Advanced performance testing of anti-soiling coatings – Part I: Sequential laboratory test methodology covering the physics of natural soiling processes

The accumulation of dust and dirt on PV modules can cause significant energy yield losses, especially in dusty environments. The application of anti-soiling coatings (ASC) is seen as a promising mitigation approach to reduce cleaning frequency and thus cleaning costs. In order to examine the effecti...

Full description

Saved in:
Bibliographic Details
Published inSolar energy materials and solar cells Vol. 202; p. 110048
Main Authors Ilse, Klemens, Khan, Muhammad Zahid, Voicu, Nicoleta, Naumann, Volker, Hagendorf, Christian, Bagdahn, Jörg
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier B.V 01.11.2019
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The accumulation of dust and dirt on PV modules can cause significant energy yield losses, especially in dusty environments. The application of anti-soiling coatings (ASC) is seen as a promising mitigation approach to reduce cleaning frequency and thus cleaning costs. In order to examine the effectiveness of coatings, outdoor tests are usually necessary, but these are subject to varying and complex weather conditions. Therefore, an advanced laboratory soiling test setup and corresponding sequential testing procedures representing the underlying physics of soiling and self-cleaning processes were developed, aiming at fast, reliable and standardized evaluation of the anti-soiling performance of glass coatings. The methods include the control of important environmental parameters during dust deposition and a controlled dust removal by utilization of wind blow or centrifugal forces. Besides method evaluation experiments, comparative soiling experiments were performed for uncoated solar-grade float glass, an anti-reflective coating (ARC) and an ASC. The dusts used for the tests were collected from PV modules located in Dunhuang (cold desert climate, China) and Doha (hot desert climate, Qatar). For sample characterization and soiling loss determination, optical transmittance and light microscopy measurements were performed. Both wind blow and rotational force test (RFT) procedures reveal a reduced dust accumulation for the ARC and a further increased anti-soiling behavior for the ASC. The presented test results are consistent with other outdoor and laboratory soiling studies. Compared to wind blow testing, the rotational force test setup significantly improves the controllability of test parameters and provides a better selectivity of coating performance. •Advanced setup and procedure for reliable laboratory soiling tests.•Sequential test method accounts for particle rebound and resuspension effects.•Investigation of industry-relevant anti-reflective and anti-soiling coatings.•Particle rebound can significantly contribute to reduce soiling.•Rotational force test method provides fast, precise and reproducible test results.
AbstractList The accumulation of dust and dirt on PV modules can cause significant energy yield losses, especially in dusty environments. The application of anti-soiling coatings (ASC) is seen as a promising mitigation approach to reduce cleaning frequency and thus cleaning costs. In order to examine the effectiveness of coatings, outdoor tests are usually necessary, but these are subject to varying and complex weather conditions. Therefore, an advanced laboratory soiling test setup and corresponding sequential testing procedures representing the underlying physics of soiling and self-cleaning processes were developed, aiming at fast, reliable and standardized evaluation of the anti-soiling performance of glass coatings. The methods include the control of important environmental parameters during dust deposition and a controlled dust removal by utilization of wind blow or centrifugal forces. Besides method evaluation experiments, comparative soiling experiments were performed for uncoated solar-grade float glass, an anti-reflective coating (ARC) and an ASC. The dusts used for the tests were collected from PV modules located in Dunhuang (cold desert climate, China) and Doha (hot desert climate, Qatar). For sample characterization and soiling loss determination, optical transmittance and light microscopy measurements were performed. Both wind blow and rotational force test (RFT) procedures reveal a reduced dust accumulation for the ARC and a further increased anti-soiling behavior for the ASC. The presented test results are consistent with other outdoor and laboratory soiling studies. Compared to wind blow testing, the rotational force test setup significantly improves the controllability of test parameters and provides a better selectivity of coating performance. •Advanced setup and procedure for reliable laboratory soiling tests.•Sequential test method accounts for particle rebound and resuspension effects.•Investigation of industry-relevant anti-reflective and anti-soiling coatings.•Particle rebound can significantly contribute to reduce soiling.•Rotational force test method provides fast, precise and reproducible test results.
The accumulation of dust and dirt on PV modules can cause significant energy yield losses, especially in dusty environments. The application of anti-soiling coatings (ASC) is seen as a promising mitigation approach to reduce cleaning frequency and thus cleaning costs. In order to examine the effectiveness of coatings, outdoor tests are usually necessary, but these are subject to varying and complex weather conditions. Therefore, an advanced laboratory soiling test setup and corresponding sequential testing procedures representing the underlying physics of soiling and self-cleaning processes were developed, aiming at fast, reliable and standardized evaluation of the anti-soiling performance of glass coatings. The methods include the control of important environmental parameters during dust deposition and a controlled dust removal by utilization of wind blow or centrifugal forces. Besides method evaluation experiments, comparative soiling experiments were performed for uncoated solar-grade float glass, an anti-reflective coating (ARC) and an ASC. The dusts used for the tests were collected from PV modules located in Dunhuang (cold desert climate, China) and Doha (hot desert climate, Qatar). For sample characterization and soiling loss determination, optical transmittance and light microscopy measurements were performed. Both wind blow and rotational force test (RFT) procedures reveal a reduced dust accumulation for the ARC and a further increased anti-soiling behavior for the ASC. The presented test results are consistent with other outdoor and laboratory soiling studies. Compared to wind blow testing, the rotational force test setup significantly improves the controllability of test parameters and provides a better selectivity of coating performance.
ArticleNumber 110048
Author Khan, Muhammad Zahid
Hagendorf, Christian
Ilse, Klemens
Naumann, Volker
Bagdahn, Jörg
Voicu, Nicoleta
Author_xml – sequence: 1
  givenname: Klemens
  surname: Ilse
  fullname: Ilse, Klemens
  email: klemens.ilse@csp.fraunhofer.de
  organization: Fraunhofer Center for Silicon Photovoltaics CSP, 06120, Halle (Saale), Germany
– sequence: 2
  givenname: Muhammad Zahid
  surname: Khan
  fullname: Khan, Muhammad Zahid
  organization: Fraunhofer Center for Silicon Photovoltaics CSP, 06120, Halle (Saale), Germany
– sequence: 3
  givenname: Nicoleta
  surname: Voicu
  fullname: Voicu, Nicoleta
  organization: DSM Advanced Solar, 6167 RD, Geleen, the Netherlands
– sequence: 4
  givenname: Volker
  surname: Naumann
  fullname: Naumann, Volker
  organization: Fraunhofer Center for Silicon Photovoltaics CSP, 06120, Halle (Saale), Germany
– sequence: 5
  givenname: Christian
  surname: Hagendorf
  fullname: Hagendorf, Christian
  organization: Fraunhofer Center for Silicon Photovoltaics CSP, 06120, Halle (Saale), Germany
– sequence: 6
  givenname: Jörg
  surname: Bagdahn
  fullname: Bagdahn, Jörg
  organization: Anhalt University of Applied Sciences, Faculty EMW, Koethen (Anhalt), Germany
BookMark eNqFkc1q3DAUhUVIIZO0b5CFIGtPr2SPZWVRCKE_gUALbdfiWr7OaPBYU0kzMLu-Q3Z5vD5J5TrdZNGuxBX3O4dzzzk7Hf1IjF0KWAoQ9dvNMvphi2kpQeilEABVc8IWolG6KEvdnLIFaKkKkFVzxs5j3ACArMtqwZ5uugOOljq-o9D7sJ0GnigmNz5w33Mckyuid8M0W4_Tf-S_fj7yLxgSv7vmX-nHnvIWDnzA1gdMPhz_SPAtpbXv_OAfjpk9UJhE0pr4bn2MzsbJYMS0D5n967EL3lKMFF-zVz0Okd48vxfs-4f3324_FfefP97d3twXtlRlKjoQHQlbt1gi1BZWK21zWuwraDuBKHTX6KpveylBt1a1jUWlJCkt61WjbXnBrmbd7JyTxGQ2fh_GbGlkCXWlVpWCvFXNWzb4GAP1ZhfcFsPRCDBTC2Zj5hbM1IKZW8jY9QvMupSP6McU0A3_g9_NMOX4B0fBROtoassFssl03v1b4DcfT6ys
CitedBy_id crossref_primary_10_1016_j_seta_2024_104023
crossref_primary_10_1016_j_renene_2024_120167
crossref_primary_10_1109_JPHOTOV_2023_3244371
crossref_primary_10_1016_j_rser_2022_112145
crossref_primary_10_1109_JPHOTOV_2019_2945192
crossref_primary_10_1109_JPHOTOV_2021_3117913
crossref_primary_10_1016_j_solmat_2024_112707
crossref_primary_10_1016_j_jaerosci_2022_106037
crossref_primary_10_1016_j_surfin_2022_101824
crossref_primary_10_1016_j_renene_2024_120317
crossref_primary_10_1016_j_solener_2021_11_036
crossref_primary_10_1557_s43581_022_00035_x
crossref_primary_10_1016_j_clet_2023_100606
crossref_primary_10_1016_j_solmat_2019_110049
crossref_primary_10_1016_j_solmat_2024_113278
crossref_primary_10_1016_j_renene_2020_10_027
crossref_primary_10_1016_j_solener_2022_05_020
crossref_primary_10_1016_j_joule_2019_08_019
crossref_primary_10_1016_j_joule_2020_08_015
crossref_primary_10_1016_j_esr_2024_101310
crossref_primary_10_1002_pip_3736
crossref_primary_10_1016_j_matchemphys_2024_129046
crossref_primary_10_3390_en18051141
crossref_primary_10_1016_j_solener_2023_112120
crossref_primary_10_1002_solr_202300654
crossref_primary_10_1016_j_solmat_2023_112437
crossref_primary_10_1038_s41598_020_70858_6
crossref_primary_10_1016_j_solener_2022_03_009
crossref_primary_10_1063_5_0015122
crossref_primary_10_1109_JPHOTOV_2023_3273812
crossref_primary_10_1016_j_solener_2023_02_047
crossref_primary_10_1016_j_solmat_2024_112751
crossref_primary_10_1016_j_solener_2023_02_005
crossref_primary_10_1080_19397038_2022_2140222
crossref_primary_10_1016_j_apenergy_2024_124979
crossref_primary_10_1021_acs_est_2c00164
Cites_doi 10.1016/j.solener.2014.05.030
10.1016/j.partic.2009.10.001
10.1016/j.rser.2018.09.015
10.1016/j.renene.2013.12.027
10.1109/JPHOTOV.2017.2764890
10.1016/j.atmosenv.2011.04.084
10.1016/j.solmat.2016.07.004
10.1002/pip.2230
10.1016/j.solmat.2018.05.021
10.1016/j.renene.2012.06.007
10.1016/j.solmat.2019.110049
10.1109/JPHOTOV.2017.2775439
10.1016/j.solener.2016.02.028
10.1166/mex.2015.1248
10.1016/j.rser.2012.12.065
10.1002/pssr.201600152
10.1080/01691864.2014.996602
10.1016/j.egypro.2015.07.378
10.1007/s10971-011-2489-5
10.1557/mrc.2019.105
10.1016/j.solmat.2018.06.051
10.1016/j.rser.2017.09.015
10.1016/j.rser.2016.09.072
10.1016/j.solener.2017.10.089
10.1016/j.rser.2016.04.059
10.1016/j.solmat.2013.11.028
10.1038/srep38239
10.1016/j.solener.2013.07.017
10.1016/j.solmat.2017.07.026
10.1016/j.pecs.2014.06.001
10.1016/j.solener.2018.01.088
10.1016/j.rser.2017.03.100
10.1016/j.solmat.2016.10.043
10.1016/j.egypro.2016.06.239
10.1063/5.0015122
10.1016/j.rser.2017.09.042
10.1109/JPHOTOV.2018.2882649
ContentType Journal Article
Copyright 2019 Elsevier B.V.
Copyright Elsevier BV Nov 2019
Copyright_xml – notice: 2019 Elsevier B.V.
– notice: Copyright Elsevier BV Nov 2019
DBID AAYXX
CITATION
7SP
7ST
7TB
7U5
8FD
C1K
FR3
L7M
SOI
DOI 10.1016/j.solmat.2019.110048
DatabaseName CrossRef
Electronics & Communications Abstracts
Environment Abstracts
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Advanced Technologies Database with Aerospace
Environment Abstracts
DatabaseTitle CrossRef
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Environment Abstracts
Advanced Technologies Database with Aerospace
Environmental Sciences and Pollution Management
DatabaseTitleList
Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1879-3398
ExternalDocumentID 10_1016_j_solmat_2019_110048
S0927024819303770
GroupedDBID --K
--M
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
5VS
6OB
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AARLI
AAXUO
ABFNM
ABMAC
ABNUV
ABXDB
ABXRA
ABYKQ
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADECG
ADEWK
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRAH
AFRZQ
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHPOS
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJSZI
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FLBIZ
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JARJE
KOM
LY6
LY7
M24
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SAC
SCB
SDF
SDG
SDP
SES
SET
SEW
SMS
SPC
SPCBC
SPD
SSG
SSK
SSM
SSR
SSZ
T5K
TWZ
WH7
WUQ
XPP
ZMT
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7SP
7ST
7TB
7U5
8FD
C1K
EFKBS
FR3
L7M
SOI
ID FETCH-LOGICAL-c373t-d01de1c6ba3a06c0559c092af40bd1aa19d894fbf2209bc7b8ca772e7926589c3
IEDL.DBID .~1
ISSN 0927-0248
IngestDate Wed Aug 13 11:21:07 EDT 2025
Tue Jul 01 01:20:04 EDT 2025
Thu Apr 24 23:08:30 EDT 2025
Fri Feb 23 02:26:53 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Test method
Anti-Soiling coatings
Dust
Soiling
Photovoltaics
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c373t-d01de1c6ba3a06c0559c092af40bd1aa19d894fbf2209bc7b8ca772e7926589c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2306475470
PQPubID 2045398
ParticipantIDs proquest_journals_2306475470
crossref_primary_10_1016_j_solmat_2019_110048
crossref_citationtrail_10_1016_j_solmat_2019_110048
elsevier_sciencedirect_doi_10_1016_j_solmat_2019_110048
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-11-01
PublicationDateYYYYMMDD 2019-11-01
PublicationDate_xml – month: 11
  year: 2019
  text: 2019-11-01
  day: 01
PublicationDecade 2010
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Solar energy materials and solar cells
PublicationYear 2019
Publisher Elsevier B.V
Elsevier BV
Publisher_xml – name: Elsevier B.V
– name: Elsevier BV
References Ilse, Rabanal, Schonleber, Khan, Naumann, Hagendorf, Bagdahn (bib20) 2018; 8
Guo, Javed (bib37) 2018; 8
Goossens (bib18) 2018; 163
Abrams, Gonsalves, Brophy, Posbic (bib26) 2014
Qasem, Betts, Müllejans, AlBusairi, Gottschalg (bib36) 2014; 22
Glaubitt, Löbmann (bib27) 2011; 59
Brown, Narum, Jing (bib38) 2012
Beattie, Moir, Chacko, Buffoni, Roberts, Pearsall (bib21) 2012; 48
Klimm, Ost, Köhl, Weiß (bib19) 2016; 91
Costa, Diniz, Antonia Sonia, Kazmerski (bib6) 2017; 82
Sleiman, Kirchstetter, Berdahl, Gilbert, Quelen, Marlot, Preble, Chen, Montalbano, Rosseler, Akbari, Levinson, Destaillats (bib16) 2014; 122
Dross, Voicu, Carcouet, Tummers, Li, Schoot (bib45) 2018
Bahattab, Alhomoudi, Alhussaini, Mirza, Hegmann, Glaubitt, Löbmann (bib28) 2016; 157
Jiang, Lu, Sun (bib24) 2011; 45
Costa, Diniz, Antonia Sonia, Kazmerski (bib5) 2016; 63
DSM Advanced Surfaces, KhepriCoat® - the Best-Performing Anti-reflective Coating for Solar Glass: KhepriCoat Product Brochure.
Moutinho, Jiang, To, Perkins, Muller, Al-Jassim, Simpson (bib50) 2017; 172
Brophy, Abrams, Gonsalves, Christy (bib22) 2015
International Renewable Energy Agency (bib1) 2018
Ilse, Werner, Naumann, Figgis, Hagendorf, Bagdahn (bib39) 2016; 10
Ilse, Figgis, Khan, Naumann, Hagendorf (bib40) 2019
.
Cabrera, Schneider, Wefringhaus, Rabanal, Ferrada, Thaller, Araya, Marzo, Trigo, Olivares, Haas, Fuentealba, Kopecek (bib35) 2016
Burton, King (bib13) 2013
Appels, Lefevre, Herteleer, Goverde, Beerten, Paesen, de Medts, Driesen, Poortmans (bib33) 2013; 96
Henry, Minier (bib54) 2014; 45
Sarver, Al-Qaraghuli, Kazmerski (bib11) 2013; 22
John, Warade, Tamizhmani, Kottantharayil (bib15) 2015
Said, Hassan, Walwil, Al-Aqeeli (bib8) 2018; 82
Pfau, Ilse, Schneider, Turek, Miclea, Hagendorf, Zabek, Doros (bib23) 2017
Ilse, Figgis, Naumann, Hagendorf, Bagdahn (bib2) 2018; 98
Attia, Parikh, Heggarty (bib4) 2017
K.K. Ilse, M.Z. Khan, K. Lange, H.N. Gurumoorthy, V. Naumann, C. Hagendorf, J. Bagdahn, Rotational force test method for determination of particle adhesion –from a simplified model to realistic dusts, (2019) in preparation.
Sayyah, Horenstein, Mazumder (bib3) 2014; 107
Yates, Duffy (bib51) 2008
Jamil, Abdul Rahman, Shaari, Salam (bib7) 2017; 67
Figgis, Ennaoui, Ahzi, Rémond (bib12) 2017; 76
Weber, Hanusch, Koch, Trawny, Janker, Böttcher, Berghold, Grunow (bib14) 2014
Sayyah, Eriksen, Horenstein, Mazumder (bib34) 2016
Rifai, Abu Dheir, Yilbas, Khaled (bib44) 2016; 130
Tummers (bib47) 2017
Ilse, Khan, Lange, Voicu, Naumann, Hagendorf (bib52) 2019; 202
Mayhoub (bib10) 2016
Zhang, Zhu, Li, Zhou, Zheng, Yang (bib32) 2015; 5
Quan, Zhang (bib30) 2017; 160
Xu, Zhao, Kujan, Liu, Lyons (bib42) 2015
Guo, Javed, Pett, Wu, Scheffe (bib31) 2018; 185
Figgis, Nouviaire, Wubulikasimu, Javed, Guo, Ait-Mokhtar, Belarbi, Ahzi, Rémond, Ennaoui (bib55) 2018; 159
Nayshevsky, Xu, Barahman, Lyons (bib29) 2017
Jiang, Lu (bib25) 2015; 75
Barletta, Puopolo, Tagliaferri, Vesco (bib17) 2014; 66
Mondal, Bansal (bib9) 2015; 29
Schoot (bib46) 2016
Buskens, Arfsten, Habets, Langermans, Overbeek, Scheerder, Thies (bib48) 2009
Shen, Caquineau, Cao, Zhang, Han, Gaudichet, Gomes (bib53) 2009; 7
Quan, Zhang, Qi, Cai (bib43) 2016; 6
Ilse, Figgis, Werner, Naumann, Hagendorf, Pöllmann, Bagdahn (bib41) 2018; 186
Ilse, Gurumoorthy, Bahattab, Alqahtani, Mirza, Glaubitt, Naumann, Hagendorf, Bagdahn (bib57) 2019
Henry (10.1016/j.solmat.2019.110048_bib54) 2014; 45
Schoot (10.1016/j.solmat.2019.110048_bib46) 2016
Guo (10.1016/j.solmat.2019.110048_bib37) 2018; 8
Burton (10.1016/j.solmat.2019.110048_bib13) 2013
Quan (10.1016/j.solmat.2019.110048_bib43) 2016; 6
Sleiman (10.1016/j.solmat.2019.110048_bib16) 2014; 122
Jiang (10.1016/j.solmat.2019.110048_bib25) 2015; 75
Guo (10.1016/j.solmat.2019.110048_bib31) 2018; 185
Jiang (10.1016/j.solmat.2019.110048_bib24) 2011; 45
Goossens (10.1016/j.solmat.2019.110048_bib18) 2018; 163
Ilse (10.1016/j.solmat.2019.110048_bib52) 2019; 202
Said (10.1016/j.solmat.2019.110048_bib8) 2018; 82
Sayyah (10.1016/j.solmat.2019.110048_bib34) 2016
Sayyah (10.1016/j.solmat.2019.110048_bib3) 2014; 107
Klimm (10.1016/j.solmat.2019.110048_bib19) 2016; 91
Pfau (10.1016/j.solmat.2019.110048_bib23) 2017
10.1016/j.solmat.2019.110048_bib56
Barletta (10.1016/j.solmat.2019.110048_bib17) 2014; 66
Qasem (10.1016/j.solmat.2019.110048_bib36) 2014; 22
Bahattab (10.1016/j.solmat.2019.110048_bib28) 2016; 157
Brown (10.1016/j.solmat.2019.110048_bib38) 2012
Costa (10.1016/j.solmat.2019.110048_bib5) 2016; 63
Sarver (10.1016/j.solmat.2019.110048_bib11) 2013; 22
Ilse (10.1016/j.solmat.2019.110048_bib20) 2018; 8
Glaubitt (10.1016/j.solmat.2019.110048_bib27) 2011; 59
Yates (10.1016/j.solmat.2019.110048_bib51) 2008
Appels (10.1016/j.solmat.2019.110048_bib33) 2013; 96
Weber (10.1016/j.solmat.2019.110048_bib14) 2014
Ilse (10.1016/j.solmat.2019.110048_bib40) 2019
Cabrera (10.1016/j.solmat.2019.110048_bib35) 2016
Mondal (10.1016/j.solmat.2019.110048_bib9) 2015; 29
Figgis (10.1016/j.solmat.2019.110048_bib12) 2017; 76
10.1016/j.solmat.2019.110048_bib49
Ilse (10.1016/j.solmat.2019.110048_bib57) 2019
Mayhoub (10.1016/j.solmat.2019.110048_bib10) 2016
Jamil (10.1016/j.solmat.2019.110048_bib7) 2017; 67
Dross (10.1016/j.solmat.2019.110048_bib45) 2018
Ilse (10.1016/j.solmat.2019.110048_bib2) 2018; 98
Costa (10.1016/j.solmat.2019.110048_bib6) 2017; 82
International Renewable Energy Agency (10.1016/j.solmat.2019.110048_bib1) 2018
Abrams (10.1016/j.solmat.2019.110048_bib26) 2014
Rifai (10.1016/j.solmat.2019.110048_bib44) 2016; 130
Brophy (10.1016/j.solmat.2019.110048_bib22) 2015
Buskens (10.1016/j.solmat.2019.110048_bib48) 2009
Figgis (10.1016/j.solmat.2019.110048_bib55) 2018; 159
Ilse (10.1016/j.solmat.2019.110048_bib41) 2018; 186
Tummers (10.1016/j.solmat.2019.110048_bib47) 2017
Zhang (10.1016/j.solmat.2019.110048_bib32) 2015; 5
Nayshevsky (10.1016/j.solmat.2019.110048_bib29) 2017
Quan (10.1016/j.solmat.2019.110048_bib30) 2017; 160
Attia (10.1016/j.solmat.2019.110048_bib4) 2017
Moutinho (10.1016/j.solmat.2019.110048_bib50) 2017; 172
John (10.1016/j.solmat.2019.110048_bib15) 2015
Xu (10.1016/j.solmat.2019.110048_bib42) 2015
Shen (10.1016/j.solmat.2019.110048_bib53) 2009; 7
Ilse (10.1016/j.solmat.2019.110048_bib39) 2016; 10
Beattie (10.1016/j.solmat.2019.110048_bib21) 2012; 48
References_xml – volume: 67
  start-page: 876
  year: 2017
  end-page: 891
  ident: bib7
  article-title: Performance degradation of photovoltaic power system: review on mitigation methods
  publication-title: Renew. Sustain. Energy Rev.
– volume: 48
  start-page: 448
  year: 2012
  end-page: 452
  ident: bib21
  article-title: Understanding the effects of sand and dust accumulation on photovoltaic modules
  publication-title: Renew. Energy
– volume: 22
  start-page: 698
  year: 2013
  end-page: 733
  ident: bib11
  article-title: A comprehensive review of the impact of dust on the use of solar energy: history, investigations, results, literature, and mitigation approaches
  publication-title: Renew. Sustain. Energy Rev.
– reference: K.K. Ilse, M.Z. Khan, K. Lange, H.N. Gurumoorthy, V. Naumann, C. Hagendorf, J. Bagdahn, Rotational force test method for determination of particle adhesion –from a simplified model to realistic dusts, (2019) in preparation.
– volume: 82
  start-page: 743
  year: 2018
  end-page: 760
  ident: bib8
  article-title: The effect of environmental factors and dust accumulation on photovoltaic modules and dust-accumulation mitigation strategies
  publication-title: Renew. Sustain. Energy Rev.
– volume: 202
  year: 2019
  ident: bib52
  article-title: Advanced performance testing of anti-soiling coatings part II: particle-size dependent analysis and determination of adhesion forces
  publication-title: Sol. Energy Mater. Sol. Cells
– volume: 130
  start-page: 193
  year: 2016
  end-page: 206
  ident: bib44
  article-title: Mechanics of dust removal from rotating disk in relation to self-cleaning applications of PV protective cover
  publication-title: Sol. Energy
– volume: 29
  start-page: 515
  year: 2015
  end-page: 524
  ident: bib9
  article-title: A brief history and future aspects in automatic cleaning systems for solar photovoltaic panels
  publication-title: Adv. Robot.
– year: 2014
  ident: bib14
  article-title: From the impact of harsh climates and environmental conditions on pv-modules - development of a soiling and abrasion test
  publication-title: Proceedings of the 29th European Photovoltaic Solar Energy Conference and Exhibition, Amsterdam (Holland)
– start-page: 1881
  year: 2012
  end-page: 1885
  ident: bib38
  article-title: Soiling test methods and their use in predicting performance of photovoltaic modules in soiling environments
  publication-title: Photovoltaic Specialists Conference (PVSC), 2012 38th IEEE
– volume: 5
  start-page: 280
  year: 2015
  end-page: 290
  ident: bib32
  article-title: Preparation of anti-reflection glass surface with self-cleaning and anti-dust by ammonium hydroxide hydrothermal method
  publication-title: Mat Express
– volume: 98
  start-page: 239
  year: 2018
  end-page: 254
  ident: bib2
  article-title: Fundamentals of soiling processes on photovoltaic modules
  publication-title: Renew. Sustain. Energy Rev.
– volume: 8
  start-page: 203
  year: 2018
  end-page: 209
  ident: bib20
  article-title: Comparing indoor and outdoor soiling experiments for different glass coatings and microstructural analysis of particle caking processes
  publication-title: IEEE J. Photovolt.
– volume: 122
  start-page: 271
  year: 2014
  end-page: 281
  ident: bib16
  article-title: Soiling of building envelope surfaces and its effect on solar reflectance – Part II: development of an accelerated aging method for roofing materials
  publication-title: Sol. Energy Mater. Sol. Cells
– volume: 63
  start-page: 33
  year: 2016
  end-page: 61
  ident: bib5
  article-title: Dust and soiling issues and impacts relating to solar energy systems: literature review update for 2012–2015
  publication-title: Renew. Sustain. Energy Rev.
– volume: 185
  start-page: 80
  year: 2018
  end-page: 85
  ident: bib31
  article-title: Electrodynamic dust shield performance under simulated operating conditions for solar energy applications
  publication-title: Sol. Energy Mater. Sol. Cells
– volume: 107
  start-page: 576
  year: 2014
  end-page: 604
  ident: bib3
  article-title: Energy yield loss caused by dust deposition on photovoltaic panels
  publication-title: Sol. Energy
– year: 2017
  ident: bib47
  article-title: Outdoor Modelling of Anti-soiling Coatings Performance for PV Applications
– volume: 6
  start-page: 38239
  year: 2016
  ident: bib43
  article-title: Self-cleaning of surfaces: the role of surface wettability and dust types
  publication-title: Sci. Rep.
– volume: 172
  start-page: 145
  year: 2017
  end-page: 153
  ident: bib50
  article-title: Adhesion mechanisms on solar glass: effects of relative humidity, surface roughness, and particle shape and size
  publication-title: Sol. Energy Mater. Sol. Cells
– year: 2016
  ident: bib46
  article-title: Antisoiling Coatings for PV Cover Glass, DEWA & NREL 3 Days Workshop "Soiling Effect on PV Modules" 5-7/4/2016
– year: 2018
  ident: bib1
  article-title: Renewable Power Generation Costs in 2017
– start-page: 1
  year: 2016
  end-page: 9
  ident: bib34
  article-title: Performance analysis of electrodynamic screens based on residual particle size distribution
  publication-title: IEEE J. Photovolt.
– start-page: 1
  year: 2015
  end-page: 8
  ident: bib15
  article-title: Study of soiling loss on photovoltaic modules with artificially deposited dust of different gravimetric densities and compositions collected from different locations in India
  publication-title: IEEE J. Photovolt.
– year: 2019
  ident: bib57
  article-title: Particle-size dependent adhesion forces and wind removal efficiency of anti-soiling coatings on textured solar glasses
  publication-title: MRS Communications
– start-page: 2759
  year: 2014
  end-page: 2764
  ident: bib26
  article-title: Field and lab verification of hydrophobic anti-reflective and anti-soiling coatings on photovoltaic glass
  publication-title: 29th European Photovoltaic Solar Energy Conference and Exhibition
– start-page: 59
  year: 2017
  end-page: 63
  ident: bib23
  article-title: New chemical functionalization concept for anti-reflective and anti-soiling front glass of PV modules based on surface structuring and modification
  publication-title: 33rd European Photovoltaic Solar Energy Conference and Exhibition
– volume: 75
  start-page: 337
  year: 2015
  end-page: 342
  ident: bib25
  article-title: A study of dust accumulating process on solar photovoltaic modules with different surface temperatures
  publication-title: Energy Procedia
– volume: 186
  start-page: 309
  year: 2018
  end-page: 323
  ident: bib41
  article-title: Comprehensive analysis of soiling and cementation processes on PV modules in Qatar
  publication-title: Sol. Energy Mater. Sol. Cells
– volume: 160
  start-page: 382
  year: 2017
  end-page: 389
  ident: bib30
  article-title: Experimental investigation of the anti-dust effect of transparent hydrophobic coatings applied for solar cell covering glass
  publication-title: Sol. Energy Mater. Sol. Cells
– volume: 66
  start-page: 443
  year: 2014
  end-page: 453
  ident: bib17
  article-title: Retrofitting of solar glasses by protective anti-soiling and -graffiti coatings
  publication-title: Renew. Energy
– year: 2017
  ident: bib4
  article-title: GTM Research - Global Solar Demand Monitor: Q3 2017
– start-page: 70770D
  year: 2008
  ident: bib51
  article-title: Statistical analysis of the metrological properties of float glass
  publication-title: Advances in X-Ray/EUV Optics and Components III
– volume: 96
  start-page: 283
  year: 2013
  end-page: 291
  ident: bib33
  article-title: Effect of soiling on photovoltaic modules
  publication-title: Sol. Energy
– volume: 10
  start-page: 525
  year: 2016
  end-page: 529
  ident: bib39
  article-title: Microstructural analysis of the cementation process during soiling on glass surfaces in arid and semi-arid climates
  publication-title: Phys. Status Solidi RRL
– volume: 76
  start-page: 872
  year: 2017
  end-page: 881
  ident: bib12
  article-title: Review of PV soiling particle mechanics in desert environments
  publication-title: Renew. Sustain. Energy Rev.
– start-page: 1542
  year: 2013
  end-page: 1545
  ident: bib13
  article-title: Artificial soiling of photovoltaic module surfaces using traceable soil components
  publication-title: IEEE 39th Photovoltaics Spec. Conf.
– start-page: 287
  year: 2019
  end-page: 290
  ident: bib40
  article-title: Dew as a detrimental influencing factor for soiling of PV modules
  publication-title: IEEE J. Photovolt
– year: 2016
  ident: bib10
  article-title: Cleaning Innovative Daylighting Systems: Review and Suggested Methods
– volume: 163
  start-page: 131
  year: 2018
  end-page: 139
  ident: bib18
  article-title: Wind tunnel protocol to study the effects of anti-soiling and anti-reflective coatings on deposition, removal, and accumulation of dust on photovoltaic surfaces and consequences for optical transmittance
  publication-title: Sol. Energy
– volume: 59
  start-page: 239
  year: 2011
  end-page: 244
  ident: bib27
  article-title: Anti-soiling effect of porous SiO2 coatings prepared by sol–gel processing
  publication-title: J. Sol. Gel Sci. Technol.
– volume: 7
  start-page: 507
  year: 2009
  end-page: 512
  ident: bib53
  article-title: Mineralogical characteristics of soil dust from source regions in northern China
  publication-title: Particuology
– year: 2009
  ident: bib48
  article-title: Viets Nicolaas, Innovation at DSM: State of the Art Single Layer Anti-reflective Coatings for Solar Cell Cover Glass
– reference: DSM Advanced Surfaces, KhepriCoat® - the Best-Performing Anti-reflective Coating for Solar Glass: KhepriCoat Product Brochure.
– volume: 159
  start-page: 488
  year: 2018
  end-page: 500
  ident: bib55
  article-title: Investigation of factors affecting condensation on soiled PV modules
  publication-title: Sol. Energy
– volume: 45
  start-page: 4299
  year: 2011
  end-page: 4304
  ident: bib24
  article-title: Experimental investigation of the impact of airborne dust deposition on the performance of solar photovoltaic (PV) modules
  publication-title: Atmos. Environ.
– volume: 82
  start-page: 2504
  year: 2017
  end-page: 2536
  ident: bib6
  article-title: Solar energy dust and soiling R&D progress: literature review update for 2016
  publication-title: Renew. Sustain. Energy Rev.
– start-page: 624
  year: 2015
  end-page: 627
  ident: bib42
  article-title: An anti-reflective and anti-soiling coating for photovoltaic panels
  publication-title: Adv. Mater.: TechConnect Briefs
– year: 2018
  ident: bib45
  article-title: Novel Anti-soiling Coatings to Enhance PV Plant Output and Financial Performance
– reference: .
– volume: 91
  start-page: 338
  year: 2016
  end-page: 345
  ident: bib19
  article-title: Microscopic measurement and analysis of the soiling behavior of surfaces with standardized and real dust – a parameter study
  publication-title: Energy Procedia
– volume: 22
  start-page: 218
  year: 2014
  end-page: 226
  ident: bib36
  article-title: Dust-induced shading on photovoltaic modules
  publication-title: Prog. Photovolt. Res. Appl.
– volume: 157
  start-page: 422
  year: 2016
  end-page: 428
  ident: bib28
  article-title: Anti-soiling surfaces for PV applications prepared by sol-gel processing: comparison of laboratory testing and outdoor exposure
  publication-title: Sol. Energy Mater. Sol. Cells
– year: 2016
  ident: bib35
  article-title: Advancements in the Development of ‘‘AtaMo’’: A Solar Module Adapted for the Climate Conditions of the Atacama Desert in Chile - the Impact of Soiling and Abrasion
– volume: 8
  start-page: 196
  year: 2018
  end-page: 202
  ident: bib37
  article-title: Efficiency of electrodynamic dust shield at dust loading levels relevant to solar energy applications
  publication-title: IEEE J. Photovolt
– volume: 45
  start-page: 1
  year: 2014
  end-page: 53
  ident: bib54
  article-title: Progress in particle resuspension from rough surfaces by turbulent flows
  publication-title: Prog. Energy Combust. Sci.
– year: 2015
  ident: bib22
  article-title: Field Performance and Persistence of Anti-soiling Coatings on Photovoltaic Glass
– year: 2017
  ident: bib29
  article-title: Anti-reflective and anti-soiling properties of KleanBoost TM, a superhydrophobic nano-textured coating for solar glass
  publication-title: IEEE 44th Photovoltaics Spec. Conf., Washington DC
– year: 2016
  ident: 10.1016/j.solmat.2019.110048_bib10
– volume: 107
  start-page: 576
  year: 2014
  ident: 10.1016/j.solmat.2019.110048_bib3
  article-title: Energy yield loss caused by dust deposition on photovoltaic panels
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2014.05.030
– volume: 7
  start-page: 507
  year: 2009
  ident: 10.1016/j.solmat.2019.110048_bib53
  article-title: Mineralogical characteristics of soil dust from source regions in northern China
  publication-title: Particuology
  doi: 10.1016/j.partic.2009.10.001
– volume: 98
  start-page: 239
  year: 2018
  ident: 10.1016/j.solmat.2019.110048_bib2
  article-title: Fundamentals of soiling processes on photovoltaic modules
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2018.09.015
– start-page: 59
  year: 2017
  ident: 10.1016/j.solmat.2019.110048_bib23
  article-title: New chemical functionalization concept for anti-reflective and anti-soiling front glass of PV modules based on surface structuring and modification
– year: 2017
  ident: 10.1016/j.solmat.2019.110048_bib29
  article-title: Anti-reflective and anti-soiling properties of KleanBoost TM, a superhydrophobic nano-textured coating for solar glass
– start-page: 1
  year: 2015
  ident: 10.1016/j.solmat.2019.110048_bib15
  article-title: Study of soiling loss on photovoltaic modules with artificially deposited dust of different gravimetric densities and compositions collected from different locations in India
  publication-title: IEEE J. Photovolt.
– volume: 66
  start-page: 443
  year: 2014
  ident: 10.1016/j.solmat.2019.110048_bib17
  article-title: Retrofitting of solar glasses by protective anti-soiling and -graffiti coatings
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2013.12.027
– start-page: 1
  year: 2016
  ident: 10.1016/j.solmat.2019.110048_bib34
  article-title: Performance analysis of electrodynamic screens based on residual particle size distribution
  publication-title: IEEE J. Photovolt.
– volume: 8
  start-page: 196
  year: 2018
  ident: 10.1016/j.solmat.2019.110048_bib37
  article-title: Efficiency of electrodynamic dust shield at dust loading levels relevant to solar energy applications
  publication-title: IEEE J. Photovolt
  doi: 10.1109/JPHOTOV.2017.2764890
– start-page: 1881
  year: 2012
  ident: 10.1016/j.solmat.2019.110048_bib38
  article-title: Soiling test methods and their use in predicting performance of photovoltaic modules in soiling environments
– volume: 45
  start-page: 4299
  year: 2011
  ident: 10.1016/j.solmat.2019.110048_bib24
  article-title: Experimental investigation of the impact of airborne dust deposition on the performance of solar photovoltaic (PV) modules
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2011.04.084
– year: 2014
  ident: 10.1016/j.solmat.2019.110048_bib14
  article-title: From the impact of harsh climates and environmental conditions on pv-modules - development of a soiling and abrasion test
– year: 2015
  ident: 10.1016/j.solmat.2019.110048_bib22
– volume: 157
  start-page: 422
  year: 2016
  ident: 10.1016/j.solmat.2019.110048_bib28
  article-title: Anti-soiling surfaces for PV applications prepared by sol-gel processing: comparison of laboratory testing and outdoor exposure
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/j.solmat.2016.07.004
– year: 2018
  ident: 10.1016/j.solmat.2019.110048_bib1
– volume: 22
  start-page: 218
  year: 2014
  ident: 10.1016/j.solmat.2019.110048_bib36
  article-title: Dust-induced shading on photovoltaic modules
  publication-title: Prog. Photovolt. Res. Appl.
  doi: 10.1002/pip.2230
– volume: 185
  start-page: 80
  year: 2018
  ident: 10.1016/j.solmat.2019.110048_bib31
  article-title: Electrodynamic dust shield performance under simulated operating conditions for solar energy applications
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/j.solmat.2018.05.021
– volume: 48
  start-page: 448
  year: 2012
  ident: 10.1016/j.solmat.2019.110048_bib21
  article-title: Understanding the effects of sand and dust accumulation on photovoltaic modules
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2012.06.007
– year: 2017
  ident: 10.1016/j.solmat.2019.110048_bib47
– volume: 202
  year: 2019
  ident: 10.1016/j.solmat.2019.110048_bib52
  article-title: Advanced performance testing of anti-soiling coatings part II: particle-size dependent analysis and determination of adhesion forces
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/j.solmat.2019.110049
– volume: 8
  start-page: 203
  year: 2018
  ident: 10.1016/j.solmat.2019.110048_bib20
  article-title: Comparing indoor and outdoor soiling experiments for different glass coatings and microstructural analysis of particle caking processes
  publication-title: IEEE J. Photovolt.
  doi: 10.1109/JPHOTOV.2017.2775439
– volume: 130
  start-page: 193
  year: 2016
  ident: 10.1016/j.solmat.2019.110048_bib44
  article-title: Mechanics of dust removal from rotating disk in relation to self-cleaning applications of PV protective cover
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2016.02.028
– volume: 5
  start-page: 280
  year: 2015
  ident: 10.1016/j.solmat.2019.110048_bib32
  article-title: Preparation of anti-reflection glass surface with self-cleaning and anti-dust by ammonium hydroxide hydrothermal method
  publication-title: Mat Express
  doi: 10.1166/mex.2015.1248
– volume: 22
  start-page: 698
  year: 2013
  ident: 10.1016/j.solmat.2019.110048_bib11
  article-title: A comprehensive review of the impact of dust on the use of solar energy: history, investigations, results, literature, and mitigation approaches
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2012.12.065
– volume: 10
  start-page: 525
  year: 2016
  ident: 10.1016/j.solmat.2019.110048_bib39
  article-title: Microstructural analysis of the cementation process during soiling on glass surfaces in arid and semi-arid climates
  publication-title: Phys. Status Solidi RRL
  doi: 10.1002/pssr.201600152
– year: 2017
  ident: 10.1016/j.solmat.2019.110048_bib4
– volume: 29
  start-page: 515
  year: 2015
  ident: 10.1016/j.solmat.2019.110048_bib9
  article-title: A brief history and future aspects in automatic cleaning systems for solar photovoltaic panels
  publication-title: Adv. Robot.
  doi: 10.1080/01691864.2014.996602
– volume: 75
  start-page: 337
  year: 2015
  ident: 10.1016/j.solmat.2019.110048_bib25
  article-title: A study of dust accumulating process on solar photovoltaic modules with different surface temperatures
  publication-title: Energy Procedia
  doi: 10.1016/j.egypro.2015.07.378
– volume: 59
  start-page: 239
  year: 2011
  ident: 10.1016/j.solmat.2019.110048_bib27
  article-title: Anti-soiling effect of porous SiO2 coatings prepared by sol–gel processing
  publication-title: J. Sol. Gel Sci. Technol.
  doi: 10.1007/s10971-011-2489-5
– year: 2019
  ident: 10.1016/j.solmat.2019.110048_bib57
  article-title: Particle-size dependent adhesion forces and wind removal efficiency of anti-soiling coatings on textured solar glasses
  publication-title: MRS Communications
  doi: 10.1557/mrc.2019.105
– ident: 10.1016/j.solmat.2019.110048_bib49
– volume: 186
  start-page: 309
  year: 2018
  ident: 10.1016/j.solmat.2019.110048_bib41
  article-title: Comprehensive analysis of soiling and cementation processes on PV modules in Qatar
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/j.solmat.2018.06.051
– volume: 82
  start-page: 2504
  year: 2017
  ident: 10.1016/j.solmat.2019.110048_bib6
  article-title: Solar energy dust and soiling R&D progress: literature review update for 2016
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2017.09.015
– volume: 67
  start-page: 876
  year: 2017
  ident: 10.1016/j.solmat.2019.110048_bib7
  article-title: Performance degradation of photovoltaic power system: review on mitigation methods
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2016.09.072
– start-page: 70770D
  year: 2008
  ident: 10.1016/j.solmat.2019.110048_bib51
  article-title: Statistical analysis of the metrological properties of float glass
– volume: 159
  start-page: 488
  year: 2018
  ident: 10.1016/j.solmat.2019.110048_bib55
  article-title: Investigation of factors affecting condensation on soiled PV modules
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2017.10.089
– volume: 63
  start-page: 33
  year: 2016
  ident: 10.1016/j.solmat.2019.110048_bib5
  article-title: Dust and soiling issues and impacts relating to solar energy systems: literature review update for 2012–2015
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2016.04.059
– volume: 122
  start-page: 271
  year: 2014
  ident: 10.1016/j.solmat.2019.110048_bib16
  article-title: Soiling of building envelope surfaces and its effect on solar reflectance – Part II: development of an accelerated aging method for roofing materials
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/j.solmat.2013.11.028
– volume: 6
  start-page: 38239
  year: 2016
  ident: 10.1016/j.solmat.2019.110048_bib43
  article-title: Self-cleaning of surfaces: the role of surface wettability and dust types
  publication-title: Sci. Rep.
  doi: 10.1038/srep38239
– volume: 96
  start-page: 283
  year: 2013
  ident: 10.1016/j.solmat.2019.110048_bib33
  article-title: Effect of soiling on photovoltaic modules
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2013.07.017
– year: 2016
  ident: 10.1016/j.solmat.2019.110048_bib35
– year: 2018
  ident: 10.1016/j.solmat.2019.110048_bib45
– start-page: 2759
  year: 2014
  ident: 10.1016/j.solmat.2019.110048_bib26
  article-title: Field and lab verification of hydrophobic anti-reflective and anti-soiling coatings on photovoltaic glass
– volume: 172
  start-page: 145
  year: 2017
  ident: 10.1016/j.solmat.2019.110048_bib50
  article-title: Adhesion mechanisms on solar glass: effects of relative humidity, surface roughness, and particle shape and size
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/j.solmat.2017.07.026
– year: 2016
  ident: 10.1016/j.solmat.2019.110048_bib46
– start-page: 624
  year: 2015
  ident: 10.1016/j.solmat.2019.110048_bib42
  article-title: An anti-reflective and anti-soiling coating for photovoltaic panels
  publication-title: Adv. Mater.: TechConnect Briefs
– volume: 45
  start-page: 1
  year: 2014
  ident: 10.1016/j.solmat.2019.110048_bib54
  article-title: Progress in particle resuspension from rough surfaces by turbulent flows
  publication-title: Prog. Energy Combust. Sci.
  doi: 10.1016/j.pecs.2014.06.001
– start-page: 1542
  year: 2013
  ident: 10.1016/j.solmat.2019.110048_bib13
  article-title: Artificial soiling of photovoltaic module surfaces using traceable soil components
– volume: 163
  start-page: 131
  year: 2018
  ident: 10.1016/j.solmat.2019.110048_bib18
  article-title: Wind tunnel protocol to study the effects of anti-soiling and anti-reflective coatings on deposition, removal, and accumulation of dust on photovoltaic surfaces and consequences for optical transmittance
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2018.01.088
– year: 2009
  ident: 10.1016/j.solmat.2019.110048_bib48
– volume: 76
  start-page: 872
  year: 2017
  ident: 10.1016/j.solmat.2019.110048_bib12
  article-title: Review of PV soiling particle mechanics in desert environments
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2017.03.100
– volume: 160
  start-page: 382
  year: 2017
  ident: 10.1016/j.solmat.2019.110048_bib30
  article-title: Experimental investigation of the anti-dust effect of transparent hydrophobic coatings applied for solar cell covering glass
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/j.solmat.2016.10.043
– volume: 91
  start-page: 338
  year: 2016
  ident: 10.1016/j.solmat.2019.110048_bib19
  article-title: Microscopic measurement and analysis of the soiling behavior of surfaces with standardized and real dust – a parameter study
  publication-title: Energy Procedia
  doi: 10.1016/j.egypro.2016.06.239
– ident: 10.1016/j.solmat.2019.110048_bib56
  doi: 10.1063/5.0015122
– volume: 82
  start-page: 743
  year: 2018
  ident: 10.1016/j.solmat.2019.110048_bib8
  article-title: The effect of environmental factors and dust accumulation on photovoltaic modules and dust-accumulation mitigation strategies
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2017.09.042
– start-page: 287
  year: 2019
  ident: 10.1016/j.solmat.2019.110048_bib40
  article-title: Dew as a detrimental influencing factor for soiling of PV modules
  publication-title: IEEE J. Photovolt
  doi: 10.1109/JPHOTOV.2018.2882649
SSID ssj0002634
Score 2.4717922
Snippet The accumulation of dust and dirt on PV modules can cause significant energy yield losses, especially in dusty environments. The application of anti-soiling...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 110048
SubjectTerms Accumulation
Anti-Soiling coatings
Antireflection coatings
Arid climates
Centrifugal force
Cleaning
Coatings
Control methods
Controllability
Deserts
Dirt
Dust
Dust control
Evaluation
Glass coatings
Laboratories
Laboratory tests
Light microscopy
Light penetration
Modules
Parameters
Photovoltaics
Physics
Selectivity
Soil physics
Soiling
Soils
Stability
Test method
Test procedures
Testing procedures
Weather
Wind
Title Advanced performance testing of anti-soiling coatings – Part I: Sequential laboratory test methodology covering the physics of natural soiling processes
URI https://dx.doi.org/10.1016/j.solmat.2019.110048
https://www.proquest.com/docview/2306475470
Volume 202
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6iFz2IT3yTg9e43W3abLwtoqyKIqjgLaRpIiuyXewqeBH_gzd_nr_EmST1BSJ4bMgk7cx0ZpLMNyFkGw_DBMI-TO4k42XmWDfLLDPaSbxJWha-2PPJad6_5EdX2dUE2WuwMJhWGW1_sOneWseWVuRmazQYtM4TiVgqDi4NzLAQuG7nXKCW7zx9pnl0cn-yjJ0Z9m7gcz7HC8QLcSEmeMkdXzut-5t7-mGovfc5mCOzMWykvfBm82TCDhfIzJdigovktReP8-noEwxAx1hFY3hNK0eBhwNWVwMEoFNTaWyv6dvzCz2DL6aHu_Tc51XDP39Lo3JUd49-CBpumvZ78ED74OekEDzSsDVS4wS-SCjQNnOMAgjB1kvk8mD_Yq_P4s0LzKQiHbMyaZe2bfJCpzrJTQLLDgMc1I4nRdnWui3LruSucJ1OIgsjiq7REKZbITsQ0UiTLpPJYTW0K4RKLrLS5VKWEhymtRrML3cgKAGRTJmLVZI2DFcmliXH2zFuVZN_dqOCmBSKSQUxrRL2QTUKZTn-6C8aWapv6qXAc_xBudGIXsXfu1Z-3SYyLpK1fw-8TqbxKeAaN8jk-O7ebkKAMy62vAZvkane4XH_9B3zaf5C
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA5SD-pBfGJ95uA1dtt9pPFWiqVVW4QqeAvZbCKV0i3dKnjzP3jz5_lLnDzWF4jgdTeT7M4kM5NkvhmEjs1lGDWwD5loRqIs1qQZx4pIoZmpJM1Sm-y5P0i6N9H5bXy7gNolFsaEVXrd73S61db-Sc1zszYdjWrDgBksVQQmDdQwpbBvXzTZqeIKWmz1LrqDD4XcSOzlsmlPDEGJoLNhXiBhcA1NjBc7senTmr9ZqB-62hqgzhpa9Z4jbrmPW0cLarKBVr7kE9xEry1_o4-nn3gAPDeJNCZ3ONcY2DgiRT4yGHQsc2GeF_jt-QVfwU_j3ike2tBqWPZj7OdHPnuyXWBXbNoewwPtox0Tg_-I3elIYQaweUKBthxj6nAIqthCN52z63aX-OILRIY0nJMsqGeqLpNUhCJIZAA7DwkcFDoK0qwuRJ1lTRbpVDcaAUslTZtSgKeuKGuAU8NkuI0qk3yidhBmIJRMJ4xlDGymUgI0cKSjiFJwZrKEVlFYMpxLn5ncFMgY8zIE7Z47MXEjJu7EVEXkg2rqMnP80Z6WsuTfZhgH4_EH5X4peu5XeMHt1o3CfAt2_93xEVrqXvcv-WVvcLGHls0bB3PcR5X57EEdgL8zTw_9fH4HmzUBAg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Advanced+performance+testing+of+anti-soiling+coatings+%E2%80%93+Part+I%3A+Sequential+laboratory+test+methodology+covering+the+physics+of+natural+soiling+processes&rft.jtitle=Solar+energy+materials+and+solar+cells&rft.au=Ilse%2C+Klemens&rft.au=Khan%2C+Muhammad+Zahid&rft.au=Voicu%2C+Nicoleta&rft.au=Naumann%2C+Volker&rft.date=2019-11-01&rft.pub=Elsevier+BV&rft.issn=0927-0248&rft.volume=202&rft.spage=1&rft_id=info:doi/10.1016%2Fj.solmat.2019.110048&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0927-0248&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0927-0248&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0927-0248&client=summon