Advanced performance testing of anti-soiling coatings – Part I: Sequential laboratory test methodology covering the physics of natural soiling processes
The accumulation of dust and dirt on PV modules can cause significant energy yield losses, especially in dusty environments. The application of anti-soiling coatings (ASC) is seen as a promising mitigation approach to reduce cleaning frequency and thus cleaning costs. In order to examine the effecti...
Saved in:
Published in | Solar energy materials and solar cells Vol. 202; p. 110048 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Amsterdam
Elsevier B.V
01.11.2019
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The accumulation of dust and dirt on PV modules can cause significant energy yield losses, especially in dusty environments. The application of anti-soiling coatings (ASC) is seen as a promising mitigation approach to reduce cleaning frequency and thus cleaning costs. In order to examine the effectiveness of coatings, outdoor tests are usually necessary, but these are subject to varying and complex weather conditions. Therefore, an advanced laboratory soiling test setup and corresponding sequential testing procedures representing the underlying physics of soiling and self-cleaning processes were developed, aiming at fast, reliable and standardized evaluation of the anti-soiling performance of glass coatings. The methods include the control of important environmental parameters during dust deposition and a controlled dust removal by utilization of wind blow or centrifugal forces. Besides method evaluation experiments, comparative soiling experiments were performed for uncoated solar-grade float glass, an anti-reflective coating (ARC) and an ASC. The dusts used for the tests were collected from PV modules located in Dunhuang (cold desert climate, China) and Doha (hot desert climate, Qatar). For sample characterization and soiling loss determination, optical transmittance and light microscopy measurements were performed. Both wind blow and rotational force test (RFT) procedures reveal a reduced dust accumulation for the ARC and a further increased anti-soiling behavior for the ASC. The presented test results are consistent with other outdoor and laboratory soiling studies. Compared to wind blow testing, the rotational force test setup significantly improves the controllability of test parameters and provides a better selectivity of coating performance.
•Advanced setup and procedure for reliable laboratory soiling tests.•Sequential test method accounts for particle rebound and resuspension effects.•Investigation of industry-relevant anti-reflective and anti-soiling coatings.•Particle rebound can significantly contribute to reduce soiling.•Rotational force test method provides fast, precise and reproducible test results. |
---|---|
AbstractList | The accumulation of dust and dirt on PV modules can cause significant energy yield losses, especially in dusty environments. The application of anti-soiling coatings (ASC) is seen as a promising mitigation approach to reduce cleaning frequency and thus cleaning costs. In order to examine the effectiveness of coatings, outdoor tests are usually necessary, but these are subject to varying and complex weather conditions. Therefore, an advanced laboratory soiling test setup and corresponding sequential testing procedures representing the underlying physics of soiling and self-cleaning processes were developed, aiming at fast, reliable and standardized evaluation of the anti-soiling performance of glass coatings. The methods include the control of important environmental parameters during dust deposition and a controlled dust removal by utilization of wind blow or centrifugal forces. Besides method evaluation experiments, comparative soiling experiments were performed for uncoated solar-grade float glass, an anti-reflective coating (ARC) and an ASC. The dusts used for the tests were collected from PV modules located in Dunhuang (cold desert climate, China) and Doha (hot desert climate, Qatar). For sample characterization and soiling loss determination, optical transmittance and light microscopy measurements were performed. Both wind blow and rotational force test (RFT) procedures reveal a reduced dust accumulation for the ARC and a further increased anti-soiling behavior for the ASC. The presented test results are consistent with other outdoor and laboratory soiling studies. Compared to wind blow testing, the rotational force test setup significantly improves the controllability of test parameters and provides a better selectivity of coating performance.
•Advanced setup and procedure for reliable laboratory soiling tests.•Sequential test method accounts for particle rebound and resuspension effects.•Investigation of industry-relevant anti-reflective and anti-soiling coatings.•Particle rebound can significantly contribute to reduce soiling.•Rotational force test method provides fast, precise and reproducible test results. The accumulation of dust and dirt on PV modules can cause significant energy yield losses, especially in dusty environments. The application of anti-soiling coatings (ASC) is seen as a promising mitigation approach to reduce cleaning frequency and thus cleaning costs. In order to examine the effectiveness of coatings, outdoor tests are usually necessary, but these are subject to varying and complex weather conditions. Therefore, an advanced laboratory soiling test setup and corresponding sequential testing procedures representing the underlying physics of soiling and self-cleaning processes were developed, aiming at fast, reliable and standardized evaluation of the anti-soiling performance of glass coatings. The methods include the control of important environmental parameters during dust deposition and a controlled dust removal by utilization of wind blow or centrifugal forces. Besides method evaluation experiments, comparative soiling experiments were performed for uncoated solar-grade float glass, an anti-reflective coating (ARC) and an ASC. The dusts used for the tests were collected from PV modules located in Dunhuang (cold desert climate, China) and Doha (hot desert climate, Qatar). For sample characterization and soiling loss determination, optical transmittance and light microscopy measurements were performed. Both wind blow and rotational force test (RFT) procedures reveal a reduced dust accumulation for the ARC and a further increased anti-soiling behavior for the ASC. The presented test results are consistent with other outdoor and laboratory soiling studies. Compared to wind blow testing, the rotational force test setup significantly improves the controllability of test parameters and provides a better selectivity of coating performance. |
ArticleNumber | 110048 |
Author | Khan, Muhammad Zahid Hagendorf, Christian Ilse, Klemens Naumann, Volker Bagdahn, Jörg Voicu, Nicoleta |
Author_xml | – sequence: 1 givenname: Klemens surname: Ilse fullname: Ilse, Klemens email: klemens.ilse@csp.fraunhofer.de organization: Fraunhofer Center for Silicon Photovoltaics CSP, 06120, Halle (Saale), Germany – sequence: 2 givenname: Muhammad Zahid surname: Khan fullname: Khan, Muhammad Zahid organization: Fraunhofer Center for Silicon Photovoltaics CSP, 06120, Halle (Saale), Germany – sequence: 3 givenname: Nicoleta surname: Voicu fullname: Voicu, Nicoleta organization: DSM Advanced Solar, 6167 RD, Geleen, the Netherlands – sequence: 4 givenname: Volker surname: Naumann fullname: Naumann, Volker organization: Fraunhofer Center for Silicon Photovoltaics CSP, 06120, Halle (Saale), Germany – sequence: 5 givenname: Christian surname: Hagendorf fullname: Hagendorf, Christian organization: Fraunhofer Center for Silicon Photovoltaics CSP, 06120, Halle (Saale), Germany – sequence: 6 givenname: Jörg surname: Bagdahn fullname: Bagdahn, Jörg organization: Anhalt University of Applied Sciences, Faculty EMW, Koethen (Anhalt), Germany |
BookMark | eNqFkc1q3DAUhUVIIZO0b5CFIGtPr2SPZWVRCKE_gUALbdfiWr7OaPBYU0kzMLu-Q3Z5vD5J5TrdZNGuxBX3O4dzzzk7Hf1IjF0KWAoQ9dvNMvphi2kpQeilEABVc8IWolG6KEvdnLIFaKkKkFVzxs5j3ACArMtqwZ5uugOOljq-o9D7sJ0GnigmNz5w33Mckyuid8M0W4_Tf-S_fj7yLxgSv7vmX-nHnvIWDnzA1gdMPhz_SPAtpbXv_OAfjpk9UJhE0pr4bn2MzsbJYMS0D5n967EL3lKMFF-zVz0Okd48vxfs-4f3324_FfefP97d3twXtlRlKjoQHQlbt1gi1BZWK21zWuwraDuBKHTX6KpveylBt1a1jUWlJCkt61WjbXnBrmbd7JyTxGQ2fh_GbGlkCXWlVpWCvFXNWzb4GAP1ZhfcFsPRCDBTC2Zj5hbM1IKZW8jY9QvMupSP6McU0A3_g9_NMOX4B0fBROtoassFssl03v1b4DcfT6ys |
CitedBy_id | crossref_primary_10_1016_j_seta_2024_104023 crossref_primary_10_1016_j_renene_2024_120167 crossref_primary_10_1109_JPHOTOV_2023_3244371 crossref_primary_10_1016_j_rser_2022_112145 crossref_primary_10_1109_JPHOTOV_2019_2945192 crossref_primary_10_1109_JPHOTOV_2021_3117913 crossref_primary_10_1016_j_solmat_2024_112707 crossref_primary_10_1016_j_jaerosci_2022_106037 crossref_primary_10_1016_j_surfin_2022_101824 crossref_primary_10_1016_j_renene_2024_120317 crossref_primary_10_1016_j_solener_2021_11_036 crossref_primary_10_1557_s43581_022_00035_x crossref_primary_10_1016_j_clet_2023_100606 crossref_primary_10_1016_j_solmat_2019_110049 crossref_primary_10_1016_j_solmat_2024_113278 crossref_primary_10_1016_j_renene_2020_10_027 crossref_primary_10_1016_j_solener_2022_05_020 crossref_primary_10_1016_j_joule_2019_08_019 crossref_primary_10_1016_j_joule_2020_08_015 crossref_primary_10_1016_j_esr_2024_101310 crossref_primary_10_1002_pip_3736 crossref_primary_10_1016_j_matchemphys_2024_129046 crossref_primary_10_3390_en18051141 crossref_primary_10_1016_j_solener_2023_112120 crossref_primary_10_1002_solr_202300654 crossref_primary_10_1016_j_solmat_2023_112437 crossref_primary_10_1038_s41598_020_70858_6 crossref_primary_10_1016_j_solener_2022_03_009 crossref_primary_10_1063_5_0015122 crossref_primary_10_1109_JPHOTOV_2023_3273812 crossref_primary_10_1016_j_solener_2023_02_047 crossref_primary_10_1016_j_solmat_2024_112751 crossref_primary_10_1016_j_solener_2023_02_005 crossref_primary_10_1080_19397038_2022_2140222 crossref_primary_10_1016_j_apenergy_2024_124979 crossref_primary_10_1021_acs_est_2c00164 |
Cites_doi | 10.1016/j.solener.2014.05.030 10.1016/j.partic.2009.10.001 10.1016/j.rser.2018.09.015 10.1016/j.renene.2013.12.027 10.1109/JPHOTOV.2017.2764890 10.1016/j.atmosenv.2011.04.084 10.1016/j.solmat.2016.07.004 10.1002/pip.2230 10.1016/j.solmat.2018.05.021 10.1016/j.renene.2012.06.007 10.1016/j.solmat.2019.110049 10.1109/JPHOTOV.2017.2775439 10.1016/j.solener.2016.02.028 10.1166/mex.2015.1248 10.1016/j.rser.2012.12.065 10.1002/pssr.201600152 10.1080/01691864.2014.996602 10.1016/j.egypro.2015.07.378 10.1007/s10971-011-2489-5 10.1557/mrc.2019.105 10.1016/j.solmat.2018.06.051 10.1016/j.rser.2017.09.015 10.1016/j.rser.2016.09.072 10.1016/j.solener.2017.10.089 10.1016/j.rser.2016.04.059 10.1016/j.solmat.2013.11.028 10.1038/srep38239 10.1016/j.solener.2013.07.017 10.1016/j.solmat.2017.07.026 10.1016/j.pecs.2014.06.001 10.1016/j.solener.2018.01.088 10.1016/j.rser.2017.03.100 10.1016/j.solmat.2016.10.043 10.1016/j.egypro.2016.06.239 10.1063/5.0015122 10.1016/j.rser.2017.09.042 10.1109/JPHOTOV.2018.2882649 |
ContentType | Journal Article |
Copyright | 2019 Elsevier B.V. Copyright Elsevier BV Nov 2019 |
Copyright_xml | – notice: 2019 Elsevier B.V. – notice: Copyright Elsevier BV Nov 2019 |
DBID | AAYXX CITATION 7SP 7ST 7TB 7U5 8FD C1K FR3 L7M SOI |
DOI | 10.1016/j.solmat.2019.110048 |
DatabaseName | CrossRef Electronics & Communications Abstracts Environment Abstracts Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Advanced Technologies Database with Aerospace Environment Abstracts |
DatabaseTitle | CrossRef Technology Research Database Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Environment Abstracts Advanced Technologies Database with Aerospace Environmental Sciences and Pollution Management |
DatabaseTitleList | Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1879-3398 |
ExternalDocumentID | 10_1016_j_solmat_2019_110048 S0927024819303770 |
GroupedDBID | --K --M .~1 0R~ 123 1B1 1~. 1~5 4.4 457 4G. 5VS 6OB 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARJD AARLI AAXUO ABFNM ABMAC ABNUV ABXDB ABXRA ABYKQ ACDAQ ACGFS ACIWK ACNNM ACRLP ADBBV ADECG ADEWK ADEZE ADMUD AEBSH AEKER AENEX AEZYN AFKWA AFRAH AFRZQ AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AHIDL AHPOS AIEXJ AIKHN AITUG AJBFU AJOXV AJSZI AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BELTK BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FLBIZ FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JARJE KOM LY6 LY7 M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 R2- RIG RNS ROL RPZ SAC SCB SDF SDG SDP SES SET SEW SMS SPC SPCBC SPD SSG SSK SSM SSR SSZ T5K TWZ WH7 WUQ XPP ZMT ~02 ~G- AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7SP 7ST 7TB 7U5 8FD C1K EFKBS FR3 L7M SOI |
ID | FETCH-LOGICAL-c373t-d01de1c6ba3a06c0559c092af40bd1aa19d894fbf2209bc7b8ca772e7926589c3 |
IEDL.DBID | .~1 |
ISSN | 0927-0248 |
IngestDate | Wed Aug 13 11:21:07 EDT 2025 Tue Jul 01 01:20:04 EDT 2025 Thu Apr 24 23:08:30 EDT 2025 Fri Feb 23 02:26:53 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Test method Anti-Soiling coatings Dust Soiling Photovoltaics |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c373t-d01de1c6ba3a06c0559c092af40bd1aa19d894fbf2209bc7b8ca772e7926589c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2306475470 |
PQPubID | 2045398 |
ParticipantIDs | proquest_journals_2306475470 crossref_primary_10_1016_j_solmat_2019_110048 crossref_citationtrail_10_1016_j_solmat_2019_110048 elsevier_sciencedirect_doi_10_1016_j_solmat_2019_110048 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-11-01 |
PublicationDateYYYYMMDD | 2019-11-01 |
PublicationDate_xml | – month: 11 year: 2019 text: 2019-11-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Amsterdam |
PublicationPlace_xml | – name: Amsterdam |
PublicationTitle | Solar energy materials and solar cells |
PublicationYear | 2019 |
Publisher | Elsevier B.V Elsevier BV |
Publisher_xml | – name: Elsevier B.V – name: Elsevier BV |
References | Ilse, Rabanal, Schonleber, Khan, Naumann, Hagendorf, Bagdahn (bib20) 2018; 8 Guo, Javed (bib37) 2018; 8 Goossens (bib18) 2018; 163 Abrams, Gonsalves, Brophy, Posbic (bib26) 2014 Qasem, Betts, Müllejans, AlBusairi, Gottschalg (bib36) 2014; 22 Glaubitt, Löbmann (bib27) 2011; 59 Brown, Narum, Jing (bib38) 2012 Beattie, Moir, Chacko, Buffoni, Roberts, Pearsall (bib21) 2012; 48 Klimm, Ost, Köhl, Weiß (bib19) 2016; 91 Costa, Diniz, Antonia Sonia, Kazmerski (bib6) 2017; 82 Sleiman, Kirchstetter, Berdahl, Gilbert, Quelen, Marlot, Preble, Chen, Montalbano, Rosseler, Akbari, Levinson, Destaillats (bib16) 2014; 122 Dross, Voicu, Carcouet, Tummers, Li, Schoot (bib45) 2018 Bahattab, Alhomoudi, Alhussaini, Mirza, Hegmann, Glaubitt, Löbmann (bib28) 2016; 157 Jiang, Lu, Sun (bib24) 2011; 45 Costa, Diniz, Antonia Sonia, Kazmerski (bib5) 2016; 63 DSM Advanced Surfaces, KhepriCoat® - the Best-Performing Anti-reflective Coating for Solar Glass: KhepriCoat Product Brochure. Moutinho, Jiang, To, Perkins, Muller, Al-Jassim, Simpson (bib50) 2017; 172 Brophy, Abrams, Gonsalves, Christy (bib22) 2015 International Renewable Energy Agency (bib1) 2018 Ilse, Werner, Naumann, Figgis, Hagendorf, Bagdahn (bib39) 2016; 10 Ilse, Figgis, Khan, Naumann, Hagendorf (bib40) 2019 . Cabrera, Schneider, Wefringhaus, Rabanal, Ferrada, Thaller, Araya, Marzo, Trigo, Olivares, Haas, Fuentealba, Kopecek (bib35) 2016 Burton, King (bib13) 2013 Appels, Lefevre, Herteleer, Goverde, Beerten, Paesen, de Medts, Driesen, Poortmans (bib33) 2013; 96 Henry, Minier (bib54) 2014; 45 Sarver, Al-Qaraghuli, Kazmerski (bib11) 2013; 22 John, Warade, Tamizhmani, Kottantharayil (bib15) 2015 Said, Hassan, Walwil, Al-Aqeeli (bib8) 2018; 82 Pfau, Ilse, Schneider, Turek, Miclea, Hagendorf, Zabek, Doros (bib23) 2017 Ilse, Figgis, Naumann, Hagendorf, Bagdahn (bib2) 2018; 98 Attia, Parikh, Heggarty (bib4) 2017 K.K. Ilse, M.Z. Khan, K. Lange, H.N. Gurumoorthy, V. Naumann, C. Hagendorf, J. Bagdahn, Rotational force test method for determination of particle adhesion –from a simplified model to realistic dusts, (2019) in preparation. Sayyah, Horenstein, Mazumder (bib3) 2014; 107 Yates, Duffy (bib51) 2008 Jamil, Abdul Rahman, Shaari, Salam (bib7) 2017; 67 Figgis, Ennaoui, Ahzi, Rémond (bib12) 2017; 76 Weber, Hanusch, Koch, Trawny, Janker, Böttcher, Berghold, Grunow (bib14) 2014 Sayyah, Eriksen, Horenstein, Mazumder (bib34) 2016 Rifai, Abu Dheir, Yilbas, Khaled (bib44) 2016; 130 Tummers (bib47) 2017 Ilse, Khan, Lange, Voicu, Naumann, Hagendorf (bib52) 2019; 202 Mayhoub (bib10) 2016 Zhang, Zhu, Li, Zhou, Zheng, Yang (bib32) 2015; 5 Quan, Zhang (bib30) 2017; 160 Xu, Zhao, Kujan, Liu, Lyons (bib42) 2015 Guo, Javed, Pett, Wu, Scheffe (bib31) 2018; 185 Figgis, Nouviaire, Wubulikasimu, Javed, Guo, Ait-Mokhtar, Belarbi, Ahzi, Rémond, Ennaoui (bib55) 2018; 159 Nayshevsky, Xu, Barahman, Lyons (bib29) 2017 Jiang, Lu (bib25) 2015; 75 Barletta, Puopolo, Tagliaferri, Vesco (bib17) 2014; 66 Mondal, Bansal (bib9) 2015; 29 Schoot (bib46) 2016 Buskens, Arfsten, Habets, Langermans, Overbeek, Scheerder, Thies (bib48) 2009 Shen, Caquineau, Cao, Zhang, Han, Gaudichet, Gomes (bib53) 2009; 7 Quan, Zhang, Qi, Cai (bib43) 2016; 6 Ilse, Figgis, Werner, Naumann, Hagendorf, Pöllmann, Bagdahn (bib41) 2018; 186 Ilse, Gurumoorthy, Bahattab, Alqahtani, Mirza, Glaubitt, Naumann, Hagendorf, Bagdahn (bib57) 2019 Henry (10.1016/j.solmat.2019.110048_bib54) 2014; 45 Schoot (10.1016/j.solmat.2019.110048_bib46) 2016 Guo (10.1016/j.solmat.2019.110048_bib37) 2018; 8 Burton (10.1016/j.solmat.2019.110048_bib13) 2013 Quan (10.1016/j.solmat.2019.110048_bib43) 2016; 6 Sleiman (10.1016/j.solmat.2019.110048_bib16) 2014; 122 Jiang (10.1016/j.solmat.2019.110048_bib25) 2015; 75 Guo (10.1016/j.solmat.2019.110048_bib31) 2018; 185 Jiang (10.1016/j.solmat.2019.110048_bib24) 2011; 45 Goossens (10.1016/j.solmat.2019.110048_bib18) 2018; 163 Ilse (10.1016/j.solmat.2019.110048_bib52) 2019; 202 Said (10.1016/j.solmat.2019.110048_bib8) 2018; 82 Sayyah (10.1016/j.solmat.2019.110048_bib34) 2016 Sayyah (10.1016/j.solmat.2019.110048_bib3) 2014; 107 Klimm (10.1016/j.solmat.2019.110048_bib19) 2016; 91 Pfau (10.1016/j.solmat.2019.110048_bib23) 2017 10.1016/j.solmat.2019.110048_bib56 Barletta (10.1016/j.solmat.2019.110048_bib17) 2014; 66 Qasem (10.1016/j.solmat.2019.110048_bib36) 2014; 22 Bahattab (10.1016/j.solmat.2019.110048_bib28) 2016; 157 Brown (10.1016/j.solmat.2019.110048_bib38) 2012 Costa (10.1016/j.solmat.2019.110048_bib5) 2016; 63 Sarver (10.1016/j.solmat.2019.110048_bib11) 2013; 22 Ilse (10.1016/j.solmat.2019.110048_bib20) 2018; 8 Glaubitt (10.1016/j.solmat.2019.110048_bib27) 2011; 59 Yates (10.1016/j.solmat.2019.110048_bib51) 2008 Appels (10.1016/j.solmat.2019.110048_bib33) 2013; 96 Weber (10.1016/j.solmat.2019.110048_bib14) 2014 Ilse (10.1016/j.solmat.2019.110048_bib40) 2019 Cabrera (10.1016/j.solmat.2019.110048_bib35) 2016 Mondal (10.1016/j.solmat.2019.110048_bib9) 2015; 29 Figgis (10.1016/j.solmat.2019.110048_bib12) 2017; 76 10.1016/j.solmat.2019.110048_bib49 Ilse (10.1016/j.solmat.2019.110048_bib57) 2019 Mayhoub (10.1016/j.solmat.2019.110048_bib10) 2016 Jamil (10.1016/j.solmat.2019.110048_bib7) 2017; 67 Dross (10.1016/j.solmat.2019.110048_bib45) 2018 Ilse (10.1016/j.solmat.2019.110048_bib2) 2018; 98 Costa (10.1016/j.solmat.2019.110048_bib6) 2017; 82 International Renewable Energy Agency (10.1016/j.solmat.2019.110048_bib1) 2018 Abrams (10.1016/j.solmat.2019.110048_bib26) 2014 Rifai (10.1016/j.solmat.2019.110048_bib44) 2016; 130 Brophy (10.1016/j.solmat.2019.110048_bib22) 2015 Buskens (10.1016/j.solmat.2019.110048_bib48) 2009 Figgis (10.1016/j.solmat.2019.110048_bib55) 2018; 159 Ilse (10.1016/j.solmat.2019.110048_bib41) 2018; 186 Tummers (10.1016/j.solmat.2019.110048_bib47) 2017 Zhang (10.1016/j.solmat.2019.110048_bib32) 2015; 5 Nayshevsky (10.1016/j.solmat.2019.110048_bib29) 2017 Quan (10.1016/j.solmat.2019.110048_bib30) 2017; 160 Attia (10.1016/j.solmat.2019.110048_bib4) 2017 Moutinho (10.1016/j.solmat.2019.110048_bib50) 2017; 172 John (10.1016/j.solmat.2019.110048_bib15) 2015 Xu (10.1016/j.solmat.2019.110048_bib42) 2015 Shen (10.1016/j.solmat.2019.110048_bib53) 2009; 7 Ilse (10.1016/j.solmat.2019.110048_bib39) 2016; 10 Beattie (10.1016/j.solmat.2019.110048_bib21) 2012; 48 |
References_xml | – volume: 67 start-page: 876 year: 2017 end-page: 891 ident: bib7 article-title: Performance degradation of photovoltaic power system: review on mitigation methods publication-title: Renew. Sustain. Energy Rev. – volume: 48 start-page: 448 year: 2012 end-page: 452 ident: bib21 article-title: Understanding the effects of sand and dust accumulation on photovoltaic modules publication-title: Renew. Energy – volume: 22 start-page: 698 year: 2013 end-page: 733 ident: bib11 article-title: A comprehensive review of the impact of dust on the use of solar energy: history, investigations, results, literature, and mitigation approaches publication-title: Renew. Sustain. Energy Rev. – reference: K.K. Ilse, M.Z. Khan, K. Lange, H.N. Gurumoorthy, V. Naumann, C. Hagendorf, J. Bagdahn, Rotational force test method for determination of particle adhesion –from a simplified model to realistic dusts, (2019) in preparation. – volume: 82 start-page: 743 year: 2018 end-page: 760 ident: bib8 article-title: The effect of environmental factors and dust accumulation on photovoltaic modules and dust-accumulation mitigation strategies publication-title: Renew. Sustain. Energy Rev. – volume: 202 year: 2019 ident: bib52 article-title: Advanced performance testing of anti-soiling coatings part II: particle-size dependent analysis and determination of adhesion forces publication-title: Sol. Energy Mater. Sol. Cells – volume: 130 start-page: 193 year: 2016 end-page: 206 ident: bib44 article-title: Mechanics of dust removal from rotating disk in relation to self-cleaning applications of PV protective cover publication-title: Sol. Energy – volume: 29 start-page: 515 year: 2015 end-page: 524 ident: bib9 article-title: A brief history and future aspects in automatic cleaning systems for solar photovoltaic panels publication-title: Adv. Robot. – year: 2014 ident: bib14 article-title: From the impact of harsh climates and environmental conditions on pv-modules - development of a soiling and abrasion test publication-title: Proceedings of the 29th European Photovoltaic Solar Energy Conference and Exhibition, Amsterdam (Holland) – start-page: 1881 year: 2012 end-page: 1885 ident: bib38 article-title: Soiling test methods and their use in predicting performance of photovoltaic modules in soiling environments publication-title: Photovoltaic Specialists Conference (PVSC), 2012 38th IEEE – volume: 5 start-page: 280 year: 2015 end-page: 290 ident: bib32 article-title: Preparation of anti-reflection glass surface with self-cleaning and anti-dust by ammonium hydroxide hydrothermal method publication-title: Mat Express – volume: 98 start-page: 239 year: 2018 end-page: 254 ident: bib2 article-title: Fundamentals of soiling processes on photovoltaic modules publication-title: Renew. Sustain. Energy Rev. – volume: 8 start-page: 203 year: 2018 end-page: 209 ident: bib20 article-title: Comparing indoor and outdoor soiling experiments for different glass coatings and microstructural analysis of particle caking processes publication-title: IEEE J. Photovolt. – volume: 122 start-page: 271 year: 2014 end-page: 281 ident: bib16 article-title: Soiling of building envelope surfaces and its effect on solar reflectance – Part II: development of an accelerated aging method for roofing materials publication-title: Sol. Energy Mater. Sol. Cells – volume: 63 start-page: 33 year: 2016 end-page: 61 ident: bib5 article-title: Dust and soiling issues and impacts relating to solar energy systems: literature review update for 2012–2015 publication-title: Renew. Sustain. Energy Rev. – volume: 185 start-page: 80 year: 2018 end-page: 85 ident: bib31 article-title: Electrodynamic dust shield performance under simulated operating conditions for solar energy applications publication-title: Sol. Energy Mater. Sol. Cells – volume: 107 start-page: 576 year: 2014 end-page: 604 ident: bib3 article-title: Energy yield loss caused by dust deposition on photovoltaic panels publication-title: Sol. Energy – year: 2017 ident: bib47 article-title: Outdoor Modelling of Anti-soiling Coatings Performance for PV Applications – volume: 6 start-page: 38239 year: 2016 ident: bib43 article-title: Self-cleaning of surfaces: the role of surface wettability and dust types publication-title: Sci. Rep. – volume: 172 start-page: 145 year: 2017 end-page: 153 ident: bib50 article-title: Adhesion mechanisms on solar glass: effects of relative humidity, surface roughness, and particle shape and size publication-title: Sol. Energy Mater. Sol. Cells – year: 2016 ident: bib46 article-title: Antisoiling Coatings for PV Cover Glass, DEWA & NREL 3 Days Workshop "Soiling Effect on PV Modules" 5-7/4/2016 – year: 2018 ident: bib1 article-title: Renewable Power Generation Costs in 2017 – start-page: 1 year: 2016 end-page: 9 ident: bib34 article-title: Performance analysis of electrodynamic screens based on residual particle size distribution publication-title: IEEE J. Photovolt. – start-page: 1 year: 2015 end-page: 8 ident: bib15 article-title: Study of soiling loss on photovoltaic modules with artificially deposited dust of different gravimetric densities and compositions collected from different locations in India publication-title: IEEE J. Photovolt. – year: 2019 ident: bib57 article-title: Particle-size dependent adhesion forces and wind removal efficiency of anti-soiling coatings on textured solar glasses publication-title: MRS Communications – start-page: 2759 year: 2014 end-page: 2764 ident: bib26 article-title: Field and lab verification of hydrophobic anti-reflective and anti-soiling coatings on photovoltaic glass publication-title: 29th European Photovoltaic Solar Energy Conference and Exhibition – start-page: 59 year: 2017 end-page: 63 ident: bib23 article-title: New chemical functionalization concept for anti-reflective and anti-soiling front glass of PV modules based on surface structuring and modification publication-title: 33rd European Photovoltaic Solar Energy Conference and Exhibition – volume: 75 start-page: 337 year: 2015 end-page: 342 ident: bib25 article-title: A study of dust accumulating process on solar photovoltaic modules with different surface temperatures publication-title: Energy Procedia – volume: 186 start-page: 309 year: 2018 end-page: 323 ident: bib41 article-title: Comprehensive analysis of soiling and cementation processes on PV modules in Qatar publication-title: Sol. Energy Mater. Sol. Cells – volume: 160 start-page: 382 year: 2017 end-page: 389 ident: bib30 article-title: Experimental investigation of the anti-dust effect of transparent hydrophobic coatings applied for solar cell covering glass publication-title: Sol. Energy Mater. Sol. Cells – volume: 66 start-page: 443 year: 2014 end-page: 453 ident: bib17 article-title: Retrofitting of solar glasses by protective anti-soiling and -graffiti coatings publication-title: Renew. Energy – year: 2017 ident: bib4 article-title: GTM Research - Global Solar Demand Monitor: Q3 2017 – start-page: 70770D year: 2008 ident: bib51 article-title: Statistical analysis of the metrological properties of float glass publication-title: Advances in X-Ray/EUV Optics and Components III – volume: 96 start-page: 283 year: 2013 end-page: 291 ident: bib33 article-title: Effect of soiling on photovoltaic modules publication-title: Sol. Energy – volume: 10 start-page: 525 year: 2016 end-page: 529 ident: bib39 article-title: Microstructural analysis of the cementation process during soiling on glass surfaces in arid and semi-arid climates publication-title: Phys. Status Solidi RRL – volume: 76 start-page: 872 year: 2017 end-page: 881 ident: bib12 article-title: Review of PV soiling particle mechanics in desert environments publication-title: Renew. Sustain. Energy Rev. – start-page: 1542 year: 2013 end-page: 1545 ident: bib13 article-title: Artificial soiling of photovoltaic module surfaces using traceable soil components publication-title: IEEE 39th Photovoltaics Spec. Conf. – start-page: 287 year: 2019 end-page: 290 ident: bib40 article-title: Dew as a detrimental influencing factor for soiling of PV modules publication-title: IEEE J. Photovolt – year: 2016 ident: bib10 article-title: Cleaning Innovative Daylighting Systems: Review and Suggested Methods – volume: 163 start-page: 131 year: 2018 end-page: 139 ident: bib18 article-title: Wind tunnel protocol to study the effects of anti-soiling and anti-reflective coatings on deposition, removal, and accumulation of dust on photovoltaic surfaces and consequences for optical transmittance publication-title: Sol. Energy – volume: 59 start-page: 239 year: 2011 end-page: 244 ident: bib27 article-title: Anti-soiling effect of porous SiO2 coatings prepared by sol–gel processing publication-title: J. Sol. Gel Sci. Technol. – volume: 7 start-page: 507 year: 2009 end-page: 512 ident: bib53 article-title: Mineralogical characteristics of soil dust from source regions in northern China publication-title: Particuology – year: 2009 ident: bib48 article-title: Viets Nicolaas, Innovation at DSM: State of the Art Single Layer Anti-reflective Coatings for Solar Cell Cover Glass – reference: DSM Advanced Surfaces, KhepriCoat® - the Best-Performing Anti-reflective Coating for Solar Glass: KhepriCoat Product Brochure. – volume: 159 start-page: 488 year: 2018 end-page: 500 ident: bib55 article-title: Investigation of factors affecting condensation on soiled PV modules publication-title: Sol. Energy – volume: 45 start-page: 4299 year: 2011 end-page: 4304 ident: bib24 article-title: Experimental investigation of the impact of airborne dust deposition on the performance of solar photovoltaic (PV) modules publication-title: Atmos. Environ. – volume: 82 start-page: 2504 year: 2017 end-page: 2536 ident: bib6 article-title: Solar energy dust and soiling R&D progress: literature review update for 2016 publication-title: Renew. Sustain. Energy Rev. – start-page: 624 year: 2015 end-page: 627 ident: bib42 article-title: An anti-reflective and anti-soiling coating for photovoltaic panels publication-title: Adv. Mater.: TechConnect Briefs – year: 2018 ident: bib45 article-title: Novel Anti-soiling Coatings to Enhance PV Plant Output and Financial Performance – reference: . – volume: 91 start-page: 338 year: 2016 end-page: 345 ident: bib19 article-title: Microscopic measurement and analysis of the soiling behavior of surfaces with standardized and real dust – a parameter study publication-title: Energy Procedia – volume: 22 start-page: 218 year: 2014 end-page: 226 ident: bib36 article-title: Dust-induced shading on photovoltaic modules publication-title: Prog. Photovolt. Res. Appl. – volume: 157 start-page: 422 year: 2016 end-page: 428 ident: bib28 article-title: Anti-soiling surfaces for PV applications prepared by sol-gel processing: comparison of laboratory testing and outdoor exposure publication-title: Sol. Energy Mater. Sol. Cells – year: 2016 ident: bib35 article-title: Advancements in the Development of ‘‘AtaMo’’: A Solar Module Adapted for the Climate Conditions of the Atacama Desert in Chile - the Impact of Soiling and Abrasion – volume: 8 start-page: 196 year: 2018 end-page: 202 ident: bib37 article-title: Efficiency of electrodynamic dust shield at dust loading levels relevant to solar energy applications publication-title: IEEE J. Photovolt – volume: 45 start-page: 1 year: 2014 end-page: 53 ident: bib54 article-title: Progress in particle resuspension from rough surfaces by turbulent flows publication-title: Prog. Energy Combust. Sci. – year: 2015 ident: bib22 article-title: Field Performance and Persistence of Anti-soiling Coatings on Photovoltaic Glass – year: 2017 ident: bib29 article-title: Anti-reflective and anti-soiling properties of KleanBoost TM, a superhydrophobic nano-textured coating for solar glass publication-title: IEEE 44th Photovoltaics Spec. Conf., Washington DC – year: 2016 ident: 10.1016/j.solmat.2019.110048_bib10 – volume: 107 start-page: 576 year: 2014 ident: 10.1016/j.solmat.2019.110048_bib3 article-title: Energy yield loss caused by dust deposition on photovoltaic panels publication-title: Sol. Energy doi: 10.1016/j.solener.2014.05.030 – volume: 7 start-page: 507 year: 2009 ident: 10.1016/j.solmat.2019.110048_bib53 article-title: Mineralogical characteristics of soil dust from source regions in northern China publication-title: Particuology doi: 10.1016/j.partic.2009.10.001 – volume: 98 start-page: 239 year: 2018 ident: 10.1016/j.solmat.2019.110048_bib2 article-title: Fundamentals of soiling processes on photovoltaic modules publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2018.09.015 – start-page: 59 year: 2017 ident: 10.1016/j.solmat.2019.110048_bib23 article-title: New chemical functionalization concept for anti-reflective and anti-soiling front glass of PV modules based on surface structuring and modification – year: 2017 ident: 10.1016/j.solmat.2019.110048_bib29 article-title: Anti-reflective and anti-soiling properties of KleanBoost TM, a superhydrophobic nano-textured coating for solar glass – start-page: 1 year: 2015 ident: 10.1016/j.solmat.2019.110048_bib15 article-title: Study of soiling loss on photovoltaic modules with artificially deposited dust of different gravimetric densities and compositions collected from different locations in India publication-title: IEEE J. Photovolt. – volume: 66 start-page: 443 year: 2014 ident: 10.1016/j.solmat.2019.110048_bib17 article-title: Retrofitting of solar glasses by protective anti-soiling and -graffiti coatings publication-title: Renew. Energy doi: 10.1016/j.renene.2013.12.027 – start-page: 1 year: 2016 ident: 10.1016/j.solmat.2019.110048_bib34 article-title: Performance analysis of electrodynamic screens based on residual particle size distribution publication-title: IEEE J. Photovolt. – volume: 8 start-page: 196 year: 2018 ident: 10.1016/j.solmat.2019.110048_bib37 article-title: Efficiency of electrodynamic dust shield at dust loading levels relevant to solar energy applications publication-title: IEEE J. Photovolt doi: 10.1109/JPHOTOV.2017.2764890 – start-page: 1881 year: 2012 ident: 10.1016/j.solmat.2019.110048_bib38 article-title: Soiling test methods and their use in predicting performance of photovoltaic modules in soiling environments – volume: 45 start-page: 4299 year: 2011 ident: 10.1016/j.solmat.2019.110048_bib24 article-title: Experimental investigation of the impact of airborne dust deposition on the performance of solar photovoltaic (PV) modules publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2011.04.084 – year: 2014 ident: 10.1016/j.solmat.2019.110048_bib14 article-title: From the impact of harsh climates and environmental conditions on pv-modules - development of a soiling and abrasion test – year: 2015 ident: 10.1016/j.solmat.2019.110048_bib22 – volume: 157 start-page: 422 year: 2016 ident: 10.1016/j.solmat.2019.110048_bib28 article-title: Anti-soiling surfaces for PV applications prepared by sol-gel processing: comparison of laboratory testing and outdoor exposure publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/j.solmat.2016.07.004 – year: 2018 ident: 10.1016/j.solmat.2019.110048_bib1 – volume: 22 start-page: 218 year: 2014 ident: 10.1016/j.solmat.2019.110048_bib36 article-title: Dust-induced shading on photovoltaic modules publication-title: Prog. Photovolt. Res. Appl. doi: 10.1002/pip.2230 – volume: 185 start-page: 80 year: 2018 ident: 10.1016/j.solmat.2019.110048_bib31 article-title: Electrodynamic dust shield performance under simulated operating conditions for solar energy applications publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/j.solmat.2018.05.021 – volume: 48 start-page: 448 year: 2012 ident: 10.1016/j.solmat.2019.110048_bib21 article-title: Understanding the effects of sand and dust accumulation on photovoltaic modules publication-title: Renew. Energy doi: 10.1016/j.renene.2012.06.007 – year: 2017 ident: 10.1016/j.solmat.2019.110048_bib47 – volume: 202 year: 2019 ident: 10.1016/j.solmat.2019.110048_bib52 article-title: Advanced performance testing of anti-soiling coatings part II: particle-size dependent analysis and determination of adhesion forces publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/j.solmat.2019.110049 – volume: 8 start-page: 203 year: 2018 ident: 10.1016/j.solmat.2019.110048_bib20 article-title: Comparing indoor and outdoor soiling experiments for different glass coatings and microstructural analysis of particle caking processes publication-title: IEEE J. Photovolt. doi: 10.1109/JPHOTOV.2017.2775439 – volume: 130 start-page: 193 year: 2016 ident: 10.1016/j.solmat.2019.110048_bib44 article-title: Mechanics of dust removal from rotating disk in relation to self-cleaning applications of PV protective cover publication-title: Sol. Energy doi: 10.1016/j.solener.2016.02.028 – volume: 5 start-page: 280 year: 2015 ident: 10.1016/j.solmat.2019.110048_bib32 article-title: Preparation of anti-reflection glass surface with self-cleaning and anti-dust by ammonium hydroxide hydrothermal method publication-title: Mat Express doi: 10.1166/mex.2015.1248 – volume: 22 start-page: 698 year: 2013 ident: 10.1016/j.solmat.2019.110048_bib11 article-title: A comprehensive review of the impact of dust on the use of solar energy: history, investigations, results, literature, and mitigation approaches publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2012.12.065 – volume: 10 start-page: 525 year: 2016 ident: 10.1016/j.solmat.2019.110048_bib39 article-title: Microstructural analysis of the cementation process during soiling on glass surfaces in arid and semi-arid climates publication-title: Phys. Status Solidi RRL doi: 10.1002/pssr.201600152 – year: 2017 ident: 10.1016/j.solmat.2019.110048_bib4 – volume: 29 start-page: 515 year: 2015 ident: 10.1016/j.solmat.2019.110048_bib9 article-title: A brief history and future aspects in automatic cleaning systems for solar photovoltaic panels publication-title: Adv. Robot. doi: 10.1080/01691864.2014.996602 – volume: 75 start-page: 337 year: 2015 ident: 10.1016/j.solmat.2019.110048_bib25 article-title: A study of dust accumulating process on solar photovoltaic modules with different surface temperatures publication-title: Energy Procedia doi: 10.1016/j.egypro.2015.07.378 – volume: 59 start-page: 239 year: 2011 ident: 10.1016/j.solmat.2019.110048_bib27 article-title: Anti-soiling effect of porous SiO2 coatings prepared by sol–gel processing publication-title: J. Sol. Gel Sci. Technol. doi: 10.1007/s10971-011-2489-5 – year: 2019 ident: 10.1016/j.solmat.2019.110048_bib57 article-title: Particle-size dependent adhesion forces and wind removal efficiency of anti-soiling coatings on textured solar glasses publication-title: MRS Communications doi: 10.1557/mrc.2019.105 – ident: 10.1016/j.solmat.2019.110048_bib49 – volume: 186 start-page: 309 year: 2018 ident: 10.1016/j.solmat.2019.110048_bib41 article-title: Comprehensive analysis of soiling and cementation processes on PV modules in Qatar publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/j.solmat.2018.06.051 – volume: 82 start-page: 2504 year: 2017 ident: 10.1016/j.solmat.2019.110048_bib6 article-title: Solar energy dust and soiling R&D progress: literature review update for 2016 publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2017.09.015 – volume: 67 start-page: 876 year: 2017 ident: 10.1016/j.solmat.2019.110048_bib7 article-title: Performance degradation of photovoltaic power system: review on mitigation methods publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2016.09.072 – start-page: 70770D year: 2008 ident: 10.1016/j.solmat.2019.110048_bib51 article-title: Statistical analysis of the metrological properties of float glass – volume: 159 start-page: 488 year: 2018 ident: 10.1016/j.solmat.2019.110048_bib55 article-title: Investigation of factors affecting condensation on soiled PV modules publication-title: Sol. Energy doi: 10.1016/j.solener.2017.10.089 – volume: 63 start-page: 33 year: 2016 ident: 10.1016/j.solmat.2019.110048_bib5 article-title: Dust and soiling issues and impacts relating to solar energy systems: literature review update for 2012–2015 publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2016.04.059 – volume: 122 start-page: 271 year: 2014 ident: 10.1016/j.solmat.2019.110048_bib16 article-title: Soiling of building envelope surfaces and its effect on solar reflectance – Part II: development of an accelerated aging method for roofing materials publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/j.solmat.2013.11.028 – volume: 6 start-page: 38239 year: 2016 ident: 10.1016/j.solmat.2019.110048_bib43 article-title: Self-cleaning of surfaces: the role of surface wettability and dust types publication-title: Sci. Rep. doi: 10.1038/srep38239 – volume: 96 start-page: 283 year: 2013 ident: 10.1016/j.solmat.2019.110048_bib33 article-title: Effect of soiling on photovoltaic modules publication-title: Sol. Energy doi: 10.1016/j.solener.2013.07.017 – year: 2016 ident: 10.1016/j.solmat.2019.110048_bib35 – year: 2018 ident: 10.1016/j.solmat.2019.110048_bib45 – start-page: 2759 year: 2014 ident: 10.1016/j.solmat.2019.110048_bib26 article-title: Field and lab verification of hydrophobic anti-reflective and anti-soiling coatings on photovoltaic glass – volume: 172 start-page: 145 year: 2017 ident: 10.1016/j.solmat.2019.110048_bib50 article-title: Adhesion mechanisms on solar glass: effects of relative humidity, surface roughness, and particle shape and size publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/j.solmat.2017.07.026 – year: 2016 ident: 10.1016/j.solmat.2019.110048_bib46 – start-page: 624 year: 2015 ident: 10.1016/j.solmat.2019.110048_bib42 article-title: An anti-reflective and anti-soiling coating for photovoltaic panels publication-title: Adv. Mater.: TechConnect Briefs – volume: 45 start-page: 1 year: 2014 ident: 10.1016/j.solmat.2019.110048_bib54 article-title: Progress in particle resuspension from rough surfaces by turbulent flows publication-title: Prog. Energy Combust. Sci. doi: 10.1016/j.pecs.2014.06.001 – start-page: 1542 year: 2013 ident: 10.1016/j.solmat.2019.110048_bib13 article-title: Artificial soiling of photovoltaic module surfaces using traceable soil components – volume: 163 start-page: 131 year: 2018 ident: 10.1016/j.solmat.2019.110048_bib18 article-title: Wind tunnel protocol to study the effects of anti-soiling and anti-reflective coatings on deposition, removal, and accumulation of dust on photovoltaic surfaces and consequences for optical transmittance publication-title: Sol. Energy doi: 10.1016/j.solener.2018.01.088 – year: 2009 ident: 10.1016/j.solmat.2019.110048_bib48 – volume: 76 start-page: 872 year: 2017 ident: 10.1016/j.solmat.2019.110048_bib12 article-title: Review of PV soiling particle mechanics in desert environments publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2017.03.100 – volume: 160 start-page: 382 year: 2017 ident: 10.1016/j.solmat.2019.110048_bib30 article-title: Experimental investigation of the anti-dust effect of transparent hydrophobic coatings applied for solar cell covering glass publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/j.solmat.2016.10.043 – volume: 91 start-page: 338 year: 2016 ident: 10.1016/j.solmat.2019.110048_bib19 article-title: Microscopic measurement and analysis of the soiling behavior of surfaces with standardized and real dust – a parameter study publication-title: Energy Procedia doi: 10.1016/j.egypro.2016.06.239 – ident: 10.1016/j.solmat.2019.110048_bib56 doi: 10.1063/5.0015122 – volume: 82 start-page: 743 year: 2018 ident: 10.1016/j.solmat.2019.110048_bib8 article-title: The effect of environmental factors and dust accumulation on photovoltaic modules and dust-accumulation mitigation strategies publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2017.09.042 – start-page: 287 year: 2019 ident: 10.1016/j.solmat.2019.110048_bib40 article-title: Dew as a detrimental influencing factor for soiling of PV modules publication-title: IEEE J. Photovolt doi: 10.1109/JPHOTOV.2018.2882649 |
SSID | ssj0002634 |
Score | 2.4717922 |
Snippet | The accumulation of dust and dirt on PV modules can cause significant energy yield losses, especially in dusty environments. The application of anti-soiling... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 110048 |
SubjectTerms | Accumulation Anti-Soiling coatings Antireflection coatings Arid climates Centrifugal force Cleaning Coatings Control methods Controllability Deserts Dirt Dust Dust control Evaluation Glass coatings Laboratories Laboratory tests Light microscopy Light penetration Modules Parameters Photovoltaics Physics Selectivity Soil physics Soiling Soils Stability Test method Test procedures Testing procedures Weather Wind |
Title | Advanced performance testing of anti-soiling coatings – Part I: Sequential laboratory test methodology covering the physics of natural soiling processes |
URI | https://dx.doi.org/10.1016/j.solmat.2019.110048 https://www.proquest.com/docview/2306475470 |
Volume | 202 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6iFz2IT3yTg9e43W3abLwtoqyKIqjgLaRpIiuyXewqeBH_gzd_nr_EmST1BSJ4bMgk7cx0ZpLMNyFkGw_DBMI-TO4k42XmWDfLLDPaSbxJWha-2PPJad6_5EdX2dUE2WuwMJhWGW1_sOneWseWVuRmazQYtM4TiVgqDi4NzLAQuG7nXKCW7zx9pnl0cn-yjJ0Z9m7gcz7HC8QLcSEmeMkdXzut-5t7-mGovfc5mCOzMWykvfBm82TCDhfIzJdigovktReP8-noEwxAx1hFY3hNK0eBhwNWVwMEoFNTaWyv6dvzCz2DL6aHu_Tc51XDP39Lo3JUd49-CBpumvZ78ED74OekEDzSsDVS4wS-SCjQNnOMAgjB1kvk8mD_Yq_P4s0LzKQiHbMyaZe2bfJCpzrJTQLLDgMc1I4nRdnWui3LruSucJ1OIgsjiq7REKZbITsQ0UiTLpPJYTW0K4RKLrLS5VKWEhymtRrML3cgKAGRTJmLVZI2DFcmliXH2zFuVZN_dqOCmBSKSQUxrRL2QTUKZTn-6C8aWapv6qXAc_xBudGIXsXfu1Z-3SYyLpK1fw-8TqbxKeAaN8jk-O7ebkKAMy62vAZvkane4XH_9B3zaf5C |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA5SD-pBfGJ95uA1dtt9pPFWiqVVW4QqeAvZbCKV0i3dKnjzP3jz5_lLnDzWF4jgdTeT7M4kM5NkvhmEjs1lGDWwD5loRqIs1qQZx4pIoZmpJM1Sm-y5P0i6N9H5bXy7gNolFsaEVXrd73S61db-Sc1zszYdjWrDgBksVQQmDdQwpbBvXzTZqeIKWmz1LrqDD4XcSOzlsmlPDEGJoLNhXiBhcA1NjBc7senTmr9ZqB-62hqgzhpa9Z4jbrmPW0cLarKBVr7kE9xEry1_o4-nn3gAPDeJNCZ3ONcY2DgiRT4yGHQsc2GeF_jt-QVfwU_j3ike2tBqWPZj7OdHPnuyXWBXbNoewwPtox0Tg_-I3elIYQaweUKBthxj6nAIqthCN52z63aX-OILRIY0nJMsqGeqLpNUhCJIZAA7DwkcFDoK0qwuRJ1lTRbpVDcaAUslTZtSgKeuKGuAU8NkuI0qk3yidhBmIJRMJ4xlDGymUgI0cKSjiFJwZrKEVlFYMpxLn5ncFMgY8zIE7Z47MXEjJu7EVEXkg2rqMnP80Z6WsuTfZhgH4_EH5X4peu5XeMHt1o3CfAt2_93xEVrqXvcv-WVvcLGHls0bB3PcR5X57EEdgL8zTw_9fH4HmzUBAg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Advanced+performance+testing+of+anti-soiling+coatings+%E2%80%93+Part+I%3A+Sequential+laboratory+test+methodology+covering+the+physics+of+natural+soiling+processes&rft.jtitle=Solar+energy+materials+and+solar+cells&rft.au=Ilse%2C+Klemens&rft.au=Khan%2C+Muhammad+Zahid&rft.au=Voicu%2C+Nicoleta&rft.au=Naumann%2C+Volker&rft.date=2019-11-01&rft.pub=Elsevier+BV&rft.issn=0927-0248&rft.volume=202&rft.spage=1&rft_id=info:doi/10.1016%2Fj.solmat.2019.110048&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0927-0248&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0927-0248&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0927-0248&client=summon |