Understanding the CO capture reaction through electronic structure analysis of four-membered-ring group-13/N- and B/group-15-based Lewis acid-base pairs
Incomplete combustion yields a significant byproduct, known for its high toxicity to humans: gas phase carbon monoxide (CO). This study utilized several advanced theoretical methods to examine the factors contributing to the activation energy involved in CO capture by a frustrated Lewis pair (FLP) a...
Saved in:
Published in | RSC advances Vol. 14; no. 27; pp. 19446 - 19458 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
England
Royal Society of Chemistry
12.06.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Incomplete combustion yields a significant byproduct, known for its high toxicity to humans: gas phase carbon monoxide (CO). This study utilized several advanced theoretical methods to examine the factors contributing to the activation energy involved in CO capture by a frustrated Lewis pair (FLP) and to forecast the potential success of the CO capture reaction. The current theoretical findings indicate that among the four-membered-ring Group-13/N-FLP and B/Group-15-FLP molecules, only the B/N-based FLP-type molecule effectively captures CO, considering both thermodynamics and kinetics. According to the results obtained through energy decomposition analysis-natural orbitals for chemical valence (EDA-NOCV), it can be concluded that the donor-acceptor (singlet-singlet) model, rather than the electron-sharing (triplet-triplet) model, effectively characterizes the electronic structures in the CO trapping reaction involving four-membered-ring G13/G15-FLPs. Theoretical findings, derived from EDA-NOCV and frontier molecular orbital theory, demonstrate that the CO capture reaction by G13/G15-FLP involves two distinct bonding interactions. The first interaction is characterized by FLP-to-CO forward bonding, with the lone pair of G15 (G13/G15-FLP) donating to the empty p-π* orbital of carbon (CO), which predominates. The second interaction involves CO-to-FLP backward bonding, where the empty σ* orbital of G13 (G13/G15-FLP) accepts the lone pair of carbon (CO), albeit to a lesser extent. In summary, our theoretical findings indicate that the G13-C and G15-C bonds in the G15/G15-TS species with a four-membered ring can be classified as two dative single bonds. The importance of the interaction between Lewis bases and CO surpasses that of the interaction between Lewis acids and CO. Theoretical evidences in this study demonstrate a linear connection between the G13-G15 bond length within the four-membered-ring G13/G15-FLP and the activation barrier linked to CO capture. The activation strain model analysis in this study suggests that the activation energy required for bond formation primarily depends on the geometric deformation energy of G13/G15-FLP in capturing CO. Our DFT investigation shows that Hammond's postulate is obeyed by the CO catching reaction of the four-membered-ring G13/N-FLP, meaning that an earlier transition state is associated with a lower activation barrier, but not with the CO catching reaction of the four-membered-ring B/G15-FLP.
The theoretical evidences reveal that in the four-membered-ring Group-13/N-based and B/Group-15-based Frustrated Lewis Pair (FLP)-assisted molecules, only the B/N-based FLP can undergo the CO catching reaction both kinetically and thermodynamically. |
---|---|
AbstractList | Incomplete combustion yields a significant byproduct, known for its high toxicity to humans: gas phase carbon monoxide (CO). This study utilized several advanced theoretical methods to examine the factors contributing to the activation energy involved in CO capture by a frustrated Lewis pair (FLP) and to forecast the potential success of the CO capture reaction. The current theoretical findings indicate that among the four-membered-ring Group-13/N-FLP and B/Group-15-FLP molecules, only the B/N-based FLP-type molecule effectively captures CO, considering both thermodynamics and kinetics. According to the results obtained through energy decomposition analysis-natural orbitals for chemical valence (EDA-NOCV), it can be concluded that the donor–acceptor (singlet–singlet) model, rather than the electron-sharing (triplet–triplet) model, effectively characterizes the electronic structures in the CO trapping reaction involving four-membered-ring G13/G15-FLPs. Theoretical findings, derived from EDA-NOCV and frontier molecular orbital theory, demonstrate that the CO capture reaction by G13/G15-FLP involves two distinct bonding interactions. The first interaction is characterized by FLP-to-CO forward bonding, with the lone pair of G15 (G13/G15-FLP) donating to the empty p–π* orbital of carbon (CO), which predominates. The second interaction involves CO-to-FLP backward bonding, where the empty σ* orbital of G13 (G13/G15-FLP) accepts the lone pair of carbon (CO), albeit to a lesser extent. In summary, our theoretical findings indicate that the G13–C and G15–C bonds in the G15/G15-TS species with a four-membered ring can be classified as two dative single bonds. The importance of the interaction between Lewis bases and CO surpasses that of the interaction between Lewis acids and CO. Theoretical evidences in this study demonstrate a linear connection between the G13–G15 bond length within the four-membered-ring G13/G15-FLP and the activation barrier linked to CO capture. The activation strain model analysis in this study suggests that the activation energy required for bond formation primarily depends on the geometric deformation energy of G13/G15-FLP in capturing CO. Our DFT investigation shows that Hammond's postulate is obeyed by the CO catching reaction of the four-membered-ring G13/N-FLP, meaning that an earlier transition state is associated with a lower activation barrier, but not with the CO catching reaction of the four-membered-ring B/G15-FLP. Incomplete combustion yields a significant byproduct, known for its high toxicity to humans: gas phase carbon monoxide (CO). This study utilized several advanced theoretical methods to examine the factors contributing to the activation energy involved in CO capture by a frustrated Lewis pair (FLP) and to forecast the potential success of the CO capture reaction. The current theoretical findings indicate that among the four-membered-ring Group-13/N-FLP and B/Group-15-FLP molecules, only the B/N-based FLP-type molecule effectively captures CO, considering both thermodynamics and kinetics. According to the results obtained through energy decomposition analysis-natural orbitals for chemical valence (EDA-NOCV), it can be concluded that the donor-acceptor (singlet-singlet) model, rather than the electron-sharing (triplet-triplet) model, effectively characterizes the electronic structures in the CO trapping reaction involving four-membered-ring G13/G15-FLPs. Theoretical findings, derived from EDA-NOCV and frontier molecular orbital theory, demonstrate that the CO capture reaction by G13/G15-FLP involves two distinct bonding interactions. The first interaction is characterized by FLP-to-CO forward bonding, with the lone pair of G15 (G13/G15-FLP) donating to the empty p-π* orbital of carbon (CO), which predominates. The second interaction involves CO-to-FLP backward bonding, where the empty σ* orbital of G13 (G13/G15-FLP) accepts the lone pair of carbon (CO), albeit to a lesser extent. In summary, our theoretical findings indicate that the G13-C and G15-C bonds in the G15/G15-TS species with a four-membered ring can be classified as two dative single bonds. The importance of the interaction between Lewis bases and CO surpasses that of the interaction between Lewis acids and CO. Theoretical evidences in this study demonstrate a linear connection between the G13-G15 bond length within the four-membered-ring G13/G15-FLP and the activation barrier linked to CO capture. The activation strain model analysis in this study suggests that the activation energy required for bond formation primarily depends on the geometric deformation energy of G13/G15-FLP in capturing CO. Our DFT investigation shows that Hammond's postulate is obeyed by the CO catching reaction of the four-membered-ring G13/N-FLP, meaning that an earlier transition state is associated with a lower activation barrier, but not with the CO catching reaction of the four-membered-ring B/G15-FLP. The theoretical evidences reveal that in the four-membered-ring Group-13/N-based and B/Group-15-based Frustrated Lewis Pair (FLP)-assisted molecules, only the B/N-based FLP can undergo the CO catching reaction both kinetically and thermodynamically. Incomplete combustion yields a significant byproduct, known for its high toxicity to humans: gas phase carbon monoxide (CO). This study utilized several advanced theoretical methods to examine the factors contributing to the activation energy involved in CO capture by a frustrated Lewis pair (FLP) and to forecast the potential success of the CO capture reaction. The current theoretical findings indicate that among the four-membered-ring Group-13/N-FLP and B/Group-15-FLP molecules, only the B/N-based FLP-type molecule effectively captures CO, considering both thermodynamics and kinetics. According to the results obtained through energy decomposition analysis-natural orbitals for chemical valence (EDA-NOCV), it can be concluded that the donor-acceptor (singlet-singlet) model, rather than the electron-sharing (triplet-triplet) model, effectively characterizes the electronic structures in the CO trapping reaction involving four-membered-ring G13/G15-FLPs. Theoretical findings, derived from EDA-NOCV and frontier molecular orbital theory, demonstrate that the CO capture reaction by G13/G15-FLP involves two distinct bonding interactions. The first interaction is characterized by FLP-to-CO forward bonding, with the lone pair of G15 (G13/G15-FLP) donating to the empty p-π* orbital of carbon (CO), which predominates. The second interaction involves CO-to-FLP backward bonding, where the empty σ* orbital of G13 (G13/G15-FLP) accepts the lone pair of carbon (CO), albeit to a lesser extent. In summary, our theoretical findings indicate that the G13-C and G15-C bonds in the G15/G15-TS species with a four-membered ring can be classified as two dative single bonds. The importance of the interaction between Lewis bases and CO surpasses that of the interaction between Lewis acids and CO. Theoretical evidences in this study demonstrate a linear connection between the G13-G15 bond length within the four-membered-ring G13/G15-FLP and the activation barrier linked to CO capture. The activation strain model analysis in this study suggests that the activation energy required for bond formation primarily depends on the geometric deformation energy of G13/G15-FLP in capturing CO. Our DFT investigation shows that Hammond's postulate is obeyed by the CO catching reaction of the four-membered-ring G13/N-FLP, meaning that an earlier transition state is associated with a lower activation barrier, but not with the CO catching reaction of the four-membered-ring B/G15-FLP.Incomplete combustion yields a significant byproduct, known for its high toxicity to humans: gas phase carbon monoxide (CO). This study utilized several advanced theoretical methods to examine the factors contributing to the activation energy involved in CO capture by a frustrated Lewis pair (FLP) and to forecast the potential success of the CO capture reaction. The current theoretical findings indicate that among the four-membered-ring Group-13/N-FLP and B/Group-15-FLP molecules, only the B/N-based FLP-type molecule effectively captures CO, considering both thermodynamics and kinetics. According to the results obtained through energy decomposition analysis-natural orbitals for chemical valence (EDA-NOCV), it can be concluded that the donor-acceptor (singlet-singlet) model, rather than the electron-sharing (triplet-triplet) model, effectively characterizes the electronic structures in the CO trapping reaction involving four-membered-ring G13/G15-FLPs. Theoretical findings, derived from EDA-NOCV and frontier molecular orbital theory, demonstrate that the CO capture reaction by G13/G15-FLP involves two distinct bonding interactions. The first interaction is characterized by FLP-to-CO forward bonding, with the lone pair of G15 (G13/G15-FLP) donating to the empty p-π* orbital of carbon (CO), which predominates. The second interaction involves CO-to-FLP backward bonding, where the empty σ* orbital of G13 (G13/G15-FLP) accepts the lone pair of carbon (CO), albeit to a lesser extent. In summary, our theoretical findings indicate that the G13-C and G15-C bonds in the G15/G15-TS species with a four-membered ring can be classified as two dative single bonds. The importance of the interaction between Lewis bases and CO surpasses that of the interaction between Lewis acids and CO. Theoretical evidences in this study demonstrate a linear connection between the G13-G15 bond length within the four-membered-ring G13/G15-FLP and the activation barrier linked to CO capture. The activation strain model analysis in this study suggests that the activation energy required for bond formation primarily depends on the geometric deformation energy of G13/G15-FLP in capturing CO. Our DFT investigation shows that Hammond's postulate is obeyed by the CO catching reaction of the four-membered-ring G13/N-FLP, meaning that an earlier transition state is associated with a lower activation barrier, but not with the CO catching reaction of the four-membered-ring B/G15-FLP. |
Author | Su, Ming-Der Zhang, Zheng-Feng |
AuthorAffiliation | National Chiayi University Kaohsiung Medical University Department of Applied Chemistry Department of Medicinal and Applied Chemistry |
AuthorAffiliation_xml | – sequence: 0 name: National Chiayi University – sequence: 0 name: Kaohsiung Medical University – sequence: 0 name: Department of Medicinal and Applied Chemistry – sequence: 0 name: Department of Applied Chemistry |
Author_xml | – sequence: 1 givenname: Zheng-Feng surname: Zhang fullname: Zhang, Zheng-Feng – sequence: 2 givenname: Ming-Der surname: Su fullname: Su, Ming-Der |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38919374$$D View this record in MEDLINE/PubMed |
BookMark | eNptkk9r3DAQxUVJadI0l95bBLmUgLuSJUv2Mdm2aWBpoDRnI0ujjYJtuZJMyTfpx632T5ISosNIDL_3YN7oLToY_QgIvafkMyWsWRgeFGGVqLtX6KgkXBQlEc3Bf-9DdBLjHclHVLQU9A06ZHVDGyb5Efp7MxoIManRuHGN0y3g5TXWakpzABxA6eT8mPvBz-tbDD3oFPzoNI4pzHpLqVH199FF7C22fg7FAEMHAUwRNp7rLJ0KyhY_iowafLHYd6qiUxEMXsGfLFbamW0DT8qF-A69tqqPcLK_j9HNt6-_lt-L1fXl1fJ8VWgmWcrVGCK4sA1ngtuKG5lLZwRVzHLVWU46qCSVFISuhBVgpYa6EbKUttacHaNPO98p-N8zxNQOLmroezWCn2PLiCzLnFVVZvT0GXqXp83DbylaN01ON1Mf99TcDWDaKbhBhfv2IfMMkB2gg48xgG21S2oTcwrK9S0l7Waz7Rf-83y72YssOXsmeXB9Ef6wg0PUj9zTN2H_ADp_rTY |
CitedBy_id | crossref_primary_10_1021_acs_inorgchem_4c04773 |
Cites_doi | 10.1126/science.aaf7229 10.1021/cr900034e 10.1039/b926828f 10.1021/ct0499478 10.1007/s00894-006-0149-4 10.1039/D2CP05135D 10.1021/ar50095a001 10.1039/C4CP00346B 10.1002/jcc.10255 10.1246/bcsj.20150131 10.1007/BF02401406 10.1039/C7DT02081C 10.1021/ct800246v 10.1016/j.trechm.2019.01.006 10.1016/0091-7435(79)90008-2 10.1021/acs.inorgchem.2c00259 10.1021/acs.jpclett.6b00780 10.1088/0022-3700/19/18/011 10.1021/ja800009z 10.1002/9780470125922.ch1 10.1002/jcc.1056 10.1021/ja01607a027 10.1002/0471718769 10.1351/PAC-CON-12-04-07 10.1002/anie.200702908 10.1002/(SICI)1096-987X(19990115)20:1<114::AID-JCC12>3.0.CO;2-L 10.1039/b801115j 10.1021/jacs.0c03343 10.1039/C9DT01489F 10.1021/acs.organomet.1c00599 10.1039/b515623h 10.1016/j.jns.2007.06.037 10.1002/anie.201409800 10.1021/acs.inorgchem.1c01809 10.1021/ja1064153 10.1039/b802575b 10.1021/acs.organomet.2c00453 10.1021/ja0734086 10.1039/C4CS00055B 10.1002/tcr.201700010 10.1039/D1CC05673E 10.1021/jacs.5b06794 10.1148/radiology.162.3.3809495 10.1021/ed058p423 10.1088/0031-8949/34/5/007 10.1063/1.1676210 10.1016/j.ajem.2015.05.002 10.1021/ar500375j 10.1039/D2SC05769G 10.1002/anie.200901636 10.4324/9780203009925 10.1126/science.1134230 10.1039/C4SC00395K 10.1016/j.chempr.2020.05.007 10.1039/c2sc20336g 10.1021/ja401492s 10.1002/anie.200903708 10.1021/ja0691324 10.1002/9783527673223.ch7 10.1039/b819621d 10.1021/om00005a030 10.1021/ct800503d 10.1021/om700754n 10.1021/jp075460u 10.1056/NEJM199811263392206 10.1021/acs.jpca.2c03602 10.1002/jcc.21759 10.1002/anie.200701215 10.1021/es00171a607 10.1039/D2DT00691J 10.1039/C5DT01966D 10.1021/jp406200w 10.1063/1.3382344 10.1021/jp002019u 10.1021/ic50196a034 10.1021/ol8003657 |
ContentType | Journal Article |
Copyright | This journal is © The Royal Society of Chemistry. Copyright Royal Society of Chemistry 2024 |
Copyright_xml | – notice: This journal is © The Royal Society of Chemistry. – notice: Copyright Royal Society of Chemistry 2024 |
DBID | AAYXX CITATION NPM 7SR 8BQ 8FD JG9 7X8 |
DOI | 10.1039/d4ra03568b |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | Materials Research Database PubMed CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 2046-2069 |
EndPage | 19458 |
ExternalDocumentID | 38919374 10_1039_D4RA03568B d4ra03568b |
Genre | Journal Article |
GroupedDBID | -JG 0-7 0R~ 53G AAFWJ AAHBH AAIWI AAJAE AARTK AAWGC AAXHV ABEMK ABGFH ABPDG ABXOH ACGFS ADBBV ADMRA AEFDR AENEX AESAV AFLYV AFVBQ AGEGJ AGRSR AGSTE AHGCF AKBGW ALMA_UNASSIGNED_HOLDINGS ANUXI APEMP ASKNT AUDPV BCNDV BLAPV BSQNT C6K EBS EE0 EF- GROUPED_DOAJ H13 HZ~ H~N J3I M~E O9- OK1 PGMZT R7C R7G RCNCU RPM RPMJG RRC RSCEA RVUXY SLH SMJ ZCN AAYXX ABIQK AFPKN CITATION NPM 7SR 8BQ 8FD JG9 7X8 |
ID | FETCH-LOGICAL-c373t-c3dd0646f94364f54d7f54bd61a3f4abf40be57171e6c56f6ef7ce896727f8c43 |
ISSN | 2046-2069 |
IngestDate | Thu Jul 10 19:26:52 EDT 2025 Fri Jul 25 07:42:09 EDT 2025 Thu Apr 03 07:08:15 EDT 2025 Tue Jul 01 01:57:01 EDT 2025 Thu Apr 24 22:51:40 EDT 2025 Tue Dec 17 20:58:38 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 27 |
Language | English |
License | This journal is © The Royal Society of Chemistry. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c373t-c3dd0646f94364f54d7f54bd61a3f4abf40be57171e6c56f6ef7ce896727f8c43 |
Notes | https://doi.org/10.1039/d4ra03568b Electronic supplementary information (ESI) available. See DOI ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-5847-4271 |
OpenAccessLink | http://pubs.rsc.org/en/content/articlepdf/2024/RA/D4RA03568B |
PMID | 38919374 |
PQID | 3071899261 |
PQPubID | 2047525 |
PageCount | 13 |
ParticipantIDs | crossref_citationtrail_10_1039_D4RA03568B crossref_primary_10_1039_D4RA03568B proquest_miscellaneous_3072293752 proquest_journals_3071899261 pubmed_primary_38919374 rsc_primary_d4ra03568b |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-06-12 |
PublicationDateYYYYMMDD | 2024-06-12 |
PublicationDate_xml | – month: 06 year: 2024 text: 2024-06-12 day: 12 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Cambridge |
PublicationTitle | RSC advances |
PublicationTitleAlternate | RSC Adv |
PublicationYear | 2024 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Michalak (D4RA03568B/cit71/1) 2008; 112 Jupp (D4RA03568B/cit33/1) 2019; 1 Bickelhaupt (D4RA03568B/cit62/1) 1999; 20 Stephan (D4RA03568B/cit20/1) 2009; 38 Krapp (D4RA03568B/cit86/1) 2007; 129 Dötz (D4RA03568B/cit82/1) 2009; 109 Dureen (D4RA03568B/cit35/1) 2010; 132 Erker (D4RA03568B/cit23/1) 2012; 84 Stephan (D4RA03568B/cit28/1) 2015; 137 Fukazawa (D4RA03568B/cit36/1) 2012; 3 Ess (D4RA03568B/cit81/1) 2008; 10 Mömming (D4RA03568B/cit21/1) 2009; 48 Manankandayalage (D4RA03568B/cit38/1) 2021; 57 Yang (D4RA03568B/cit49/1) 2023; 8 Weston Jr (D4RA03568B/cit9/1) 2001; 105 Gimferrer (D4RA03568B/cit87/1) 2023; 14 Turino (D4RA03568B/cit5/1) 1981; 63 Mitoraj (D4RA03568B/cit70/1) 2007; 26 Ernst (D4RA03568B/cit3/1) 1998; 339 Dobrovetsky (D4RA03568B/cit37/1) 2013; 135 Zhao (D4RA03568B/cit52/1) 2008; 4 Te Velde (D4RA03568B/cit64/1) 2001; 22 Stephan (D4RA03568B/cit29/1) 2015; 48 Zhang (D4RA03568B/cit46/1) 2022; 126 Ziegler (D4RA03568B/cit59/1) 1977; 46 Stephan (D4RA03568B/cit22/1) 2010; 49 Stephan (D4RA03568B/cit26/1) 2015; 54 Houk (D4RA03568B/cit85/1) 1975; 8 Stephan (D4RA03568B/cit27/1) 2015; 54 Bickelhaupt (D4RA03568B/cit63/1) 2000; 15 Diefenbach (D4RA03568B/cit65/1) 2005; 1 Weicker (D4RA03568B/cit30/1) 2015; 88 Ess (D4RA03568B/cit79/1) 2007; 129 Stephan (D4RA03568B/cit34/1) 2020; 6 Zhang (D4RA03568B/cit47/1) 2022; 41 Grimme (D4RA03568B/cit54/1) 2011; 32 van Zeist (D4RA03568B/cit74/1) 2010; 8 Ziegler (D4RA03568B/cit60/1) 1979; 18 Smith (D4RA03568B/cit55/1) 2016; 7 Chang (D4RA03568B/cit67/1) 1986; 34 Chase (D4RA03568B/cit18/1) 2007; 46 Yang (D4RA03568B/cit50/1) 2023; 25 Bickelhaupt (D4RA03568B/cit73/1) 1999; 20 McCahill (D4RA03568B/cit17/1) 2007; 46 Stephan (D4RA03568B/cit24/1) 2014; 5 Yang (D4RA03568B/cit45/1) 2022; 41 Lr (D4RA03568B/cit1/1) 1975; 46 Stephan (D4RA03568B/cit25/1) 2015; 48 Kehr (D4RA03568B/cit32/1) 2017; 17 Stephan (D4RA03568B/cit31/1) 2016; 354 Wolters (D4RA03568B/cit77/1) 2015; 5 United States Environmental Protection Agency (D4RA03568B/cit8/1) Welch (D4RA03568B/cit16/1) 2006; 314 Mitoraj (D4RA03568B/cit69/1) 2007; 13 Fernańdez (D4RA03568B/cit76/1) 2014; 16 Bolze (D4RA03568B/cit14/1) 1988; 22 Cox (D4RA03568B/cit13/1) 2000 Morokuma (D4RA03568B/cit58/1) 1971; 55 Crabtree (D4RA03568B/cit83/1) 2005 Stephan (D4RA03568B/cit19/1) 2008; 6 Heullyt (D4RA03568B/cit68/1) 1986; 19 Whittaker (D4RA03568B/cit12/1) 2000 Cordero (D4RA03568B/cit84/1) 2008; 37 Cabrera (D4RA03568B/cit39/1) 2015; 44 Ess (D4RA03568B/cit80/1) 2008; 130 Fernańdez (D4RA03568B/cit78/1) 2014 Sircar (D4RA03568B/cit7/1) 2015; 33 Bickelhaupt (D4RA03568B/cit61/1) 1995; 14 Kalescky (D4RA03568B/cit15/1) 2013; 117 Zhang (D4RA03568B/cit44/1) 2021; 60 Ghosh (D4RA03568B/cit41/1) 2020; 142 Fernańdez (D4RA03568B/cit75/1) 2014; 43 Mitoraj (D4RA03568B/cit72/1) 2009; 5 Weigend (D4RA03568B/cit56/1) 2006; 8 van Lenthe (D4RA03568B/cit66/1) 2003; 24 Coburn (D4RA03568B/cit2/1) 1979; 8 Ramos (D4RA03568B/cit40/1) 2017; 46 Palomero (D4RA03568B/cit42/1) 2022; 51 Horowitz (D4RA03568B/cit6/1) 1987; 162 Venanzi (D4RA03568B/cit10/1) 1981; 56 Yang (D4RA03568B/cit48/1) 2022; 61 Hammond (D4RA03568B/cit88/1) 1955; 77 Murrell (D4RA03568B/cit11/1) 1985 Prockop (D4RA03568B/cit4/1) 2007; 262 Ríos-Gutiérrez (D4RA03568B/cit43/1) 2019; 48 Grimme (D4RA03568B/cit53/1) 2010; 132 |
References_xml | – issn: 2000 end-page: p 223 publication-title: Instant Notes Physical Chemistry doi: Whittaker Mount Heal – issn: 2005 end-page: pp 310-311 publication-title: The Organometallic Chemistry of the Transition Metals doi: Crabtree – volume-title: An Introduction to Indoor Air Quality (IAQ) publication-title: Carbon Monoxide (CO) doi: United States Environmental Protection Agency – issn: 2014 end-page: pp 165-187 publication-title: Discoveringthe Future of Molecular Sciences doi: Ferna dez – issn: 1985 end-page: p 96 publication-title: The Chemical Bond doi: Murrell Kettle Tedder – issn: 2000 end-page: p 59 publication-title: Instant Notes Inorganic Chemistry doi: Cox – issn: 2016 publication-title: Gaussian 16, Revision C.01 doi: Frisch Trucks Schlegel Scuseria Robb Cheeseman Scalmani Barone Petersson Nakatsuji Li Caricato Marenich Bloino Janesko Gomperts Mennucci Hratchian Ortiz Izmaylov Sonnenberg Williams-Young Ding Lipparini Egidi Goings Peng Petrone Henderson Ranasinghe Zakrzewski Gao Rega Zheng Liang Hada Ehara Toyota Fukuda Hasegawa Ishida Nakajima Honda Kitao Nakai Vreven Throssell Montgomery Jr Peralta Ogliaro Bearpark Heyd Brothers Kudin Staroverov Keith Kobayashi Normand Raghavachari Rendell Burant Iyengar Tomasi Cossi Millam Klene Adamo Cammi Ochterski Martin Morokuma Farkas Foresman Fox – publication-title: Computer code ADF2017, SCM, Theoretical Chemistry – volume: 354 start-page: aaf7229 year: 2016 ident: D4RA03568B/cit31/1 publication-title: Science doi: 10.1126/science.aaf7229 – volume: 109 start-page: 3227 year: 2009 ident: D4RA03568B/cit82/1 publication-title: Chem. Rev. doi: 10.1021/cr900034e – volume: 8 start-page: 3118 year: 2010 ident: D4RA03568B/cit74/1 publication-title: Org. Biomol. Chem. doi: 10.1039/b926828f – volume: 1 start-page: 286 year: 2005 ident: D4RA03568B/cit65/1 publication-title: J. Chem. Theory Comput. doi: 10.1021/ct0499478 – volume: 13 start-page: 347 year: 2007 ident: D4RA03568B/cit69/1 publication-title: J. Mol. Model. doi: 10.1007/s00894-006-0149-4 – volume: 25 start-page: 7423 year: 2023 ident: D4RA03568B/cit50/1 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/D2CP05135D – volume: 5 start-page: 324 year: 2015 ident: D4RA03568B/cit77/1 publication-title: Wiley Interdiscip. Rev.: Comput. Mol. Sci. – volume: 8 start-page: 361 year: 1975 ident: D4RA03568B/cit85/1 publication-title: Acc. Chem. Res. doi: 10.1021/ar50095a001 – volume: 16 start-page: 7662 year: 2014 ident: D4RA03568B/cit76/1 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C4CP00346B – volume: 24 start-page: 1142 year: 2003 ident: D4RA03568B/cit66/1 publication-title: J. Comput. Chem. doi: 10.1002/jcc.10255 – volume: 88 start-page: 1003 year: 2015 ident: D4RA03568B/cit30/1 publication-title: Bull. Chem. Soc. Jpn. doi: 10.1246/bcsj.20150131 – volume: 46 start-page: 1 year: 1977 ident: D4RA03568B/cit59/1 publication-title: Theor. Chim. Acta doi: 10.1007/BF02401406 – volume: 46 start-page: 10281 year: 2017 ident: D4RA03568B/cit40/1 publication-title: Dalton Trans. doi: 10.1039/C7DT02081C – volume: 4 start-page: 1849 year: 2008 ident: D4RA03568B/cit52/1 publication-title: J. Chem. Theory Comput. doi: 10.1021/ct800246v – volume: 1 start-page: 35 year: 2019 ident: D4RA03568B/cit33/1 publication-title: Trends Chem. doi: 10.1016/j.trechm.2019.01.006 – volume: 8 start-page: 863 year: 2023 ident: D4RA03568B/cit49/1 publication-title: ACS Omega – volume: 8 start-page: 310 year: 1979 ident: D4RA03568B/cit2/1 publication-title: Prev. Med. doi: 10.1016/0091-7435(79)90008-2 – volume: 61 start-page: 12959 year: 2022 ident: D4RA03568B/cit48/1 publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.2c00259 – volume: 7 start-page: 2197 year: 2016 ident: D4RA03568B/cit55/1 publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.6b00780 – volume: 19 start-page: 2799 year: 1986 ident: D4RA03568B/cit68/1 publication-title: J. Phys. B: At. Mol. Phys. doi: 10.1088/0022-3700/19/18/011 – volume: 130 start-page: 10187 year: 2008 ident: D4RA03568B/cit80/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja800009z – volume: 15 start-page: 1 year: 2000 ident: D4RA03568B/cit63/1 publication-title: Rev. Comput. Chem. doi: 10.1002/9780470125922.ch1 – volume: 22 start-page: 931 year: 2001 ident: D4RA03568B/cit64/1 publication-title: J. Comput. Chem. doi: 10.1002/jcc.1056 – volume: 77 start-page: 334 year: 1955 ident: D4RA03568B/cit88/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja01607a027 – start-page: 310 volume-title: The Organometallic Chemistry of the Transition Metals year: 2005 ident: D4RA03568B/cit83/1 doi: 10.1002/0471718769 – volume: 84 start-page: 2203 year: 2012 ident: D4RA03568B/cit23/1 publication-title: Pure Appl. Chem. doi: 10.1351/PAC-CON-12-04-07 – volume: 46 start-page: 8050 year: 2007 ident: D4RA03568B/cit18/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200702908 – volume: 20 start-page: 114 year: 1999 ident: D4RA03568B/cit73/1 publication-title: J. Comput. Chem. doi: 10.1002/(SICI)1096-987X(19990115)20:1<114::AID-JCC12>3.0.CO;2-L – volume: 37 start-page: 2832 year: 2008 ident: D4RA03568B/cit84/1 publication-title: Dalton Trans. doi: 10.1039/b801115j – volume: 142 start-page: 12635 year: 2020 ident: D4RA03568B/cit41/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.0c03343 – volume: 48 start-page: 9214 year: 2019 ident: D4RA03568B/cit43/1 publication-title: Dalton Trans. doi: 10.1039/C9DT01489F – volume: 41 start-page: 374 year: 2022 ident: D4RA03568B/cit45/1 publication-title: Organometallics doi: 10.1021/acs.organomet.1c00599 – volume: 8 start-page: 1057 year: 2006 ident: D4RA03568B/cit56/1 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/b515623h – volume: 262 start-page: 122 year: 2007 ident: D4RA03568B/cit4/1 publication-title: J. Neurol. Sci. doi: 10.1016/j.jns.2007.06.037 – volume: 54 start-page: 2 year: 2015 ident: D4RA03568B/cit26/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201409800 – volume: 60 start-page: 15253 year: 2021 ident: D4RA03568B/cit44/1 publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.1c01809 – volume: 132 start-page: 13559 year: 2010 ident: D4RA03568B/cit35/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja1064153 – volume: 6 start-page: 1535 year: 2008 ident: D4RA03568B/cit19/1 publication-title: Org. Biomol. Chem. doi: 10.1039/b802575b – volume: 41 start-page: 3664 year: 2022 ident: D4RA03568B/cit47/1 publication-title: Organometallics doi: 10.1021/acs.organomet.2c00453 – volume: 129 start-page: 10646 year: 2007 ident: D4RA03568B/cit79/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0734086 – volume: 43 start-page: 4953 year: 2014 ident: D4RA03568B/cit75/1 publication-title: Chem. Soc. Rev. doi: 10.1039/C4CS00055B – volume: 17 start-page: 803 year: 2017 ident: D4RA03568B/cit32/1 publication-title: Chem. Rec. doi: 10.1002/tcr.201700010 – volume: 57 start-page: 12528 year: 2021 ident: D4RA03568B/cit38/1 publication-title: Chem. Commun. doi: 10.1039/D1CC05673E – volume: 20 start-page: 114 year: 1999 ident: D4RA03568B/cit62/1 publication-title: J. Comput. Chem. doi: 10.1002/(SICI)1096-987X(19990115)20:1<114::AID-JCC12>3.0.CO;2-L – volume: 137 start-page: 10018 year: 2015 ident: D4RA03568B/cit28/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b06794 – volume: 162 start-page: 787 year: 1987 ident: D4RA03568B/cit6/1 publication-title: Radiology doi: 10.1148/radiology.162.3.3809495 – volume: 56 start-page: 423 year: 1981 ident: D4RA03568B/cit10/1 publication-title: J. Chem. Educ. doi: 10.1021/ed058p423 – volume: 34 start-page: 394 year: 1986 ident: D4RA03568B/cit67/1 publication-title: Phys. Scr. doi: 10.1088/0031-8949/34/5/007 – volume: 55 start-page: 1236 year: 1971 ident: D4RA03568B/cit58/1 publication-title: J. Chem. Phys. doi: 10.1063/1.1676210 – volume: 33 start-page: 1140 year: 2015 ident: D4RA03568B/cit7/1 publication-title: Am. J. Emerg. Med. doi: 10.1016/j.ajem.2015.05.002 – start-page: 96 volume-title: The Chemical Bond year: 1985 ident: D4RA03568B/cit11/1 – volume: 46 start-page: 1289 year: 1975 ident: D4RA03568B/cit1/1 publication-title: Aviat., Space Environ. Med. – volume: 48 start-page: 306 year: 2015 ident: D4RA03568B/cit29/1 publication-title: Acc. Chem. Res. doi: 10.1021/ar500375j – volume: 14 start-page: 384 year: 2023 ident: D4RA03568B/cit87/1 publication-title: Chem. Sci. doi: 10.1039/D2SC05769G – volume: 48 start-page: 6643 year: 2009 ident: D4RA03568B/cit21/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200901636 – start-page: 223 volume-title: Instant Notes Physical Chemistry year: 2000 ident: D4RA03568B/cit12/1 doi: 10.4324/9780203009925 – start-page: 59 volume-title: Instant Notes Inorganic Chemistry year: 2000 ident: D4RA03568B/cit13/1 – volume: 314 start-page: 1124 year: 2006 ident: D4RA03568B/cit16/1 publication-title: Science doi: 10.1126/science.1134230 – volume: 5 start-page: 2625 year: 2014 ident: D4RA03568B/cit24/1 publication-title: Chem. Sci. doi: 10.1039/C4SC00395K – volume: 6 start-page: 1520 year: 2020 ident: D4RA03568B/cit34/1 publication-title: Chem doi: 10.1016/j.chempr.2020.05.007 – volume: 3 start-page: 1814 year: 2012 ident: D4RA03568B/cit36/1 publication-title: Chem. Sci. doi: 10.1039/c2sc20336g – volume: 135 start-page: 4974 year: 2013 ident: D4RA03568B/cit37/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja401492s – volume: 48 start-page: 306 year: 2015 ident: D4RA03568B/cit25/1 publication-title: Acc. Chem. Res. doi: 10.1021/ar500375j – volume: 54 start-page: 6400 year: 2015 ident: D4RA03568B/cit27/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201409800 – volume: 49 start-page: 46 year: 2010 ident: D4RA03568B/cit22/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200903708 – volume: 129 start-page: 7596 year: 2007 ident: D4RA03568B/cit86/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0691324 – start-page: 165 volume-title: Discoveringthe Future of Molecular Sciences year: 2014 ident: D4RA03568B/cit78/1 doi: 10.1002/9783527673223.ch7 – volume: 38 start-page: 3129 year: 2009 ident: D4RA03568B/cit20/1 publication-title: Dalton Trans. doi: 10.1039/b819621d – volume: 14 start-page: 2288 year: 1995 ident: D4RA03568B/cit61/1 publication-title: Organometallics doi: 10.1021/om00005a030 – volume: 5 start-page: 962 year: 2009 ident: D4RA03568B/cit72/1 publication-title: J. Chem. Theory Comput. doi: 10.1021/ct800503d – volume: 26 start-page: 6576 year: 2007 ident: D4RA03568B/cit70/1 publication-title: Organometallics doi: 10.1021/om700754n – volume: 112 start-page: 1933 year: 2008 ident: D4RA03568B/cit71/1 publication-title: J. Phys. Chem. A doi: 10.1021/jp075460u – volume-title: Carbon Monoxide (CO) ident: D4RA03568B/cit8/1 – volume: 339 start-page: 1603 year: 1998 ident: D4RA03568B/cit3/1 publication-title: N. Engl. J. Med. doi: 10.1056/NEJM199811263392206 – volume: 126 start-page: 5534 year: 2022 ident: D4RA03568B/cit46/1 publication-title: J. Phys. Chem. A doi: 10.1021/acs.jpca.2c03602 – volume: 32 start-page: 1456 year: 2011 ident: D4RA03568B/cit54/1 publication-title: J. Comput. Chem. doi: 10.1002/jcc.21759 – volume: 46 start-page: 4968 year: 2007 ident: D4RA03568B/cit17/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200701215 – volume: 63 start-page: 253A year: 1981 ident: D4RA03568B/cit5/1 publication-title: Circulation – volume: 22 start-page: 596 year: 1988 ident: D4RA03568B/cit14/1 publication-title: Environ. Sci. Technol. doi: 10.1021/es00171a607 – volume: 51 start-page: 6275 year: 2022 ident: D4RA03568B/cit42/1 publication-title: Dalton Trans. doi: 10.1039/D2DT00691J – volume: 44 start-page: 19606 year: 2015 ident: D4RA03568B/cit39/1 publication-title: Dalton Trans. doi: 10.1039/C5DT01966D – volume: 117 start-page: 8981 year: 2013 ident: D4RA03568B/cit15/1 publication-title: J. Phys. Chem. A doi: 10.1021/jp406200w – volume: 132 start-page: 154104 year: 2010 ident: D4RA03568B/cit53/1 publication-title: J. Chem. Phys. doi: 10.1063/1.3382344 – volume: 105 start-page: 1656 year: 2001 ident: D4RA03568B/cit9/1 publication-title: J. Phys. Chem. A doi: 10.1021/jp002019u – volume: 18 start-page: 1558 year: 1979 ident: D4RA03568B/cit60/1 publication-title: Inorg. Chem. doi: 10.1021/ic50196a034 – volume: 10 start-page: 1633 year: 2008 ident: D4RA03568B/cit81/1 publication-title: Org. Lett. doi: 10.1021/ol8003657 |
SSID | ssj0000651261 |
Score | 2.4102595 |
Snippet | Incomplete combustion yields a significant byproduct, known for its high toxicity to humans: gas phase carbon monoxide (CO). This study utilized several... |
SourceID | proquest pubmed crossref rsc |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 19446 |
SubjectTerms | Activation energy Carbon Carbon monoxide Electronic structure Electrons Lewis acid Molecular orbitals Strain analysis Structural analysis Vapor phases |
Title | Understanding the CO capture reaction through electronic structure analysis of four-membered-ring group-13/N- and B/group-15-based Lewis acid-base pairs |
URI | https://www.ncbi.nlm.nih.gov/pubmed/38919374 https://www.proquest.com/docview/3071899261 https://www.proquest.com/docview/3072293752 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELbKcoAL4rVQWJARXFBlmsTO67jt7mqFSitBK1Vcovi1HKCtSldInBB_gRs_j1_C2I6dVl0h4GKlthWn-b54xp7xDEIvVMQ4zRQgICJOWE0l4WnJCS90neikEEVqDgq_GWfnM_Z6ns47ne9bXkuXG_5KfL3yXMn_oAp1gKs5JfsPyIabQgVcA75QAsJQ_hXGs52TKUaFHE56ol5ZqwBogy4NuE_Fs5XxxkWNdbaDNiiJhjHJJ2VShChJrGOePfRBYhN2YUysoWEAl01tSowMlL2R-gI3qAX8_8Z1gpqG3irYinwE8HdD73QQVPn3H9TigsBrtXOO3b8OJIAnICdqDbPb9uZEwojN6hPo5LZAvP-p9S9pstg58WPnuQSW6ACry9gSJmW2RT4XPaCZYuOSNZuWyv92wd_3hEFETSxVydZ1RNOs4K3I82b-8aQ6m41G1fR0Pr2Griew1Ei2luVOmoNKlMU-si0t--0Nd3WZvQUKqCtrn0bGqivT2-hWs87Ax440d1BHLe6iG-HF3EM_d8iDgTx4OMENebAnD27Ig1vy4EAe7MmDlxrvkwd78vTHBLpKPOjvEgdb4mBDnF_ffpgqbClzH83OTqfDc9Ik6iCC5nQDpZSg2ma6ZDRjOmUyh4LLLK6pZjXXLOIqzeM8VplIM50pnQtVlMYLQBeC0UN0sFgu1EOEi0ikqtRCZglnAkSgBI1VKF3zSHOeRl300r_ySjRR7E0ylY-V9aagZXXC3h5beAZd9Dz0XbnYLVf2OvLIVc23_bkCyRcXZQnAd9Gz0AwIGXNavVDLS9snAWU5T5MueuAQD8MY6z80sS46BAqE6pY6j_486mN0s_2cjtABAKuegPa74U8tPX8DESq2kA |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Understanding+the+CO+capture+reaction+through+electronic+structure+analysis+of+four-membered-ring+group-13%2FN-+and+B%2Fgroup-15-based+Lewis+acid%E2%80%93base+pairs&rft.jtitle=RSC+advances&rft.au=Zheng-Feng%2C+Zhang&rft.au=Ming-Der+Su&rft.date=2024-06-12&rft.pub=Royal+Society+of+Chemistry&rft.eissn=2046-2069&rft.volume=14&rft.issue=27&rft.spage=19446&rft.epage=19458&rft_id=info:doi/10.1039%2Fd4ra03568b&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2046-2069&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2046-2069&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2046-2069&client=summon |