Experimental and simulation investigation into the effects of a flat plate deflector on vertical axis wind turbine
[Display omitted] •Flat plate deflector enhances the efficiency of the VAWT significantly.•Deflected wind flow velocity is about 25% higher compared to the oncoming wind.•Experiment result aligned with 3D simulation on the deflector positioning effect.•VAWT efficiency is highly dependent on the posi...
Saved in:
Published in | Energy conversion and management Vol. 160; pp. 109 - 125 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Oxford
Elsevier Ltd
15.03.2018
Elsevier Science Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | [Display omitted]
•Flat plate deflector enhances the efficiency of the VAWT significantly.•Deflected wind flow velocity is about 25% higher compared to the oncoming wind.•Experiment result aligned with 3D simulation on the deflector positioning effect.•VAWT efficiency is highly dependent on the position of the flat plate deflector.
Power augmentation features have been proven as one of the wind turbine performance enhancement methods particularly for vertical axis wind turbines (VAWTs). Researches showed that with the aid of a deflector, shroud or a single plate, the power output of a VAWT can be increased remarkably. In this paper, lab tests and simulations were performed to investigate the aerodynamic effects and the flow field around a flat plate deflector as a power augmentation device which is placed at the lower upstream of a micro H-rotor VAWT. From the study, the deflector is able to induce a high velocity wind at the near-wake region which was about 25% higher compared to the oncoming wind velocity. The deflected wind flows improve the performance significantly as well as reduce the self-start velocity of the turbine. Nonetheless, it is highly dependent on the positioning of the flat plate deflector. Both experiment and simulation showed a notable observation on the position effect of the flat plate deflector. From the lab test, with the deflector at the optimal position, the maximum coefficient of power (CP) achieved was 7.4% increment compared to the bare turbine. Also, from the simulation, the optimal position showed an improvement of averaged CP up to 33% compared to the bare turbine. The flat plate deflector is simple, low cost, and can be easily retrofitted to existing stand-alone VAWT systems to improve the efficiency making them suitable for on-site power generation in urban and isolated places. |
---|---|
AbstractList | Power augmentation features have been proven as one of the wind turbine performance enhancement methods particularly for vertical axis wind turbines (VAWTs). Researches showed that with the aid of a deflector, shroud or a single plate, the power output of a VAWT can be increased remarkably. In this paper, lab tests and simulations were performed to investigate the aerodynamic effects and the flow field around a flat plate deflector as a power augmentation device which is placed at the lower upstream of a micro H-rotor VAWT. From the study, the deflector is able to induce a high velocity wind at the near-wake region which was about 25% higher compared to the oncoming wind velocity. The deflected wind flows improve the performance significantly as well as reduce the self-start velocity of the turbine. Nonetheless, it is highly dependent on the positioning of the flat plate deflector. Both experiment and simulation showed a notable observation on the position effect of the flat plate deflector. From the lab test, with the deflector at the optimal position, the maximum coefficient of power (CP) achieved was 7.4% increment compared to the bare turbine. Also, from the simulation, the optimal position showed an improvement of averaged CP up to 33% compared to the bare turbine. The flat plate deflector is simple, low cost, and can be easily retrofitted to existing stand-alone VAWT systems to improve the efficiency making them suitable for on-site power generation in urban and isolated places. [Display omitted] •Flat plate deflector enhances the efficiency of the VAWT significantly.•Deflected wind flow velocity is about 25% higher compared to the oncoming wind.•Experiment result aligned with 3D simulation on the deflector positioning effect.•VAWT efficiency is highly dependent on the position of the flat plate deflector. Power augmentation features have been proven as one of the wind turbine performance enhancement methods particularly for vertical axis wind turbines (VAWTs). Researches showed that with the aid of a deflector, shroud or a single plate, the power output of a VAWT can be increased remarkably. In this paper, lab tests and simulations were performed to investigate the aerodynamic effects and the flow field around a flat plate deflector as a power augmentation device which is placed at the lower upstream of a micro H-rotor VAWT. From the study, the deflector is able to induce a high velocity wind at the near-wake region which was about 25% higher compared to the oncoming wind velocity. The deflected wind flows improve the performance significantly as well as reduce the self-start velocity of the turbine. Nonetheless, it is highly dependent on the positioning of the flat plate deflector. Both experiment and simulation showed a notable observation on the position effect of the flat plate deflector. From the lab test, with the deflector at the optimal position, the maximum coefficient of power (CP) achieved was 7.4% increment compared to the bare turbine. Also, from the simulation, the optimal position showed an improvement of averaged CP up to 33% compared to the bare turbine. The flat plate deflector is simple, low cost, and can be easily retrofitted to existing stand-alone VAWT systems to improve the efficiency making them suitable for on-site power generation in urban and isolated places. |
Author | Sopian, Kamaruzzaman Chong, Wen Tong Shiah, Yui-Chuin Wong, Kok Hoe Poh, Sin Chew Sukiman, Nazatul Liana Wang, Wei-Cheng |
Author_xml | – sequence: 1 givenname: Kok Hoe surname: Wong fullname: Wong, Kok Hoe organization: Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia – sequence: 2 givenname: Wen Tong orcidid: 0000-0002-9208-9908 surname: Chong fullname: Chong, Wen Tong email: chong_wentong@um.edu.my organization: Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia – sequence: 3 givenname: Nazatul Liana surname: Sukiman fullname: Sukiman, Nazatul Liana organization: Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia – sequence: 4 givenname: Yui-Chuin surname: Shiah fullname: Shiah, Yui-Chuin organization: Department of Aeronautics and Astronautics, National Cheng Kung University, Tainan City 701, Taiwan – sequence: 5 givenname: Sin Chew surname: Poh fullname: Poh, Sin Chew organization: Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia – sequence: 6 givenname: Kamaruzzaman surname: Sopian fullname: Sopian, Kamaruzzaman organization: Solar Energy Research Institute (SERI), The National University of Malaysia, 43600 Bangi, Selangor, Malaysia – sequence: 7 givenname: Wei-Cheng surname: Wang fullname: Wang, Wei-Cheng organization: Department of Aeronautics and Astronautics, National Cheng Kung University, Tainan City 701, Taiwan |
BookMark | eNqFkU9P3DAQxa2KSl0oX6GyxIVLUjtOHEfiAEJAKyH1Us6W44yLV1l7sZ2FfvvOsuXChYv__t7TzJtjchRiAEK-cVZzxuX3dQ3BxrAxoW4YVzXjNWuGT2TFVT9UTdP0R2TF-CArNbD2CznOec0YEx2TK5JuXraQ_AZCMTM1YaLZb5bZFB8D9WEHufg_b7cSaXkECs6BLZlGRw11yNItLkAncDN-xESR3kEq3u49X3ymzx6dy5JGH-Ar-ezMnOH0_35CHm5vfl__qO5_3f28vrqvrOhFqaZ26Cdle6MYjIOSrZoYM06YHrubOi6Vc9aMeAI7Stni8zg00nVO8kGoXpyQ84PvNsWnBRvRG58tzLMJEJesG9Z2qpGiFYievUPXcUkBq0NKir7j_JW6OFA2xZwTOG19ec2mJONnzZneD0Sv9dtA9H4gmnGNJaNcvpNvMXiT_n4svDwIAdPaeUg6W48kTD5h3nqK_iOLfxESrT8 |
CitedBy_id | crossref_primary_10_1016_j_enconman_2019_05_055 crossref_primary_10_1016_j_enconman_2021_114609 crossref_primary_10_1016_j_renene_2018_05_085 crossref_primary_10_1007_s40430_022_03374_5 crossref_primary_10_1016_j_enconman_2020_112588 crossref_primary_10_1016_j_enconman_2022_116436 crossref_primary_10_1016_j_jweia_2023_105349 crossref_primary_10_1016_j_seta_2021_101789 crossref_primary_10_2514_1_J059797 crossref_primary_10_3390_dynamics5010008 crossref_primary_10_1016_j_ijhydene_2022_04_196 crossref_primary_10_1007_s40430_022_03407_z crossref_primary_10_1063_5_0111568 crossref_primary_10_3390_app11178011 crossref_primary_10_1016_j_jclepro_2023_138876 crossref_primary_10_1007_s10098_023_02554_8 crossref_primary_10_1016_j_oceaneng_2023_115910 crossref_primary_10_1063_5_0141119 crossref_primary_10_1016_j_enconman_2024_118469 crossref_primary_10_1016_j_enconman_2019_112249 crossref_primary_10_1016_j_energy_2024_130522 crossref_primary_10_1016_j_oceaneng_2019_04_086 crossref_primary_10_1016_j_renene_2024_121462 crossref_primary_10_3390_en17020503 crossref_primary_10_1016_j_energy_2023_127940 crossref_primary_10_1080_15435075_2023_2220372 crossref_primary_10_1016_j_enconman_2021_114680 crossref_primary_10_1016_j_jclepro_2023_137413 crossref_primary_10_1007_s40430_023_04089_x crossref_primary_10_1016_j_energy_2023_127182 crossref_primary_10_3390_en14196167 crossref_primary_10_1016_j_seta_2019_100586 crossref_primary_10_1063_5_0162026 crossref_primary_10_3390_en14144087 crossref_primary_10_1016_j_enconman_2018_11_066 crossref_primary_10_1080_14786451_2024_2321627 crossref_primary_10_35633_inmateh_64_15 crossref_primary_10_1016_j_ecmx_2019_100026 crossref_primary_10_1177_0309524X221084980 crossref_primary_10_3389_fenrg_2022_790777 crossref_primary_10_1007_s40430_020_02598_7 crossref_primary_10_1016_j_seta_2022_102469 crossref_primary_10_1063_5_0204070 crossref_primary_10_3390_en16083420 crossref_primary_10_1016_j_enconman_2021_114109 crossref_primary_10_1016_j_oceaneng_2023_116373 crossref_primary_10_1007_s13369_022_06631_w crossref_primary_10_1016_j_enconman_2021_114599 crossref_primary_10_1088_1755_1315_463_1_012153 crossref_primary_10_1016_j_energy_2023_129116 crossref_primary_10_3390_pr12102215 crossref_primary_10_1016_j_enconman_2020_113062 crossref_primary_10_1002_er_5751 crossref_primary_10_1016_j_enconman_2018_04_062 crossref_primary_10_1016_j_energy_2020_117745 crossref_primary_10_1016_j_isci_2023_107674 crossref_primary_10_1016_j_oceaneng_2023_116500 crossref_primary_10_1016_j_renene_2024_121443 crossref_primary_10_35633_inmateh_66_26 crossref_primary_10_1007_s11831_021_09640_4 crossref_primary_10_1016_j_enconman_2025_119514 crossref_primary_10_5937_jaes0_44759 crossref_primary_10_2139_ssrn_3442236 crossref_primary_10_1007_s40430_023_04330_7 crossref_primary_10_1016_j_renene_2023_119545 crossref_primary_10_1016_j_enconman_2022_115453 crossref_primary_10_1007_s11831_019_09316_0 crossref_primary_10_1016_j_oceaneng_2020_107296 crossref_primary_10_1080_15567036_2023_2186543 crossref_primary_10_1016_j_oceaneng_2024_119900 crossref_primary_10_1007_s40799_021_00485_x crossref_primary_10_1115_1_4054395 crossref_primary_10_3389_fenrg_2024_1437800 crossref_primary_10_1007_s11630_018_1058_4 |
Cites_doi | 10.1016/j.renene.2017.08.012 10.1016/j.energy.2016.05.129 10.5293/IJFMS.2014.7.1.016 10.1016/j.energy.2016.03.089 10.1016/j.enconman.2008.08.021 10.1016/j.renene.2014.09.047 10.1016/j.renene.2010.10.030 10.1016/j.renene.2013.06.022 10.1016/j.energy.2015.12.111 10.1016/j.renene.2012.10.007 10.1016/j.apenergy.2011.12.008 10.1016/j.energy.2014.11.034 10.1016/j.egypro.2017.07.032 10.1016/j.renene.2014.08.068 10.1016/j.rser.2015.07.147 10.3923/jas.2011.962.970 10.1016/j.renene.2009.07.025 10.1016/j.renene.2012.07.025 10.1016/j.rser.2017.01.160 10.1016/j.renene.2015.06.048 10.1016/j.enconman.2017.07.016 10.1016/j.energy.2015.07.051 10.1016/j.enconman.2016.08.094 10.1007/s11630-009-0054-0 10.1016/j.enconman.2010.06.070 10.1016/j.apenergy.2011.03.025 10.1016/j.renene.2016.01.011 10.1016/j.apenergy.2017.06.099 10.1016/j.enconman.2016.11.067 10.1016/j.energy.2013.06.004 10.1155/2014/180498 10.1016/j.renene.2010.03.002 10.1016/j.renene.2014.09.038 10.1016/j.renene.2016.03.029 10.1016/j.jweia.2013.12.005 10.1016/j.apenergy.2017.03.128 10.1016/j.renene.2015.04.043 10.1016/j.energy.2015.07.115 10.1016/j.renene.2015.06.037 10.1016/j.jweia.2015.09.010 10.1016/j.enbuild.2014.11.072 10.1016/j.jweia.2013.01.009 10.1016/j.renene.2009.08.025 10.1016/j.renene.2017.02.006 10.1016/j.enconman.2016.03.034 10.1016/j.renene.2016.11.063 10.1016/0045-7930(88)90025-4 10.1016/j.energy.2017.05.105 |
ContentType | Journal Article |
Copyright | 2018 Elsevier Ltd Copyright Elsevier Science Ltd. Mar 15, 2018 |
Copyright_xml | – notice: 2018 Elsevier Ltd – notice: Copyright Elsevier Science Ltd. Mar 15, 2018 |
DBID | AAYXX CITATION 7ST 7TB 8FD C1K FR3 H8D KR7 L7M SOI 7S9 L.6 |
DOI | 10.1016/j.enconman.2018.01.029 |
DatabaseName | CrossRef Environment Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Aerospace Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace Environment Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Technology Research Database Mechanical & Transportation Engineering Abstracts Engineering Research Database Environment Abstracts Advanced Technologies Database with Aerospace Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA Aerospace Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1879-2227 |
EndPage | 125 |
ExternalDocumentID | 10_1016_j_enconman_2018_01_029 S0196890418300268 |
GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AAXUO ABFNM ABFRF ABJNI ABMAC ABYKQ ACBEA ACDAQ ACGFO ACGFS ACIWK ACNCT ACRLP ADBBV ADEZE AEBSH AEFWE AEKER AENEX AFKWA AFRAH AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JARJE KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SDP SES SPC SPCBC SSR SST SSZ T5K TN5 XPP ZMT ~02 ~G- 29G 6TJ 8WZ A6W AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFFNX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION FEDTE FGOYB G-2 HVGLF HZ~ H~9 R2- SAC SEW WUQ 7ST 7TB 8FD C1K EFKBS FR3 H8D KR7 L7M SOI 7S9 AFXIZ L.6 |
ID | FETCH-LOGICAL-c373t-d497d8c7a80eb98648d00af3a7029d5168ffcabd51ecb664702b926f5f6193873 |
IEDL.DBID | .~1 |
ISSN | 0196-8904 |
IngestDate | Tue Aug 05 09:52:49 EDT 2025 Wed Aug 13 06:40:07 EDT 2025 Thu Apr 24 23:03:53 EDT 2025 Tue Jul 01 01:17:26 EDT 2025 Fri Feb 23 02:47:09 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Coefficient of power Flat plate deflector Vertical axis wind turbine Power augmentation Experiment Computational fluid dynamics (CFD) |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c373t-d497d8c7a80eb98648d00af3a7029d5168ffcabd51ecb664702b926f5f6193873 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-9208-9908 |
PQID | 2063751143 |
PQPubID | 2047472 |
PageCount | 17 |
ParticipantIDs | proquest_miscellaneous_2045826343 proquest_journals_2063751143 crossref_citationtrail_10_1016_j_enconman_2018_01_029 crossref_primary_10_1016_j_enconman_2018_01_029 elsevier_sciencedirect_doi_10_1016_j_enconman_2018_01_029 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-03-15 |
PublicationDateYYYYMMDD | 2018-03-15 |
PublicationDate_xml | – month: 03 year: 2018 text: 2018-03-15 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford |
PublicationTitle | Energy conversion and management |
PublicationYear | 2018 |
Publisher | Elsevier Ltd Elsevier Science Ltd |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier Science Ltd |
References | Trivellato, Raciti Castelli (b0195) 2014; 62 Takao, Kuma, Maeda, Kamada, Oki, Minoda (b0085) 2009; 18 Batista, Melício, Mendes, Calderón, Ramiro (b0005) 2015; 52 Lei, Zhou, Bao, Li, Han (b0120) 2017; 133 Mohamed, Janiga, Pap, Thévenin (b0050) 2011; 52 Joo, Choi, Lee (b0235) 2015; 90 Balduzzi, Bianchini, Maleci, Ferrara, Ferrari (b0205) 2016; 85 Orlandi, Collu, Zanforlin, Shires (b0135) 2015; 147 Balduzzi, Bianchini, Ferrara, Ferrari (b0200) 2016; 97 Sobhani, Ghaffari, Maghrebi (b0030) 2017; 133 Li, Maeda, Kamada, Murata, Kawabata, Shimizu (b0140) 2016; 106 Kim, Cheong (b0190) 2015; 79 Ledo, Kosasih, Cooper (b0260) 2011; 36 Jin, Wang, Ju, He, Xie (b0075) 2018; 115 Kim, Gharib (b0070) 2013; 115 Lanzafame, Mauro, Messina (b0175) 2013; 52 Tahani, Babayan, Mehrnia, Shadmehri (b0180) 2016; 127 de Santoli, Albo, Astiaso Garcia, Bruschi, Cumo (b0090) 2014; 8 Marsh, Ranmuthugala, Penesis, Thomas (b0125) 2017; 105 Li, Maeda, Kamada, Murata, Furukawa, Yamamoto (b0100) 2016; 111 Liang, Zhang, Li, Liu, Yang (b0020) 2014 Beri, Yao (b0025) 2011; 11 Li, Calisal (b0150) 2010; 35 Li, Maeda, Kamada, Murata, Furukawa, Yamamoto (b0160) 2015; 90 Altan, Atılgan (b0060) 2008; 49 Altan, Atılgan (b0065) 2010; 35 Wang, Cot, Adolphe, Geoffroy, Morchain (b0265) 2015; 88 Ismail, Vijayaraghavan (b0035) 2015; 80 Sengupta, Biswas, Gupta (b0240) 2016; 93 Shahizare, Nik-Ghazali, Chong, Tabatabaeikia, Izadyar, Esmaeilzadeh (b0220) 2016; 117 Golecha, Eldho, Prabhu (b0055) 2011; 88 Siddiqui, Durrani, Akhtar (b0105) 2015; 74 Raciti Castelli, Dal Monte, Quaresimin, Benini (b0170) 2013; 51 I. ANSYS. ANSYS Fluent user's guide. Release 15.0.; 2013. Tjiu, Marnoto, Mat, Ruslan, Sopian (b0010) 2015; 75 Rezaeiha, Kalkman, Blocken (b0230) 2017; 197 Rezaeiha, Kalkman, Blocken (b0165) 2017; 107 Chein, Chung (b0250) 1988; 16 Marco, Coiro, Cucco, Nicolosi (b0130) 2014; 2014 Lam, Peng (b0155) 2016; 90 Mohamed (b0115) 2013; 57 Chowdhury, Akimoto, Hara (b0210) 2016; 85 Howell, Qin, Edwards, Durrani (b0255) 2010; 35 Hara, Kawamura, Akimiti, Tanaka, Nakamura, Mizumukai (b0015) 2014; 7 Ghasemian, Ashrafi, Sedaghat (b0225) 2017; 149 Wong, Chong, Sukiman, Poh, Shiah, Wang (b0040) 2017; 73 Nobile, Vahdati, Barlow, Mewburn-Crook (b0045) 2014; 125 Chong, Muzammil, Wong, Wang, Gwani, Chu (b0145) 2017; 207 Lee, Lim (b0110) 2015; 83 Takao, Takita, Saito, Maeda, Kamada, Toshimitsu (b0080) 2009 Chong, Muzammil, Wong, Wang, Gwani, Chu (b0245) 2017; 207 I. ANSYS. ANSYS Fluent theory guide. Release 15.0.; 2013. Balduzzi, Bianchini, Carnevale, Ferrari, Magnani (b0270) 2012; 97 Stout, Islam, White, Arnott, Kollovozi, Shaw (b0095) 2017; 118 Mohamed (10.1016/j.enconman.2018.01.029_b0115) 2013; 57 Mohamed (10.1016/j.enconman.2018.01.029_b0050) 2011; 52 10.1016/j.enconman.2018.01.029_b0185 Chowdhury (10.1016/j.enconman.2018.01.029_b0210) 2016; 85 Marco (10.1016/j.enconman.2018.01.029_b0130) 2014; 2014 Altan (10.1016/j.enconman.2018.01.029_b0065) 2010; 35 Siddiqui (10.1016/j.enconman.2018.01.029_b0105) 2015; 74 Balduzzi (10.1016/j.enconman.2018.01.029_b0205) 2016; 85 Stout (10.1016/j.enconman.2018.01.029_b0095) 2017; 118 Raciti Castelli (10.1016/j.enconman.2018.01.029_b0170) 2013; 51 Batista (10.1016/j.enconman.2018.01.029_b0005) 2015; 52 Shahizare (10.1016/j.enconman.2018.01.029_b0220) 2016; 117 Altan (10.1016/j.enconman.2018.01.029_b0060) 2008; 49 Kim (10.1016/j.enconman.2018.01.029_b0070) 2013; 115 Li (10.1016/j.enconman.2018.01.029_b0140) 2016; 106 Tjiu (10.1016/j.enconman.2018.01.029_b0010) 2015; 75 Balduzzi (10.1016/j.enconman.2018.01.029_b0200) 2016; 97 Wang (10.1016/j.enconman.2018.01.029_b0265) 2015; 88 Li (10.1016/j.enconman.2018.01.029_b0100) 2016; 111 Li (10.1016/j.enconman.2018.01.029_b0160) 2015; 90 Lei (10.1016/j.enconman.2018.01.029_b0120) 2017; 133 Rezaeiha (10.1016/j.enconman.2018.01.029_b0165) 2017; 107 Sobhani (10.1016/j.enconman.2018.01.029_b0030) 2017; 133 Beri (10.1016/j.enconman.2018.01.029_b0025) 2011; 11 Chong (10.1016/j.enconman.2018.01.029_b0145) 2017; 207 Takao (10.1016/j.enconman.2018.01.029_b0080) 2009 Chong (10.1016/j.enconman.2018.01.029_b0245) 2017; 207 Li (10.1016/j.enconman.2018.01.029_b0150) 2010; 35 Ghasemian (10.1016/j.enconman.2018.01.029_b0225) 2017; 149 Ismail (10.1016/j.enconman.2018.01.029_b0035) 2015; 80 Lam (10.1016/j.enconman.2018.01.029_b0155) 2016; 90 Lee (10.1016/j.enconman.2018.01.029_b0110) 2015; 83 Lanzafame (10.1016/j.enconman.2018.01.029_b0175) 2013; 52 Takao (10.1016/j.enconman.2018.01.029_b0085) 2009; 18 Liang (10.1016/j.enconman.2018.01.029_b0020) 2014 Trivellato (10.1016/j.enconman.2018.01.029_b0195) 2014; 62 Golecha (10.1016/j.enconman.2018.01.029_b0055) 2011; 88 Jin (10.1016/j.enconman.2018.01.029_b0075) 2018; 115 Ledo (10.1016/j.enconman.2018.01.029_b0260) 2011; 36 Howell (10.1016/j.enconman.2018.01.029_b0255) 2010; 35 Chein (10.1016/j.enconman.2018.01.029_b0250) 1988; 16 Rezaeiha (10.1016/j.enconman.2018.01.029_b0230) 2017; 197 Nobile (10.1016/j.enconman.2018.01.029_b0045) 2014; 125 10.1016/j.enconman.2018.01.029_b0215 Joo (10.1016/j.enconman.2018.01.029_b0235) 2015; 90 Balduzzi (10.1016/j.enconman.2018.01.029_b0270) 2012; 97 Wong (10.1016/j.enconman.2018.01.029_b0040) 2017; 73 de Santoli (10.1016/j.enconman.2018.01.029_b0090) 2014; 8 Marsh (10.1016/j.enconman.2018.01.029_b0125) 2017; 105 Tahani (10.1016/j.enconman.2018.01.029_b0180) 2016; 127 Sengupta (10.1016/j.enconman.2018.01.029_b0240) 2016; 93 Hara (10.1016/j.enconman.2018.01.029_b0015) 2014; 7 Kim (10.1016/j.enconman.2018.01.029_b0190) 2015; 79 Orlandi (10.1016/j.enconman.2018.01.029_b0135) 2015; 147 |
References_xml | – volume: 90 start-page: 784 year: 2015 end-page: 795 ident: b0160 article-title: Effect of number of blades on aerodynamic forces on a straight-bladed vertical axis wind turbine publication-title: Energy – volume: 8 start-page: 42 year: 2014 end-page: 56 ident: b0090 article-title: A preliminary energy and environmental assessment of a micro wind turbine prototype in natural protected areas publication-title: Sustain Energy Technol Assess – volume: 16 start-page: 405 year: 1988 end-page: 427 ident: b0250 article-title: Discrete-vortex simulation of flow over inclined and normal plates publication-title: Comput Fluids – volume: 93 start-page: 536 year: 2016 end-page: 547 ident: b0240 article-title: Studies of some high solidity symmetrical and unsymmetrical blade H-Darrieus rotors with respect to starting characteristics, dynamic performances and flow physics in low wind streams publication-title: Renew Energy – volume: 85 start-page: 327 year: 2016 end-page: 337 ident: b0210 article-title: Comparative CFD analysis of vertical axis wind turbine in upright and tilted configuration publication-title: Renew Energy – reference: I. ANSYS. ANSYS Fluent user's guide. Release 15.0.; 2013. – volume: 35 start-page: 412 year: 2010 end-page: 422 ident: b0255 article-title: Wind tunnel and numerical study of a small vertical axis wind turbine publication-title: Renew Energy – volume: 115 start-page: 48 year: 2013 end-page: 52 ident: b0070 article-title: Efficiency improvement of straight-bladed vertical-axis wind turbines with an upstream deflector publication-title: J Wind Eng Ind Aerodyn – year: 2014 ident: b0020 article-title: Design considerations of rotor configuration for straight-bladed vertical axis wind turbines publication-title: Adv Mech Eng – volume: 115 start-page: 41 year: 2018 end-page: 53 ident: b0075 article-title: Investigation into parameter influence of upstream deflector on vertical axis wind turbines output power via three-dimensional CFD simulation publication-title: Renew Energy – volume: 207 start-page: 78 year: 2017 end-page: 95 ident: b0145 article-title: Cross axis wind turbine: pushing the limit of wind turbine technology with complementary design publication-title: Appl Energy – volume: 18 start-page: 54 year: 2009 end-page: 57 ident: b0085 article-title: A straight-bladed vertical axis wind turbine with a directed guide vane row—effect of guide vane geometry on the performance publication-title: J Therm Sci – volume: 11 start-page: 962 year: 2011 end-page: 970 ident: b0025 article-title: Numerical simulation of unsteady flow to show self-starting of vertical axis wind turbine using fluent publication-title: J Appl Sci – volume: 118 start-page: 141 year: 2017 end-page: 148 ident: b0095 article-title: Efficiency improvement of vertical axis wind turbines with an upstream deflector publication-title: Energy Proc – volume: 133 start-page: 235 year: 2017 end-page: 248 ident: b0120 article-title: Three-dimensional Improved delayed detached eddy simulation of a two-bladed vertical axis wind turbine publication-title: Energy Convers Manage – volume: 90 start-page: 386 year: 2016 end-page: 398 ident: b0155 article-title: Study of wake characteristics of a vertical axis wind turbine by two- and three-dimensional computational fluid dynamics simulations publication-title: Renew Energy – volume: 74 start-page: 661 year: 2015 end-page: 670 ident: b0105 article-title: Quantification of the effects of geometric approximations on the performance of a vertical axis wind turbine publication-title: Renew Energy – volume: 52 start-page: 508 year: 2015 end-page: 522 ident: b0005 article-title: On a self-start Darrieus wind turbine: blade design and field tests publication-title: Renew Sustain Energy Rev – volume: 133 start-page: 231 year: 2017 end-page: 241 ident: b0030 article-title: Numerical investigation of dimple effects on darrieus vertical axis wind turbine publication-title: Energy – volume: 107 start-page: 373 year: 2017 end-page: 385 ident: b0165 article-title: CFD simulation of a vertical axis wind turbine operating at a moderate tip speed ratio: guidelines for minimum domain size and azimuthal increment publication-title: Renew Energy – volume: 125 start-page: 168 year: 2014 end-page: 179 ident: b0045 article-title: Unsteady flow simulation of a vertical axis augmented wind turbine: a two-dimensional study publication-title: J Wind Eng Ind Aerodyn – volume: 127 start-page: 461 year: 2016 end-page: 476 ident: b0180 article-title: A novel heuristic method for optimization of straight blade vertical axis wind turbine publication-title: Energy Convers Manage – volume: 83 start-page: 407 year: 2015 end-page: 415 ident: b0110 article-title: Numerical study of the aerodynamic performance of a 500 publication-title: Renew Energy – volume: 52 start-page: 31 year: 2013 end-page: 39 ident: b0175 article-title: Wind turbine CFD modeling using a correlation-based transitional model publication-title: Renew Energy – volume: 7 year: 2014 ident: b0015 article-title: Predicting double-blade vertical axis wind turbine performance by a quadruple- multiple streamtube model publication-title: Int J Fluid Mach Syst – volume: 49 start-page: 3425 year: 2008 end-page: 3432 ident: b0060 article-title: An experimental and numerical study on the improvement of the performance of Savonius wind rotor publication-title: Energy Convers Manage – volume: 97 start-page: 246 year: 2016 end-page: 261 ident: b0200 article-title: Dimensionless numbers for the assessment of mesh and timestep requirements in CFD simulations of Darrieus wind turbines publication-title: Energy – volume: 117 start-page: 206 year: 2016 end-page: 217 ident: b0220 article-title: Novel investigation of the different Omni-direction-guide-vane angles effects on the urban vertical axis wind turbine output power via three-dimensional numerical simulation publication-title: Energy Convers Manage – volume: 35 start-page: 821 year: 2010 end-page: 829 ident: b0065 article-title: The use of a curtain design to increase the performance level of a Savonius wind rotors publication-title: Renew Energy – volume: 90 start-page: 439 year: 2015 end-page: 451 ident: b0235 article-title: Aerodynamic characteristics of two-bladed H-Darrieus at various solidities and rotating speeds publication-title: Energy – volume: 57 start-page: 495 year: 2013 end-page: 504 ident: b0115 article-title: Impacts of solidity and hybrid system in small wind turbines performance publication-title: Energy – volume: 51 start-page: 101 year: 2013 end-page: 112 ident: b0170 article-title: Numerical evaluation of aerodynamic and inertial contributions to Darrieus wind turbine blade deformation publication-title: Renew Energy – reference: I. ANSYS. ANSYS Fluent theory guide. Release 15.0.; 2013. – volume: 35 start-page: 2325 year: 2010 end-page: 2334 ident: b0150 article-title: Three-dimensional effects and arm effects on modeling a vertical axis tidal current turbine publication-title: Renew Energy – volume: 2014 year: 2014 ident: b0130 article-title: A numerical study on a vertical-axis wind turbine with inclined arms publication-title: Int J Aerosp Eng – volume: 80 start-page: 20 year: 2015 end-page: 31 ident: b0035 article-title: The effects of aerofoil profile modification on a vertical axis wind turbine performance publication-title: Energy – volume: 106 start-page: 443 year: 2016 end-page: 452 ident: b0140 article-title: Wind tunnel and numerical study of a straight-bladed vertical axis wind turbine in three-dimensional analysis (Part I: For predicting aerodynamic loads and performance) publication-title: Energy – start-page: 1093 year: 2009 end-page: 1099 ident: b0080 article-title: Experimental study of a straight-bladed vertical axis wind turbine with a directed guide vane row publication-title: ASME. International Conference on Offshore Mechanics and Arctic Engineering, Volume 4: Ocean Engineering; Ocean Renewable Energy; Ocean Space Utilization, Parts A and B – volume: 149 start-page: 87 year: 2017 end-page: 100 ident: b0225 article-title: A review on computational fluid dynamic simulation techniques for Darrieus vertical axis wind turbines publication-title: Energy Convers Manage – volume: 197 start-page: 132 year: 2017 end-page: 150 ident: b0230 article-title: Effect of pitch angle on power performance and aerodynamics of a vertical axis wind turbine publication-title: Appl Energy – volume: 111 start-page: 260 year: 2016 end-page: 271 ident: b0100 article-title: The influence of flow field and aerodynamic forces on a straight-bladed vertical axis wind turbine publication-title: Energy – volume: 36 start-page: 1379 year: 2011 end-page: 1391 ident: b0260 article-title: Roof mounting site analysis for micro-wind turbines publication-title: Renew Energy – volume: 207 start-page: 78 year: 2017 end-page: 95 ident: b0245 article-title: Cross axis wind turbine: pushing the limit of wind turbine technology with complementary design publication-title: Appl Energy – volume: 88 start-page: 57 year: 2015 end-page: 67 ident: b0265 article-title: Estimation of wind energy over roof of two perpendicular buildings publication-title: Energy Build – volume: 52 start-page: 236 year: 2011 end-page: 242 ident: b0050 article-title: Optimal blade shape of a modified Savonius turbine using an obstacle shielding the returning blade publication-title: Energy Convers Manage – volume: 97 start-page: 921 year: 2012 end-page: 929 ident: b0270 article-title: Feasibility analysis of a Darrieus vertical-axis wind turbine installation in the rooftop of a building publication-title: Appl Energy – volume: 85 start-page: 419 year: 2016 end-page: 435 ident: b0205 article-title: Critical issues in the CFD simulation of Darrieus wind turbines publication-title: Renew Energy – volume: 105 start-page: 106 year: 2017 end-page: 116 ident: b0125 article-title: The influence of turbulence model and two and three-dimensional domain selection on the simulated performance characteristics of vertical axis tidal turbines publication-title: Renew Energy – volume: 88 start-page: 3207 year: 2011 end-page: 3217 ident: b0055 article-title: Influence of the deflector plate on the performance of modified Savonius water turbine publication-title: Appl Energy – volume: 75 start-page: 50 year: 2015 end-page: 67 ident: b0010 article-title: Darrieus vertical axis wind turbine for power generation I: Assessment of Darrieus VAWT configurations publication-title: Renew Energy – volume: 147 start-page: 77 year: 2015 end-page: 84 ident: b0135 article-title: 3D URANS analysis of a vertical axis wind turbine in skewed flows publication-title: J Wind Eng Ind Aerodyn – volume: 62 start-page: 53 year: 2014 end-page: 62 ident: b0195 article-title: On the Courant–Friedrichs–Lewy criterion of rotating grids in 2D vertical-axis wind turbine analysis publication-title: Renew Energy – volume: 73 start-page: 904 year: 2017 end-page: 921 ident: b0040 article-title: Performance enhancements on vertical axis wind turbines using flow augmentation systems: a review publication-title: Renew Sustain Energy Rev – volume: 79 start-page: 199 year: 2015 end-page: 208 ident: b0190 article-title: Development of low-noise drag-type vertical wind turbines publication-title: Renew Energy – volume: 115 start-page: 41 year: 2018 ident: 10.1016/j.enconman.2018.01.029_b0075 article-title: Investigation into parameter influence of upstream deflector on vertical axis wind turbines output power via three-dimensional CFD simulation publication-title: Renew Energy doi: 10.1016/j.renene.2017.08.012 – volume: 111 start-page: 260 year: 2016 ident: 10.1016/j.enconman.2018.01.029_b0100 article-title: The influence of flow field and aerodynamic forces on a straight-bladed vertical axis wind turbine publication-title: Energy doi: 10.1016/j.energy.2016.05.129 – volume: 7 year: 2014 ident: 10.1016/j.enconman.2018.01.029_b0015 article-title: Predicting double-blade vertical axis wind turbine performance by a quadruple- multiple streamtube model publication-title: Int J Fluid Mach Syst doi: 10.5293/IJFMS.2014.7.1.016 – ident: 10.1016/j.enconman.2018.01.029_b0215 – volume: 106 start-page: 443 year: 2016 ident: 10.1016/j.enconman.2018.01.029_b0140 article-title: Wind tunnel and numerical study of a straight-bladed vertical axis wind turbine in three-dimensional analysis (Part I: For predicting aerodynamic loads and performance) publication-title: Energy doi: 10.1016/j.energy.2016.03.089 – volume: 49 start-page: 3425 year: 2008 ident: 10.1016/j.enconman.2018.01.029_b0060 article-title: An experimental and numerical study on the improvement of the performance of Savonius wind rotor publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2008.08.021 – start-page: 1093 year: 2009 ident: 10.1016/j.enconman.2018.01.029_b0080 article-title: Experimental study of a straight-bladed vertical axis wind turbine with a directed guide vane row – volume: 79 start-page: 199 year: 2015 ident: 10.1016/j.enconman.2018.01.029_b0190 article-title: Development of low-noise drag-type vertical wind turbines publication-title: Renew Energy doi: 10.1016/j.renene.2014.09.047 – volume: 36 start-page: 1379 year: 2011 ident: 10.1016/j.enconman.2018.01.029_b0260 article-title: Roof mounting site analysis for micro-wind turbines publication-title: Renew Energy doi: 10.1016/j.renene.2010.10.030 – volume: 62 start-page: 53 year: 2014 ident: 10.1016/j.enconman.2018.01.029_b0195 article-title: On the Courant–Friedrichs–Lewy criterion of rotating grids in 2D vertical-axis wind turbine analysis publication-title: Renew Energy doi: 10.1016/j.renene.2013.06.022 – volume: 97 start-page: 246 year: 2016 ident: 10.1016/j.enconman.2018.01.029_b0200 article-title: Dimensionless numbers for the assessment of mesh and timestep requirements in CFD simulations of Darrieus wind turbines publication-title: Energy doi: 10.1016/j.energy.2015.12.111 – volume: 52 start-page: 31 year: 2013 ident: 10.1016/j.enconman.2018.01.029_b0175 article-title: Wind turbine CFD modeling using a correlation-based transitional model publication-title: Renew Energy doi: 10.1016/j.renene.2012.10.007 – volume: 97 start-page: 921 year: 2012 ident: 10.1016/j.enconman.2018.01.029_b0270 article-title: Feasibility analysis of a Darrieus vertical-axis wind turbine installation in the rooftop of a building publication-title: Appl Energy doi: 10.1016/j.apenergy.2011.12.008 – volume: 80 start-page: 20 year: 2015 ident: 10.1016/j.enconman.2018.01.029_b0035 article-title: The effects of aerofoil profile modification on a vertical axis wind turbine performance publication-title: Energy doi: 10.1016/j.energy.2014.11.034 – volume: 118 start-page: 141 year: 2017 ident: 10.1016/j.enconman.2018.01.029_b0095 article-title: Efficiency improvement of vertical axis wind turbines with an upstream deflector publication-title: Energy Proc doi: 10.1016/j.egypro.2017.07.032 – volume: 74 start-page: 661 year: 2015 ident: 10.1016/j.enconman.2018.01.029_b0105 article-title: Quantification of the effects of geometric approximations on the performance of a vertical axis wind turbine publication-title: Renew Energy doi: 10.1016/j.renene.2014.08.068 – volume: 52 start-page: 508 year: 2015 ident: 10.1016/j.enconman.2018.01.029_b0005 article-title: On a self-start Darrieus wind turbine: blade design and field tests publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2015.07.147 – volume: 11 start-page: 962 year: 2011 ident: 10.1016/j.enconman.2018.01.029_b0025 article-title: Numerical simulation of unsteady flow to show self-starting of vertical axis wind turbine using fluent publication-title: J Appl Sci doi: 10.3923/jas.2011.962.970 – year: 2014 ident: 10.1016/j.enconman.2018.01.029_b0020 article-title: Design considerations of rotor configuration for straight-bladed vertical axis wind turbines publication-title: Adv Mech Eng – volume: 35 start-page: 412 year: 2010 ident: 10.1016/j.enconman.2018.01.029_b0255 article-title: Wind tunnel and numerical study of a small vertical axis wind turbine publication-title: Renew Energy doi: 10.1016/j.renene.2009.07.025 – volume: 51 start-page: 101 year: 2013 ident: 10.1016/j.enconman.2018.01.029_b0170 article-title: Numerical evaluation of aerodynamic and inertial contributions to Darrieus wind turbine blade deformation publication-title: Renew Energy doi: 10.1016/j.renene.2012.07.025 – volume: 73 start-page: 904 year: 2017 ident: 10.1016/j.enconman.2018.01.029_b0040 article-title: Performance enhancements on vertical axis wind turbines using flow augmentation systems: a review publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2017.01.160 – volume: 85 start-page: 419 year: 2016 ident: 10.1016/j.enconman.2018.01.029_b0205 article-title: Critical issues in the CFD simulation of Darrieus wind turbines publication-title: Renew Energy doi: 10.1016/j.renene.2015.06.048 – volume: 149 start-page: 87 year: 2017 ident: 10.1016/j.enconman.2018.01.029_b0225 article-title: A review on computational fluid dynamic simulation techniques for Darrieus vertical axis wind turbines publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2017.07.016 – volume: 90 start-page: 439 year: 2015 ident: 10.1016/j.enconman.2018.01.029_b0235 article-title: Aerodynamic characteristics of two-bladed H-Darrieus at various solidities and rotating speeds publication-title: Energy doi: 10.1016/j.energy.2015.07.051 – volume: 127 start-page: 461 year: 2016 ident: 10.1016/j.enconman.2018.01.029_b0180 article-title: A novel heuristic method for optimization of straight blade vertical axis wind turbine publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2016.08.094 – volume: 18 start-page: 54 year: 2009 ident: 10.1016/j.enconman.2018.01.029_b0085 article-title: A straight-bladed vertical axis wind turbine with a directed guide vane row—effect of guide vane geometry on the performance publication-title: J Therm Sci doi: 10.1007/s11630-009-0054-0 – volume: 52 start-page: 236 year: 2011 ident: 10.1016/j.enconman.2018.01.029_b0050 article-title: Optimal blade shape of a modified Savonius turbine using an obstacle shielding the returning blade publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2010.06.070 – ident: 10.1016/j.enconman.2018.01.029_b0185 – volume: 88 start-page: 3207 year: 2011 ident: 10.1016/j.enconman.2018.01.029_b0055 article-title: Influence of the deflector plate on the performance of modified Savonius water turbine publication-title: Appl Energy doi: 10.1016/j.apenergy.2011.03.025 – volume: 90 start-page: 386 year: 2016 ident: 10.1016/j.enconman.2018.01.029_b0155 article-title: Study of wake characteristics of a vertical axis wind turbine by two- and three-dimensional computational fluid dynamics simulations publication-title: Renew Energy doi: 10.1016/j.renene.2016.01.011 – volume: 207 start-page: 78 year: 2017 ident: 10.1016/j.enconman.2018.01.029_b0145 article-title: Cross axis wind turbine: pushing the limit of wind turbine technology with complementary design publication-title: Appl Energy doi: 10.1016/j.apenergy.2017.06.099 – volume: 133 start-page: 235 year: 2017 ident: 10.1016/j.enconman.2018.01.029_b0120 article-title: Three-dimensional Improved delayed detached eddy simulation of a two-bladed vertical axis wind turbine publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2016.11.067 – volume: 57 start-page: 495 year: 2013 ident: 10.1016/j.enconman.2018.01.029_b0115 article-title: Impacts of solidity and hybrid system in small wind turbines performance publication-title: Energy doi: 10.1016/j.energy.2013.06.004 – volume: 2014 year: 2014 ident: 10.1016/j.enconman.2018.01.029_b0130 article-title: A numerical study on a vertical-axis wind turbine with inclined arms publication-title: Int J Aerosp Eng doi: 10.1155/2014/180498 – volume: 35 start-page: 2325 year: 2010 ident: 10.1016/j.enconman.2018.01.029_b0150 article-title: Three-dimensional effects and arm effects on modeling a vertical axis tidal current turbine publication-title: Renew Energy doi: 10.1016/j.renene.2010.03.002 – volume: 75 start-page: 50 year: 2015 ident: 10.1016/j.enconman.2018.01.029_b0010 article-title: Darrieus vertical axis wind turbine for power generation I: Assessment of Darrieus VAWT configurations publication-title: Renew Energy doi: 10.1016/j.renene.2014.09.038 – volume: 93 start-page: 536 year: 2016 ident: 10.1016/j.enconman.2018.01.029_b0240 article-title: Studies of some high solidity symmetrical and unsymmetrical blade H-Darrieus rotors with respect to starting characteristics, dynamic performances and flow physics in low wind streams publication-title: Renew Energy doi: 10.1016/j.renene.2016.03.029 – volume: 125 start-page: 168 year: 2014 ident: 10.1016/j.enconman.2018.01.029_b0045 article-title: Unsteady flow simulation of a vertical axis augmented wind turbine: a two-dimensional study publication-title: J Wind Eng Ind Aerodyn doi: 10.1016/j.jweia.2013.12.005 – volume: 197 start-page: 132 year: 2017 ident: 10.1016/j.enconman.2018.01.029_b0230 article-title: Effect of pitch angle on power performance and aerodynamics of a vertical axis wind turbine publication-title: Appl Energy doi: 10.1016/j.apenergy.2017.03.128 – volume: 83 start-page: 407 year: 2015 ident: 10.1016/j.enconman.2018.01.029_b0110 article-title: Numerical study of the aerodynamic performance of a 500W Darrieus-type vertical-axis wind turbine publication-title: Renew Energy doi: 10.1016/j.renene.2015.04.043 – volume: 90 start-page: 784 year: 2015 ident: 10.1016/j.enconman.2018.01.029_b0160 article-title: Effect of number of blades on aerodynamic forces on a straight-bladed vertical axis wind turbine publication-title: Energy doi: 10.1016/j.energy.2015.07.115 – volume: 85 start-page: 327 year: 2016 ident: 10.1016/j.enconman.2018.01.029_b0210 article-title: Comparative CFD analysis of vertical axis wind turbine in upright and tilted configuration publication-title: Renew Energy doi: 10.1016/j.renene.2015.06.037 – volume: 147 start-page: 77 year: 2015 ident: 10.1016/j.enconman.2018.01.029_b0135 article-title: 3D URANS analysis of a vertical axis wind turbine in skewed flows publication-title: J Wind Eng Ind Aerodyn doi: 10.1016/j.jweia.2015.09.010 – volume: 88 start-page: 57 year: 2015 ident: 10.1016/j.enconman.2018.01.029_b0265 article-title: Estimation of wind energy over roof of two perpendicular buildings publication-title: Energy Build doi: 10.1016/j.enbuild.2014.11.072 – volume: 8 start-page: 42 year: 2014 ident: 10.1016/j.enconman.2018.01.029_b0090 article-title: A preliminary energy and environmental assessment of a micro wind turbine prototype in natural protected areas publication-title: Sustain Energy Technol Assess – volume: 115 start-page: 48 year: 2013 ident: 10.1016/j.enconman.2018.01.029_b0070 article-title: Efficiency improvement of straight-bladed vertical-axis wind turbines with an upstream deflector publication-title: J Wind Eng Ind Aerodyn doi: 10.1016/j.jweia.2013.01.009 – volume: 35 start-page: 821 year: 2010 ident: 10.1016/j.enconman.2018.01.029_b0065 article-title: The use of a curtain design to increase the performance level of a Savonius wind rotors publication-title: Renew Energy doi: 10.1016/j.renene.2009.08.025 – volume: 107 start-page: 373 year: 2017 ident: 10.1016/j.enconman.2018.01.029_b0165 article-title: CFD simulation of a vertical axis wind turbine operating at a moderate tip speed ratio: guidelines for minimum domain size and azimuthal increment publication-title: Renew Energy doi: 10.1016/j.renene.2017.02.006 – volume: 117 start-page: 206 year: 2016 ident: 10.1016/j.enconman.2018.01.029_b0220 article-title: Novel investigation of the different Omni-direction-guide-vane angles effects on the urban vertical axis wind turbine output power via three-dimensional numerical simulation publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2016.03.034 – volume: 105 start-page: 106 year: 2017 ident: 10.1016/j.enconman.2018.01.029_b0125 article-title: The influence of turbulence model and two and three-dimensional domain selection on the simulated performance characteristics of vertical axis tidal turbines publication-title: Renew Energy doi: 10.1016/j.renene.2016.11.063 – volume: 207 start-page: 78 year: 2017 ident: 10.1016/j.enconman.2018.01.029_b0245 article-title: Cross axis wind turbine: pushing the limit of wind turbine technology with complementary design publication-title: Appl Energy doi: 10.1016/j.apenergy.2017.06.099 – volume: 16 start-page: 405 year: 1988 ident: 10.1016/j.enconman.2018.01.029_b0250 article-title: Discrete-vortex simulation of flow over inclined and normal plates publication-title: Comput Fluids doi: 10.1016/0045-7930(88)90025-4 – volume: 133 start-page: 231 year: 2017 ident: 10.1016/j.enconman.2018.01.029_b0030 article-title: Numerical investigation of dimple effects on darrieus vertical axis wind turbine publication-title: Energy doi: 10.1016/j.energy.2017.05.105 |
SSID | ssj0003506 |
Score | 2.518553 |
Snippet | [Display omitted]
•Flat plate deflector enhances the efficiency of the VAWT significantly.•Deflected wind flow velocity is about 25% higher compared to the... Power augmentation features have been proven as one of the wind turbine performance enhancement methods particularly for vertical axis wind turbines (VAWTs).... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 109 |
SubjectTerms | Augmentation Coefficient of power Computational fluid dynamics (CFD) Electric power generation Experiment Experiments Flat plate deflector Flat plates Performance enhancement Power augmentation Power efficiency power generation Retrofitting Simulation Turbines Velocity Vertical axis wind turbine Vertical axis wind turbines Wind power Wind speed Wind turbines |
Title | Experimental and simulation investigation into the effects of a flat plate deflector on vertical axis wind turbine |
URI | https://dx.doi.org/10.1016/j.enconman.2018.01.029 https://www.proquest.com/docview/2063751143 https://www.proquest.com/docview/2045826343 |
Volume | 160 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA6iFz2IT3wTwWvddvNocxRRVkUvKngLaR5Q0e6yu6Inf7szbaqrIB68lCaZtHnOTJLJN4QcqVSYvipcoqTB3aoSphRzKhFe9EuQeMo1xpjXN3Jwzy8fxMMcOe3uwqBZZeT9LU9vuHWM6cXW7I2qqneLyC6FSjkMSlxJ4IVfznMc5cfvX2YeTDT-NZE4QeqZW8KPx4gVWT8bxEHNiha-U_0moH6w6kb-nK-Q5ag40pO2bKtkztdrZGkGTnCdjM9m4PqpqR2dVM_RPRetvgA1mtB0SEH3o9Gegw4DNTQALR3Bw1PnQ7uhT4G68dls8Ztv1YS-wjKegqSCNbXfIPfnZ3engyT6VEgsy9k0cVzlrrC5KVJfIjR74dLUBGZyqLoTmSxCsKaEN29LKTlEl6ovgwiw0mJFzjbJfD2s_RahFmgVbitz7nlIRcmz3ErBLCidTHq2TUTXkNpGwHH0e_GkO8uyR911gMYO0GmmoRTbpPeZb9RCbvyZQ3X9pL8NHg1y4c-8e13H6jh9J5AuWQ6qKIdKHH4mw8TD0xRT--EL0uCRo2Sc7fzj97tkEUNo1ZaJPTI_Hb_4fVBzpuVBM44PyMLJxdXg5gORqP3l |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELbocqA9VLS0Ki1QI_UaNlk_Yh8RAi2vvQASN8vxQwqC7Ipd1P78ziTOdouEOHCJEnuc2LE9D3v8DSG_dC7sSCufaWlxtaqCKcW8zkQQowoknvatM-blRI5v-NmtuF0jR_1ZGHSrTLy_4-ktt04pw_Q3h7O6Hl4hsovSOYdBiZaEekfWEZ1KDMj64en5eLJkyEy0ITaRPsMCKweF7w4QLrJ5sAiFWqgOwVO_JKOecetWBJ1sko9Jd6SHXfU-kbXQfCYfVhAFt8jj8QpiP7WNp_P6IUXoovU_TI32aTGloP7R5NJBp5FaGoGWzuASqA-xW9OnQN2GbXb4zj_1nP4GS56CsAKzOnwhNyfH10fjLIVVyBwr2SLzXJdeudKqPFSIzq58ntvIbAlN96KQKkZnK7gLrpKSQ3KlRzKKCMYWUyX7SgbNtAnfCHVAq3FlmfPAYy4qXpROCuZA72QysG0i-h9pXMIcx9AX96Z3LrszfQcY7ACTFwZqsU2Gy3KzDnXj1RK67yfz3_gxIBpeLbvTd6xJM3gO-ZKVoI1yaMT-MhvmHm6o2CZMn5AGdx0l4-z7Gz7_k2yMry8vzMXp5PwHeY856ORWiB0yWDw-hV3QehbVXhrVfwE7mQCl |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Experimental+and+simulation+investigation+into+the+effects+of+a+flat+plate+deflector+on+vertical+axis+wind+turbine&rft.jtitle=Energy+conversion+and+management&rft.au=Wong%2C+Kok+Hoe&rft.au=Chong%2C+Wen+Tong&rft.au=Sukiman%2C+Nazatul+Liana&rft.au=Shiah%2C+Yui-Chuin&rft.date=2018-03-15&rft.issn=0196-8904&rft.volume=160&rft.spage=109&rft.epage=125&rft_id=info:doi/10.1016%2Fj.enconman.2018.01.029&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_enconman_2018_01_029 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-8904&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-8904&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-8904&client=summon |