A low cost MEMS based NDIR system for the monitoring of carbon dioxide in breath analysis at ppm levels

•MEMS based NDIR system for ppm CO2 detection with lock-in amplifier.•Fast 1.3s response time for breath-by-breath analysis.•Portable breath analyser designed for measuring metabolic rate of subjects.•Effect of path length on NDIR system investigated with novel sensor housing.•Silicon on insulator I...

Full description

Saved in:
Bibliographic Details
Published inSensors and actuators. B, Chemical Vol. 236; pp. 954 - 964
Main Authors Vincent, T.A., Gardner, J.W.
Format Journal Article
LanguageEnglish
Published Elsevier B.V 29.11.2016
Subjects
Online AccessGet full text
ISSN0925-4005
1873-3077
DOI10.1016/j.snb.2016.04.016

Cover

Abstract •MEMS based NDIR system for ppm CO2 detection with lock-in amplifier.•Fast 1.3s response time for breath-by-breath analysis.•Portable breath analyser designed for measuring metabolic rate of subjects.•Effect of path length on NDIR system investigated with novel sensor housing.•Silicon on insulator IR emitter used for low power, low cost gas detection. The molecules in our breath can provide a wealth of information about the health and well-being of a person. The level of carbon dioxide (CO2) is not only a sign of life but also when combined with the level of exhaled oxygen provides valuable health information in the form of our metabolic rate. We report upon the development of a MEMS-based non-dispersive infrared CO2 sensor for inclusion in a hand held portable breath analyser. Our novel sensor system comprises a thermopile detector and low power MEMS silicon on insulator (SOI) wideband infrared (IR) emitter. A lock-in amplifier design permits a CO2 concentration of 50ppm to be detected on gas bench rig. Different IR path lengths were studied with gases in dry and humid (25% and 50% RH) in order to design a sensor suitable for detecting CO2 in breath with concentrations in the range of 4–5%. A breath analyser was constructed from acetal and in part 3D printed with a side-stream sampling mechanism and tested on a range of subjects with two data-sets presented here. The performance of the novel MEMS based sensor was validated using a reference commercial breath-by-breath sensor and produced comparable results and gave a response time of 1.3s. Further work involves the detection of other compounds on breath for further metabolic analysis and reducing the overall resolution of our MEMS sensor system from ca. 250ppm to 10ppm.
AbstractList •MEMS based NDIR system for ppm CO2 detection with lock-in amplifier.•Fast 1.3s response time for breath-by-breath analysis.•Portable breath analyser designed for measuring metabolic rate of subjects.•Effect of path length on NDIR system investigated with novel sensor housing.•Silicon on insulator IR emitter used for low power, low cost gas detection. The molecules in our breath can provide a wealth of information about the health and well-being of a person. The level of carbon dioxide (CO2) is not only a sign of life but also when combined with the level of exhaled oxygen provides valuable health information in the form of our metabolic rate. We report upon the development of a MEMS-based non-dispersive infrared CO2 sensor for inclusion in a hand held portable breath analyser. Our novel sensor system comprises a thermopile detector and low power MEMS silicon on insulator (SOI) wideband infrared (IR) emitter. A lock-in amplifier design permits a CO2 concentration of 50ppm to be detected on gas bench rig. Different IR path lengths were studied with gases in dry and humid (25% and 50% RH) in order to design a sensor suitable for detecting CO2 in breath with concentrations in the range of 4–5%. A breath analyser was constructed from acetal and in part 3D printed with a side-stream sampling mechanism and tested on a range of subjects with two data-sets presented here. The performance of the novel MEMS based sensor was validated using a reference commercial breath-by-breath sensor and produced comparable results and gave a response time of 1.3s. Further work involves the detection of other compounds on breath for further metabolic analysis and reducing the overall resolution of our MEMS sensor system from ca. 250ppm to 10ppm.
The molecules in our breath can provide a wealth of information about the health and well-being of a person. The level of carbon dioxide (CO2) is not only a sign of life but also when combined with the level of exhaled oxygen provides valuable health information in the form of our metabolic rate. We report upon the development of a MEMS-based non-dispersive infrared CO2 sensor for inclusion in a hand held portable breath analyser. Our novel sensor system comprises a thermopile detector and low power MEMS silicon on insulator (SOI) wideband infrared (IR) emitter. A lock-in amplifier design permits a CO2 concentration of 50ppm to be detected on gas bench rig. Different IR path lengths were studied with gases in dry and humid (25% and 50% RH) in order to design a sensor suitable for detecting CO2 in breath with concentrations in the range of 4-5%. A breath analyser was constructed from acetal and in part 3D printed with a side-stream sampling mechanism and tested on a range of subjects with two data-sets presented here. The performance of the novel MEMS based sensor was validated using a reference commercial breath-by-breath sensor and produced comparable results and gave a response time of 1.3s. Further work involves the detection of other compounds on breath for further metabolic analysis and reducing the overall resolution of our MEMS sensor system from ca. 250ppm to 10ppm.
Author Vincent, T.A.
Gardner, J.W.
Author_xml – sequence: 1
  givenname: T.A.
  surname: Vincent
  fullname: Vincent, T.A.
– sequence: 2
  givenname: J.W.
  surname: Gardner
  fullname: Gardner, J.W.
  email: J.W.Gardner@warwick.ac.uk
BookMark eNp9kLtu3DAQRYnABrK28wHppnQjhZQokQtXhh-JAT-APGpiRA1tLiRyTdJO9u8jY1OlcHWmuGeKc8QOQgzE2GfBa8FF_2VT5zDUzXLWXNYLPrCV0KqtWq7UAVvxddNVkvPuIzvKecM5l23PV-zxHKb4G2zMBe6u7n7AgJlGuL-8-Q55lwvN4GKC8kQwx-BLTD48QnRgMQ0xwOjjHz8S-ABDIixPgAGnXfYZsMB2O8NErzTlE3bocMr06R-P2a_rq58X36rbh683F-e3lW1VWyrr7FrSukFsZDM0ZBH1wNGKptFE2DnRKauxdzhqJbXrndaKj1IPKNZSufaYne7_blN8fqFczOyzpWnCQPElG6Hbrl-aCLlM1X5qU8w5kTPWFyw-hpLQT0Zw85bWbMyS1rylNVyaBYsp_jO3yc-Ydu86Z3tniUGvnpLJ1lOwNPpEtpgx-nfsvwJolCI
CitedBy_id crossref_primary_10_1016_j_jcis_2017_07_031
crossref_primary_10_3390_s23084143
crossref_primary_10_1186_s11671_023_03779_8
crossref_primary_10_1364_OL_42_001412
crossref_primary_10_1080_15599612_2021_1986612
crossref_primary_10_1016_j_snb_2021_130437
crossref_primary_10_1088_1612_202X_ab7829
crossref_primary_10_1007_s44211_022_00133_3
crossref_primary_10_1063_5_0232201
crossref_primary_10_1088_1612_202X_ac4590
crossref_primary_10_1063_5_0137836
crossref_primary_10_1016_j_microc_2018_08_034
crossref_primary_10_1038_s41467_020_19085_1
crossref_primary_10_1016_j_cej_2023_142660
crossref_primary_10_1109_JSEN_2024_3400828
crossref_primary_10_26583_vestnik_2025_1_2
crossref_primary_10_1016_j_snb_2017_12_032
crossref_primary_10_1016_j_talanta_2024_126974
crossref_primary_10_3390_su15021533
crossref_primary_10_1080_02678292_2020_1839803
crossref_primary_10_1021_acssensors_4c03092
crossref_primary_10_1063_5_0219907
crossref_primary_10_3390_coatings11030302
crossref_primary_10_3390_mi13101717
crossref_primary_10_1109_TBME_2023_3322871
crossref_primary_10_3390_s23146273
crossref_primary_10_1016_j_sna_2021_112953
crossref_primary_10_1002_anie_201906222
crossref_primary_10_1016_j_snb_2023_134178
crossref_primary_10_1016_j_cej_2023_144795
crossref_primary_10_1109_JSSC_2018_2866374
crossref_primary_10_3390_mi15101203
crossref_primary_10_1016_j_infrared_2019_103058
crossref_primary_10_1038_s41378_024_00782_6
crossref_primary_10_1088_1612_202X_ab27b9
crossref_primary_10_1016_j_ceramint_2022_02_023
crossref_primary_10_3390_en16093620
crossref_primary_10_46670_JSST_2020_29_5_303
crossref_primary_10_1021_acssensors_0c01863
crossref_primary_10_3390_s20195461
crossref_primary_10_1007_s10854_024_13149_4
crossref_primary_10_1088_1361_6439_aaeafe
crossref_primary_10_1007_s40042_023_00951_2
crossref_primary_10_1002_advs_202001173
crossref_primary_10_1007_s10854_021_06839_w
crossref_primary_10_1021_acs_chemrev_3c00853
crossref_primary_10_1038_s41598_021_92181_4
crossref_primary_10_1002_adpr_202000141
crossref_primary_10_1002_admt_202302147
crossref_primary_10_1016_j_measurement_2023_112638
crossref_primary_10_1364_OE_422204
crossref_primary_10_3390_s20030653
crossref_primary_10_3390_mi11040434
crossref_primary_10_2139_ssrn_4189358
crossref_primary_10_3390_bios14020090
crossref_primary_10_1002_adsr_202300085
crossref_primary_10_1002_adsr_202400170
crossref_primary_10_1016_j_isci_2023_108293
crossref_primary_10_1088_1612_202X_ab1916
crossref_primary_10_1016_j_infrared_2023_105035
crossref_primary_10_1109_JSEN_2023_3329154
crossref_primary_10_3390_nano12203651
crossref_primary_10_3390_s19092076
crossref_primary_10_3390_s18124345
crossref_primary_10_3390_photonics10020120
crossref_primary_10_1007_s11356_023_29836_4
crossref_primary_10_1149_2162_8777_ad2f6d
crossref_primary_10_35848_1347_4065_ad297a
crossref_primary_10_1016_j_sna_2025_116284
crossref_primary_10_3390_atmos11101024
crossref_primary_10_1109_LED_2020_2973393
crossref_primary_10_1007_s12274_022_4459_3
crossref_primary_10_1016_j_jpowsour_2020_229415
crossref_primary_10_1021_acsomega_3c09769
crossref_primary_10_1002_ange_201906222
crossref_primary_10_1080_00387010_2022_2041672
crossref_primary_10_46670_JSST_2021_30_1_36
crossref_primary_10_1109_JSEN_2021_3130034
crossref_primary_10_1038_s41378_021_00264_z
crossref_primary_10_1109_JSEN_2021_3073675
crossref_primary_10_1109_TIM_2019_2920702
crossref_primary_10_7731_KIFSE_3d1404d5
crossref_primary_10_3390_s22010188
crossref_primary_10_1016_j_snb_2022_131553
crossref_primary_10_2139_ssrn_4167287
crossref_primary_10_3390_atmos12070880
crossref_primary_10_1016_j_snb_2022_133041
crossref_primary_10_1021_acsami_3c04789
crossref_primary_10_1364_OE_541087
crossref_primary_10_1016_j_dcan_2020_05_006
crossref_primary_10_1109_TIM_2022_3188056
crossref_primary_10_1016_j_mee_2018_03_013
crossref_primary_10_1063_1_5001314
crossref_primary_10_1016_j_jspr_2022_101950
crossref_primary_10_1039_D2AN01523D
crossref_primary_10_1016_j_sna_2023_114164
crossref_primary_10_1088_1612_202X_aba7c3
crossref_primary_10_1021_acssensors_4c01220
crossref_primary_10_3390_s22228662
crossref_primary_10_1016_j_snb_2024_135703
crossref_primary_10_1016_j_scitotenv_2020_141172
crossref_primary_10_1016_j_sna_2023_114722
crossref_primary_10_1088_1612_202X_ab464a
crossref_primary_10_1016_j_snb_2023_135230
crossref_primary_10_1016_j_measurement_2024_115445
crossref_primary_10_1088_1757_899X_381_1_012181
crossref_primary_10_1021_acsami_9b18863
crossref_primary_10_1088_1612_202X_ab0a5e
crossref_primary_10_1088_1612_202X_ab3451
crossref_primary_10_3390_chemosensors10120544
crossref_primary_10_1360_SSPMA_2023_0007
crossref_primary_10_1109_JSEN_2017_2682638
crossref_primary_10_1016_j_sna_2023_114318
crossref_primary_10_3390_s22145451
crossref_primary_10_3390_s24134146
crossref_primary_10_1149_2162_8777_ac26d6
Cites_doi 10.3390/s130607079
10.1016/j.jsams.2007.07.010
10.1063/1.4921170
10.1016/j.proeng.2014.11.576
10.1109/JSEN.2006.884440
10.1088/0957-0233/18/7/R01
10.1109/JSEN.2015.2464693
10.1117/12.761539
10.1111/j.1440-1843.2011.02096.x
10.3390/s120607157
10.1177/0115426507022004377
10.1186/1471-2466-13-43
10.1063/1.4809546
10.1093/clinchem/20.8.966
10.1038/srep17451
10.1109/ICSENS.2014.6985155
10.1111/ina.12129
10.1088/0957-0233/24/1/012004
10.1016/j.snb.2012.09.085
10.1146/annurev-anchem-071213-020043
10.1109/JSEN.2009.2035204
10.1016/j.snb.2013.06.006
10.1371/journal.pone.0130770
10.1021/ac902695n
10.1016/j.snb.2013.03.048
10.1016/j.optlaseng.2015.05.007
ContentType Journal Article
Copyright 2016 Elsevier B.V.
Copyright_xml – notice: 2016 Elsevier B.V.
DBID AAYXX
CITATION
7SP
7SR
7TB
7U5
8BQ
8FD
FR3
JG9
L7M
DOI 10.1016/j.snb.2016.04.016
DatabaseName CrossRef
Electronics & Communications Abstracts
Engineered Materials Abstracts
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Engineering Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-3077
EndPage 964
ExternalDocumentID 10_1016_j_snb_2016_04_016
S0925400516304798
GroupedDBID --K
--M
-~X
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARLI
AAXUO
ABFNM
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADECG
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AFKWA
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JJJVA
KOM
M36
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
RIG
RNS
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SPC
SPCBC
SSK
SST
SSZ
T5K
TN5
YK3
~G-
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACNNM
ACRPL
ADMUD
ADNMO
AEIPS
AFJKZ
AFXIZ
AGCQF
AGQPQ
AGRNS
AIIUN
AJQLL
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
FEDTE
FGOYB
HMU
HVGLF
HZ~
R2-
SCB
SCH
SEW
SSH
WUQ
7SP
7SR
7TB
7U5
8BQ
8FD
EFKBS
FR3
JG9
L7M
ID FETCH-LOGICAL-c373t-cfc94e92aa242b2ecaa8b0ac1228eea5f157c8a6fad8748f6f8870d48ba1947f3
IEDL.DBID AIKHN
ISSN 0925-4005
IngestDate Thu Sep 04 23:19:18 EDT 2025
Thu Apr 24 23:00:59 EDT 2025
Tue Jul 01 03:00:27 EDT 2025
Fri Feb 23 02:27:16 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Metabolic rate
Thermopile detector
NDIR
SOI
CO2 ppm detection
Breath analysis
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c373t-cfc94e92aa242b2ecaa8b0ac1228eea5f157c8a6fad8748f6f8870d48ba1947f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0925400516304798
PQID 1835630714
PQPubID 23500
PageCount 11
ParticipantIDs proquest_miscellaneous_1835630714
crossref_citationtrail_10_1016_j_snb_2016_04_016
crossref_primary_10_1016_j_snb_2016_04_016
elsevier_sciencedirect_doi_10_1016_j_snb_2016_04_016
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-11-29
PublicationDateYYYYMMDD 2016-11-29
PublicationDate_xml – month: 11
  year: 2016
  text: 2016-11-29
  day: 29
PublicationDecade 2010
PublicationTitle Sensors and actuators. B, Chemical
PublicationYear 2016
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Collins, Capewell, O’Flaherty, Timpson, Razzaq, Cheater (bib0025) 2015; 10
Haugen, Chan, Li (bib0005) 2007; 22
Lambrecht, Hartwig, Herbst, Wöllenstein, Woellenstein (bib0125) 2008; 6901
Barritault, Brun, Lartigue, Willemin, Ouvrier-Buffet, Pocas (bib0095) 2013; 182
Ali, De Luca, Racz, Tremlett, Wotherspoon, Gardner (bib0115) 2014
Bentley, Cox, Green, Laursen (bib0010) 2008; 11
Frodl, Tille (bib0065) 2006; 6
Gibson, MacGregor (bib0130) 2013; 13
Schulman, Mechanick (bib0020) 2012; 57
T.A. Vincent, A. Wilson, J.G. Hattersley, M.J. Chappell, J.W. Gardner, Design and modelling of a handheld side-stream breath sampling system for metabolic rate analysis, in: 16th Int. Symp., Olfaction Electron, Nose, 2015, p.28.
Xian, Quach, Bridgeman, Tsow, Forzani, Tao (bib0015) 2015; 2
Baschant, Stahl (bib0050) 2004; 1
de Graaf, Wolffenbuttel (bib0120) 2012
Tan, Tang, Yang, Xue, Zhang, Liu (bib0110) 2015; 74
Dubowski (bib0080) 1974; 20
Sklorz, Janßen, Lang (bib0140) 2012; 175
(accessed 17.08.15.).
Hodgkinson, Smith, Ho, Saffell, Tatam (bib0060) 2013; 186
Amann, Miekisch, Schubert, Buszewski, Ligor, Jezierski (bib0055) 2014; 7
NIST Chemistry WebBook, 2015.
Vincent, Wilson, Hattersley, Chappell, Gardner (bib0170) 2014; 87
Xu, Nielsen, Gong, Liu, Jensen (bib0045) 2014; 25
Hok, Pettersson, Kaisdotter Andersson, Haasl, Akerlund, Hök (bib0085) 2010; 10
R. Li, Y. Xiong, Y. Wang, F. Wan, Research on Infrared Breath Alcohol Test Based on Differential Absorption, in: 2009 First Int. Conf. Inf. Sci. Eng., IEEE, 2009, pp. 4086–4089, 10.1109/ICISE.2009.959.
Spannhake, Schulz, Helwig, Muller, Doll (bib0075) 2005
Bikov, Paschalaki, Logan-Sinclair, Horváth, Kharitonov, Barnes (bib0175) 2013; 13
Righettoni, Tricoli, Pratsinis (bib0040) 2010; 82
Graf, Arndt, Sauer, Gerlach (bib0100) 2007; 18
Heimann Sensor (bib0150) 2014
Ali, De Luca, Hopper, Boual, Gardner, Udrea (bib0090) 2015; 15
Pusch, De Luca, Oh, Wuestner, Roschuk, Chen (bib0105) 2015; 5
Graf, Arndt, Sauer, Gerlach (bib0145) 2007; 18
De Luca, Cole, Hopper, Boual, Warner, Robertson (bib0165) 2015; 106
De Luca, Cole, Fasoli, Ali, Udrea, Milne (bib0070) 2013; 113
Kao, Hsu, Chang, Gwo, Yeh (bib0185) 2012; 12
Wallace, Buckley, Pellizzari, Gordon (bib0035) 1996; 104
Pérez Rodrigo (bib0030) 2013; 28
Littleton (bib0135) 2012; 17
Hodgkinson, Tatam (bib0160) 2013; 24
10.1016/j.snb.2016.04.016_bib0155
Bikov (10.1016/j.snb.2016.04.016_bib0175) 2013; 13
Wallace (10.1016/j.snb.2016.04.016_bib0035) 1996; 104
Kao (10.1016/j.snb.2016.04.016_bib0185) 2012; 12
Frodl (10.1016/j.snb.2016.04.016_bib0065) 2006; 6
Hodgkinson (10.1016/j.snb.2016.04.016_bib0060) 2013; 186
Ali (10.1016/j.snb.2016.04.016_bib0115) 2014
Spannhake (10.1016/j.snb.2016.04.016_bib0075) 2005
Pusch (10.1016/j.snb.2016.04.016_bib0105) 2015; 5
10.1016/j.snb.2016.04.016_bib0190
Ali (10.1016/j.snb.2016.04.016_bib0090) 2015; 15
Barritault (10.1016/j.snb.2016.04.016_bib0095) 2013; 182
Vincent (10.1016/j.snb.2016.04.016_bib0170) 2014; 87
Littleton (10.1016/j.snb.2016.04.016_bib0135) 2012; 17
Bentley (10.1016/j.snb.2016.04.016_bib0010) 2008; 11
Xian (10.1016/j.snb.2016.04.016_bib0015) 2015; 2
Gibson (10.1016/j.snb.2016.04.016_bib0130) 2013; 13
Tan (10.1016/j.snb.2016.04.016_bib0110) 2015; 74
Baschant (10.1016/j.snb.2016.04.016_bib0050) 2004; 1
Hok (10.1016/j.snb.2016.04.016_bib0085) 2010; 10
Schulman (10.1016/j.snb.2016.04.016_bib0020) 2012; 57
De Luca (10.1016/j.snb.2016.04.016_bib0070) 2013; 113
10.1016/j.snb.2016.04.016_bib0180
Sklorz (10.1016/j.snb.2016.04.016_bib0140) 2012; 175
Heimann Sensor (10.1016/j.snb.2016.04.016_bib0150) 2014
Lambrecht (10.1016/j.snb.2016.04.016_bib0125) 2008; 6901
Amann (10.1016/j.snb.2016.04.016_bib0055) 2014; 7
Collins (10.1016/j.snb.2016.04.016_bib0025) 2015; 10
de Graaf (10.1016/j.snb.2016.04.016_bib0120) 2012
Haugen (10.1016/j.snb.2016.04.016_bib0005) 2007; 22
Graf (10.1016/j.snb.2016.04.016_bib0145) 2007; 18
Righettoni (10.1016/j.snb.2016.04.016_bib0040) 2010; 82
Graf (10.1016/j.snb.2016.04.016_bib0100) 2007; 18
Hodgkinson (10.1016/j.snb.2016.04.016_bib0160) 2013; 24
Pérez Rodrigo (10.1016/j.snb.2016.04.016_bib0030) 2013; 28
Xu (10.1016/j.snb.2016.04.016_bib0045) 2014; 25
Dubowski (10.1016/j.snb.2016.04.016_bib0080) 1974; 20
De Luca (10.1016/j.snb.2016.04.016_bib0165) 2015; 106
References_xml – volume: 10
  year: 2015
  ident: bib0025
  article-title: Modelling the health impact of an english sugary drinks duty at national and local levels
  publication-title: PLoS One
– start-page: 762
  year: 2005
  end-page: 765
  ident: bib0075
  article-title: Design, development and operational concept of an advanced MEMS IR source for miniaturized gas sensor systems
  publication-title: IEEE Sens.
– volume: 182
  start-page: 565
  year: 2013
  end-page: 570
  ident: bib0095
  article-title: Low power CO2 NDIR sensing using a micro-bolometer detector and a micro-hotplate IR-source
  publication-title: Sens. Actuators B: Chem.
– year: 2014
  ident: bib0150
  article-title: Heimann HMS Series Datasheet
– volume: 6
  start-page: 1697
  year: 2006
  end-page: 1705
  ident: bib0065
  article-title: A high-precision NDIR CO2 gas sensor for automotive applications
  publication-title: IEEE Sens. J.
– volume: 74
  start-page: 103
  year: 2015
  end-page: 108
  ident: bib0110
  article-title: Three-gas detection system with IR optical sensor based on NDIR technology
  publication-title: Opt. Lasers Eng.
– volume: 82
  start-page: 3581
  year: 2010
  end-page: 3587
  ident: bib0040
  article-title: Si:WO(3) Sensors for highly selective detection of acetone for easy diagnosis of diabetes by breath analysis
  publication-title: Anal. Chem.
– volume: 20
  start-page: 966
  year: 1974
  end-page: 972
  ident: bib0080
  article-title: Breath analysis as a technique in clinical chemistry
  publication-title: Clin. Chem.
– volume: 6901
  year: 2008
  ident: bib0125
  article-title: Hollow fibers for compact infrared gas sensors
  publication-title: Proc. SPIE
– volume: 15
  start-page: 6775
  year: 2015
  end-page: 6782
  ident: bib0090
  article-title: A low-power, low-cost infra-red emitter in CMOS technology
  publication-title: IEEE Sens. J.
– reference: (accessed 17.08.15.).
– volume: 1
  start-page: 142
  year: 2004
  end-page: 145
  ident: bib0050
  article-title: Temperature resistant IR-gas sensor for CO
  publication-title: Proc. IEEE Sens.
– volume: 11
  start-page: 407
  year: 2008
  end-page: 416
  ident: bib0010
  article-title: Maximising performance in triathlon: applied physiological and nutritional aspects of elite and non-elite competitions
  publication-title: J. Sci. Med. Sport
– volume: 18
  start-page: R59
  year: 2007
  end-page: R75
  ident: bib0100
  article-title: Review of micromachined thermopiles for infrared detection
  publication-title: Meas. Sci. Technol.
– volume: 106
  year: 2015
  ident: bib0165
  article-title: Enhanced spectroscopic gas sensors using in-situ grown carbon nanotubes
  publication-title: Appl. Phys. Lett.
– volume: 13
  start-page: 43
  year: 2013
  ident: bib0175
  article-title: Standardised exhaled breath collection for the measurement of exhaled volatile organic compounds by proton transfer reaction mass spectrometry
  publication-title: BMC Pulm. Med.
– volume: 7
  start-page: 455
  year: 2014
  end-page: 482
  ident: bib0055
  article-title: Analysis of exhaled breath for disease detection
  publication-title: Annu. Rev. Anal. Chem.
– volume: 5
  start-page: 17451
  year: 2015
  ident: bib0105
  article-title: A highly efficient CMOS nanoplasmonic crystal enhanced slow-wave thermal emitter improves infrared gas-sensing devices
  publication-title: Sci. Rep.
– start-page: 934
  year: 2014
  end-page: 937
  ident: bib0115
  article-title: Low power NDIR CO2 sensor based on CMOS IR emitter for boiler applications
  publication-title: IEEE Sensors 2014 Proc.
– volume: 18
  start-page: R59
  year: 2007
  end-page: R75
  ident: bib0145
  article-title: Review of micromachined thermopiles for infrared detection
  publication-title: Meas. Sci. Technol.
– volume: 104
  start-page: 861
  year: 1996
  end-page: 869
  ident: bib0035
  article-title: Breath measurements as volatile organic compound biomarkers
  publication-title: Environ. Health Perspect.
– volume: 186
  start-page: 580
  year: 2013
  end-page: 588
  ident: bib0060
  article-title: Non-dispersive infra-red (NDIR) measurement of carbon dioxide at 4.2 (m in a compact and optically efficient sensor
  publication-title: Sens. Actuators B: Chem.
– volume: 10
  start-page: 10
  year: 2010
  end-page: 15
  ident: bib0085
  article-title: Breath analyzer for alcolocks and screening devices
  publication-title: IEEE Sens. J.
– reference: T.A. Vincent, A. Wilson, J.G. Hattersley, M.J. Chappell, J.W. Gardner, Design and modelling of a handheld side-stream breath sampling system for metabolic rate analysis, in: 16th Int. Symp., Olfaction Electron, Nose, 2015, p.28.
– volume: 28
  start-page: 21
  year: 2013
  end-page: 31
  ident: bib0030
  article-title: Current mapping of obesity
  publication-title: Nutr. Hosp.
– reference: NIST Chemistry WebBook, 2015.
– volume: 87
  start-page: 668
  year: 2014
  end-page: 671
  ident: bib0170
  article-title: Design and modelling of a portable Breath analyser for metabolic rate measurement
  publication-title: Procedia Eng.
– volume: 17
  start-page: 43
  year: 2012
  end-page: 49
  ident: bib0135
  article-title: Impact of obesity on respiratory function
  publication-title: Respirology
– volume: 175
  start-page: 246
  year: 2012
  end-page: 254
  ident: bib0140
  article-title: Detection limit improvement for NDIR ethylene gas detectors using passive approaches
  publication-title: Sens. Actuators B: Chem.
– reference: R. Li, Y. Xiong, Y. Wang, F. Wan, Research on Infrared Breath Alcohol Test Based on Differential Absorption, in: 2009 First Int. Conf. Inf. Sci. Eng., IEEE, 2009, pp. 4086–4089, 10.1109/ICISE.2009.959.
– volume: 12
  start-page: 7157
  year: 2012
  end-page: 7158
  ident: bib0185
  article-title: A sub-ppm acetone gas sensor for diabetes detection using 10 nm thick ultrathin InN FETs
  publication-title: Sensors
– volume: 2
  start-page: 4
  year: 2015
  end-page: 8
  ident: bib0015
  article-title: Personalized indirect calorimeter for energy expenditure (EE) measurement
  publication-title: Glob. J. Obesity Diabetes Metab. Syndr.
– start-page: 1745
  year: 2012
  end-page: 1749
  ident: bib0120
  article-title: Lock-in amplifier techniques for low-frequency modulated sensor applications
  publication-title: Instrum. Meas. Technol. Conf.
– volume: 13
  start-page: 7079
  year: 2013
  end-page: 7103
  ident: bib0130
  article-title: A novel solid state non-dispersive infrared CO2 gas sensor compatible with wireless and portable deployment
  publication-title: Sensors
– volume: 24
  year: 2013
  ident: bib0160
  article-title: Optical gas sensing: a review
  publication-title: Meas. Sci. Technol.
– volume: 113
  year: 2013
  ident: bib0070
  article-title: Enhanced infra-red emission from sub-millimeter microelectromechanical systems micro hotplates via inkjet deposited carbon nanoparticles and fullerenes
  publication-title: J. Appl. Phys.
– volume: 57
  start-page: 977
  year: 2012
  end-page: 978
  ident: bib0020
  article-title: Metabolic and nutrition support in the chronic critical illness syndrome
  publication-title: Respir. Care
– volume: 25
  start-page: 188
  year: 2014
  end-page: 197
  ident: bib0045
  article-title: Measuring the exhaled breath of a manikin and human subjects
  publication-title: Indoor Air
– volume: 22
  start-page: 377
  year: 2007
  end-page: 388
  ident: bib0005
  article-title: Indirect calorimetry: a practical guide for clinicians
  publication-title: Nutr. Clin. Pract.
– volume: 104
  start-page: 861
  year: 1996
  ident: 10.1016/j.snb.2016.04.016_bib0035
  article-title: Breath measurements as volatile organic compound biomarkers
  publication-title: Environ. Health Perspect.
– ident: 10.1016/j.snb.2016.04.016_bib0190
– volume: 57
  start-page: 977
  issue: 958–978
  year: 2012
  ident: 10.1016/j.snb.2016.04.016_bib0020
  article-title: Metabolic and nutrition support in the chronic critical illness syndrome
  publication-title: Respir. Care
– volume: 13
  start-page: 7079
  year: 2013
  ident: 10.1016/j.snb.2016.04.016_bib0130
  article-title: A novel solid state non-dispersive infrared CO2 gas sensor compatible with wireless and portable deployment
  publication-title: Sensors
  doi: 10.3390/s130607079
– volume: 11
  start-page: 407
  year: 2008
  ident: 10.1016/j.snb.2016.04.016_bib0010
  article-title: Maximising performance in triathlon: applied physiological and nutritional aspects of elite and non-elite competitions
  publication-title: J. Sci. Med. Sport
  doi: 10.1016/j.jsams.2007.07.010
– volume: 106
  year: 2015
  ident: 10.1016/j.snb.2016.04.016_bib0165
  article-title: Enhanced spectroscopic gas sensors using in-situ grown carbon nanotubes
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4921170
– volume: 87
  start-page: 668
  year: 2014
  ident: 10.1016/j.snb.2016.04.016_bib0170
  article-title: Design and modelling of a portable Breath analyser for metabolic rate measurement
  publication-title: Procedia Eng.
  doi: 10.1016/j.proeng.2014.11.576
– volume: 6
  start-page: 1697
  year: 2006
  ident: 10.1016/j.snb.2016.04.016_bib0065
  article-title: A high-precision NDIR CO2 gas sensor for automotive applications
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2006.884440
– year: 2014
  ident: 10.1016/j.snb.2016.04.016_bib0150
– volume: 18
  start-page: R59
  year: 2007
  ident: 10.1016/j.snb.2016.04.016_bib0100
  article-title: Review of micromachined thermopiles for infrared detection
  publication-title: Meas. Sci. Technol.
  doi: 10.1088/0957-0233/18/7/R01
– volume: 15
  start-page: 6775
  year: 2015
  ident: 10.1016/j.snb.2016.04.016_bib0090
  article-title: A low-power, low-cost infra-red emitter in CMOS technology
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2015.2464693
– volume: 6901
  year: 2008
  ident: 10.1016/j.snb.2016.04.016_bib0125
  article-title: Hollow fibers for compact infrared gas sensors
  publication-title: Proc. SPIE
  doi: 10.1117/12.761539
– ident: 10.1016/j.snb.2016.04.016_bib0180
– volume: 17
  start-page: 43
  year: 2012
  ident: 10.1016/j.snb.2016.04.016_bib0135
  article-title: Impact of obesity on respiratory function
  publication-title: Respirology
  doi: 10.1111/j.1440-1843.2011.02096.x
– volume: 12
  start-page: 7157
  year: 2012
  ident: 10.1016/j.snb.2016.04.016_bib0185
  article-title: A sub-ppm acetone gas sensor for diabetes detection using 10 nm thick ultrathin InN FETs
  publication-title: Sensors
  doi: 10.3390/s120607157
– volume: 22
  start-page: 377
  year: 2007
  ident: 10.1016/j.snb.2016.04.016_bib0005
  article-title: Indirect calorimetry: a practical guide for clinicians
  publication-title: Nutr. Clin. Pract.
  doi: 10.1177/0115426507022004377
– volume: 13
  start-page: 43
  year: 2013
  ident: 10.1016/j.snb.2016.04.016_bib0175
  article-title: Standardised exhaled breath collection for the measurement of exhaled volatile organic compounds by proton transfer reaction mass spectrometry
  publication-title: BMC Pulm. Med.
  doi: 10.1186/1471-2466-13-43
– volume: 113
  year: 2013
  ident: 10.1016/j.snb.2016.04.016_bib0070
  article-title: Enhanced infra-red emission from sub-millimeter microelectromechanical systems micro hotplates via inkjet deposited carbon nanoparticles and fullerenes
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4809546
– volume: 20
  start-page: 966
  year: 1974
  ident: 10.1016/j.snb.2016.04.016_bib0080
  article-title: Breath analysis as a technique in clinical chemistry
  publication-title: Clin. Chem.
  doi: 10.1093/clinchem/20.8.966
– volume: 5
  start-page: 17451
  year: 2015
  ident: 10.1016/j.snb.2016.04.016_bib0105
  article-title: A highly efficient CMOS nanoplasmonic crystal enhanced slow-wave thermal emitter improves infrared gas-sensing devices
  publication-title: Sci. Rep.
  doi: 10.1038/srep17451
– start-page: 934
  year: 2014
  ident: 10.1016/j.snb.2016.04.016_bib0115
  article-title: Low power NDIR CO2 sensor based on CMOS IR emitter for boiler applications
  publication-title: IEEE Sensors 2014 Proc.
  doi: 10.1109/ICSENS.2014.6985155
– volume: 25
  start-page: 188
  year: 2014
  ident: 10.1016/j.snb.2016.04.016_bib0045
  article-title: Measuring the exhaled breath of a manikin and human subjects
  publication-title: Indoor Air
  doi: 10.1111/ina.12129
– volume: 18
  start-page: R59
  year: 2007
  ident: 10.1016/j.snb.2016.04.016_bib0145
  article-title: Review of micromachined thermopiles for infrared detection
  publication-title: Meas. Sci. Technol.
  doi: 10.1088/0957-0233/18/7/R01
– volume: 24
  year: 2013
  ident: 10.1016/j.snb.2016.04.016_bib0160
  article-title: Optical gas sensing: a review
  publication-title: Meas. Sci. Technol.
  doi: 10.1088/0957-0233/24/1/012004
– volume: 175
  start-page: 246
  year: 2012
  ident: 10.1016/j.snb.2016.04.016_bib0140
  article-title: Detection limit improvement for NDIR ethylene gas detectors using passive approaches
  publication-title: Sens. Actuators B: Chem.
  doi: 10.1016/j.snb.2012.09.085
– volume: 7
  start-page: 455
  year: 2014
  ident: 10.1016/j.snb.2016.04.016_bib0055
  article-title: Analysis of exhaled breath for disease detection
  publication-title: Annu. Rev. Anal. Chem.
  doi: 10.1146/annurev-anchem-071213-020043
– start-page: 762
  year: 2005
  ident: 10.1016/j.snb.2016.04.016_bib0075
  article-title: Design, development and operational concept of an advanced MEMS IR source for miniaturized gas sensor systems
  publication-title: IEEE Sens.
– volume: 28
  start-page: 21
  issue: Suppl. 5
  year: 2013
  ident: 10.1016/j.snb.2016.04.016_bib0030
  article-title: Current mapping of obesity
  publication-title: Nutr. Hosp.
– volume: 10
  start-page: 10
  year: 2010
  ident: 10.1016/j.snb.2016.04.016_bib0085
  article-title: Breath analyzer for alcolocks and screening devices
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2009.2035204
– volume: 186
  start-page: 580
  year: 2013
  ident: 10.1016/j.snb.2016.04.016_bib0060
  article-title: Non-dispersive infra-red (NDIR) measurement of carbon dioxide at 4.2 (m in a compact and optically efficient sensor
  publication-title: Sens. Actuators B: Chem.
  doi: 10.1016/j.snb.2013.06.006
– start-page: 1745
  year: 2012
  ident: 10.1016/j.snb.2016.04.016_bib0120
  article-title: Lock-in amplifier techniques for low-frequency modulated sensor applications
  publication-title: Instrum. Meas. Technol. Conf.
– ident: 10.1016/j.snb.2016.04.016_bib0155
– volume: 10
  year: 2015
  ident: 10.1016/j.snb.2016.04.016_bib0025
  article-title: Modelling the health impact of an english sugary drinks duty at national and local levels
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0130770
– volume: 82
  start-page: 3581
  year: 2010
  ident: 10.1016/j.snb.2016.04.016_bib0040
  article-title: Si:WO(3) Sensors for highly selective detection of acetone for easy diagnosis of diabetes by breath analysis
  publication-title: Anal. Chem.
  doi: 10.1021/ac902695n
– volume: 182
  start-page: 565
  year: 2013
  ident: 10.1016/j.snb.2016.04.016_bib0095
  article-title: Low power CO2 NDIR sensing using a micro-bolometer detector and a micro-hotplate IR-source
  publication-title: Sens. Actuators B: Chem.
  doi: 10.1016/j.snb.2013.03.048
– volume: 1
  start-page: 142
  issue: 2004
  year: 2004
  ident: 10.1016/j.snb.2016.04.016_bib0050
  article-title: Temperature resistant IR-gas sensor for CO2 and H2O
  publication-title: Proc. IEEE Sens.
– volume: 2
  start-page: 4
  year: 2015
  ident: 10.1016/j.snb.2016.04.016_bib0015
  article-title: Personalized indirect calorimeter for energy expenditure (EE) measurement
  publication-title: Glob. J. Obesity Diabetes Metab. Syndr.
– volume: 74
  start-page: 103
  year: 2015
  ident: 10.1016/j.snb.2016.04.016_bib0110
  article-title: Three-gas detection system with IR optical sensor based on NDIR technology
  publication-title: Opt. Lasers Eng.
  doi: 10.1016/j.optlaseng.2015.05.007
SSID ssj0004360
Score 2.55584
Snippet •MEMS based NDIR system for ppm CO2 detection with lock-in amplifier.•Fast 1.3s response time for breath-by-breath analysis.•Portable breath analyser designed...
The molecules in our breath can provide a wealth of information about the health and well-being of a person. The level of carbon dioxide (CO2) is not only a...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 954
SubjectTerms Breath analysis
Carbon dioxide
CO2 ppm detection
Design analysis
Detectors
Health
Inclusions
Metabolic rate
Microelectromechanical systems
NDIR
Sampling
Sensors
SOI
Thermopile detector
Title A low cost MEMS based NDIR system for the monitoring of carbon dioxide in breath analysis at ppm levels
URI https://dx.doi.org/10.1016/j.snb.2016.04.016
https://www.proquest.com/docview/1835630714
Volume 236
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBbJ5tIeSvqiaZswhZ4K7vqh1eO45MGmZffQNJCbGMlS67Cxl6xDc8pvr8Zrpw9KDj0ZGY0xI2nmEzPzDWPvJUptC8kTjHCcSnJEYoMViYuXCa-VxbTrdThfiNk5_3Qxudhih0MtDKVV9rZ_Y9M7a92_GffaHK-qanyW6ni5oU0lKHSk1TbbyQstJiO2Mz39PFv8Ko8sumJhmp-QwBDc7NK81rWlBC_REZ5S1_N_u6e_DHXnfU522ZMeNsJ082dP2Zavn7HHv5EJPmffprBsfoBr1i3Mj-dnQA6qhMXR6RfY8DVDBKgQAR9cdQeZxKAJ4PDaNjWUVXNblR6qGiwhye-APWEJYAur1RUsKcFo_YKdnxx_PZwlfRuFxBWyaBMXnOZe54jRHdvcO0RlU3RZnivvcRKyiXQKRcBSSa6CCNHwpCWPC5VpLkPxko3qpvavGOTBBa91kFojl06o4G1pVea5wghEsj2WDtozrucYp1YXSzMkk12aqHBDCjcpN_Gxxz7ci6w2BBsPTebDkpg_domJDuAhsXfD8pl4eigkgrVvbtYmGjQiSJMZf_1_n37DHtGIqhNz_ZaN2usbvx9hSmsP2PbHu-yg34w_ATSO5rI
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELZ4HKCHqi2toA86lXqqFDYPb2wfEQUtj91DAYmbNXZsSLUkKzaoPfW315NNaEGIA6dIjh1FY_ubz_LMN4x9FSiUyQSPMNBxSsnJI-NNHtlwmHBKGozbWofjST4650cXw4slttfnwlBYZYf9C0xv0bprGXTWHMzKcnAaq3C4oUWV09WRkstslQ8zQXF9O3_-xXnwrE0Vpt4Rde-vNtsgr3llKLwrb-VOqeb5487pAUy3vufgFXvZkUbYXfzXa7bkqjfsxX9Sghvschem9S-w9byB8f74FMg9FTD5fvgDFmrNEOgpBLoH1-02pmFQe7B4Y-oKirL-XRYOygoM8cgrwE6uBLCB2ewaphReNH_Lzg_2z_ZGUVdEIbKZyJrIequ4UylicMYmdRZRmhhtkqbSORz6ZCisxNxjIQWXPvcBduKCh2lKFBc-e8dWqrpymwxSb71TygulkAubS-9MYWTiuMRAQ5ItFvfW07ZTGKdCF1Pdh5L91MHgmgyuY67DY4t9uxsyW8hrPNWZ91Oi760RHeD_qWFf-unTYe_QhQhWrr6d6wBnJI8mEv7-eZ_-zNZGZ-MTfXI4Of7A1ukN5Smm6iNbaW5u3adAWBqz3S7IvyYS530
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+low+cost+MEMS+based+NDIR+system+for+the+monitoring+of+carbon+dioxide+in+breath+analysis+at+ppm+levels&rft.jtitle=Sensors+and+actuators.+B%2C+Chemical&rft.au=Vincent%2C+T.A.&rft.au=Gardner%2C+J.W.&rft.date=2016-11-29&rft.pub=Elsevier+B.V&rft.issn=0925-4005&rft.eissn=1873-3077&rft.volume=236&rft.spage=954&rft.epage=964&rft_id=info:doi/10.1016%2Fj.snb.2016.04.016&rft.externalDocID=S0925400516304798
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-4005&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-4005&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-4005&client=summon