODEs on the basis of appropriate similarity transformation utilization. For solution purpose, an optimal approach namely HAM was opted. The critical review based on all involved multifarious constraints across the non- dimensional velocity contour [Formula: see text] energy and concentration distribution. Moreover, across the motile organism distribution was also conducted graphically and depicts total covenant with the former published research work. The drag force effect, Nusselt number, Sherwood number, and motile organism density in tabular form is also proposed in this study. Moreover, Motile organism profile graphically demonstrates decreased demeanor for considered bio convection Lewis number, Peclet number, and also temperature difference constraint whereas results of motile organism density augmented in tabular version for the considered bio convection Lewis number, Peclet number, and also temperature difference constraint.
In current paper, we considered the 3-D occurrence of magneto Williamson fluid subjected to linear penetrating expanding sheet. The Williamson liquid is taken into account under the essence of bio convection bordering with Joule heating, heat production. Moreover, Brownian movement combined with thermophoresis diffusion was also analyzed in current study. Central PDEs are modified into system of ODEs on the basis of appropriate similarity transformation utilization. For solution purpose, an optimal approach namely HAM was opted. The critical review based on all involved multifarious constraints across the non- dimensional velocity contour ( along x − axes and also y − axes ), energy and concentration distribution. Moreover, across the motile organism distribution was also conducted graphically and depicts total covenant with the former published research work. The drag force effect, Nusselt number, Sherwood number, and motile organism density in tabular form is also proposed in this study. Moreover, Motile organism profile graphically demonstrates decreased demeanor for considered bio convection Lewis number, Peclet number, and also temperature difference constraint whereas results of motile organism density augmented in tabular version for the considered bio convection Lewis number, Peclet number, and also temperature difference constraint.
In current paper, we considered the 3-D occurrence of magneto Williamson fluid subjected to linear penetrating expanding sheet. The Williamson liquid is taken into account under the essence of bio convection bordering with Joule heating, heat production. Moreover, Brownian movement combined with thermophoresis diffusion was also analyzed in current study. Central PDEs are modified into system of ODEs on the basis of appropriate similarity transformation utilization. For solution purpose, an optimal approach namely HAM was opted. The critical review based on all involved multifarious constraints across the non- dimensional velocity contour ( along x − axes and also y − axes ) , energy and concentration distribution. Moreover, across the motile organism distribution was also conducted graphically and depicts total covenant with the former published research work. The drag force effect, Nusselt number, Sherwood number, and motile organism density in tabular form is also proposed in this study. Moreover, Motile organism profile graphically demonstrates decreased demeanor for considered bio convection Lewis number, Peclet number, and also temperature difference constraint whereas results of motile organism density augmented in tabular version for the considered bio convection Lewis number, Peclet number, and also temperature difference constraint.
Author Sohail, Muhammad
Abbas, Syed Tehseen
Akbar, Sana
Badi, Nacer
Author_xml – sequence: 1
  givenname: Sana
  surname: Akbar
  fullname: Akbar, Sana
– sequence: 2
  givenname: Muhammad
  orcidid: 0000-0002-1490-0339
  surname: Sohail
  fullname: Sohail, Muhammad
  email: muhammad_sohail111@yahoo.com
– sequence: 3
  givenname: Syed Tehseen
  surname: Abbas
  fullname: Abbas, Syed Tehseen
– sequence: 4
  givenname: Nacer
  surname: Badi
  fullname: Badi, Nacer
BookMark eNp1kU1LHDEYxwexUGv9AL0Fel7Ne7JHsba1CHqw9Djk5clsZCaZJlmKX8FP3dndYg_iKQ__l18Sng_dccoJuu4TweeEKHVBpFaaMEo5oWtOJT3qTnbaShOOj19mRt93Z7VGiwWWGMv1-qR7vptbnMyINnnKLc_RodqKaTA8oZALahsoO9skjyZTK1rMVOdcGooJ_YrjGM1Uc0JT9jCiMOY_6P7LdUXb5KGgDZiGBkiwIGNOF8bWXObduCf-yNsR9qGYho_du2DGCmf_ztPu59frh6vvq9u7bzdXl7crxxRrK8-dZjwwB1oBYCOcE2IRlZVaA8cGnJUcvF0Mam1QayEFaGG9pxI0sNPu5sD12Tz2c1m-X576bGK_F3IZelNadCP0gVMrvdRBAeXCWsMEpcrYQDAnxIWF9fnAmkv-vYXa-se8LWl5fs8I44JyTvGSIoeUK7nWAuHlVoL73Qb7VxtcOueHTjUD_Ke-XfgLYoGgKQ
Cites_doi 10.1016/j.heliyon.2023.e17665
10.1080/17455030.2021.2023781
10.1615/ComputThermalScien.2022041799
10.1108/MMMS-11-2018-0202
10.1002/zamm.202100117
10.1063/1.4943398
10.1007/s13538-021-00888-6
10.1021/ie50239a035
10.1016/j.tsep.2021.100887
10.1109/ACCESS.2019.2916162
10.1088/2631-8695/abe7be
10.1140/epjp/i2016-16214-4
10.1038/s41598-021-93790-9
10.1016/j.cnsns.2009.09.002
10.58496/BJM/2024/003
10.3390/app7040369
10.1166/jon.2021.1778
10.1007/s42452-024-05833-1
10.3390/e22010018
10.1080/01430750.2022.2029765
10.1002/htj.21973
10.1038/s41598-021-95604-4
10.1080/17455030.2022.2077471
10.1007/s42452-020-04007-z
10.1016/j.rinp.2018.01.018
10.1007/s12668-024-01412-1
10.1016/j.jmmm.2023.170587
10.1016/j.aej.2022.02.013
10.1088/1402-4896/abf305
10.1016/j.ijheatmasstransfer.2018.05.074
10.1140/epjp/i2017-11277-3
10.1016/j.ijthermalsci.2018.05.047
10.1007/s40430-018-1415-y
10.1038/s41598-022-27118-6
10.1007/s12668-024-01329-9
10.1139/cjp-2018-0531
10.1371/journal.pone.0083153
10.1515/ijcre-2018-0118
10.1016/j.rinp.2017.06.002
10.3390/sym15091684
10.1108/HFF-05-2020-0321
10.3390/coatings9040248
10.1016/j.heliyon.2018.e00825
10.1038/s41598-022-09301-x
10.1016/j.jics.2022.100845
10.1177/1687814019833510
10.3390/pr10061221
ContentType Journal Article
Copyright The Author(s) 2024
The Author(s) 2024. This work is licensed under the Creative Commons Attribution License https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2024
– notice: The Author(s) 2024. This work is licensed under the Creative Commons Attribution License https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AFRWT
AAYXX
CITATION
7TB
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FR3
H8D
HCIFZ
L6V
L7M
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOA
DOI 10.1177/16878132241294262
DatabaseName Sage Open Access Journals (Free internet resource, activated by CARLI)
CrossRef
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
Aerospace Database
SciTech Premium Collection
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Engineering Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Aerospace Database
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList CrossRef
Publicly Available Content Database


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: AFRWT
  name: Sage Open Access Journals (Free internet resource, activated by CARLI)
  url: http://journals.sagepub.com/
  sourceTypes: Publisher
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1687-8140
ExternalDocumentID oai_doaj_org_article_f42b6d68f7e245bba35227abf10411cf
10_1177_16878132241294262
10.1177_16878132241294262
GroupedDBID .DC
0R~
188
23M
2UF
2WC
4.4
54M
5GY
5VS
8FE
8FG
8R4
8R5
AAJPV
AASGM
ABAWP
ABJCF
ABQXT
ACGFS
ACIWK
ACROE
ADBBV
ADOGD
AEDFJ
AENEX
AEUHG
AEWDL
AFCOW
AFKRA
AFKRG
AFRWT
AINHJ
AJUZI
ALMA_UNASSIGNED_HOLDINGS
AUTPY
AYAKG
BCNDV
BDDNI
BENPR
BGLVJ
C1A
CAHYU
CCPQU
CNMHZ
E3Z
EBS
EJD
GROUPED_DOAJ
H13
HCIFZ
IAO
IEA
IL9
ITC
J8X
K.F
KQ8
L6V
M7S
O9-
OK1
PHGZM
PHGZT
PIMPY
PTHSS
Q2X
RHU
ROL
SAUOL
SCDPB
SCNPE
SFC
TR2
UGNYK
AAYXX
ACHEB
CITATION
7TB
8FD
ABUWG
AZQEC
DWQXO
FR3
H8D
L7M
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PUEGO
ID FETCH-LOGICAL-c373t-d4c834f3ce87ee0a5cc55d4c7b688e40aecb64edb5cc2bbf79565e85bdd26e8e3
IEDL.DBID DOA
ISSN 1687-8132
IngestDate Wed Aug 27 01:31:24 EDT 2025
Fri Jul 25 12:22:46 EDT 2025
Tue Jul 01 05:25:44 EDT 2025
Tue Jun 17 22:31:00 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords MHD
Williamson Nano fluid
bio-convection
Joule heating Brownian movement and also thermophoresis diffusion
Joule heating
Language English
License This article is distributed under the terms of the Creative Commons Attribution 4.0 License (https://creativecommons.org/licenses/by/4.0/) which permits any use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c373t-d4c834f3ce87ee0a5cc55d4c7b688e40aecb64edb5cc2bbf79565e85bdd26e8e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-1490-0339
OpenAccessLink https://doaj.org/article/f42b6d68f7e245bba35227abf10411cf
PQID 3134524420
PQPubID 237349
ParticipantIDs doaj_primary_oai_doaj_org_article_f42b6d68f7e245bba35227abf10411cf
proquest_journals_3134524420
crossref_primary_10_1177_16878132241294262
sage_journals_10_1177_16878132241294262
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20241100
2024-11-00
20241101
2024-11-01
PublicationDateYYYYMMDD 2024-11-01
PublicationDate_xml – month: 11
  year: 2024
  text: 20241100
PublicationDecade 2020
PublicationPlace London, England
PublicationPlace_xml – name: London, England
– name: New York
PublicationTitle Advances in mechanical engineering
PublicationYear 2024
Publisher SAGE Publications
Sage Publications Ltd
SAGE Publishing
Publisher_xml – name: SAGE Publications
– name: Sage Publications Ltd
– name: SAGE Publishing
References Ali, Abbas, Sohail 2024
Gul, Ahmed, Jawad 2021; 51
Gul, Khan, Islam 2017; 7
Wakif, Boulahia, Sehaqui 2016; 135
Dawar, Shah, Islam 2019; 11
Rasool, Wang, Yashkun 2023; 571
Khan, Shahid, Malik 2018; 8
Asjad, Zahid, Inc 2022; 61
Khan, Salahuddin, Malik 2018; 126
Awais, Bilal, Ur Rehman 2019; 97
Bilal, Sohail, Naz 2019; 15
Shafiq, Çolak, Sindhu 2021; 11
Khan, Shahid, Salahuddin 2018; 40
Khan, Ahmad, Wang 2023; 9
Shah, Dawar, Nasir 2022
Liao 2010; 15
Raza, Mabood, Naz 2021; 23
Shah, Dawar, Alzahrani 2019; 7
Rafique, Ilyas, Sohail 2024; 2024
Khan, Gul, Islam 2017; 132
Shah, Yook, Tosin 2022; 12
Jawad, Saeed, Bilal 2021; 3
Khan, Irfan, Khan 2017; 7
Priyadharshini, Karpagam, Shah 2023; 15
Shah, Bonyah, Islam 2018; 4
Hayat, Shafiq, Alsaedi 2014; 9
Sohail, Ilyas, Rafique 2024; 14
Malik, Bibi, Khan 2016; 6
Mebarek-Oudina, Bessaih, Mahanthesh 2021; 31
Jawad, Saeed, Khan 2021; 50
Ahmad, Nadeem, Rehman 2021; 10
Khan, Ahmad, Nadeem 2021; 96
Song, Khan, Khan 2021; 411
Naveed, Abbas, Sajid 2016; 131
Obalalu, Olayemi, Odetunde 2023; 15
Gul, Saeed 2022
Xia, Hafeez, Khan 2021; 11
Kumar, Varma, Kiran Kumar 2018; 17
Williamson 1929; 21
Abdal, Siddique, Eldin 2022; 12
Prasad, Setty, Mebarek-Oudina 2022; 102
Sohail, Rafique, Singh 2024; 6
Ahmad, Naveed Khan, Nadeem 2022; 43
Abbas, Jeelani, Alnahdi 2022; 10
Saeed, Shah, Islam 2019; 9
Mishra, Kumar, Reddy 2023; 100
Rasool, Zhang, Chamkha 2019; 22
Saeed, Gul 2021; 3
Satya Narayana, Tarakaramu, Moliya Akshit 2017; 9
Hayat, Saif, Ellahi 2018; 132
bibr48-16878132241294262
bibr35-16878132241294262
bibr50-16878132241294262
bibr4-16878132241294262
bibr14-16878132241294262
bibr43-16878132241294262
bibr23-16878132241294262
bibr30-16878132241294262
bibr10-16878132241294262
bibr27-16878132241294262
bibr47-16878132241294262
bibr6-16878132241294262
Satya Narayana PV (bibr42-16878132241294262) 2017; 9
bibr44-16878132241294262
bibr26-16878132241294262
bibr34-16878132241294262
bibr16-16878132241294262
bibr36-16878132241294262
bibr46-16878132241294262
bibr15-16878132241294262
bibr45-16878132241294262
bibr25-16878132241294262
bibr5-16878132241294262
bibr12-16878132241294262
bibr38-16878132241294262
bibr7-16878132241294262
bibr1-16878132241294262
bibr33-16878132241294262
bibr37-16878132241294262
bibr24-16878132241294262
bibr40-16878132241294262
bibr17-16878132241294262
Wakif A (bibr19-16878132241294262) 2016; 135
bibr20-16878132241294262
bibr41-16878132241294262
Song YQ (bibr9-16878132241294262) 2021; 411
bibr31-16878132241294262
bibr3-16878132241294262
bibr13-16878132241294262
bibr11-16878132241294262
bibr21-16878132241294262
bibr29-16878132241294262
bibr49-16878132241294262
bibr39-16878132241294262
bibr8-16878132241294262
bibr18-16878132241294262
bibr2-16878132241294262
bibr28-16878132241294262
bibr22-16878132241294262
bibr32-16878132241294262
References_xml – volume: 9
  start-page: e83153
  year: 2014
  article-title: Effect of Joule heating and thermal radiation in flow of third grade fluid over radiative surface
  publication-title: PLoS One
– volume: 9
  start-page: e17665
  year: 2023
  article-title: Enhancement in the efficiency of heat recovery in a Williamson hybrid nanofluid over a vertically thin needle with entropy generation
  publication-title: Heliyon
– volume: 2024
  start-page: 19
  year: 2024
  end-page: 33
  article-title: Utlization of generalized heat flux model on thermal transport of Powell-Eyring model via oham with heat geneartion aspects: thermal transport of Powell-Eyring model
  publication-title: Babylonian J Math
– volume: 10
  start-page: 222
  year: 2021
  end-page: 231
  article-title: Mathematical analysis of thermal energy distribution in a hybridized mixed convective flow
  publication-title: J Nanofluids
– volume: 571
  start-page: 170587
  year: 2023
  article-title: Numerical treatment of hybrid water based nanofluid flow with effect of dissipation and Joule heating over a shrinking surface: stability analysis
  publication-title: J Magn Magn Mater
– volume: 10
  start-page: 1221
  year: 2022
  article-title: MHD Williamson nanofluid fluid flow and heat transfer past a non-linear stretching sheet implanted in a porous medium: effects of heat generation and viscous dissipation
  publication-title: Processes
– volume: 4
  start-page: e00825
  year: 2018
  article-title: Radiative MHD thin film flow of Williamson fluid over an unsteady permeable stretching sheet
  publication-title: Heliyon
– volume: 51
  start-page: 687
  year: 2021
  end-page: 697
  article-title: Bio-convectional nanofluid flow due to the thermophoresis and gyrotactic microorganism between the gap of a disk and cone
  publication-title: Braz J Phys
– volume: 14
  start-page: 1572
  year: 2024
  end-page: 1582
  article-title: OHAM analysis on bio-convective flow of partial differential equations of Casson nanofluid under thermal radiation impact past over a stretching sheet
  publication-title: Bionanoscience
– volume: 11
  start-page: 1687814019833510
  year: 2019
  article-title: An optimal analysis for Darcy–Forchheimer three-dimensional Williamson nanofluid flow over a stretching surface with convective conditions
  publication-title: Adv Mech Eng
– volume: 131
  start-page: 1
  year: 2016
  end-page: 9
  article-title: Thermophoresis and Brownian effects on the Blasius flow of a nanofluid due to a curved surface with thermal radiation
  publication-title: Eur Phys J Plus
– volume: 31
  start-page: 1172
  year: 2021
  end-page: 1189
  article-title: Magneto-thermal-convection stability in an inclined cylindrical annulus filled with a molten metal
  publication-title: Int J Numer Methods Heat Fluid Flow
– volume: 15
  start-page: 2003
  year: 2010
  end-page: 2016
  article-title: An optimal homotopy-analysis approach for strongly nonlinear differential equations
  publication-title: Commun Nonlinear Sci Numer Simul
– volume: 7
  start-page: 369
  year: 2017
  article-title: Heat transfer investigation of the unsteady thin film flow of Williamson fluid past an inclined and oscillating moving plate
  publication-title: Appl Sci
– volume: 8
  start-page: 1124
  year: 2018
  end-page: 1130
  article-title: Chemical reaction for Carreau-Yasuda nanofluid flow past a nonlinear stretching sheet considering Joule heating
  publication-title: Results Phys
– volume: 11
  start-page: 16067
  year: 2021
  article-title: Entropy optimized dissipative flow of hybrid nanofluid in the presence of non-linear thermal radiation and Joule heating
  publication-title: Sci Rep
– volume: 40
  start-page: 1
  year: 2018
  end-page: 10
  article-title: Heat and mass diffusions for Casson nanofluid flow over a stretching surface with variable viscosity and convective boundary conditions
  publication-title: J Braz Soc Mech Sci Eng
– volume: 6
  start-page: 240
  year: 2024
  article-title: Engagement of modified heat and mass fluxes on thermally radiated boundary layer flow past over a stretched sheet via OHAM analysis
  publication-title: Discov Appl Sci
– volume: 7
  start-page: 1899
  year: 2017
  end-page: 1906
  article-title: Modeling and simulation for 3D magneto Eyring–Powell nanomaterial subject to nonlinear thermal radiation and convective heating
  publication-title: Results Phys
– volume: 7
  start-page: 64844
  year: 2019
  end-page: 64855
  article-title: Hall effect on couple stress 3D nanofluid flow over an exponentially stretched surface with Cattaneo Christov heat flux model
  publication-title: IEEE Access
– volume: 97
  start-page: 1277
  year: 2019
  end-page: 1287
  article-title: Analysis on flow features of unsteady Williamson fluid inaugurated by melted wedge in the presence of heat generation–absorption: an extensive computational study
  publication-title: Can J Phys
– volume: 22
  start-page: 18
  year: 2019
  article-title: Entropy generation and consequences of binary chemical reaction on MHD Darcy–Forchheimer Williamson nanofluid flow over non-linearly stretching surface
  publication-title: Entropy
– year: 2024
  article-title: Study of bioconvection phenomenon in Jefferey model in a Darcy-Forchheimer porous medium
  publication-title: Bionanoscience
– year: 2022
  article-title: Nonlinear mixed convection couple stress tri-hybrid nanofluids flow in a Darcy–Forchheimer porous medium over a nonlinear stretching surface
  publication-title: Waves Random Complex Media
– volume: 12
  start-page: 5445
  year: 2022
  article-title: Analytic simulation of thermophoretic second grade fluid flow past a vertical surface with variable fluid characteristics and convective heating
  publication-title: Sci Rep
– volume: 135
  start-page: 33
  year: 2016
  end-page: 42
  article-title: Numerical study of a thermal convection induced by a purely internal heating in a rotating medium saturated by a radiating nanofluid
  publication-title: Int J Comput Appl
– volume: 15
  start-page: 1684
  year: 2023
  article-title: Bio-convection effects of MHD Williamson fluid flow over a symmetrically stretching sheet: machine learning
  publication-title: Symmetry
– volume: 6
  start-page: 035101
  year: 2016
  article-title: Numerical solution of Williamson fluid flow past a stretching cylinder and heat transfer with variable thermal conductivity and heat generation/absorption
  publication-title: AIP Adv
– volume: 3
  start-page: 78
  year: 2021
  article-title: Bioconvection Casson nanofluid flow together with Darcy-Forchheimer due to a rotating disk with thermal radiation and Arrhenius activation energy
  publication-title: SN Appl Sci
– volume: 9
  start-page: 1
  year: 2017
  end-page: 5
  article-title: MHD flow and heat transfer of an Eyring-Powell fluid over a linear stretching sheet with viscous dissipation-a numerical study
  publication-title: Front Heat Mass Transf
– volume: 102
  start-page: e202100117
  year: 2022
  article-title: Mixed convective Williamson nanofluid flow over a rotating disk with zero mass flux
  publication-title: Z Angew Math Mech
– volume: 50
  start-page: 2168
  year: 2021
  end-page: 2196
  article-title: MHD bioconvection Darcy-Forchheimer flow of Casson nanofluid over a rotating disk with entropy optimization
  publication-title: Heat Transf
– volume: 15
  start-page: 1170
  year: 2019
  end-page: 1189
  article-title: Heat transport in the convective Casson fluid flow with homogeneous–heterogeneous reactions in Darcy–Forchheimer medium
  publication-title: Multidiscipline Model Mater Struct
– volume: 12
  start-page: 22646
  year: 2022
  article-title: Significance of thermal radiation and bioconvection for Williamson nanofluid transportation owing to cone rotation
  publication-title: Sci Rep
– volume: 23
  start-page: 100887
  year: 2021
  article-title: Thermal transport of radiative Williamson fluid over stretchable curved surface
  publication-title: Therm Sci Eng Prog
– volume: 3
  start-page: 015030
  year: 2021
  article-title: The impact of magnetohydrodynamic on bioconvection nanofluid flow with viscous dissipation and joule heating effects
  publication-title: Eng Res Express
– volume: 126
  start-page: 941
  year: 2018
  end-page: 948
  article-title: Change in viscosity of Williamson nanofluid flow due to thermal and solutal stratification
  publication-title: Int J Heat Mass Transf
– volume: 9
  start-page: 248
  year: 2019
  article-title: Three-dimensional Casson nanofluid thin film flow over an inclined rotating disk with the impact of heat generation/consumption and thermal radiation
  publication-title: Coatings
– volume: 132
  start-page: 344
  year: 2018
  end-page: 354
  article-title: Simultaneous effects of melting heat and internal heat generation in stagnation point flow of Jeffrey fluid towards a nonlinear stretching surface with variable thickness
  publication-title: Int J Therm Sci
– volume: 411
  start-page: 126502
  year: 2021
  article-title: Bidirectional non-linear stretched flow of Williamson nanofluid with swimming of motile gyrotactic microorganisms
  publication-title: Appl Math Comput
– volume: 100
  start-page: 100845
  year: 2023
  article-title: MHD Williamson micropolar fluid flow pasting a non-linearly stretching sheet under the presence of non linear heat generation/absorption
  publication-title: J Indian Chem Soc
– volume: 132
  start-page: 1
  year: 2017
  end-page: 20
  article-title: Thermophoresis and thermal radiation with heat and mass transfer in a magnetohydrodynamic thin-film second-grade fluid of variable properties past a stretching sheet
  publication-title: Eur Phys J Plus
– year: 2022
  article-title: Application of Arrhenius chemical process on unsteady mixed bio-convective flows of third-grade fluids having temperature-dependent in thermo-rheological properties
  publication-title: Waves Random Complex Media
– volume: 15
  year: 2023
  article-title: Significance of thermophoresis and Brownian motion on a reactive Casson-Williamson nanofluid past a vertical moving cylinder
  publication-title: Comput Therm Sci
– volume: 61
  start-page: 8715
  year: 2022
  end-page: 8727
  article-title: Impact of activation energy and MHD on Williamson fluid flow in the presence of bioconvection
  publication-title: Alex Eng J
– volume: 43
  start-page: 6542
  year: 2022
  end-page: 6552
  article-title: Unsteady three dimensional bioconvective flow of Maxwell nanofluid over an exponentially stretching sheet with variable thermal conductivity and chemical reaction
  publication-title: Int J Ambient Energy
– volume: 21
  start-page: 1108
  year: 1929
  end-page: 1111
  article-title: The flow of pseudoplastic materials
  publication-title: Ind Eng Chem
– volume: 17
  start-page: 20180118
  year: 2018
  article-title: Three-dimensional hydromagnetic convective flow of chemically reactive Williamson fluid with non-uniform heat absorption and generation
  publication-title: Int J Chem Reactor Eng
– volume: 11
  start-page: 14509
  year: 2021
  article-title: Estimation of unsteady hydromagnetic Williamson fluid flow in a radiative surface through numerical and artificial neural network modeling
  publication-title: Sci Rep
– volume: 96
  start-page: 065210
  year: 2021
  article-title: Flow and heat transfer investigation of bio–convective hybrid nanofluid with triple stratification effects
  publication-title: Phys Scr
– ident: bibr8-16878132241294262
  doi: 10.1016/j.heliyon.2023.e17665
– ident: bibr26-16878132241294262
  doi: 10.1080/17455030.2021.2023781
– ident: bibr37-16878132241294262
  doi: 10.1615/ComputThermalScien.2022041799
– ident: bibr15-16878132241294262
  doi: 10.1108/MMMS-11-2018-0202
– ident: bibr6-16878132241294262
  doi: 10.1002/zamm.202100117
– ident: bibr31-16878132241294262
  doi: 10.1063/1.4943398
– ident: bibr25-16878132241294262
  doi: 10.1007/s13538-021-00888-6
– ident: bibr41-16878132241294262
  doi: 10.1021/ie50239a035
– ident: bibr7-16878132241294262
  doi: 10.1016/j.tsep.2021.100887
– ident: bibr50-16878132241294262
  doi: 10.1109/ACCESS.2019.2916162
– ident: bibr22-16878132241294262
  doi: 10.1088/2631-8695/abe7be
– ident: bibr36-16878132241294262
  doi: 10.1140/epjp/i2016-16214-4
– ident: bibr5-16878132241294262
  doi: 10.1038/s41598-021-93790-9
– ident: bibr49-16878132241294262
  doi: 10.1016/j.cnsns.2009.09.002
– ident: bibr47-16878132241294262
  doi: 10.58496/BJM/2024/003
– ident: bibr3-16878132241294262
  doi: 10.3390/app7040369
– volume: 9
  start-page: 1
  year: 2017
  ident: bibr42-16878132241294262
  publication-title: Front Heat Mass Transf
– ident: bibr18-16878132241294262
  doi: 10.1166/jon.2021.1778
– ident: bibr45-16878132241294262
  doi: 10.1007/s42452-024-05833-1
– ident: bibr4-16878132241294262
  doi: 10.3390/e22010018
– ident: bibr16-16878132241294262
  doi: 10.1080/01430750.2022.2029765
– ident: bibr23-16878132241294262
  doi: 10.1002/htj.21973
– ident: bibr30-16878132241294262
  doi: 10.1038/s41598-021-95604-4
– ident: bibr13-16878132241294262
  doi: 10.1080/17455030.2022.2077471
– volume: 411
  start-page: 126502
  year: 2021
  ident: bibr9-16878132241294262
  publication-title: Appl Math Comput
– ident: bibr24-16878132241294262
  doi: 10.1007/s42452-020-04007-z
– ident: bibr29-16878132241294262
  doi: 10.1016/j.rinp.2018.01.018
– ident: bibr46-16878132241294262
  doi: 10.1007/s12668-024-01412-1
– ident: bibr28-16878132241294262
  doi: 10.1016/j.jmmm.2023.170587
– ident: bibr38-16878132241294262
  doi: 10.1016/j.aej.2022.02.013
– ident: bibr17-16878132241294262
  doi: 10.1088/1402-4896/abf305
– ident: bibr10-16878132241294262
  doi: 10.1016/j.ijheatmasstransfer.2018.05.074
– ident: bibr20-16878132241294262
  doi: 10.1140/epjp/i2017-11277-3
– ident: bibr43-16878132241294262
  doi: 10.1016/j.ijthermalsci.2018.05.047
– ident: bibr11-16878132241294262
  doi: 10.1007/s40430-018-1415-y
– ident: bibr39-16878132241294262
  doi: 10.1038/s41598-022-27118-6
– ident: bibr48-16878132241294262
  doi: 10.1007/s12668-024-01329-9
– ident: bibr32-16878132241294262
  doi: 10.1139/cjp-2018-0531
– ident: bibr27-16878132241294262
  doi: 10.1371/journal.pone.0083153
– ident: bibr33-16878132241294262
  doi: 10.1515/ijcre-2018-0118
– ident: bibr44-16878132241294262
  doi: 10.1016/j.rinp.2017.06.002
– ident: bibr40-16878132241294262
  doi: 10.3390/sym15091684
– volume: 135
  start-page: 33
  year: 2016
  ident: bibr19-16878132241294262
  publication-title: Int J Comput Appl
– ident: bibr14-16878132241294262
  doi: 10.1108/HFF-05-2020-0321
– ident: bibr21-16878132241294262
  doi: 10.3390/coatings9040248
– ident: bibr1-16878132241294262
  doi: 10.1016/j.heliyon.2018.e00825
– ident: bibr12-16878132241294262
  doi: 10.1038/s41598-022-09301-x
– ident: bibr35-16878132241294262
  doi: 10.1016/j.jics.2022.100845
– ident: bibr2-16878132241294262
  doi: 10.1177/1687814019833510
– ident: bibr34-16878132241294262
  doi: 10.3390/pr10061221
SSID ssib050600699
ssj0000395696
ssib044728254
ssib023771143
Score 2.3242998
Snippet In current paper, we considered the 3-D occurrence of magneto Williamson fluid subjected to linear penetrating expanding sheet. The Williamson liquid is taken...
SourceID doaj
proquest
crossref
sage
SourceType Open Website
Aggregation Database
Index Database
Publisher
SubjectTerms Constraints
Convection heating
Density
Drag
Energy distribution
Fluid flow
Force distribution
Heat generation
Mass transport
Ohmic dissipation
Organisms
Peclet number
Resistance heating
Temperature gradients
Thermophoresis
Three dimensional flow
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fSxwxEA5VX_RBtFa8qiUPhYKwuJtkk9yTqD2RQq2UCr4tm18q6O719kT8F_yrncll9UTa1ySEkJnMfJNkviHkq8cyR9rVYP2MygD_u0yLos4s4xAc6NwLhsnJP8_k6YX4cVlepgu3Ln2r7G1iNNSutXhHvs8LLkrwRSw_GP_NsGoUvq6mEhoLZAlMsIbga-lodHb-u9coxpUq5gjshFCYq_migciul8sEyKPt5hAvxKJehYTTpyFWS0-hyNKEbdgEXo8Nkcr9jTOLnP9vgOrc37Dork7WyGrCmfRwphjr5INvPpKVOfbBDfL0C8zFHQy6xh957fjG0m7GVftIAcpShIbYXTeO3gHGptOeCJ3eNLS_qGkbGqvp0HDbPtDz76OOYl7ahKKVp1eR1RqFv1-brp1EAxVnhBXe-jgIFvOJXJyM_hyfZqk0Q2a54tPMCau5CNx6rbzP69LasoRGZaTWXuS1t0YK7wx0MGOCgm0tvS6Nc0x67fkmWWzaxm8RaoZhaELuLAM0k0ttuGBODAtucyuUlgOy1-9xNZ4xcFRFIil_J5ABOUIpvAxE8uzY0E6uqnQWqyCYkU7qoDwTpTE1glBVmwChaVHYMCA7vQyrdKK76lX_BuQbyvW165-r-fz_ibbJMgOINMts3CGL08m93wWIMzVfkh4_A-lT8pw
  priority: 102
  providerName: ProQuest
– databaseName: Sage Open Access Journals (Free internet resource, activated by CARLI)
  dbid: AFRWT
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3daxQxEA-1fdEH8RNPq-RBEIT1dvN9T1K1RxH8QCz2bdl81UJvt9ztUfov9K92Jps9r6jgaxLCkExmfpNkfkPIy4BljoxvwPpZXQD-94URVVM4xiE4MGUQDJOTP31WR8fi44k82SHdmAuTV3D1Br9VgUTJWOPpxtvoaX5knFbKaINxlAB3hZzqb9f9oh6uu8eqGtiC79PrBT5tO_wQeVWM6W23yB7TSsJJ3juYf_uxOQKMa11tMd4JoTG5c6OySMdXqozgk7HnEGCkKmAoU4FC5bfTv8p5w_ulIgE3kO3WZ7Lk3-b3yN0MTOnBoEn3yU5oH5A7W3SFD8n1F7AvCxj0E7_wdRdnjq4GctsrCtiXIpbE7qb1dAGgnPYjczo9a-l4s9O1NJXfofG8u6RfPxyuKCayLSm6BXqaaLBRW6aNXXXLZNHSjCDheUiDQJhH5Hh--P39UZFrORSOa94XXjjDReQuGB1C2UjnpIRGbZUxQZRNcFaJ4C10MGujhmWVwUjrPVPBBP6Y7LZdG54QamdxZmPpHQP4UypjuWBezCruSie0URPyelzj-mKg7KirzGr-x4ZMyDvchc1AZNtODd3ytM6Ht46CWeWViTowIa1tELXqxkaIZavKxQnZH_ewHhW45hUXEsATKyfkFe7r765_SvP0v0c-I7cZwKshK3Kf7PbLdXgO8Ki3L7JK_wJi8gUB
  priority: 102
  providerName: SAGE Publications
Title Optimal homotopic strategy for thermal and mass transport in Williamson model flow PDEs under heat generation/absorption and Joule heating
URI https://journals.sagepub.com/doi/full/10.1177/16878132241294262
https://www.proquest.com/docview/3134524420
https://doaj.org/article/f42b6d68f7e245bba35227abf10411cf
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dSxwxEB-svrQP0tqWntojD4JQWNxNsknuUdu7iuAHotS3ZfNVBd2VuyvFf8G_2pnsXntSSl_6tJAMy5CZzPxmN_kNwE6gNkfG1xj9rM4Q__vMyKLOHBdYHJg8SE6Xk49P1OGlPLoqr5ZafdGZsI4euFu4vSi5VV6ZqAOXpbU1IQZd24h1RFG4SNEXc95SMZVisEDcP1L9b0xiWCqU0YZKL4kZjmjYnyWixNf_DGQunetKqWbyGtZ7jMj2O93ewEpoNuDVEnPgW3g8xa1-h0LXdJquvb9xbNbxzD4whKGMYB1N141nd4iP2XxBYs5uGrb4yNI2LHXCYfG2_cnOvoxnjO6UTRlFaPY9MVKT4fZqO2unKbikN6KGtyEJoTLv4HIyvvh8mPVtFTIntJhnXjojZBQuGB1CXpfOlSUOaquMCTKvg7NKBm9xglsbNS5lGUxpvecqmCDew2rTNuEDMDuKIxtz7zgikVwZKyT3clQIlzupjRrAp8UaV_cde0ZV9ATjfxhkAAdkhV-CRHydBtAdqt4dqn-5wwC2Fzas-t04q0QhZIk4hucD2CW7_p76qzab_0ObLXjJEQR1dxe3YXU-_RE-IoiZ2yG8MJOvQ1jbn5x_u8Dnwfjk7HyYvPgJZqTxug
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOQCHiqe6tIAPICSkqInt2M4BIaBdtvQBh1bqLcSvUqlNls2iqn-BH8NvZMZJ2q0Q3Hq1rZGVGc9843i-IeSlxzZH2lXg_YxKAP-7RIusSizjkBzo1AuGxcl7-3JyKD4f5UdL5PdQC4PPKgefGB21ayzekW_wjIscYhFL301_JNg1Cv-uDi00OrPY8RfnkLK1b7c3Qb-vGBtvHXycJH1XgcRyxeeJE1ZzEbj1WnmfVrm1eQ6DykitvUgrb40U3hmYYMYEBRlE7nVunGPSa89B7i1yW3Be4InS40-D_TKuVLZAlyeEwsrQS3tHLr9U9vA_RgoOsmMLsUzCWdeQGfY_XpETCsdwCGIsK5A4_lrojB0GrsHihZdoMTiO75OVHtXS950ZPiBLvn5I7i1wHT4iv76AczqDRd_x_V8zPbG07ZhxLygAZ4pAFKer2tEzQPR0PtCu05OaDtdCTU1j7x4aTptz-nVzq6VYBTejGFPoceTQRlPbqEzbzKI7jBJhh6c-LoLNPCaHN6KyJ2S5bmq_SqgpQmFC6iwD7JRKbbhgThQZt6kVSssReTN843La8X2UWU-J_pdCRuQDauFyIVJ1x4Fmdlz2J78MghnppA7KM5EbUyHkVZUJkAhnmQ0jsj7osOz9R1teWfuIvEa9Xk39czdP_y_oBbkzOdjbLXe393fWyF0G4KyrqVwny_PZT_8MwNXcPI8WTcm3mz5CfwAVaTEd
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1faxQxEA_1CqIP4l96WjUPiiAst5tkk9yDiPXuaK2eh1jo27r5Vwvt7nl7UvoV_Eh-Omdyu-0V0be-JiGEncnMb7IzvyHkhcc2R9qVYP2MSgD_u0SLrEws4xAc6NQLhsXJn6Zy90B8OMwPN8jvrhYG0yo7mxgNtastvpEPeMZFDr6IpYPQpkXMRpO38x8JdpDCP61dO42Viuz78zMI35o3eyOQ9UvGJuOv73eTtsNAYrniy8QJq7kI3HqtvE_L3No8h0FlpNZepKW3RgrvDEwwY4KCaCL3OjfOMem157DvDbKpICpKe2RzZzydfem0mXGlsjXyPCEU1oleaD8y-6WyDQai3-Cwe2wolkm4-RrixPY3LDJE4RgOgcdlQ6SRv-JIY7-BKyB5LS8tusrJXXKnxbj03Uop75ENX90nt9eYDx-QX5_BVJ3Cou-YDVjPjy1tVjy55xRgNEVYitNl5egp4Hu67EjY6XFFu0eiuqKxkw8NJ_UZnY3GDcWauAVFD0OPIqM2Kt6gNE29iMYx7ggnPPFxERzmITm4FqE9Ir2qrvwWoWYYhiakzjJAUqnUhgvmxDDjNrVCadknr7tvXMxX7B9F1hKk_yWQPtlBKVwsROLuOFAvjorWDhRBMCOd1EF5JnJjSgTAqjQBwuIss6FPtjsZFq01aYpL3e-TVyjXy6l_nubx_zd6Tm7C9Sk-7k33n5BbDJDaqsBym_SWi5_-KSCtpXnWqjQl3677Fv0BoiY2rw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimal+homotopic+strategy+for+thermal+and+mass+transport+in+Williamson+model+flow+PDEs+under+heat+generation%2Fabsorption+and+Joule+heating&rft.jtitle=Advances+in+mechanical+engineering&rft.au=Sana+Akbar&rft.au=Muhammad+Sohail&rft.au=Syed+Tehseen+Abbas&rft.au=Nacer+Badi&rft.date=2024-11-01&rft.pub=SAGE+Publishing&rft.eissn=1687-8140&rft.volume=16&rft_id=info:doi/10.1177%2F16878132241294262&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_f42b6d68f7e245bba35227abf10411cf
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1687-8132&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1687-8132&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1687-8132&client=summon