Optimal homotopic strategy for thermal and mass transport in Williamson model flow PDEs under heat generation/absorption and Joule heating
In current paper, we considered the 3-D occurrence of magneto Williamson fluid subjected to linear penetrating expanding sheet. The Williamson liquid is taken into account under the essence of bio convection bordering with Joule heating, heat production. Moreover, Brownian movement combined with the...
Saved in:
Published in | Advances in mechanical engineering Vol. 16; no. 11 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
London, England
SAGE Publications
01.11.2024
Sage Publications Ltd SAGE Publishing |
Subjects | |
Online Access | Get full text |
ISSN | 1687-8132 1687-8140 |
DOI | 10.1177/16878132241294262 |
Cover
Loading…
Abstract | In current paper, we considered the 3-D occurrence of magneto Williamson fluid subjected to linear penetrating expanding sheet. The Williamson liquid is taken into account under the essence of bio convection bordering with Joule heating, heat production. Moreover, Brownian movement combined with thermophoresis diffusion was also analyzed in current study. Central PDEs are modified into system of ODEs on the basis of appropriate similarity transformation utilization. For solution purpose, an optimal approach namely HAM was opted. The critical review based on all involved multifarious constraints across the non- dimensional velocity contour
(
along
x
−
axes
and
also
y
−
axes
)
,
energy and concentration distribution. Moreover, across the motile organism distribution was also conducted graphically and depicts total covenant with the former published research work. The drag force effect, Nusselt number, Sherwood number, and motile organism density in tabular form is also proposed in this study. Moreover, Motile organism profile graphically demonstrates decreased demeanor for considered bio convection Lewis number, Peclet number, and also temperature difference constraint whereas results of motile organism density augmented in tabular version for the considered bio convection Lewis number, Peclet number, and also temperature difference constraint. |
---|---|
AbstractList | In current paper, we considered the 3-D occurrence of magneto Williamson fluid subjected to linear penetrating expanding sheet. The Williamson liquid is taken into account under the essence of bio convection bordering with Joule heating, heat production. Moreover, Brownian movement combined with thermophoresis diffusion was also analyzed in current study. Central PDEs are modified into system of ODEs on the basis of appropriate similarity transformation utilization. For solution purpose, an optimal approach namely HAM was opted. The critical review based on all involved multifarious constraints across the non- dimensional velocity contour [Formula: see text] energy and concentration distribution. Moreover, across the motile organism distribution was also conducted graphically and depicts total covenant with the former published research work. The drag force effect, Nusselt number, Sherwood number, and motile organism density in tabular form is also proposed in this study. Moreover, Motile organism profile graphically demonstrates decreased demeanor for considered bio convection Lewis number, Peclet number, and also temperature difference constraint whereas results of motile organism density augmented in tabular version for the considered bio convection Lewis number, Peclet number, and also temperature difference constraint. In current paper, we considered the 3-D occurrence of magneto Williamson fluid subjected to linear penetrating expanding sheet. The Williamson liquid is taken into account under the essence of bio convection bordering with Joule heating, heat production. Moreover, Brownian movement combined with thermophoresis diffusion was also analyzed in current study. Central PDEs are modified into system of ODEs on the basis of appropriate similarity transformation utilization. For solution purpose, an optimal approach namely HAM was opted. The critical review based on all involved multifarious constraints across the non- dimensional velocity contour ( along x − axes and also y − axes ), energy and concentration distribution. Moreover, across the motile organism distribution was also conducted graphically and depicts total covenant with the former published research work. The drag force effect, Nusselt number, Sherwood number, and motile organism density in tabular form is also proposed in this study. Moreover, Motile organism profile graphically demonstrates decreased demeanor for considered bio convection Lewis number, Peclet number, and also temperature difference constraint whereas results of motile organism density augmented in tabular version for the considered bio convection Lewis number, Peclet number, and also temperature difference constraint. In current paper, we considered the 3-D occurrence of magneto Williamson fluid subjected to linear penetrating expanding sheet. The Williamson liquid is taken into account under the essence of bio convection bordering with Joule heating, heat production. Moreover, Brownian movement combined with thermophoresis diffusion was also analyzed in current study. Central PDEs are modified into system of ODEs on the basis of appropriate similarity transformation utilization. For solution purpose, an optimal approach namely HAM was opted. The critical review based on all involved multifarious constraints across the non- dimensional velocity contour ( along x − axes and also y − axes ) , energy and concentration distribution. Moreover, across the motile organism distribution was also conducted graphically and depicts total covenant with the former published research work. The drag force effect, Nusselt number, Sherwood number, and motile organism density in tabular form is also proposed in this study. Moreover, Motile organism profile graphically demonstrates decreased demeanor for considered bio convection Lewis number, Peclet number, and also temperature difference constraint whereas results of motile organism density augmented in tabular version for the considered bio convection Lewis number, Peclet number, and also temperature difference constraint. |
Author | Sohail, Muhammad Abbas, Syed Tehseen Akbar, Sana Badi, Nacer |
Author_xml | – sequence: 1 givenname: Sana surname: Akbar fullname: Akbar, Sana – sequence: 2 givenname: Muhammad orcidid: 0000-0002-1490-0339 surname: Sohail fullname: Sohail, Muhammad email: muhammad_sohail111@yahoo.com – sequence: 3 givenname: Syed Tehseen surname: Abbas fullname: Abbas, Syed Tehseen – sequence: 4 givenname: Nacer surname: Badi fullname: Badi, Nacer |
BookMark | eNp1kU1LHDEYxwexUGv9AL0Fel7Ne7JHsba1CHqw9Djk5clsZCaZJlmKX8FP3dndYg_iKQ__l18Sng_dccoJuu4TweeEKHVBpFaaMEo5oWtOJT3qTnbaShOOj19mRt93Z7VGiwWWGMv1-qR7vptbnMyINnnKLc_RodqKaTA8oZALahsoO9skjyZTK1rMVOdcGooJ_YrjGM1Uc0JT9jCiMOY_6P7LdUXb5KGgDZiGBkiwIGNOF8bWXObduCf-yNsR9qGYho_du2DGCmf_ztPu59frh6vvq9u7bzdXl7crxxRrK8-dZjwwB1oBYCOcE2IRlZVaA8cGnJUcvF0Mam1QayEFaGG9pxI0sNPu5sD12Tz2c1m-X576bGK_F3IZelNadCP0gVMrvdRBAeXCWsMEpcrYQDAnxIWF9fnAmkv-vYXa-se8LWl5fs8I44JyTvGSIoeUK7nWAuHlVoL73Qb7VxtcOueHTjUD_Ke-XfgLYoGgKQ |
Cites_doi | 10.1016/j.heliyon.2023.e17665 10.1080/17455030.2021.2023781 10.1615/ComputThermalScien.2022041799 10.1108/MMMS-11-2018-0202 10.1002/zamm.202100117 10.1063/1.4943398 10.1007/s13538-021-00888-6 10.1021/ie50239a035 10.1016/j.tsep.2021.100887 10.1109/ACCESS.2019.2916162 10.1088/2631-8695/abe7be 10.1140/epjp/i2016-16214-4 10.1038/s41598-021-93790-9 10.1016/j.cnsns.2009.09.002 10.58496/BJM/2024/003 10.3390/app7040369 10.1166/jon.2021.1778 10.1007/s42452-024-05833-1 10.3390/e22010018 10.1080/01430750.2022.2029765 10.1002/htj.21973 10.1038/s41598-021-95604-4 10.1080/17455030.2022.2077471 10.1007/s42452-020-04007-z 10.1016/j.rinp.2018.01.018 10.1007/s12668-024-01412-1 10.1016/j.jmmm.2023.170587 10.1016/j.aej.2022.02.013 10.1088/1402-4896/abf305 10.1016/j.ijheatmasstransfer.2018.05.074 10.1140/epjp/i2017-11277-3 10.1016/j.ijthermalsci.2018.05.047 10.1007/s40430-018-1415-y 10.1038/s41598-022-27118-6 10.1007/s12668-024-01329-9 10.1139/cjp-2018-0531 10.1371/journal.pone.0083153 10.1515/ijcre-2018-0118 10.1016/j.rinp.2017.06.002 10.3390/sym15091684 10.1108/HFF-05-2020-0321 10.3390/coatings9040248 10.1016/j.heliyon.2018.e00825 10.1038/s41598-022-09301-x 10.1016/j.jics.2022.100845 10.1177/1687814019833510 10.3390/pr10061221 |
ContentType | Journal Article |
Copyright | The Author(s) 2024 The Author(s) 2024. This work is licensed under the Creative Commons Attribution License https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2024 – notice: The Author(s) 2024. This work is licensed under the Creative Commons Attribution License https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AFRWT AAYXX CITATION 7TB 8FD 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU DWQXO FR3 H8D HCIFZ L6V L7M M7S PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS DOA |
DOI | 10.1177/16878132241294262 |
DatabaseName | Sage Open Access Journals (Free internet resource, activated by CARLI) CrossRef Mechanical & Transportation Engineering Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials - QC ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Engineering Research Database Aerospace Database SciTech Premium Collection ProQuest Engineering Collection Advanced Technologies Database with Aerospace Engineering Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Aerospace Database ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: AFRWT name: Sage Open Access Journals (Free internet resource, activated by CARLI) url: http://journals.sagepub.com/ sourceTypes: Publisher – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1687-8140 |
ExternalDocumentID | oai_doaj_org_article_f42b6d68f7e245bba35227abf10411cf 10_1177_16878132241294262 10.1177_16878132241294262 |
GroupedDBID | .DC 0R~ 188 23M 2UF 2WC 4.4 54M 5GY 5VS 8FE 8FG 8R4 8R5 AAJPV AASGM ABAWP ABJCF ABQXT ACGFS ACIWK ACROE ADBBV ADOGD AEDFJ AENEX AEUHG AEWDL AFCOW AFKRA AFKRG AFRWT AINHJ AJUZI ALMA_UNASSIGNED_HOLDINGS AUTPY AYAKG BCNDV BDDNI BENPR BGLVJ C1A CAHYU CCPQU CNMHZ E3Z EBS EJD GROUPED_DOAJ H13 HCIFZ IAO IEA IL9 ITC J8X K.F KQ8 L6V M7S O9- OK1 PHGZM PHGZT PIMPY PTHSS Q2X RHU ROL SAUOL SCDPB SCNPE SFC TR2 UGNYK AAYXX ACHEB CITATION 7TB 8FD ABUWG AZQEC DWQXO FR3 H8D L7M PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PUEGO |
ID | FETCH-LOGICAL-c373t-d4c834f3ce87ee0a5cc55d4c7b688e40aecb64edb5cc2bbf79565e85bdd26e8e3 |
IEDL.DBID | DOA |
ISSN | 1687-8132 |
IngestDate | Wed Aug 27 01:31:24 EDT 2025 Fri Jul 25 12:22:46 EDT 2025 Tue Jul 01 05:25:44 EDT 2025 Tue Jun 17 22:31:00 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Keywords | MHD Williamson Nano fluid bio-convection Joule heating Brownian movement and also thermophoresis diffusion Joule heating |
Language | English |
License | This article is distributed under the terms of the Creative Commons Attribution 4.0 License (https://creativecommons.org/licenses/by/4.0/) which permits any use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c373t-d4c834f3ce87ee0a5cc55d4c7b688e40aecb64edb5cc2bbf79565e85bdd26e8e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-1490-0339 |
OpenAccessLink | https://doaj.org/article/f42b6d68f7e245bba35227abf10411cf |
PQID | 3134524420 |
PQPubID | 237349 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_f42b6d68f7e245bba35227abf10411cf proquest_journals_3134524420 crossref_primary_10_1177_16878132241294262 sage_journals_10_1177_16878132241294262 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20241100 2024-11-00 20241101 2024-11-01 |
PublicationDateYYYYMMDD | 2024-11-01 |
PublicationDate_xml | – month: 11 year: 2024 text: 20241100 |
PublicationDecade | 2020 |
PublicationPlace | London, England |
PublicationPlace_xml | – name: London, England – name: New York |
PublicationTitle | Advances in mechanical engineering |
PublicationYear | 2024 |
Publisher | SAGE Publications Sage Publications Ltd SAGE Publishing |
Publisher_xml | – name: SAGE Publications – name: Sage Publications Ltd – name: SAGE Publishing |
References | Ali, Abbas, Sohail 2024 Gul, Ahmed, Jawad 2021; 51 Gul, Khan, Islam 2017; 7 Wakif, Boulahia, Sehaqui 2016; 135 Dawar, Shah, Islam 2019; 11 Rasool, Wang, Yashkun 2023; 571 Khan, Shahid, Malik 2018; 8 Asjad, Zahid, Inc 2022; 61 Khan, Salahuddin, Malik 2018; 126 Awais, Bilal, Ur Rehman 2019; 97 Bilal, Sohail, Naz 2019; 15 Shafiq, Çolak, Sindhu 2021; 11 Khan, Shahid, Salahuddin 2018; 40 Khan, Ahmad, Wang 2023; 9 Shah, Dawar, Nasir 2022 Liao 2010; 15 Raza, Mabood, Naz 2021; 23 Shah, Dawar, Alzahrani 2019; 7 Rafique, Ilyas, Sohail 2024; 2024 Khan, Gul, Islam 2017; 132 Shah, Yook, Tosin 2022; 12 Jawad, Saeed, Bilal 2021; 3 Khan, Irfan, Khan 2017; 7 Priyadharshini, Karpagam, Shah 2023; 15 Shah, Bonyah, Islam 2018; 4 Hayat, Shafiq, Alsaedi 2014; 9 Sohail, Ilyas, Rafique 2024; 14 Malik, Bibi, Khan 2016; 6 Mebarek-Oudina, Bessaih, Mahanthesh 2021; 31 Jawad, Saeed, Khan 2021; 50 Ahmad, Nadeem, Rehman 2021; 10 Khan, Ahmad, Nadeem 2021; 96 Song, Khan, Khan 2021; 411 Naveed, Abbas, Sajid 2016; 131 Obalalu, Olayemi, Odetunde 2023; 15 Gul, Saeed 2022 Xia, Hafeez, Khan 2021; 11 Kumar, Varma, Kiran Kumar 2018; 17 Williamson 1929; 21 Abdal, Siddique, Eldin 2022; 12 Prasad, Setty, Mebarek-Oudina 2022; 102 Sohail, Rafique, Singh 2024; 6 Ahmad, Naveed Khan, Nadeem 2022; 43 Abbas, Jeelani, Alnahdi 2022; 10 Saeed, Shah, Islam 2019; 9 Mishra, Kumar, Reddy 2023; 100 Rasool, Zhang, Chamkha 2019; 22 Saeed, Gul 2021; 3 Satya Narayana, Tarakaramu, Moliya Akshit 2017; 9 Hayat, Saif, Ellahi 2018; 132 bibr48-16878132241294262 bibr35-16878132241294262 bibr50-16878132241294262 bibr4-16878132241294262 bibr14-16878132241294262 bibr43-16878132241294262 bibr23-16878132241294262 bibr30-16878132241294262 bibr10-16878132241294262 bibr27-16878132241294262 bibr47-16878132241294262 bibr6-16878132241294262 Satya Narayana PV (bibr42-16878132241294262) 2017; 9 bibr44-16878132241294262 bibr26-16878132241294262 bibr34-16878132241294262 bibr16-16878132241294262 bibr36-16878132241294262 bibr46-16878132241294262 bibr15-16878132241294262 bibr45-16878132241294262 bibr25-16878132241294262 bibr5-16878132241294262 bibr12-16878132241294262 bibr38-16878132241294262 bibr7-16878132241294262 bibr1-16878132241294262 bibr33-16878132241294262 bibr37-16878132241294262 bibr24-16878132241294262 bibr40-16878132241294262 bibr17-16878132241294262 Wakif A (bibr19-16878132241294262) 2016; 135 bibr20-16878132241294262 bibr41-16878132241294262 Song YQ (bibr9-16878132241294262) 2021; 411 bibr31-16878132241294262 bibr3-16878132241294262 bibr13-16878132241294262 bibr11-16878132241294262 bibr21-16878132241294262 bibr29-16878132241294262 bibr49-16878132241294262 bibr39-16878132241294262 bibr8-16878132241294262 bibr18-16878132241294262 bibr2-16878132241294262 bibr28-16878132241294262 bibr22-16878132241294262 bibr32-16878132241294262 |
References_xml | – volume: 9 start-page: e83153 year: 2014 article-title: Effect of Joule heating and thermal radiation in flow of third grade fluid over radiative surface publication-title: PLoS One – volume: 9 start-page: e17665 year: 2023 article-title: Enhancement in the efficiency of heat recovery in a Williamson hybrid nanofluid over a vertically thin needle with entropy generation publication-title: Heliyon – volume: 2024 start-page: 19 year: 2024 end-page: 33 article-title: Utlization of generalized heat flux model on thermal transport of Powell-Eyring model via oham with heat geneartion aspects: thermal transport of Powell-Eyring model publication-title: Babylonian J Math – volume: 10 start-page: 222 year: 2021 end-page: 231 article-title: Mathematical analysis of thermal energy distribution in a hybridized mixed convective flow publication-title: J Nanofluids – volume: 571 start-page: 170587 year: 2023 article-title: Numerical treatment of hybrid water based nanofluid flow with effect of dissipation and Joule heating over a shrinking surface: stability analysis publication-title: J Magn Magn Mater – volume: 10 start-page: 1221 year: 2022 article-title: MHD Williamson nanofluid fluid flow and heat transfer past a non-linear stretching sheet implanted in a porous medium: effects of heat generation and viscous dissipation publication-title: Processes – volume: 4 start-page: e00825 year: 2018 article-title: Radiative MHD thin film flow of Williamson fluid over an unsteady permeable stretching sheet publication-title: Heliyon – volume: 51 start-page: 687 year: 2021 end-page: 697 article-title: Bio-convectional nanofluid flow due to the thermophoresis and gyrotactic microorganism between the gap of a disk and cone publication-title: Braz J Phys – volume: 14 start-page: 1572 year: 2024 end-page: 1582 article-title: OHAM analysis on bio-convective flow of partial differential equations of Casson nanofluid under thermal radiation impact past over a stretching sheet publication-title: Bionanoscience – volume: 11 start-page: 1687814019833510 year: 2019 article-title: An optimal analysis for Darcy–Forchheimer three-dimensional Williamson nanofluid flow over a stretching surface with convective conditions publication-title: Adv Mech Eng – volume: 131 start-page: 1 year: 2016 end-page: 9 article-title: Thermophoresis and Brownian effects on the Blasius flow of a nanofluid due to a curved surface with thermal radiation publication-title: Eur Phys J Plus – volume: 31 start-page: 1172 year: 2021 end-page: 1189 article-title: Magneto-thermal-convection stability in an inclined cylindrical annulus filled with a molten metal publication-title: Int J Numer Methods Heat Fluid Flow – volume: 15 start-page: 2003 year: 2010 end-page: 2016 article-title: An optimal homotopy-analysis approach for strongly nonlinear differential equations publication-title: Commun Nonlinear Sci Numer Simul – volume: 7 start-page: 369 year: 2017 article-title: Heat transfer investigation of the unsteady thin film flow of Williamson fluid past an inclined and oscillating moving plate publication-title: Appl Sci – volume: 8 start-page: 1124 year: 2018 end-page: 1130 article-title: Chemical reaction for Carreau-Yasuda nanofluid flow past a nonlinear stretching sheet considering Joule heating publication-title: Results Phys – volume: 11 start-page: 16067 year: 2021 article-title: Entropy optimized dissipative flow of hybrid nanofluid in the presence of non-linear thermal radiation and Joule heating publication-title: Sci Rep – volume: 40 start-page: 1 year: 2018 end-page: 10 article-title: Heat and mass diffusions for Casson nanofluid flow over a stretching surface with variable viscosity and convective boundary conditions publication-title: J Braz Soc Mech Sci Eng – volume: 6 start-page: 240 year: 2024 article-title: Engagement of modified heat and mass fluxes on thermally radiated boundary layer flow past over a stretched sheet via OHAM analysis publication-title: Discov Appl Sci – volume: 7 start-page: 1899 year: 2017 end-page: 1906 article-title: Modeling and simulation for 3D magneto Eyring–Powell nanomaterial subject to nonlinear thermal radiation and convective heating publication-title: Results Phys – volume: 7 start-page: 64844 year: 2019 end-page: 64855 article-title: Hall effect on couple stress 3D nanofluid flow over an exponentially stretched surface with Cattaneo Christov heat flux model publication-title: IEEE Access – volume: 97 start-page: 1277 year: 2019 end-page: 1287 article-title: Analysis on flow features of unsteady Williamson fluid inaugurated by melted wedge in the presence of heat generation–absorption: an extensive computational study publication-title: Can J Phys – volume: 22 start-page: 18 year: 2019 article-title: Entropy generation and consequences of binary chemical reaction on MHD Darcy–Forchheimer Williamson nanofluid flow over non-linearly stretching surface publication-title: Entropy – year: 2024 article-title: Study of bioconvection phenomenon in Jefferey model in a Darcy-Forchheimer porous medium publication-title: Bionanoscience – year: 2022 article-title: Nonlinear mixed convection couple stress tri-hybrid nanofluids flow in a Darcy–Forchheimer porous medium over a nonlinear stretching surface publication-title: Waves Random Complex Media – volume: 12 start-page: 5445 year: 2022 article-title: Analytic simulation of thermophoretic second grade fluid flow past a vertical surface with variable fluid characteristics and convective heating publication-title: Sci Rep – volume: 135 start-page: 33 year: 2016 end-page: 42 article-title: Numerical study of a thermal convection induced by a purely internal heating in a rotating medium saturated by a radiating nanofluid publication-title: Int J Comput Appl – volume: 15 start-page: 1684 year: 2023 article-title: Bio-convection effects of MHD Williamson fluid flow over a symmetrically stretching sheet: machine learning publication-title: Symmetry – volume: 6 start-page: 035101 year: 2016 article-title: Numerical solution of Williamson fluid flow past a stretching cylinder and heat transfer with variable thermal conductivity and heat generation/absorption publication-title: AIP Adv – volume: 3 start-page: 78 year: 2021 article-title: Bioconvection Casson nanofluid flow together with Darcy-Forchheimer due to a rotating disk with thermal radiation and Arrhenius activation energy publication-title: SN Appl Sci – volume: 9 start-page: 1 year: 2017 end-page: 5 article-title: MHD flow and heat transfer of an Eyring-Powell fluid over a linear stretching sheet with viscous dissipation-a numerical study publication-title: Front Heat Mass Transf – volume: 102 start-page: e202100117 year: 2022 article-title: Mixed convective Williamson nanofluid flow over a rotating disk with zero mass flux publication-title: Z Angew Math Mech – volume: 50 start-page: 2168 year: 2021 end-page: 2196 article-title: MHD bioconvection Darcy-Forchheimer flow of Casson nanofluid over a rotating disk with entropy optimization publication-title: Heat Transf – volume: 15 start-page: 1170 year: 2019 end-page: 1189 article-title: Heat transport in the convective Casson fluid flow with homogeneous–heterogeneous reactions in Darcy–Forchheimer medium publication-title: Multidiscipline Model Mater Struct – volume: 12 start-page: 22646 year: 2022 article-title: Significance of thermal radiation and bioconvection for Williamson nanofluid transportation owing to cone rotation publication-title: Sci Rep – volume: 23 start-page: 100887 year: 2021 article-title: Thermal transport of radiative Williamson fluid over stretchable curved surface publication-title: Therm Sci Eng Prog – volume: 3 start-page: 015030 year: 2021 article-title: The impact of magnetohydrodynamic on bioconvection nanofluid flow with viscous dissipation and joule heating effects publication-title: Eng Res Express – volume: 126 start-page: 941 year: 2018 end-page: 948 article-title: Change in viscosity of Williamson nanofluid flow due to thermal and solutal stratification publication-title: Int J Heat Mass Transf – volume: 9 start-page: 248 year: 2019 article-title: Three-dimensional Casson nanofluid thin film flow over an inclined rotating disk with the impact of heat generation/consumption and thermal radiation publication-title: Coatings – volume: 132 start-page: 344 year: 2018 end-page: 354 article-title: Simultaneous effects of melting heat and internal heat generation in stagnation point flow of Jeffrey fluid towards a nonlinear stretching surface with variable thickness publication-title: Int J Therm Sci – volume: 411 start-page: 126502 year: 2021 article-title: Bidirectional non-linear stretched flow of Williamson nanofluid with swimming of motile gyrotactic microorganisms publication-title: Appl Math Comput – volume: 100 start-page: 100845 year: 2023 article-title: MHD Williamson micropolar fluid flow pasting a non-linearly stretching sheet under the presence of non linear heat generation/absorption publication-title: J Indian Chem Soc – volume: 132 start-page: 1 year: 2017 end-page: 20 article-title: Thermophoresis and thermal radiation with heat and mass transfer in a magnetohydrodynamic thin-film second-grade fluid of variable properties past a stretching sheet publication-title: Eur Phys J Plus – year: 2022 article-title: Application of Arrhenius chemical process on unsteady mixed bio-convective flows of third-grade fluids having temperature-dependent in thermo-rheological properties publication-title: Waves Random Complex Media – volume: 15 year: 2023 article-title: Significance of thermophoresis and Brownian motion on a reactive Casson-Williamson nanofluid past a vertical moving cylinder publication-title: Comput Therm Sci – volume: 61 start-page: 8715 year: 2022 end-page: 8727 article-title: Impact of activation energy and MHD on Williamson fluid flow in the presence of bioconvection publication-title: Alex Eng J – volume: 43 start-page: 6542 year: 2022 end-page: 6552 article-title: Unsteady three dimensional bioconvective flow of Maxwell nanofluid over an exponentially stretching sheet with variable thermal conductivity and chemical reaction publication-title: Int J Ambient Energy – volume: 21 start-page: 1108 year: 1929 end-page: 1111 article-title: The flow of pseudoplastic materials publication-title: Ind Eng Chem – volume: 17 start-page: 20180118 year: 2018 article-title: Three-dimensional hydromagnetic convective flow of chemically reactive Williamson fluid with non-uniform heat absorption and generation publication-title: Int J Chem Reactor Eng – volume: 11 start-page: 14509 year: 2021 article-title: Estimation of unsteady hydromagnetic Williamson fluid flow in a radiative surface through numerical and artificial neural network modeling publication-title: Sci Rep – volume: 96 start-page: 065210 year: 2021 article-title: Flow and heat transfer investigation of bio–convective hybrid nanofluid with triple stratification effects publication-title: Phys Scr – ident: bibr8-16878132241294262 doi: 10.1016/j.heliyon.2023.e17665 – ident: bibr26-16878132241294262 doi: 10.1080/17455030.2021.2023781 – ident: bibr37-16878132241294262 doi: 10.1615/ComputThermalScien.2022041799 – ident: bibr15-16878132241294262 doi: 10.1108/MMMS-11-2018-0202 – ident: bibr6-16878132241294262 doi: 10.1002/zamm.202100117 – ident: bibr31-16878132241294262 doi: 10.1063/1.4943398 – ident: bibr25-16878132241294262 doi: 10.1007/s13538-021-00888-6 – ident: bibr41-16878132241294262 doi: 10.1021/ie50239a035 – ident: bibr7-16878132241294262 doi: 10.1016/j.tsep.2021.100887 – ident: bibr50-16878132241294262 doi: 10.1109/ACCESS.2019.2916162 – ident: bibr22-16878132241294262 doi: 10.1088/2631-8695/abe7be – ident: bibr36-16878132241294262 doi: 10.1140/epjp/i2016-16214-4 – ident: bibr5-16878132241294262 doi: 10.1038/s41598-021-93790-9 – ident: bibr49-16878132241294262 doi: 10.1016/j.cnsns.2009.09.002 – ident: bibr47-16878132241294262 doi: 10.58496/BJM/2024/003 – ident: bibr3-16878132241294262 doi: 10.3390/app7040369 – volume: 9 start-page: 1 year: 2017 ident: bibr42-16878132241294262 publication-title: Front Heat Mass Transf – ident: bibr18-16878132241294262 doi: 10.1166/jon.2021.1778 – ident: bibr45-16878132241294262 doi: 10.1007/s42452-024-05833-1 – ident: bibr4-16878132241294262 doi: 10.3390/e22010018 – ident: bibr16-16878132241294262 doi: 10.1080/01430750.2022.2029765 – ident: bibr23-16878132241294262 doi: 10.1002/htj.21973 – ident: bibr30-16878132241294262 doi: 10.1038/s41598-021-95604-4 – ident: bibr13-16878132241294262 doi: 10.1080/17455030.2022.2077471 – volume: 411 start-page: 126502 year: 2021 ident: bibr9-16878132241294262 publication-title: Appl Math Comput – ident: bibr24-16878132241294262 doi: 10.1007/s42452-020-04007-z – ident: bibr29-16878132241294262 doi: 10.1016/j.rinp.2018.01.018 – ident: bibr46-16878132241294262 doi: 10.1007/s12668-024-01412-1 – ident: bibr28-16878132241294262 doi: 10.1016/j.jmmm.2023.170587 – ident: bibr38-16878132241294262 doi: 10.1016/j.aej.2022.02.013 – ident: bibr17-16878132241294262 doi: 10.1088/1402-4896/abf305 – ident: bibr10-16878132241294262 doi: 10.1016/j.ijheatmasstransfer.2018.05.074 – ident: bibr20-16878132241294262 doi: 10.1140/epjp/i2017-11277-3 – ident: bibr43-16878132241294262 doi: 10.1016/j.ijthermalsci.2018.05.047 – ident: bibr11-16878132241294262 doi: 10.1007/s40430-018-1415-y – ident: bibr39-16878132241294262 doi: 10.1038/s41598-022-27118-6 – ident: bibr48-16878132241294262 doi: 10.1007/s12668-024-01329-9 – ident: bibr32-16878132241294262 doi: 10.1139/cjp-2018-0531 – ident: bibr27-16878132241294262 doi: 10.1371/journal.pone.0083153 – ident: bibr33-16878132241294262 doi: 10.1515/ijcre-2018-0118 – ident: bibr44-16878132241294262 doi: 10.1016/j.rinp.2017.06.002 – ident: bibr40-16878132241294262 doi: 10.3390/sym15091684 – volume: 135 start-page: 33 year: 2016 ident: bibr19-16878132241294262 publication-title: Int J Comput Appl – ident: bibr14-16878132241294262 doi: 10.1108/HFF-05-2020-0321 – ident: bibr21-16878132241294262 doi: 10.3390/coatings9040248 – ident: bibr1-16878132241294262 doi: 10.1016/j.heliyon.2018.e00825 – ident: bibr12-16878132241294262 doi: 10.1038/s41598-022-09301-x – ident: bibr35-16878132241294262 doi: 10.1016/j.jics.2022.100845 – ident: bibr2-16878132241294262 doi: 10.1177/1687814019833510 – ident: bibr34-16878132241294262 doi: 10.3390/pr10061221 |
SSID | ssib050600699 ssj0000395696 ssib044728254 ssib023771143 |
Score | 2.3242998 |
Snippet | In current paper, we considered the 3-D occurrence of magneto Williamson fluid subjected to linear penetrating expanding sheet. The Williamson liquid is taken... |
SourceID | doaj proquest crossref sage |
SourceType | Open Website Aggregation Database Index Database Publisher |
SubjectTerms | Constraints Convection heating Density Drag Energy distribution Fluid flow Force distribution Heat generation Mass transport Ohmic dissipation Organisms Peclet number Resistance heating Temperature gradients Thermophoresis Three dimensional flow |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fSxwxEA5VX_RBtFa8qiUPhYKwuJtkk9yTqD2RQq2UCr4tm18q6O719kT8F_yrncll9UTa1ySEkJnMfJNkviHkq8cyR9rVYP2MygD_u0yLos4s4xAc6NwLhsnJP8_k6YX4cVlepgu3Ln2r7G1iNNSutXhHvs8LLkrwRSw_GP_NsGoUvq6mEhoLZAlMsIbga-lodHb-u9coxpUq5gjshFCYq_migciul8sEyKPt5hAvxKJehYTTpyFWS0-hyNKEbdgEXo8Nkcr9jTOLnP9vgOrc37Dork7WyGrCmfRwphjr5INvPpKVOfbBDfL0C8zFHQy6xh957fjG0m7GVftIAcpShIbYXTeO3gHGptOeCJ3eNLS_qGkbGqvp0HDbPtDz76OOYl7ahKKVp1eR1RqFv1-brp1EAxVnhBXe-jgIFvOJXJyM_hyfZqk0Q2a54tPMCau5CNx6rbzP69LasoRGZaTWXuS1t0YK7wx0MGOCgm0tvS6Nc0x67fkmWWzaxm8RaoZhaELuLAM0k0ttuGBODAtucyuUlgOy1-9xNZ4xcFRFIil_J5ABOUIpvAxE8uzY0E6uqnQWqyCYkU7qoDwTpTE1glBVmwChaVHYMCA7vQyrdKK76lX_BuQbyvW165-r-fz_ibbJMgOINMts3CGL08m93wWIMzVfkh4_A-lT8pw priority: 102 providerName: ProQuest – databaseName: Sage Open Access Journals (Free internet resource, activated by CARLI) dbid: AFRWT link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3daxQxEA-1fdEH8RNPq-RBEIT1dvN9T1K1RxH8QCz2bdl81UJvt9ztUfov9K92Jps9r6jgaxLCkExmfpNkfkPIy4BljoxvwPpZXQD-94URVVM4xiE4MGUQDJOTP31WR8fi44k82SHdmAuTV3D1Br9VgUTJWOPpxtvoaX5knFbKaINxlAB3hZzqb9f9oh6uu8eqGtiC79PrBT5tO_wQeVWM6W23yB7TSsJJ3juYf_uxOQKMa11tMd4JoTG5c6OySMdXqozgk7HnEGCkKmAoU4FC5bfTv8p5w_ulIgE3kO3WZ7Lk3-b3yN0MTOnBoEn3yU5oH5A7W3SFD8n1F7AvCxj0E7_wdRdnjq4GctsrCtiXIpbE7qb1dAGgnPYjczo9a-l4s9O1NJXfofG8u6RfPxyuKCayLSm6BXqaaLBRW6aNXXXLZNHSjCDheUiDQJhH5Hh--P39UZFrORSOa94XXjjDReQuGB1C2UjnpIRGbZUxQZRNcFaJ4C10MGujhmWVwUjrPVPBBP6Y7LZdG54QamdxZmPpHQP4UypjuWBezCruSie0URPyelzj-mKg7KirzGr-x4ZMyDvchc1AZNtODd3ytM6Ht46CWeWViTowIa1tELXqxkaIZavKxQnZH_ewHhW45hUXEsATKyfkFe7r765_SvP0v0c-I7cZwKshK3Kf7PbLdXgO8Ki3L7JK_wJi8gUB priority: 102 providerName: SAGE Publications |
Title | Optimal homotopic strategy for thermal and mass transport in Williamson model flow PDEs under heat generation/absorption and Joule heating |
URI | https://journals.sagepub.com/doi/full/10.1177/16878132241294262 https://www.proquest.com/docview/3134524420 https://doaj.org/article/f42b6d68f7e245bba35227abf10411cf |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dSxwxEB-svrQP0tqWntojD4JQWNxNsknuUdu7iuAHotS3ZfNVBd2VuyvFf8G_2pnsXntSSl_6tJAMy5CZzPxmN_kNwE6gNkfG1xj9rM4Q__vMyKLOHBdYHJg8SE6Xk49P1OGlPLoqr5ZafdGZsI4euFu4vSi5VV6ZqAOXpbU1IQZd24h1RFG4SNEXc95SMZVisEDcP1L9b0xiWCqU0YZKL4kZjmjYnyWixNf_DGQunetKqWbyGtZ7jMj2O93ewEpoNuDVEnPgW3g8xa1-h0LXdJquvb9xbNbxzD4whKGMYB1N141nd4iP2XxBYs5uGrb4yNI2LHXCYfG2_cnOvoxnjO6UTRlFaPY9MVKT4fZqO2unKbikN6KGtyEJoTLv4HIyvvh8mPVtFTIntJhnXjojZBQuGB1CXpfOlSUOaquMCTKvg7NKBm9xglsbNS5lGUxpvecqmCDew2rTNuEDMDuKIxtz7zgikVwZKyT3clQIlzupjRrAp8UaV_cde0ZV9ATjfxhkAAdkhV-CRHydBtAdqt4dqn-5wwC2Fzas-t04q0QhZIk4hucD2CW7_p76qzab_0ObLXjJEQR1dxe3YXU-_RE-IoiZ2yG8MJOvQ1jbn5x_u8Dnwfjk7HyYvPgJZqTxug |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOQCHiqe6tIAPICSkqInt2M4BIaBdtvQBh1bqLcSvUqlNls2iqn-BH8NvZMZJ2q0Q3Hq1rZGVGc9843i-IeSlxzZH2lXg_YxKAP-7RIusSizjkBzo1AuGxcl7-3JyKD4f5UdL5PdQC4PPKgefGB21ayzekW_wjIscYhFL301_JNg1Cv-uDi00OrPY8RfnkLK1b7c3Qb-vGBtvHXycJH1XgcRyxeeJE1ZzEbj1WnmfVrm1eQ6DykitvUgrb40U3hmYYMYEBRlE7nVunGPSa89B7i1yW3Be4InS40-D_TKuVLZAlyeEwsrQS3tHLr9U9vA_RgoOsmMLsUzCWdeQGfY_XpETCsdwCGIsK5A4_lrojB0GrsHihZdoMTiO75OVHtXS950ZPiBLvn5I7i1wHT4iv76AczqDRd_x_V8zPbG07ZhxLygAZ4pAFKer2tEzQPR0PtCu05OaDtdCTU1j7x4aTptz-nVzq6VYBTejGFPoceTQRlPbqEzbzKI7jBJhh6c-LoLNPCaHN6KyJ2S5bmq_SqgpQmFC6iwD7JRKbbhgThQZt6kVSssReTN843La8X2UWU-J_pdCRuQDauFyIVJ1x4Fmdlz2J78MghnppA7KM5EbUyHkVZUJkAhnmQ0jsj7osOz9R1teWfuIvEa9Xk39czdP_y_oBbkzOdjbLXe393fWyF0G4KyrqVwny_PZT_8MwNXcPI8WTcm3mz5CfwAVaTEd |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1faxQxEA_1CqIP4l96WjUPiiAst5tkk9yDiPXuaK2eh1jo27r5Vwvt7nl7UvoV_Eh-Omdyu-0V0be-JiGEncnMb7IzvyHkhcc2R9qVYP2MSgD_u0SLrEws4xAc6NQLhsXJn6Zy90B8OMwPN8jvrhYG0yo7mxgNtastvpEPeMZFDr6IpYPQpkXMRpO38x8JdpDCP61dO42Viuz78zMI35o3eyOQ9UvGJuOv73eTtsNAYrniy8QJq7kI3HqtvE_L3No8h0FlpNZepKW3RgrvDEwwY4KCaCL3OjfOMem157DvDbKpICpKe2RzZzydfem0mXGlsjXyPCEU1oleaD8y-6WyDQai3-Cwe2wolkm4-RrixPY3LDJE4RgOgcdlQ6SRv-JIY7-BKyB5LS8tusrJXXKnxbj03Uop75ENX90nt9eYDx-QX5_BVJ3Cou-YDVjPjy1tVjy55xRgNEVYitNl5egp4Hu67EjY6XFFu0eiuqKxkw8NJ_UZnY3GDcWauAVFD0OPIqM2Kt6gNE29iMYx7ggnPPFxERzmITm4FqE9Ir2qrvwWoWYYhiakzjJAUqnUhgvmxDDjNrVCadknr7tvXMxX7B9F1hKk_yWQPtlBKVwsROLuOFAvjorWDhRBMCOd1EF5JnJjSgTAqjQBwuIss6FPtjsZFq01aYpL3e-TVyjXy6l_nubx_zd6Tm7C9Sk-7k33n5BbDJDaqsBym_SWi5_-KSCtpXnWqjQl3677Fv0BoiY2rw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimal+homotopic+strategy+for+thermal+and+mass+transport+in+Williamson+model+flow+PDEs+under+heat+generation%2Fabsorption+and+Joule+heating&rft.jtitle=Advances+in+mechanical+engineering&rft.au=Sana+Akbar&rft.au=Muhammad+Sohail&rft.au=Syed+Tehseen+Abbas&rft.au=Nacer+Badi&rft.date=2024-11-01&rft.pub=SAGE+Publishing&rft.eissn=1687-8140&rft.volume=16&rft_id=info:doi/10.1177%2F16878132241294262&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_f42b6d68f7e245bba35227abf10411cf |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1687-8132&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1687-8132&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1687-8132&client=summon |