Experimental and simulation investigation into the effects of a flat plate deflector on vertical axis wind turbine

[Display omitted] •Flat plate deflector enhances the efficiency of the VAWT significantly.•Deflected wind flow velocity is about 25% higher compared to the oncoming wind.•Experiment result aligned with 3D simulation on the deflector positioning effect.•VAWT efficiency is highly dependent on the posi...

Full description

Saved in:
Bibliographic Details
Published inEnergy conversion and management Vol. 160; pp. 109 - 125
Main Authors Wong, Kok Hoe, Chong, Wen Tong, Sukiman, Nazatul Liana, Shiah, Yui-Chuin, Poh, Sin Chew, Sopian, Kamaruzzaman, Wang, Wei-Cheng
Format Journal Article
LanguageEnglish
Published Oxford Elsevier Ltd 15.03.2018
Elsevier Science Ltd
Subjects
Online AccessGet full text

Cover

Loading…
Abstract [Display omitted] •Flat plate deflector enhances the efficiency of the VAWT significantly.•Deflected wind flow velocity is about 25% higher compared to the oncoming wind.•Experiment result aligned with 3D simulation on the deflector positioning effect.•VAWT efficiency is highly dependent on the position of the flat plate deflector. Power augmentation features have been proven as one of the wind turbine performance enhancement methods particularly for vertical axis wind turbines (VAWTs). Researches showed that with the aid of a deflector, shroud or a single plate, the power output of a VAWT can be increased remarkably. In this paper, lab tests and simulations were performed to investigate the aerodynamic effects and the flow field around a flat plate deflector as a power augmentation device which is placed at the lower upstream of a micro H-rotor VAWT. From the study, the deflector is able to induce a high velocity wind at the near-wake region which was about 25% higher compared to the oncoming wind velocity. The deflected wind flows improve the performance significantly as well as reduce the self-start velocity of the turbine. Nonetheless, it is highly dependent on the positioning of the flat plate deflector. Both experiment and simulation showed a notable observation on the position effect of the flat plate deflector. From the lab test, with the deflector at the optimal position, the maximum coefficient of power (CP) achieved was 7.4% increment compared to the bare turbine. Also, from the simulation, the optimal position showed an improvement of averaged CP up to 33% compared to the bare turbine. The flat plate deflector is simple, low cost, and can be easily retrofitted to existing stand-alone VAWT systems to improve the efficiency making them suitable for on-site power generation in urban and isolated places.
AbstractList Power augmentation features have been proven as one of the wind turbine performance enhancement methods particularly for vertical axis wind turbines (VAWTs). Researches showed that with the aid of a deflector, shroud or a single plate, the power output of a VAWT can be increased remarkably. In this paper, lab tests and simulations were performed to investigate the aerodynamic effects and the flow field around a flat plate deflector as a power augmentation device which is placed at the lower upstream of a micro H-rotor VAWT. From the study, the deflector is able to induce a high velocity wind at the near-wake region which was about 25% higher compared to the oncoming wind velocity. The deflected wind flows improve the performance significantly as well as reduce the self-start velocity of the turbine. Nonetheless, it is highly dependent on the positioning of the flat plate deflector. Both experiment and simulation showed a notable observation on the position effect of the flat plate deflector. From the lab test, with the deflector at the optimal position, the maximum coefficient of power (CP) achieved was 7.4% increment compared to the bare turbine. Also, from the simulation, the optimal position showed an improvement of averaged CP up to 33% compared to the bare turbine. The flat plate deflector is simple, low cost, and can be easily retrofitted to existing stand-alone VAWT systems to improve the efficiency making them suitable for on-site power generation in urban and isolated places.
[Display omitted] •Flat plate deflector enhances the efficiency of the VAWT significantly.•Deflected wind flow velocity is about 25% higher compared to the oncoming wind.•Experiment result aligned with 3D simulation on the deflector positioning effect.•VAWT efficiency is highly dependent on the position of the flat plate deflector. Power augmentation features have been proven as one of the wind turbine performance enhancement methods particularly for vertical axis wind turbines (VAWTs). Researches showed that with the aid of a deflector, shroud or a single plate, the power output of a VAWT can be increased remarkably. In this paper, lab tests and simulations were performed to investigate the aerodynamic effects and the flow field around a flat plate deflector as a power augmentation device which is placed at the lower upstream of a micro H-rotor VAWT. From the study, the deflector is able to induce a high velocity wind at the near-wake region which was about 25% higher compared to the oncoming wind velocity. The deflected wind flows improve the performance significantly as well as reduce the self-start velocity of the turbine. Nonetheless, it is highly dependent on the positioning of the flat plate deflector. Both experiment and simulation showed a notable observation on the position effect of the flat plate deflector. From the lab test, with the deflector at the optimal position, the maximum coefficient of power (CP) achieved was 7.4% increment compared to the bare turbine. Also, from the simulation, the optimal position showed an improvement of averaged CP up to 33% compared to the bare turbine. The flat plate deflector is simple, low cost, and can be easily retrofitted to existing stand-alone VAWT systems to improve the efficiency making them suitable for on-site power generation in urban and isolated places.
Author Sopian, Kamaruzzaman
Chong, Wen Tong
Shiah, Yui-Chuin
Wong, Kok Hoe
Poh, Sin Chew
Sukiman, Nazatul Liana
Wang, Wei-Cheng
Author_xml – sequence: 1
  givenname: Kok Hoe
  surname: Wong
  fullname: Wong, Kok Hoe
  organization: Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia
– sequence: 2
  givenname: Wen Tong
  orcidid: 0000-0002-9208-9908
  surname: Chong
  fullname: Chong, Wen Tong
  email: chong_wentong@um.edu.my
  organization: Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia
– sequence: 3
  givenname: Nazatul Liana
  surname: Sukiman
  fullname: Sukiman, Nazatul Liana
  organization: Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia
– sequence: 4
  givenname: Yui-Chuin
  surname: Shiah
  fullname: Shiah, Yui-Chuin
  organization: Department of Aeronautics and Astronautics, National Cheng Kung University, Tainan City 701, Taiwan
– sequence: 5
  givenname: Sin Chew
  surname: Poh
  fullname: Poh, Sin Chew
  organization: Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia
– sequence: 6
  givenname: Kamaruzzaman
  surname: Sopian
  fullname: Sopian, Kamaruzzaman
  organization: Solar Energy Research Institute (SERI), The National University of Malaysia, 43600 Bangi, Selangor, Malaysia
– sequence: 7
  givenname: Wei-Cheng
  surname: Wang
  fullname: Wang, Wei-Cheng
  organization: Department of Aeronautics and Astronautics, National Cheng Kung University, Tainan City 701, Taiwan
BookMark eNqFkU9P3DAQxa2KSl0oX6GyxIVLUjtOHEfiAEJAKyH1Us6W44yLV1l7sZ2FfvvOsuXChYv__t7TzJtjchRiAEK-cVZzxuX3dQ3BxrAxoW4YVzXjNWuGT2TFVT9UTdP0R2TF-CArNbD2CznOec0YEx2TK5JuXraQ_AZCMTM1YaLZb5bZFB8D9WEHufg_b7cSaXkECs6BLZlGRw11yNItLkAncDN-xESR3kEq3u49X3ymzx6dy5JGH-Ar-ezMnOH0_35CHm5vfl__qO5_3f28vrqvrOhFqaZ26Cdle6MYjIOSrZoYM06YHrubOi6Vc9aMeAI7Stni8zg00nVO8kGoXpyQ84PvNsWnBRvRG58tzLMJEJesG9Z2qpGiFYievUPXcUkBq0NKir7j_JW6OFA2xZwTOG19ec2mJONnzZneD0Sv9dtA9H4gmnGNJaNcvpNvMXiT_n4svDwIAdPaeUg6W48kTD5h3nqK_iOLfxESrT8
CitedBy_id crossref_primary_10_1016_j_enconman_2019_05_055
crossref_primary_10_1016_j_enconman_2021_114609
crossref_primary_10_1016_j_renene_2018_05_085
crossref_primary_10_1007_s40430_022_03374_5
crossref_primary_10_1016_j_enconman_2020_112588
crossref_primary_10_1016_j_enconman_2022_116436
crossref_primary_10_1016_j_jweia_2023_105349
crossref_primary_10_1016_j_seta_2021_101789
crossref_primary_10_2514_1_J059797
crossref_primary_10_3390_dynamics5010008
crossref_primary_10_1016_j_ijhydene_2022_04_196
crossref_primary_10_1007_s40430_022_03407_z
crossref_primary_10_1063_5_0111568
crossref_primary_10_3390_app11178011
crossref_primary_10_1016_j_jclepro_2023_138876
crossref_primary_10_1007_s10098_023_02554_8
crossref_primary_10_1016_j_oceaneng_2023_115910
crossref_primary_10_1063_5_0141119
crossref_primary_10_1016_j_enconman_2024_118469
crossref_primary_10_1016_j_enconman_2019_112249
crossref_primary_10_1016_j_energy_2024_130522
crossref_primary_10_1016_j_oceaneng_2019_04_086
crossref_primary_10_1016_j_renene_2024_121462
crossref_primary_10_3390_en17020503
crossref_primary_10_1016_j_energy_2023_127940
crossref_primary_10_1080_15435075_2023_2220372
crossref_primary_10_1016_j_enconman_2021_114680
crossref_primary_10_1016_j_jclepro_2023_137413
crossref_primary_10_1007_s40430_023_04089_x
crossref_primary_10_1016_j_energy_2023_127182
crossref_primary_10_3390_en14196167
crossref_primary_10_1016_j_seta_2019_100586
crossref_primary_10_1063_5_0162026
crossref_primary_10_3390_en14144087
crossref_primary_10_1016_j_enconman_2018_11_066
crossref_primary_10_1080_14786451_2024_2321627
crossref_primary_10_35633_inmateh_64_15
crossref_primary_10_1016_j_ecmx_2019_100026
crossref_primary_10_1177_0309524X221084980
crossref_primary_10_3389_fenrg_2022_790777
crossref_primary_10_1007_s40430_020_02598_7
crossref_primary_10_1016_j_seta_2022_102469
crossref_primary_10_1063_5_0204070
crossref_primary_10_3390_en16083420
crossref_primary_10_1016_j_enconman_2021_114109
crossref_primary_10_1016_j_oceaneng_2023_116373
crossref_primary_10_1007_s13369_022_06631_w
crossref_primary_10_1016_j_enconman_2021_114599
crossref_primary_10_1088_1755_1315_463_1_012153
crossref_primary_10_1016_j_energy_2023_129116
crossref_primary_10_3390_pr12102215
crossref_primary_10_1016_j_enconman_2020_113062
crossref_primary_10_1002_er_5751
crossref_primary_10_1016_j_enconman_2018_04_062
crossref_primary_10_1016_j_energy_2020_117745
crossref_primary_10_1016_j_isci_2023_107674
crossref_primary_10_1016_j_oceaneng_2023_116500
crossref_primary_10_1016_j_renene_2024_121443
crossref_primary_10_35633_inmateh_66_26
crossref_primary_10_1007_s11831_021_09640_4
crossref_primary_10_1016_j_enconman_2025_119514
crossref_primary_10_5937_jaes0_44759
crossref_primary_10_2139_ssrn_3442236
crossref_primary_10_1007_s40430_023_04330_7
crossref_primary_10_1016_j_renene_2023_119545
crossref_primary_10_1016_j_enconman_2022_115453
crossref_primary_10_1007_s11831_019_09316_0
crossref_primary_10_1016_j_oceaneng_2020_107296
crossref_primary_10_1080_15567036_2023_2186543
crossref_primary_10_1016_j_oceaneng_2024_119900
crossref_primary_10_1007_s40799_021_00485_x
crossref_primary_10_1115_1_4054395
crossref_primary_10_3389_fenrg_2024_1437800
crossref_primary_10_1007_s11630_018_1058_4
Cites_doi 10.1016/j.renene.2017.08.012
10.1016/j.energy.2016.05.129
10.5293/IJFMS.2014.7.1.016
10.1016/j.energy.2016.03.089
10.1016/j.enconman.2008.08.021
10.1016/j.renene.2014.09.047
10.1016/j.renene.2010.10.030
10.1016/j.renene.2013.06.022
10.1016/j.energy.2015.12.111
10.1016/j.renene.2012.10.007
10.1016/j.apenergy.2011.12.008
10.1016/j.energy.2014.11.034
10.1016/j.egypro.2017.07.032
10.1016/j.renene.2014.08.068
10.1016/j.rser.2015.07.147
10.3923/jas.2011.962.970
10.1016/j.renene.2009.07.025
10.1016/j.renene.2012.07.025
10.1016/j.rser.2017.01.160
10.1016/j.renene.2015.06.048
10.1016/j.enconman.2017.07.016
10.1016/j.energy.2015.07.051
10.1016/j.enconman.2016.08.094
10.1007/s11630-009-0054-0
10.1016/j.enconman.2010.06.070
10.1016/j.apenergy.2011.03.025
10.1016/j.renene.2016.01.011
10.1016/j.apenergy.2017.06.099
10.1016/j.enconman.2016.11.067
10.1016/j.energy.2013.06.004
10.1155/2014/180498
10.1016/j.renene.2010.03.002
10.1016/j.renene.2014.09.038
10.1016/j.renene.2016.03.029
10.1016/j.jweia.2013.12.005
10.1016/j.apenergy.2017.03.128
10.1016/j.renene.2015.04.043
10.1016/j.energy.2015.07.115
10.1016/j.renene.2015.06.037
10.1016/j.jweia.2015.09.010
10.1016/j.enbuild.2014.11.072
10.1016/j.jweia.2013.01.009
10.1016/j.renene.2009.08.025
10.1016/j.renene.2017.02.006
10.1016/j.enconman.2016.03.034
10.1016/j.renene.2016.11.063
10.1016/0045-7930(88)90025-4
10.1016/j.energy.2017.05.105
ContentType Journal Article
Copyright 2018 Elsevier Ltd
Copyright Elsevier Science Ltd. Mar 15, 2018
Copyright_xml – notice: 2018 Elsevier Ltd
– notice: Copyright Elsevier Science Ltd. Mar 15, 2018
DBID AAYXX
CITATION
7ST
7TB
8FD
C1K
FR3
H8D
KR7
L7M
SOI
7S9
L.6
DOI 10.1016/j.enconman.2018.01.029
DatabaseName CrossRef
Environment Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Aerospace Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Engineering Research Database
Environment Abstracts
Advanced Technologies Database with Aerospace
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
Aerospace Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-2227
EndPage 125
ExternalDocumentID 10_1016_j_enconman_2018_01_029
S0196890418300268
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABYKQ
ACBEA
ACDAQ
ACGFO
ACGFS
ACIWK
ACNCT
ACRLP
ADBBV
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSR
SST
SSZ
T5K
TN5
XPP
ZMT
~02
~G-
29G
6TJ
8WZ
A6W
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
FEDTE
FGOYB
G-2
HVGLF
HZ~
H~9
R2-
SAC
SEW
WUQ
7ST
7TB
8FD
C1K
EFKBS
FR3
H8D
KR7
L7M
SOI
7S9
AFXIZ
L.6
ID FETCH-LOGICAL-c373t-d497d8c7a80eb98648d00af3a7029d5168ffcabd51ecb664702b926f5f6193873
IEDL.DBID .~1
ISSN 0196-8904
IngestDate Tue Aug 05 09:52:49 EDT 2025
Wed Aug 13 06:40:07 EDT 2025
Thu Apr 24 23:03:53 EDT 2025
Tue Jul 01 01:17:26 EDT 2025
Fri Feb 23 02:47:09 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Coefficient of power
Flat plate deflector
Vertical axis wind turbine
Power augmentation
Experiment
Computational fluid dynamics (CFD)
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c373t-d497d8c7a80eb98648d00af3a7029d5168ffcabd51ecb664702b926f5f6193873
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-9208-9908
PQID 2063751143
PQPubID 2047472
PageCount 17
ParticipantIDs proquest_miscellaneous_2045826343
proquest_journals_2063751143
crossref_citationtrail_10_1016_j_enconman_2018_01_029
crossref_primary_10_1016_j_enconman_2018_01_029
elsevier_sciencedirect_doi_10_1016_j_enconman_2018_01_029
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-03-15
PublicationDateYYYYMMDD 2018-03-15
PublicationDate_xml – month: 03
  year: 2018
  text: 2018-03-15
  day: 15
PublicationDecade 2010
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Energy conversion and management
PublicationYear 2018
Publisher Elsevier Ltd
Elsevier Science Ltd
Publisher_xml – name: Elsevier Ltd
– name: Elsevier Science Ltd
References Trivellato, Raciti Castelli (b0195) 2014; 62
Takao, Kuma, Maeda, Kamada, Oki, Minoda (b0085) 2009; 18
Batista, Melício, Mendes, Calderón, Ramiro (b0005) 2015; 52
Lei, Zhou, Bao, Li, Han (b0120) 2017; 133
Mohamed, Janiga, Pap, Thévenin (b0050) 2011; 52
Joo, Choi, Lee (b0235) 2015; 90
Balduzzi, Bianchini, Maleci, Ferrara, Ferrari (b0205) 2016; 85
Orlandi, Collu, Zanforlin, Shires (b0135) 2015; 147
Balduzzi, Bianchini, Ferrara, Ferrari (b0200) 2016; 97
Sobhani, Ghaffari, Maghrebi (b0030) 2017; 133
Li, Maeda, Kamada, Murata, Kawabata, Shimizu (b0140) 2016; 106
Kim, Cheong (b0190) 2015; 79
Ledo, Kosasih, Cooper (b0260) 2011; 36
Jin, Wang, Ju, He, Xie (b0075) 2018; 115
Kim, Gharib (b0070) 2013; 115
Lanzafame, Mauro, Messina (b0175) 2013; 52
Tahani, Babayan, Mehrnia, Shadmehri (b0180) 2016; 127
de Santoli, Albo, Astiaso Garcia, Bruschi, Cumo (b0090) 2014; 8
Marsh, Ranmuthugala, Penesis, Thomas (b0125) 2017; 105
Li, Maeda, Kamada, Murata, Furukawa, Yamamoto (b0100) 2016; 111
Liang, Zhang, Li, Liu, Yang (b0020) 2014
Beri, Yao (b0025) 2011; 11
Li, Calisal (b0150) 2010; 35
Li, Maeda, Kamada, Murata, Furukawa, Yamamoto (b0160) 2015; 90
Altan, Atılgan (b0060) 2008; 49
Altan, Atılgan (b0065) 2010; 35
Wang, Cot, Adolphe, Geoffroy, Morchain (b0265) 2015; 88
Ismail, Vijayaraghavan (b0035) 2015; 80
Sengupta, Biswas, Gupta (b0240) 2016; 93
Shahizare, Nik-Ghazali, Chong, Tabatabaeikia, Izadyar, Esmaeilzadeh (b0220) 2016; 117
Golecha, Eldho, Prabhu (b0055) 2011; 88
Siddiqui, Durrani, Akhtar (b0105) 2015; 74
Raciti Castelli, Dal Monte, Quaresimin, Benini (b0170) 2013; 51
I. ANSYS. ANSYS Fluent user's guide. Release 15.0.; 2013.
Tjiu, Marnoto, Mat, Ruslan, Sopian (b0010) 2015; 75
Rezaeiha, Kalkman, Blocken (b0230) 2017; 197
Rezaeiha, Kalkman, Blocken (b0165) 2017; 107
Chein, Chung (b0250) 1988; 16
Marco, Coiro, Cucco, Nicolosi (b0130) 2014; 2014
Lam, Peng (b0155) 2016; 90
Mohamed (b0115) 2013; 57
Chowdhury, Akimoto, Hara (b0210) 2016; 85
Howell, Qin, Edwards, Durrani (b0255) 2010; 35
Hara, Kawamura, Akimiti, Tanaka, Nakamura, Mizumukai (b0015) 2014; 7
Ghasemian, Ashrafi, Sedaghat (b0225) 2017; 149
Wong, Chong, Sukiman, Poh, Shiah, Wang (b0040) 2017; 73
Nobile, Vahdati, Barlow, Mewburn-Crook (b0045) 2014; 125
Chong, Muzammil, Wong, Wang, Gwani, Chu (b0145) 2017; 207
Lee, Lim (b0110) 2015; 83
Takao, Takita, Saito, Maeda, Kamada, Toshimitsu (b0080) 2009
Chong, Muzammil, Wong, Wang, Gwani, Chu (b0245) 2017; 207
I. ANSYS. ANSYS Fluent theory guide. Release 15.0.; 2013.
Balduzzi, Bianchini, Carnevale, Ferrari, Magnani (b0270) 2012; 97
Stout, Islam, White, Arnott, Kollovozi, Shaw (b0095) 2017; 118
Mohamed (10.1016/j.enconman.2018.01.029_b0115) 2013; 57
Mohamed (10.1016/j.enconman.2018.01.029_b0050) 2011; 52
10.1016/j.enconman.2018.01.029_b0185
Chowdhury (10.1016/j.enconman.2018.01.029_b0210) 2016; 85
Marco (10.1016/j.enconman.2018.01.029_b0130) 2014; 2014
Altan (10.1016/j.enconman.2018.01.029_b0065) 2010; 35
Siddiqui (10.1016/j.enconman.2018.01.029_b0105) 2015; 74
Balduzzi (10.1016/j.enconman.2018.01.029_b0205) 2016; 85
Stout (10.1016/j.enconman.2018.01.029_b0095) 2017; 118
Raciti Castelli (10.1016/j.enconman.2018.01.029_b0170) 2013; 51
Batista (10.1016/j.enconman.2018.01.029_b0005) 2015; 52
Shahizare (10.1016/j.enconman.2018.01.029_b0220) 2016; 117
Altan (10.1016/j.enconman.2018.01.029_b0060) 2008; 49
Kim (10.1016/j.enconman.2018.01.029_b0070) 2013; 115
Li (10.1016/j.enconman.2018.01.029_b0140) 2016; 106
Tjiu (10.1016/j.enconman.2018.01.029_b0010) 2015; 75
Balduzzi (10.1016/j.enconman.2018.01.029_b0200) 2016; 97
Wang (10.1016/j.enconman.2018.01.029_b0265) 2015; 88
Li (10.1016/j.enconman.2018.01.029_b0100) 2016; 111
Li (10.1016/j.enconman.2018.01.029_b0160) 2015; 90
Lei (10.1016/j.enconman.2018.01.029_b0120) 2017; 133
Rezaeiha (10.1016/j.enconman.2018.01.029_b0165) 2017; 107
Sobhani (10.1016/j.enconman.2018.01.029_b0030) 2017; 133
Beri (10.1016/j.enconman.2018.01.029_b0025) 2011; 11
Chong (10.1016/j.enconman.2018.01.029_b0145) 2017; 207
Takao (10.1016/j.enconman.2018.01.029_b0080) 2009
Chong (10.1016/j.enconman.2018.01.029_b0245) 2017; 207
Li (10.1016/j.enconman.2018.01.029_b0150) 2010; 35
Ghasemian (10.1016/j.enconman.2018.01.029_b0225) 2017; 149
Ismail (10.1016/j.enconman.2018.01.029_b0035) 2015; 80
Lam (10.1016/j.enconman.2018.01.029_b0155) 2016; 90
Lee (10.1016/j.enconman.2018.01.029_b0110) 2015; 83
Lanzafame (10.1016/j.enconman.2018.01.029_b0175) 2013; 52
Takao (10.1016/j.enconman.2018.01.029_b0085) 2009; 18
Liang (10.1016/j.enconman.2018.01.029_b0020) 2014
Trivellato (10.1016/j.enconman.2018.01.029_b0195) 2014; 62
Golecha (10.1016/j.enconman.2018.01.029_b0055) 2011; 88
Jin (10.1016/j.enconman.2018.01.029_b0075) 2018; 115
Ledo (10.1016/j.enconman.2018.01.029_b0260) 2011; 36
Howell (10.1016/j.enconman.2018.01.029_b0255) 2010; 35
Chein (10.1016/j.enconman.2018.01.029_b0250) 1988; 16
Rezaeiha (10.1016/j.enconman.2018.01.029_b0230) 2017; 197
Nobile (10.1016/j.enconman.2018.01.029_b0045) 2014; 125
10.1016/j.enconman.2018.01.029_b0215
Joo (10.1016/j.enconman.2018.01.029_b0235) 2015; 90
Balduzzi (10.1016/j.enconman.2018.01.029_b0270) 2012; 97
Wong (10.1016/j.enconman.2018.01.029_b0040) 2017; 73
de Santoli (10.1016/j.enconman.2018.01.029_b0090) 2014; 8
Marsh (10.1016/j.enconman.2018.01.029_b0125) 2017; 105
Tahani (10.1016/j.enconman.2018.01.029_b0180) 2016; 127
Sengupta (10.1016/j.enconman.2018.01.029_b0240) 2016; 93
Hara (10.1016/j.enconman.2018.01.029_b0015) 2014; 7
Kim (10.1016/j.enconman.2018.01.029_b0190) 2015; 79
Orlandi (10.1016/j.enconman.2018.01.029_b0135) 2015; 147
References_xml – volume: 90
  start-page: 784
  year: 2015
  end-page: 795
  ident: b0160
  article-title: Effect of number of blades on aerodynamic forces on a straight-bladed vertical axis wind turbine
  publication-title: Energy
– volume: 8
  start-page: 42
  year: 2014
  end-page: 56
  ident: b0090
  article-title: A preliminary energy and environmental assessment of a micro wind turbine prototype in natural protected areas
  publication-title: Sustain Energy Technol Assess
– volume: 16
  start-page: 405
  year: 1988
  end-page: 427
  ident: b0250
  article-title: Discrete-vortex simulation of flow over inclined and normal plates
  publication-title: Comput Fluids
– volume: 93
  start-page: 536
  year: 2016
  end-page: 547
  ident: b0240
  article-title: Studies of some high solidity symmetrical and unsymmetrical blade H-Darrieus rotors with respect to starting characteristics, dynamic performances and flow physics in low wind streams
  publication-title: Renew Energy
– volume: 85
  start-page: 327
  year: 2016
  end-page: 337
  ident: b0210
  article-title: Comparative CFD analysis of vertical axis wind turbine in upright and tilted configuration
  publication-title: Renew Energy
– reference: I. ANSYS. ANSYS Fluent user's guide. Release 15.0.; 2013.
– volume: 35
  start-page: 412
  year: 2010
  end-page: 422
  ident: b0255
  article-title: Wind tunnel and numerical study of a small vertical axis wind turbine
  publication-title: Renew Energy
– volume: 115
  start-page: 48
  year: 2013
  end-page: 52
  ident: b0070
  article-title: Efficiency improvement of straight-bladed vertical-axis wind turbines with an upstream deflector
  publication-title: J Wind Eng Ind Aerodyn
– year: 2014
  ident: b0020
  article-title: Design considerations of rotor configuration for straight-bladed vertical axis wind turbines
  publication-title: Adv Mech Eng
– volume: 115
  start-page: 41
  year: 2018
  end-page: 53
  ident: b0075
  article-title: Investigation into parameter influence of upstream deflector on vertical axis wind turbines output power via three-dimensional CFD simulation
  publication-title: Renew Energy
– volume: 207
  start-page: 78
  year: 2017
  end-page: 95
  ident: b0145
  article-title: Cross axis wind turbine: pushing the limit of wind turbine technology with complementary design
  publication-title: Appl Energy
– volume: 18
  start-page: 54
  year: 2009
  end-page: 57
  ident: b0085
  article-title: A straight-bladed vertical axis wind turbine with a directed guide vane row—effect of guide vane geometry on the performance
  publication-title: J Therm Sci
– volume: 11
  start-page: 962
  year: 2011
  end-page: 970
  ident: b0025
  article-title: Numerical simulation of unsteady flow to show self-starting of vertical axis wind turbine using fluent
  publication-title: J Appl Sci
– volume: 118
  start-page: 141
  year: 2017
  end-page: 148
  ident: b0095
  article-title: Efficiency improvement of vertical axis wind turbines with an upstream deflector
  publication-title: Energy Proc
– volume: 133
  start-page: 235
  year: 2017
  end-page: 248
  ident: b0120
  article-title: Three-dimensional Improved delayed detached eddy simulation of a two-bladed vertical axis wind turbine
  publication-title: Energy Convers Manage
– volume: 90
  start-page: 386
  year: 2016
  end-page: 398
  ident: b0155
  article-title: Study of wake characteristics of a vertical axis wind turbine by two- and three-dimensional computational fluid dynamics simulations
  publication-title: Renew Energy
– volume: 74
  start-page: 661
  year: 2015
  end-page: 670
  ident: b0105
  article-title: Quantification of the effects of geometric approximations on the performance of a vertical axis wind turbine
  publication-title: Renew Energy
– volume: 52
  start-page: 508
  year: 2015
  end-page: 522
  ident: b0005
  article-title: On a self-start Darrieus wind turbine: blade design and field tests
  publication-title: Renew Sustain Energy Rev
– volume: 133
  start-page: 231
  year: 2017
  end-page: 241
  ident: b0030
  article-title: Numerical investigation of dimple effects on darrieus vertical axis wind turbine
  publication-title: Energy
– volume: 107
  start-page: 373
  year: 2017
  end-page: 385
  ident: b0165
  article-title: CFD simulation of a vertical axis wind turbine operating at a moderate tip speed ratio: guidelines for minimum domain size and azimuthal increment
  publication-title: Renew Energy
– volume: 125
  start-page: 168
  year: 2014
  end-page: 179
  ident: b0045
  article-title: Unsteady flow simulation of a vertical axis augmented wind turbine: a two-dimensional study
  publication-title: J Wind Eng Ind Aerodyn
– volume: 127
  start-page: 461
  year: 2016
  end-page: 476
  ident: b0180
  article-title: A novel heuristic method for optimization of straight blade vertical axis wind turbine
  publication-title: Energy Convers Manage
– volume: 83
  start-page: 407
  year: 2015
  end-page: 415
  ident: b0110
  article-title: Numerical study of the aerodynamic performance of a 500
  publication-title: Renew Energy
– volume: 52
  start-page: 31
  year: 2013
  end-page: 39
  ident: b0175
  article-title: Wind turbine CFD modeling using a correlation-based transitional model
  publication-title: Renew Energy
– volume: 7
  year: 2014
  ident: b0015
  article-title: Predicting double-blade vertical axis wind turbine performance by a quadruple- multiple streamtube model
  publication-title: Int J Fluid Mach Syst
– volume: 49
  start-page: 3425
  year: 2008
  end-page: 3432
  ident: b0060
  article-title: An experimental and numerical study on the improvement of the performance of Savonius wind rotor
  publication-title: Energy Convers Manage
– volume: 97
  start-page: 246
  year: 2016
  end-page: 261
  ident: b0200
  article-title: Dimensionless numbers for the assessment of mesh and timestep requirements in CFD simulations of Darrieus wind turbines
  publication-title: Energy
– volume: 117
  start-page: 206
  year: 2016
  end-page: 217
  ident: b0220
  article-title: Novel investigation of the different Omni-direction-guide-vane angles effects on the urban vertical axis wind turbine output power via three-dimensional numerical simulation
  publication-title: Energy Convers Manage
– volume: 35
  start-page: 821
  year: 2010
  end-page: 829
  ident: b0065
  article-title: The use of a curtain design to increase the performance level of a Savonius wind rotors
  publication-title: Renew Energy
– volume: 90
  start-page: 439
  year: 2015
  end-page: 451
  ident: b0235
  article-title: Aerodynamic characteristics of two-bladed H-Darrieus at various solidities and rotating speeds
  publication-title: Energy
– volume: 57
  start-page: 495
  year: 2013
  end-page: 504
  ident: b0115
  article-title: Impacts of solidity and hybrid system in small wind turbines performance
  publication-title: Energy
– volume: 51
  start-page: 101
  year: 2013
  end-page: 112
  ident: b0170
  article-title: Numerical evaluation of aerodynamic and inertial contributions to Darrieus wind turbine blade deformation
  publication-title: Renew Energy
– reference: I. ANSYS. ANSYS Fluent theory guide. Release 15.0.; 2013.
– volume: 35
  start-page: 2325
  year: 2010
  end-page: 2334
  ident: b0150
  article-title: Three-dimensional effects and arm effects on modeling a vertical axis tidal current turbine
  publication-title: Renew Energy
– volume: 2014
  year: 2014
  ident: b0130
  article-title: A numerical study on a vertical-axis wind turbine with inclined arms
  publication-title: Int J Aerosp Eng
– volume: 80
  start-page: 20
  year: 2015
  end-page: 31
  ident: b0035
  article-title: The effects of aerofoil profile modification on a vertical axis wind turbine performance
  publication-title: Energy
– volume: 106
  start-page: 443
  year: 2016
  end-page: 452
  ident: b0140
  article-title: Wind tunnel and numerical study of a straight-bladed vertical axis wind turbine in three-dimensional analysis (Part I: For predicting aerodynamic loads and performance)
  publication-title: Energy
– start-page: 1093
  year: 2009
  end-page: 1099
  ident: b0080
  article-title: Experimental study of a straight-bladed vertical axis wind turbine with a directed guide vane row
  publication-title: ASME. International Conference on Offshore Mechanics and Arctic Engineering, Volume 4: Ocean Engineering; Ocean Renewable Energy; Ocean Space Utilization, Parts A and B
– volume: 149
  start-page: 87
  year: 2017
  end-page: 100
  ident: b0225
  article-title: A review on computational fluid dynamic simulation techniques for Darrieus vertical axis wind turbines
  publication-title: Energy Convers Manage
– volume: 197
  start-page: 132
  year: 2017
  end-page: 150
  ident: b0230
  article-title: Effect of pitch angle on power performance and aerodynamics of a vertical axis wind turbine
  publication-title: Appl Energy
– volume: 111
  start-page: 260
  year: 2016
  end-page: 271
  ident: b0100
  article-title: The influence of flow field and aerodynamic forces on a straight-bladed vertical axis wind turbine
  publication-title: Energy
– volume: 36
  start-page: 1379
  year: 2011
  end-page: 1391
  ident: b0260
  article-title: Roof mounting site analysis for micro-wind turbines
  publication-title: Renew Energy
– volume: 207
  start-page: 78
  year: 2017
  end-page: 95
  ident: b0245
  article-title: Cross axis wind turbine: pushing the limit of wind turbine technology with complementary design
  publication-title: Appl Energy
– volume: 88
  start-page: 57
  year: 2015
  end-page: 67
  ident: b0265
  article-title: Estimation of wind energy over roof of two perpendicular buildings
  publication-title: Energy Build
– volume: 52
  start-page: 236
  year: 2011
  end-page: 242
  ident: b0050
  article-title: Optimal blade shape of a modified Savonius turbine using an obstacle shielding the returning blade
  publication-title: Energy Convers Manage
– volume: 97
  start-page: 921
  year: 2012
  end-page: 929
  ident: b0270
  article-title: Feasibility analysis of a Darrieus vertical-axis wind turbine installation in the rooftop of a building
  publication-title: Appl Energy
– volume: 85
  start-page: 419
  year: 2016
  end-page: 435
  ident: b0205
  article-title: Critical issues in the CFD simulation of Darrieus wind turbines
  publication-title: Renew Energy
– volume: 105
  start-page: 106
  year: 2017
  end-page: 116
  ident: b0125
  article-title: The influence of turbulence model and two and three-dimensional domain selection on the simulated performance characteristics of vertical axis tidal turbines
  publication-title: Renew Energy
– volume: 88
  start-page: 3207
  year: 2011
  end-page: 3217
  ident: b0055
  article-title: Influence of the deflector plate on the performance of modified Savonius water turbine
  publication-title: Appl Energy
– volume: 75
  start-page: 50
  year: 2015
  end-page: 67
  ident: b0010
  article-title: Darrieus vertical axis wind turbine for power generation I: Assessment of Darrieus VAWT configurations
  publication-title: Renew Energy
– volume: 147
  start-page: 77
  year: 2015
  end-page: 84
  ident: b0135
  article-title: 3D URANS analysis of a vertical axis wind turbine in skewed flows
  publication-title: J Wind Eng Ind Aerodyn
– volume: 62
  start-page: 53
  year: 2014
  end-page: 62
  ident: b0195
  article-title: On the Courant–Friedrichs–Lewy criterion of rotating grids in 2D vertical-axis wind turbine analysis
  publication-title: Renew Energy
– volume: 73
  start-page: 904
  year: 2017
  end-page: 921
  ident: b0040
  article-title: Performance enhancements on vertical axis wind turbines using flow augmentation systems: a review
  publication-title: Renew Sustain Energy Rev
– volume: 79
  start-page: 199
  year: 2015
  end-page: 208
  ident: b0190
  article-title: Development of low-noise drag-type vertical wind turbines
  publication-title: Renew Energy
– volume: 115
  start-page: 41
  year: 2018
  ident: 10.1016/j.enconman.2018.01.029_b0075
  article-title: Investigation into parameter influence of upstream deflector on vertical axis wind turbines output power via three-dimensional CFD simulation
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2017.08.012
– volume: 111
  start-page: 260
  year: 2016
  ident: 10.1016/j.enconman.2018.01.029_b0100
  article-title: The influence of flow field and aerodynamic forces on a straight-bladed vertical axis wind turbine
  publication-title: Energy
  doi: 10.1016/j.energy.2016.05.129
– volume: 7
  year: 2014
  ident: 10.1016/j.enconman.2018.01.029_b0015
  article-title: Predicting double-blade vertical axis wind turbine performance by a quadruple- multiple streamtube model
  publication-title: Int J Fluid Mach Syst
  doi: 10.5293/IJFMS.2014.7.1.016
– ident: 10.1016/j.enconman.2018.01.029_b0215
– volume: 106
  start-page: 443
  year: 2016
  ident: 10.1016/j.enconman.2018.01.029_b0140
  article-title: Wind tunnel and numerical study of a straight-bladed vertical axis wind turbine in three-dimensional analysis (Part I: For predicting aerodynamic loads and performance)
  publication-title: Energy
  doi: 10.1016/j.energy.2016.03.089
– volume: 49
  start-page: 3425
  year: 2008
  ident: 10.1016/j.enconman.2018.01.029_b0060
  article-title: An experimental and numerical study on the improvement of the performance of Savonius wind rotor
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2008.08.021
– start-page: 1093
  year: 2009
  ident: 10.1016/j.enconman.2018.01.029_b0080
  article-title: Experimental study of a straight-bladed vertical axis wind turbine with a directed guide vane row
– volume: 79
  start-page: 199
  year: 2015
  ident: 10.1016/j.enconman.2018.01.029_b0190
  article-title: Development of low-noise drag-type vertical wind turbines
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2014.09.047
– volume: 36
  start-page: 1379
  year: 2011
  ident: 10.1016/j.enconman.2018.01.029_b0260
  article-title: Roof mounting site analysis for micro-wind turbines
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2010.10.030
– volume: 62
  start-page: 53
  year: 2014
  ident: 10.1016/j.enconman.2018.01.029_b0195
  article-title: On the Courant–Friedrichs–Lewy criterion of rotating grids in 2D vertical-axis wind turbine analysis
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2013.06.022
– volume: 97
  start-page: 246
  year: 2016
  ident: 10.1016/j.enconman.2018.01.029_b0200
  article-title: Dimensionless numbers for the assessment of mesh and timestep requirements in CFD simulations of Darrieus wind turbines
  publication-title: Energy
  doi: 10.1016/j.energy.2015.12.111
– volume: 52
  start-page: 31
  year: 2013
  ident: 10.1016/j.enconman.2018.01.029_b0175
  article-title: Wind turbine CFD modeling using a correlation-based transitional model
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2012.10.007
– volume: 97
  start-page: 921
  year: 2012
  ident: 10.1016/j.enconman.2018.01.029_b0270
  article-title: Feasibility analysis of a Darrieus vertical-axis wind turbine installation in the rooftop of a building
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2011.12.008
– volume: 80
  start-page: 20
  year: 2015
  ident: 10.1016/j.enconman.2018.01.029_b0035
  article-title: The effects of aerofoil profile modification on a vertical axis wind turbine performance
  publication-title: Energy
  doi: 10.1016/j.energy.2014.11.034
– volume: 118
  start-page: 141
  year: 2017
  ident: 10.1016/j.enconman.2018.01.029_b0095
  article-title: Efficiency improvement of vertical axis wind turbines with an upstream deflector
  publication-title: Energy Proc
  doi: 10.1016/j.egypro.2017.07.032
– volume: 74
  start-page: 661
  year: 2015
  ident: 10.1016/j.enconman.2018.01.029_b0105
  article-title: Quantification of the effects of geometric approximations on the performance of a vertical axis wind turbine
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2014.08.068
– volume: 52
  start-page: 508
  year: 2015
  ident: 10.1016/j.enconman.2018.01.029_b0005
  article-title: On a self-start Darrieus wind turbine: blade design and field tests
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2015.07.147
– volume: 11
  start-page: 962
  year: 2011
  ident: 10.1016/j.enconman.2018.01.029_b0025
  article-title: Numerical simulation of unsteady flow to show self-starting of vertical axis wind turbine using fluent
  publication-title: J Appl Sci
  doi: 10.3923/jas.2011.962.970
– year: 2014
  ident: 10.1016/j.enconman.2018.01.029_b0020
  article-title: Design considerations of rotor configuration for straight-bladed vertical axis wind turbines
  publication-title: Adv Mech Eng
– volume: 35
  start-page: 412
  year: 2010
  ident: 10.1016/j.enconman.2018.01.029_b0255
  article-title: Wind tunnel and numerical study of a small vertical axis wind turbine
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2009.07.025
– volume: 51
  start-page: 101
  year: 2013
  ident: 10.1016/j.enconman.2018.01.029_b0170
  article-title: Numerical evaluation of aerodynamic and inertial contributions to Darrieus wind turbine blade deformation
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2012.07.025
– volume: 73
  start-page: 904
  year: 2017
  ident: 10.1016/j.enconman.2018.01.029_b0040
  article-title: Performance enhancements on vertical axis wind turbines using flow augmentation systems: a review
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2017.01.160
– volume: 85
  start-page: 419
  year: 2016
  ident: 10.1016/j.enconman.2018.01.029_b0205
  article-title: Critical issues in the CFD simulation of Darrieus wind turbines
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2015.06.048
– volume: 149
  start-page: 87
  year: 2017
  ident: 10.1016/j.enconman.2018.01.029_b0225
  article-title: A review on computational fluid dynamic simulation techniques for Darrieus vertical axis wind turbines
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2017.07.016
– volume: 90
  start-page: 439
  year: 2015
  ident: 10.1016/j.enconman.2018.01.029_b0235
  article-title: Aerodynamic characteristics of two-bladed H-Darrieus at various solidities and rotating speeds
  publication-title: Energy
  doi: 10.1016/j.energy.2015.07.051
– volume: 127
  start-page: 461
  year: 2016
  ident: 10.1016/j.enconman.2018.01.029_b0180
  article-title: A novel heuristic method for optimization of straight blade vertical axis wind turbine
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2016.08.094
– volume: 18
  start-page: 54
  year: 2009
  ident: 10.1016/j.enconman.2018.01.029_b0085
  article-title: A straight-bladed vertical axis wind turbine with a directed guide vane row—effect of guide vane geometry on the performance
  publication-title: J Therm Sci
  doi: 10.1007/s11630-009-0054-0
– volume: 52
  start-page: 236
  year: 2011
  ident: 10.1016/j.enconman.2018.01.029_b0050
  article-title: Optimal blade shape of a modified Savonius turbine using an obstacle shielding the returning blade
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2010.06.070
– ident: 10.1016/j.enconman.2018.01.029_b0185
– volume: 88
  start-page: 3207
  year: 2011
  ident: 10.1016/j.enconman.2018.01.029_b0055
  article-title: Influence of the deflector plate on the performance of modified Savonius water turbine
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2011.03.025
– volume: 90
  start-page: 386
  year: 2016
  ident: 10.1016/j.enconman.2018.01.029_b0155
  article-title: Study of wake characteristics of a vertical axis wind turbine by two- and three-dimensional computational fluid dynamics simulations
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2016.01.011
– volume: 207
  start-page: 78
  year: 2017
  ident: 10.1016/j.enconman.2018.01.029_b0145
  article-title: Cross axis wind turbine: pushing the limit of wind turbine technology with complementary design
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2017.06.099
– volume: 133
  start-page: 235
  year: 2017
  ident: 10.1016/j.enconman.2018.01.029_b0120
  article-title: Three-dimensional Improved delayed detached eddy simulation of a two-bladed vertical axis wind turbine
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2016.11.067
– volume: 57
  start-page: 495
  year: 2013
  ident: 10.1016/j.enconman.2018.01.029_b0115
  article-title: Impacts of solidity and hybrid system in small wind turbines performance
  publication-title: Energy
  doi: 10.1016/j.energy.2013.06.004
– volume: 2014
  year: 2014
  ident: 10.1016/j.enconman.2018.01.029_b0130
  article-title: A numerical study on a vertical-axis wind turbine with inclined arms
  publication-title: Int J Aerosp Eng
  doi: 10.1155/2014/180498
– volume: 35
  start-page: 2325
  year: 2010
  ident: 10.1016/j.enconman.2018.01.029_b0150
  article-title: Three-dimensional effects and arm effects on modeling a vertical axis tidal current turbine
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2010.03.002
– volume: 75
  start-page: 50
  year: 2015
  ident: 10.1016/j.enconman.2018.01.029_b0010
  article-title: Darrieus vertical axis wind turbine for power generation I: Assessment of Darrieus VAWT configurations
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2014.09.038
– volume: 93
  start-page: 536
  year: 2016
  ident: 10.1016/j.enconman.2018.01.029_b0240
  article-title: Studies of some high solidity symmetrical and unsymmetrical blade H-Darrieus rotors with respect to starting characteristics, dynamic performances and flow physics in low wind streams
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2016.03.029
– volume: 125
  start-page: 168
  year: 2014
  ident: 10.1016/j.enconman.2018.01.029_b0045
  article-title: Unsteady flow simulation of a vertical axis augmented wind turbine: a two-dimensional study
  publication-title: J Wind Eng Ind Aerodyn
  doi: 10.1016/j.jweia.2013.12.005
– volume: 197
  start-page: 132
  year: 2017
  ident: 10.1016/j.enconman.2018.01.029_b0230
  article-title: Effect of pitch angle on power performance and aerodynamics of a vertical axis wind turbine
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2017.03.128
– volume: 83
  start-page: 407
  year: 2015
  ident: 10.1016/j.enconman.2018.01.029_b0110
  article-title: Numerical study of the aerodynamic performance of a 500W Darrieus-type vertical-axis wind turbine
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2015.04.043
– volume: 90
  start-page: 784
  year: 2015
  ident: 10.1016/j.enconman.2018.01.029_b0160
  article-title: Effect of number of blades on aerodynamic forces on a straight-bladed vertical axis wind turbine
  publication-title: Energy
  doi: 10.1016/j.energy.2015.07.115
– volume: 85
  start-page: 327
  year: 2016
  ident: 10.1016/j.enconman.2018.01.029_b0210
  article-title: Comparative CFD analysis of vertical axis wind turbine in upright and tilted configuration
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2015.06.037
– volume: 147
  start-page: 77
  year: 2015
  ident: 10.1016/j.enconman.2018.01.029_b0135
  article-title: 3D URANS analysis of a vertical axis wind turbine in skewed flows
  publication-title: J Wind Eng Ind Aerodyn
  doi: 10.1016/j.jweia.2015.09.010
– volume: 88
  start-page: 57
  year: 2015
  ident: 10.1016/j.enconman.2018.01.029_b0265
  article-title: Estimation of wind energy over roof of two perpendicular buildings
  publication-title: Energy Build
  doi: 10.1016/j.enbuild.2014.11.072
– volume: 8
  start-page: 42
  year: 2014
  ident: 10.1016/j.enconman.2018.01.029_b0090
  article-title: A preliminary energy and environmental assessment of a micro wind turbine prototype in natural protected areas
  publication-title: Sustain Energy Technol Assess
– volume: 115
  start-page: 48
  year: 2013
  ident: 10.1016/j.enconman.2018.01.029_b0070
  article-title: Efficiency improvement of straight-bladed vertical-axis wind turbines with an upstream deflector
  publication-title: J Wind Eng Ind Aerodyn
  doi: 10.1016/j.jweia.2013.01.009
– volume: 35
  start-page: 821
  year: 2010
  ident: 10.1016/j.enconman.2018.01.029_b0065
  article-title: The use of a curtain design to increase the performance level of a Savonius wind rotors
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2009.08.025
– volume: 107
  start-page: 373
  year: 2017
  ident: 10.1016/j.enconman.2018.01.029_b0165
  article-title: CFD simulation of a vertical axis wind turbine operating at a moderate tip speed ratio: guidelines for minimum domain size and azimuthal increment
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2017.02.006
– volume: 117
  start-page: 206
  year: 2016
  ident: 10.1016/j.enconman.2018.01.029_b0220
  article-title: Novel investigation of the different Omni-direction-guide-vane angles effects on the urban vertical axis wind turbine output power via three-dimensional numerical simulation
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2016.03.034
– volume: 105
  start-page: 106
  year: 2017
  ident: 10.1016/j.enconman.2018.01.029_b0125
  article-title: The influence of turbulence model and two and three-dimensional domain selection on the simulated performance characteristics of vertical axis tidal turbines
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2016.11.063
– volume: 207
  start-page: 78
  year: 2017
  ident: 10.1016/j.enconman.2018.01.029_b0245
  article-title: Cross axis wind turbine: pushing the limit of wind turbine technology with complementary design
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2017.06.099
– volume: 16
  start-page: 405
  year: 1988
  ident: 10.1016/j.enconman.2018.01.029_b0250
  article-title: Discrete-vortex simulation of flow over inclined and normal plates
  publication-title: Comput Fluids
  doi: 10.1016/0045-7930(88)90025-4
– volume: 133
  start-page: 231
  year: 2017
  ident: 10.1016/j.enconman.2018.01.029_b0030
  article-title: Numerical investigation of dimple effects on darrieus vertical axis wind turbine
  publication-title: Energy
  doi: 10.1016/j.energy.2017.05.105
SSID ssj0003506
Score 2.518553
Snippet [Display omitted] •Flat plate deflector enhances the efficiency of the VAWT significantly.•Deflected wind flow velocity is about 25% higher compared to the...
Power augmentation features have been proven as one of the wind turbine performance enhancement methods particularly for vertical axis wind turbines (VAWTs)....
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 109
SubjectTerms Augmentation
Coefficient of power
Computational fluid dynamics (CFD)
Electric power generation
Experiment
Experiments
Flat plate deflector
Flat plates
Performance enhancement
Power augmentation
Power efficiency
power generation
Retrofitting
Simulation
Turbines
Velocity
Vertical axis wind turbine
Vertical axis wind turbines
Wind power
Wind speed
Wind turbines
Title Experimental and simulation investigation into the effects of a flat plate deflector on vertical axis wind turbine
URI https://dx.doi.org/10.1016/j.enconman.2018.01.029
https://www.proquest.com/docview/2063751143
https://www.proquest.com/docview/2045826343
Volume 160
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA6iFz2IT3wTwWvddvNocxRRVkUvKngLaR5Q0e6yu6Inf7szbaqrIB68lCaZtHnOTJLJN4QcqVSYvipcoqTB3aoSphRzKhFe9EuQeMo1xpjXN3Jwzy8fxMMcOe3uwqBZZeT9LU9vuHWM6cXW7I2qqneLyC6FSjkMSlxJ4IVfznMc5cfvX2YeTDT-NZE4QeqZW8KPx4gVWT8bxEHNiha-U_0moH6w6kb-nK-Q5ag40pO2bKtkztdrZGkGTnCdjM9m4PqpqR2dVM_RPRetvgA1mtB0SEH3o9Gegw4DNTQALR3Bw1PnQ7uhT4G68dls8Ztv1YS-wjKegqSCNbXfIPfnZ3engyT6VEgsy9k0cVzlrrC5KVJfIjR74dLUBGZyqLoTmSxCsKaEN29LKTlEl6ovgwiw0mJFzjbJfD2s_RahFmgVbitz7nlIRcmz3ErBLCidTHq2TUTXkNpGwHH0e_GkO8uyR911gMYO0GmmoRTbpPeZb9RCbvyZQ3X9pL8NHg1y4c-8e13H6jh9J5AuWQ6qKIdKHH4mw8TD0xRT--EL0uCRo2Sc7fzj97tkEUNo1ZaJPTI_Hb_4fVBzpuVBM44PyMLJxdXg5gORqP3l
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELbocqA9VLS0Ki1QI_UaNlk_Yh8RAi2vvQASN8vxQwqC7Ipd1P78ziTOdouEOHCJEnuc2LE9D3v8DSG_dC7sSCufaWlxtaqCKcW8zkQQowoknvatM-blRI5v-NmtuF0jR_1ZGHSrTLy_4-ktt04pw_Q3h7O6Hl4hsovSOYdBiZaEekfWEZ1KDMj64en5eLJkyEy0ITaRPsMCKweF7w4QLrJ5sAiFWqgOwVO_JKOecetWBJ1sko9Jd6SHXfU-kbXQfCYfVhAFt8jj8QpiP7WNp_P6IUXoovU_TI32aTGloP7R5NJBp5FaGoGWzuASqA-xW9OnQN2GbXb4zj_1nP4GS56CsAKzOnwhNyfH10fjLIVVyBwr2SLzXJdeudKqPFSIzq58ntvIbAlN96KQKkZnK7gLrpKSQ3KlRzKKCMYWUyX7SgbNtAnfCHVAq3FlmfPAYy4qXpROCuZA72QysG0i-h9pXMIcx9AX96Z3LrszfQcY7ACTFwZqsU2Gy3KzDnXj1RK67yfz3_gxIBpeLbvTd6xJM3gO-ZKVoI1yaMT-MhvmHm6o2CZMn5AGdx0l4-z7Gz7_k2yMry8vzMXp5PwHeY856ORWiB0yWDw-hV3QehbVXhrVfwE7mQCl
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Experimental+and+simulation+investigation+into+the+effects+of+a+flat+plate+deflector+on+vertical+axis+wind+turbine&rft.jtitle=Energy+conversion+and+management&rft.au=Wong%2C+Kok+Hoe&rft.au=Chong%2C+Wen+Tong&rft.au=Sukiman%2C+Nazatul+Liana&rft.au=Shiah%2C+Yui-Chuin&rft.date=2018-03-15&rft.issn=0196-8904&rft.volume=160&rft.spage=109&rft.epage=125&rft_id=info:doi/10.1016%2Fj.enconman.2018.01.029&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_enconman_2018_01_029
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-8904&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-8904&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-8904&client=summon