Understanding the CO capture reaction through electronic structure analysis of four-membered-ring group-13/N- and B/group-15-based Lewis acid-base pairs

Incomplete combustion yields a significant byproduct, known for its high toxicity to humans: gas phase carbon monoxide (CO). This study utilized several advanced theoretical methods to examine the factors contributing to the activation energy involved in CO capture by a frustrated Lewis pair (FLP) a...

Full description

Saved in:
Bibliographic Details
Published inRSC advances Vol. 14; no. 27; pp. 19446 - 19458
Main Authors Zhang, Zheng-Feng, Su, Ming-Der
Format Journal Article
LanguageEnglish
Published England Royal Society of Chemistry 12.06.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Incomplete combustion yields a significant byproduct, known for its high toxicity to humans: gas phase carbon monoxide (CO). This study utilized several advanced theoretical methods to examine the factors contributing to the activation energy involved in CO capture by a frustrated Lewis pair (FLP) and to forecast the potential success of the CO capture reaction. The current theoretical findings indicate that among the four-membered-ring Group-13/N-FLP and B/Group-15-FLP molecules, only the B/N-based FLP-type molecule effectively captures CO, considering both thermodynamics and kinetics. According to the results obtained through energy decomposition analysis-natural orbitals for chemical valence (EDA-NOCV), it can be concluded that the donor-acceptor (singlet-singlet) model, rather than the electron-sharing (triplet-triplet) model, effectively characterizes the electronic structures in the CO trapping reaction involving four-membered-ring G13/G15-FLPs. Theoretical findings, derived from EDA-NOCV and frontier molecular orbital theory, demonstrate that the CO capture reaction by G13/G15-FLP involves two distinct bonding interactions. The first interaction is characterized by FLP-to-CO forward bonding, with the lone pair of G15 (G13/G15-FLP) donating to the empty p-π* orbital of carbon (CO), which predominates. The second interaction involves CO-to-FLP backward bonding, where the empty σ* orbital of G13 (G13/G15-FLP) accepts the lone pair of carbon (CO), albeit to a lesser extent. In summary, our theoretical findings indicate that the G13-C and G15-C bonds in the G15/G15-TS species with a four-membered ring can be classified as two dative single bonds. The importance of the interaction between Lewis bases and CO surpasses that of the interaction between Lewis acids and CO. Theoretical evidences in this study demonstrate a linear connection between the G13-G15 bond length within the four-membered-ring G13/G15-FLP and the activation barrier linked to CO capture. The activation strain model analysis in this study suggests that the activation energy required for bond formation primarily depends on the geometric deformation energy of G13/G15-FLP in capturing CO. Our DFT investigation shows that Hammond's postulate is obeyed by the CO catching reaction of the four-membered-ring G13/N-FLP, meaning that an earlier transition state is associated with a lower activation barrier, but not with the CO catching reaction of the four-membered-ring B/G15-FLP. The theoretical evidences reveal that in the four-membered-ring Group-13/N-based and B/Group-15-based Frustrated Lewis Pair (FLP)-assisted molecules, only the B/N-based FLP can undergo the CO catching reaction both kinetically and thermodynamically.
AbstractList Incomplete combustion yields a significant byproduct, known for its high toxicity to humans: gas phase carbon monoxide (CO). This study utilized several advanced theoretical methods to examine the factors contributing to the activation energy involved in CO capture by a frustrated Lewis pair (FLP) and to forecast the potential success of the CO capture reaction. The current theoretical findings indicate that among the four-membered-ring Group-13/N-FLP and B/Group-15-FLP molecules, only the B/N-based FLP-type molecule effectively captures CO, considering both thermodynamics and kinetics. According to the results obtained through energy decomposition analysis-natural orbitals for chemical valence (EDA-NOCV), it can be concluded that the donor–acceptor (singlet–singlet) model, rather than the electron-sharing (triplet–triplet) model, effectively characterizes the electronic structures in the CO trapping reaction involving four-membered-ring G13/G15-FLPs. Theoretical findings, derived from EDA-NOCV and frontier molecular orbital theory, demonstrate that the CO capture reaction by G13/G15-FLP involves two distinct bonding interactions. The first interaction is characterized by FLP-to-CO forward bonding, with the lone pair of G15 (G13/G15-FLP) donating to the empty p–π* orbital of carbon (CO), which predominates. The second interaction involves CO-to-FLP backward bonding, where the empty σ* orbital of G13 (G13/G15-FLP) accepts the lone pair of carbon (CO), albeit to a lesser extent. In summary, our theoretical findings indicate that the G13–C and G15–C bonds in the G15/G15-TS species with a four-membered ring can be classified as two dative single bonds. The importance of the interaction between Lewis bases and CO surpasses that of the interaction between Lewis acids and CO. Theoretical evidences in this study demonstrate a linear connection between the G13–G15 bond length within the four-membered-ring G13/G15-FLP and the activation barrier linked to CO capture. The activation strain model analysis in this study suggests that the activation energy required for bond formation primarily depends on the geometric deformation energy of G13/G15-FLP in capturing CO. Our DFT investigation shows that Hammond's postulate is obeyed by the CO catching reaction of the four-membered-ring G13/N-FLP, meaning that an earlier transition state is associated with a lower activation barrier, but not with the CO catching reaction of the four-membered-ring B/G15-FLP.
Incomplete combustion yields a significant byproduct, known for its high toxicity to humans: gas phase carbon monoxide (CO). This study utilized several advanced theoretical methods to examine the factors contributing to the activation energy involved in CO capture by a frustrated Lewis pair (FLP) and to forecast the potential success of the CO capture reaction. The current theoretical findings indicate that among the four-membered-ring Group-13/N-FLP and B/Group-15-FLP molecules, only the B/N-based FLP-type molecule effectively captures CO, considering both thermodynamics and kinetics. According to the results obtained through energy decomposition analysis-natural orbitals for chemical valence (EDA-NOCV), it can be concluded that the donor-acceptor (singlet-singlet) model, rather than the electron-sharing (triplet-triplet) model, effectively characterizes the electronic structures in the CO trapping reaction involving four-membered-ring G13/G15-FLPs. Theoretical findings, derived from EDA-NOCV and frontier molecular orbital theory, demonstrate that the CO capture reaction by G13/G15-FLP involves two distinct bonding interactions. The first interaction is characterized by FLP-to-CO forward bonding, with the lone pair of G15 (G13/G15-FLP) donating to the empty p-π* orbital of carbon (CO), which predominates. The second interaction involves CO-to-FLP backward bonding, where the empty σ* orbital of G13 (G13/G15-FLP) accepts the lone pair of carbon (CO), albeit to a lesser extent. In summary, our theoretical findings indicate that the G13-C and G15-C bonds in the G15/G15-TS species with a four-membered ring can be classified as two dative single bonds. The importance of the interaction between Lewis bases and CO surpasses that of the interaction between Lewis acids and CO. Theoretical evidences in this study demonstrate a linear connection between the G13-G15 bond length within the four-membered-ring G13/G15-FLP and the activation barrier linked to CO capture. The activation strain model analysis in this study suggests that the activation energy required for bond formation primarily depends on the geometric deformation energy of G13/G15-FLP in capturing CO. Our DFT investigation shows that Hammond's postulate is obeyed by the CO catching reaction of the four-membered-ring G13/N-FLP, meaning that an earlier transition state is associated with a lower activation barrier, but not with the CO catching reaction of the four-membered-ring B/G15-FLP. The theoretical evidences reveal that in the four-membered-ring Group-13/N-based and B/Group-15-based Frustrated Lewis Pair (FLP)-assisted molecules, only the B/N-based FLP can undergo the CO catching reaction both kinetically and thermodynamically.
Incomplete combustion yields a significant byproduct, known for its high toxicity to humans: gas phase carbon monoxide (CO). This study utilized several advanced theoretical methods to examine the factors contributing to the activation energy involved in CO capture by a frustrated Lewis pair (FLP) and to forecast the potential success of the CO capture reaction. The current theoretical findings indicate that among the four-membered-ring Group-13/N-FLP and B/Group-15-FLP molecules, only the B/N-based FLP-type molecule effectively captures CO, considering both thermodynamics and kinetics. According to the results obtained through energy decomposition analysis-natural orbitals for chemical valence (EDA-NOCV), it can be concluded that the donor-acceptor (singlet-singlet) model, rather than the electron-sharing (triplet-triplet) model, effectively characterizes the electronic structures in the CO trapping reaction involving four-membered-ring G13/G15-FLPs. Theoretical findings, derived from EDA-NOCV and frontier molecular orbital theory, demonstrate that the CO capture reaction by G13/G15-FLP involves two distinct bonding interactions. The first interaction is characterized by FLP-to-CO forward bonding, with the lone pair of G15 (G13/G15-FLP) donating to the empty p-π* orbital of carbon (CO), which predominates. The second interaction involves CO-to-FLP backward bonding, where the empty σ* orbital of G13 (G13/G15-FLP) accepts the lone pair of carbon (CO), albeit to a lesser extent. In summary, our theoretical findings indicate that the G13-C and G15-C bonds in the G15/G15-TS species with a four-membered ring can be classified as two dative single bonds. The importance of the interaction between Lewis bases and CO surpasses that of the interaction between Lewis acids and CO. Theoretical evidences in this study demonstrate a linear connection between the G13-G15 bond length within the four-membered-ring G13/G15-FLP and the activation barrier linked to CO capture. The activation strain model analysis in this study suggests that the activation energy required for bond formation primarily depends on the geometric deformation energy of G13/G15-FLP in capturing CO. Our DFT investigation shows that Hammond's postulate is obeyed by the CO catching reaction of the four-membered-ring G13/N-FLP, meaning that an earlier transition state is associated with a lower activation barrier, but not with the CO catching reaction of the four-membered-ring B/G15-FLP.Incomplete combustion yields a significant byproduct, known for its high toxicity to humans: gas phase carbon monoxide (CO). This study utilized several advanced theoretical methods to examine the factors contributing to the activation energy involved in CO capture by a frustrated Lewis pair (FLP) and to forecast the potential success of the CO capture reaction. The current theoretical findings indicate that among the four-membered-ring Group-13/N-FLP and B/Group-15-FLP molecules, only the B/N-based FLP-type molecule effectively captures CO, considering both thermodynamics and kinetics. According to the results obtained through energy decomposition analysis-natural orbitals for chemical valence (EDA-NOCV), it can be concluded that the donor-acceptor (singlet-singlet) model, rather than the electron-sharing (triplet-triplet) model, effectively characterizes the electronic structures in the CO trapping reaction involving four-membered-ring G13/G15-FLPs. Theoretical findings, derived from EDA-NOCV and frontier molecular orbital theory, demonstrate that the CO capture reaction by G13/G15-FLP involves two distinct bonding interactions. The first interaction is characterized by FLP-to-CO forward bonding, with the lone pair of G15 (G13/G15-FLP) donating to the empty p-π* orbital of carbon (CO), which predominates. The second interaction involves CO-to-FLP backward bonding, where the empty σ* orbital of G13 (G13/G15-FLP) accepts the lone pair of carbon (CO), albeit to a lesser extent. In summary, our theoretical findings indicate that the G13-C and G15-C bonds in the G15/G15-TS species with a four-membered ring can be classified as two dative single bonds. The importance of the interaction between Lewis bases and CO surpasses that of the interaction between Lewis acids and CO. Theoretical evidences in this study demonstrate a linear connection between the G13-G15 bond length within the four-membered-ring G13/G15-FLP and the activation barrier linked to CO capture. The activation strain model analysis in this study suggests that the activation energy required for bond formation primarily depends on the geometric deformation energy of G13/G15-FLP in capturing CO. Our DFT investigation shows that Hammond's postulate is obeyed by the CO catching reaction of the four-membered-ring G13/N-FLP, meaning that an earlier transition state is associated with a lower activation barrier, but not with the CO catching reaction of the four-membered-ring B/G15-FLP.
Author Su, Ming-Der
Zhang, Zheng-Feng
AuthorAffiliation National Chiayi University
Kaohsiung Medical University
Department of Applied Chemistry
Department of Medicinal and Applied Chemistry
AuthorAffiliation_xml – sequence: 0
  name: National Chiayi University
– sequence: 0
  name: Kaohsiung Medical University
– sequence: 0
  name: Department of Medicinal and Applied Chemistry
– sequence: 0
  name: Department of Applied Chemistry
Author_xml – sequence: 1
  givenname: Zheng-Feng
  surname: Zhang
  fullname: Zhang, Zheng-Feng
– sequence: 2
  givenname: Ming-Der
  surname: Su
  fullname: Su, Ming-Der
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38919374$$D View this record in MEDLINE/PubMed
BookMark eNptkk9r3DAQxUVJadI0l95bBLmUgLuSJUv2Mdm2aWBpoDRnI0ujjYJtuZJMyTfpx632T5ISosNIDL_3YN7oLToY_QgIvafkMyWsWRgeFGGVqLtX6KgkXBQlEc3Bf-9DdBLjHclHVLQU9A06ZHVDGyb5Efp7MxoIManRuHGN0y3g5TXWakpzABxA6eT8mPvBz-tbDD3oFPzoNI4pzHpLqVH199FF7C22fg7FAEMHAUwRNp7rLJ0KyhY_iowafLHYd6qiUxEMXsGfLFbamW0DT8qF-A69tqqPcLK_j9HNt6-_lt-L1fXl1fJ8VWgmWcrVGCK4sA1ngtuKG5lLZwRVzHLVWU46qCSVFISuhBVgpYa6EbKUttacHaNPO98p-N8zxNQOLmroezWCn2PLiCzLnFVVZvT0GXqXp83DbylaN01ON1Mf99TcDWDaKbhBhfv2IfMMkB2gg48xgG21S2oTcwrK9S0l7Waz7Rf-83y72YssOXsmeXB9Ef6wg0PUj9zTN2H_ADp_rTY
CitedBy_id crossref_primary_10_1021_acs_inorgchem_4c04773
Cites_doi 10.1126/science.aaf7229
10.1021/cr900034e
10.1039/b926828f
10.1021/ct0499478
10.1007/s00894-006-0149-4
10.1039/D2CP05135D
10.1021/ar50095a001
10.1039/C4CP00346B
10.1002/jcc.10255
10.1246/bcsj.20150131
10.1007/BF02401406
10.1039/C7DT02081C
10.1021/ct800246v
10.1016/j.trechm.2019.01.006
10.1016/0091-7435(79)90008-2
10.1021/acs.inorgchem.2c00259
10.1021/acs.jpclett.6b00780
10.1088/0022-3700/19/18/011
10.1021/ja800009z
10.1002/9780470125922.ch1
10.1002/jcc.1056
10.1021/ja01607a027
10.1002/0471718769
10.1351/PAC-CON-12-04-07
10.1002/anie.200702908
10.1002/(SICI)1096-987X(19990115)20:1<114::AID-JCC12>3.0.CO;2-L
10.1039/b801115j
10.1021/jacs.0c03343
10.1039/C9DT01489F
10.1021/acs.organomet.1c00599
10.1039/b515623h
10.1016/j.jns.2007.06.037
10.1002/anie.201409800
10.1021/acs.inorgchem.1c01809
10.1021/ja1064153
10.1039/b802575b
10.1021/acs.organomet.2c00453
10.1021/ja0734086
10.1039/C4CS00055B
10.1002/tcr.201700010
10.1039/D1CC05673E
10.1021/jacs.5b06794
10.1148/radiology.162.3.3809495
10.1021/ed058p423
10.1088/0031-8949/34/5/007
10.1063/1.1676210
10.1016/j.ajem.2015.05.002
10.1021/ar500375j
10.1039/D2SC05769G
10.1002/anie.200901636
10.4324/9780203009925
10.1126/science.1134230
10.1039/C4SC00395K
10.1016/j.chempr.2020.05.007
10.1039/c2sc20336g
10.1021/ja401492s
10.1002/anie.200903708
10.1021/ja0691324
10.1002/9783527673223.ch7
10.1039/b819621d
10.1021/om00005a030
10.1021/ct800503d
10.1021/om700754n
10.1021/jp075460u
10.1056/NEJM199811263392206
10.1021/acs.jpca.2c03602
10.1002/jcc.21759
10.1002/anie.200701215
10.1021/es00171a607
10.1039/D2DT00691J
10.1039/C5DT01966D
10.1021/jp406200w
10.1063/1.3382344
10.1021/jp002019u
10.1021/ic50196a034
10.1021/ol8003657
ContentType Journal Article
Copyright This journal is © The Royal Society of Chemistry.
Copyright Royal Society of Chemistry 2024
Copyright_xml – notice: This journal is © The Royal Society of Chemistry.
– notice: Copyright Royal Society of Chemistry 2024
DBID AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
7X8
DOI 10.1039/d4ra03568b
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList Materials Research Database
PubMed

CrossRef
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 2046-2069
EndPage 19458
ExternalDocumentID 38919374
10_1039_D4RA03568B
d4ra03568b
Genre Journal Article
GroupedDBID -JG
0-7
0R~
53G
AAFWJ
AAHBH
AAIWI
AAJAE
AARTK
AAWGC
AAXHV
ABEMK
ABGFH
ABPDG
ABXOH
ACGFS
ADBBV
ADMRA
AEFDR
AENEX
AESAV
AFLYV
AFVBQ
AGEGJ
AGRSR
AGSTE
AHGCF
AKBGW
ALMA_UNASSIGNED_HOLDINGS
ANUXI
APEMP
ASKNT
AUDPV
BCNDV
BLAPV
BSQNT
C6K
EBS
EE0
EF-
GROUPED_DOAJ
H13
HZ~
H~N
J3I
M~E
O9-
OK1
PGMZT
R7C
R7G
RCNCU
RPM
RPMJG
RRC
RSCEA
RVUXY
SLH
SMJ
ZCN
AAYXX
ABIQK
AFPKN
CITATION
NPM
7SR
8BQ
8FD
JG9
7X8
ID FETCH-LOGICAL-c373t-c3dd0646f94364f54d7f54bd61a3f4abf40be57171e6c56f6ef7ce896727f8c43
ISSN 2046-2069
IngestDate Thu Jul 10 19:26:52 EDT 2025
Fri Jul 25 07:42:09 EDT 2025
Thu Apr 03 07:08:15 EDT 2025
Tue Jul 01 01:57:01 EDT 2025
Thu Apr 24 22:51:40 EDT 2025
Tue Dec 17 20:58:38 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 27
Language English
License This journal is © The Royal Society of Chemistry.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c373t-c3dd0646f94364f54d7f54bd61a3f4abf40be57171e6c56f6ef7ce896727f8c43
Notes https://doi.org/10.1039/d4ra03568b
Electronic supplementary information (ESI) available. See DOI
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-5847-4271
OpenAccessLink http://pubs.rsc.org/en/content/articlepdf/2024/RA/D4RA03568B
PMID 38919374
PQID 3071899261
PQPubID 2047525
PageCount 13
ParticipantIDs crossref_citationtrail_10_1039_D4RA03568B
crossref_primary_10_1039_D4RA03568B
proquest_miscellaneous_3072293752
proquest_journals_3071899261
pubmed_primary_38919374
rsc_primary_d4ra03568b
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-06-12
PublicationDateYYYYMMDD 2024-06-12
PublicationDate_xml – month: 06
  year: 2024
  text: 2024-06-12
  day: 12
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Cambridge
PublicationTitle RSC advances
PublicationTitleAlternate RSC Adv
PublicationYear 2024
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Michalak (D4RA03568B/cit71/1) 2008; 112
Jupp (D4RA03568B/cit33/1) 2019; 1
Bickelhaupt (D4RA03568B/cit62/1) 1999; 20
Stephan (D4RA03568B/cit20/1) 2009; 38
Krapp (D4RA03568B/cit86/1) 2007; 129
Dötz (D4RA03568B/cit82/1) 2009; 109
Dureen (D4RA03568B/cit35/1) 2010; 132
Erker (D4RA03568B/cit23/1) 2012; 84
Stephan (D4RA03568B/cit28/1) 2015; 137
Fukazawa (D4RA03568B/cit36/1) 2012; 3
Ess (D4RA03568B/cit81/1) 2008; 10
Mömming (D4RA03568B/cit21/1) 2009; 48
Manankandayalage (D4RA03568B/cit38/1) 2021; 57
Yang (D4RA03568B/cit49/1) 2023; 8
Weston Jr (D4RA03568B/cit9/1) 2001; 105
Gimferrer (D4RA03568B/cit87/1) 2023; 14
Turino (D4RA03568B/cit5/1) 1981; 63
Mitoraj (D4RA03568B/cit70/1) 2007; 26
Ernst (D4RA03568B/cit3/1) 1998; 339
Dobrovetsky (D4RA03568B/cit37/1) 2013; 135
Zhao (D4RA03568B/cit52/1) 2008; 4
Te Velde (D4RA03568B/cit64/1) 2001; 22
Stephan (D4RA03568B/cit29/1) 2015; 48
Zhang (D4RA03568B/cit46/1) 2022; 126
Ziegler (D4RA03568B/cit59/1) 1977; 46
Stephan (D4RA03568B/cit22/1) 2010; 49
Stephan (D4RA03568B/cit26/1) 2015; 54
Houk (D4RA03568B/cit85/1) 1975; 8
Stephan (D4RA03568B/cit27/1) 2015; 54
Bickelhaupt (D4RA03568B/cit63/1) 2000; 15
Diefenbach (D4RA03568B/cit65/1) 2005; 1
Weicker (D4RA03568B/cit30/1) 2015; 88
Ess (D4RA03568B/cit79/1) 2007; 129
Stephan (D4RA03568B/cit34/1) 2020; 6
Zhang (D4RA03568B/cit47/1) 2022; 41
Grimme (D4RA03568B/cit54/1) 2011; 32
van Zeist (D4RA03568B/cit74/1) 2010; 8
Ziegler (D4RA03568B/cit60/1) 1979; 18
Smith (D4RA03568B/cit55/1) 2016; 7
Chang (D4RA03568B/cit67/1) 1986; 34
Chase (D4RA03568B/cit18/1) 2007; 46
Yang (D4RA03568B/cit50/1) 2023; 25
Bickelhaupt (D4RA03568B/cit73/1) 1999; 20
McCahill (D4RA03568B/cit17/1) 2007; 46
Stephan (D4RA03568B/cit24/1) 2014; 5
Yang (D4RA03568B/cit45/1) 2022; 41
Lr (D4RA03568B/cit1/1) 1975; 46
Stephan (D4RA03568B/cit25/1) 2015; 48
Kehr (D4RA03568B/cit32/1) 2017; 17
Stephan (D4RA03568B/cit31/1) 2016; 354
Wolters (D4RA03568B/cit77/1) 2015; 5
United States Environmental Protection Agency (D4RA03568B/cit8/1)
Welch (D4RA03568B/cit16/1) 2006; 314
Mitoraj (D4RA03568B/cit69/1) 2007; 13
Fernańdez (D4RA03568B/cit76/1) 2014; 16
Bolze (D4RA03568B/cit14/1) 1988; 22
Cox (D4RA03568B/cit13/1) 2000
Morokuma (D4RA03568B/cit58/1) 1971; 55
Crabtree (D4RA03568B/cit83/1) 2005
Stephan (D4RA03568B/cit19/1) 2008; 6
Heullyt (D4RA03568B/cit68/1) 1986; 19
Whittaker (D4RA03568B/cit12/1) 2000
Cordero (D4RA03568B/cit84/1) 2008; 37
Cabrera (D4RA03568B/cit39/1) 2015; 44
Ess (D4RA03568B/cit80/1) 2008; 130
Fernańdez (D4RA03568B/cit78/1) 2014
Sircar (D4RA03568B/cit7/1) 2015; 33
Bickelhaupt (D4RA03568B/cit61/1) 1995; 14
Kalescky (D4RA03568B/cit15/1) 2013; 117
Zhang (D4RA03568B/cit44/1) 2021; 60
Ghosh (D4RA03568B/cit41/1) 2020; 142
Fernańdez (D4RA03568B/cit75/1) 2014; 43
Mitoraj (D4RA03568B/cit72/1) 2009; 5
Weigend (D4RA03568B/cit56/1) 2006; 8
van Lenthe (D4RA03568B/cit66/1) 2003; 24
Coburn (D4RA03568B/cit2/1) 1979; 8
Ramos (D4RA03568B/cit40/1) 2017; 46
Palomero (D4RA03568B/cit42/1) 2022; 51
Horowitz (D4RA03568B/cit6/1) 1987; 162
Venanzi (D4RA03568B/cit10/1) 1981; 56
Yang (D4RA03568B/cit48/1) 2022; 61
Hammond (D4RA03568B/cit88/1) 1955; 77
Murrell (D4RA03568B/cit11/1) 1985
Prockop (D4RA03568B/cit4/1) 2007; 262
Ríos-Gutiérrez (D4RA03568B/cit43/1) 2019; 48
Grimme (D4RA03568B/cit53/1) 2010; 132
References_xml – issn: 2000
  end-page: p 223
  publication-title: Instant Notes Physical Chemistry
  doi: Whittaker Mount Heal
– issn: 2005
  end-page: pp 310-311
  publication-title: The Organometallic Chemistry of the Transition Metals
  doi: Crabtree
– volume-title: An Introduction to Indoor Air Quality (IAQ)
  publication-title: Carbon Monoxide (CO)
  doi: United States Environmental Protection Agency
– issn: 2014
  end-page: pp 165-187
  publication-title: Discoveringthe Future of Molecular Sciences
  doi: Ferna dez
– issn: 1985
  end-page: p 96
  publication-title: The Chemical Bond
  doi: Murrell Kettle Tedder
– issn: 2000
  end-page: p 59
  publication-title: Instant Notes Inorganic Chemistry
  doi: Cox
– issn: 2016
  publication-title: Gaussian 16, Revision C.01
  doi: Frisch Trucks Schlegel Scuseria Robb Cheeseman Scalmani Barone Petersson Nakatsuji Li Caricato Marenich Bloino Janesko Gomperts Mennucci Hratchian Ortiz Izmaylov Sonnenberg Williams-Young Ding Lipparini Egidi Goings Peng Petrone Henderson Ranasinghe Zakrzewski Gao Rega Zheng Liang Hada Ehara Toyota Fukuda Hasegawa Ishida Nakajima Honda Kitao Nakai Vreven Throssell Montgomery Jr Peralta Ogliaro Bearpark Heyd Brothers Kudin Staroverov Keith Kobayashi Normand Raghavachari Rendell Burant Iyengar Tomasi Cossi Millam Klene Adamo Cammi Ochterski Martin Morokuma Farkas Foresman Fox
– publication-title: Computer code ADF2017, SCM, Theoretical Chemistry
– volume: 354
  start-page: aaf7229
  year: 2016
  ident: D4RA03568B/cit31/1
  publication-title: Science
  doi: 10.1126/science.aaf7229
– volume: 109
  start-page: 3227
  year: 2009
  ident: D4RA03568B/cit82/1
  publication-title: Chem. Rev.
  doi: 10.1021/cr900034e
– volume: 8
  start-page: 3118
  year: 2010
  ident: D4RA03568B/cit74/1
  publication-title: Org. Biomol. Chem.
  doi: 10.1039/b926828f
– volume: 1
  start-page: 286
  year: 2005
  ident: D4RA03568B/cit65/1
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/ct0499478
– volume: 13
  start-page: 347
  year: 2007
  ident: D4RA03568B/cit69/1
  publication-title: J. Mol. Model.
  doi: 10.1007/s00894-006-0149-4
– volume: 25
  start-page: 7423
  year: 2023
  ident: D4RA03568B/cit50/1
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/D2CP05135D
– volume: 5
  start-page: 324
  year: 2015
  ident: D4RA03568B/cit77/1
  publication-title: Wiley Interdiscip. Rev.: Comput. Mol. Sci.
– volume: 8
  start-page: 361
  year: 1975
  ident: D4RA03568B/cit85/1
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar50095a001
– volume: 16
  start-page: 7662
  year: 2014
  ident: D4RA03568B/cit76/1
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C4CP00346B
– volume: 24
  start-page: 1142
  year: 2003
  ident: D4RA03568B/cit66/1
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.10255
– volume: 88
  start-page: 1003
  year: 2015
  ident: D4RA03568B/cit30/1
  publication-title: Bull. Chem. Soc. Jpn.
  doi: 10.1246/bcsj.20150131
– volume: 46
  start-page: 1
  year: 1977
  ident: D4RA03568B/cit59/1
  publication-title: Theor. Chim. Acta
  doi: 10.1007/BF02401406
– volume: 46
  start-page: 10281
  year: 2017
  ident: D4RA03568B/cit40/1
  publication-title: Dalton Trans.
  doi: 10.1039/C7DT02081C
– volume: 4
  start-page: 1849
  year: 2008
  ident: D4RA03568B/cit52/1
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/ct800246v
– volume: 1
  start-page: 35
  year: 2019
  ident: D4RA03568B/cit33/1
  publication-title: Trends Chem.
  doi: 10.1016/j.trechm.2019.01.006
– volume: 8
  start-page: 863
  year: 2023
  ident: D4RA03568B/cit49/1
  publication-title: ACS Omega
– volume: 8
  start-page: 310
  year: 1979
  ident: D4RA03568B/cit2/1
  publication-title: Prev. Med.
  doi: 10.1016/0091-7435(79)90008-2
– volume: 61
  start-page: 12959
  year: 2022
  ident: D4RA03568B/cit48/1
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.2c00259
– volume: 7
  start-page: 2197
  year: 2016
  ident: D4RA03568B/cit55/1
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.6b00780
– volume: 19
  start-page: 2799
  year: 1986
  ident: D4RA03568B/cit68/1
  publication-title: J. Phys. B: At. Mol. Phys.
  doi: 10.1088/0022-3700/19/18/011
– volume: 130
  start-page: 10187
  year: 2008
  ident: D4RA03568B/cit80/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja800009z
– volume: 15
  start-page: 1
  year: 2000
  ident: D4RA03568B/cit63/1
  publication-title: Rev. Comput. Chem.
  doi: 10.1002/9780470125922.ch1
– volume: 22
  start-page: 931
  year: 2001
  ident: D4RA03568B/cit64/1
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.1056
– volume: 77
  start-page: 334
  year: 1955
  ident: D4RA03568B/cit88/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja01607a027
– start-page: 310
  volume-title: The Organometallic Chemistry of the Transition Metals
  year: 2005
  ident: D4RA03568B/cit83/1
  doi: 10.1002/0471718769
– volume: 84
  start-page: 2203
  year: 2012
  ident: D4RA03568B/cit23/1
  publication-title: Pure Appl. Chem.
  doi: 10.1351/PAC-CON-12-04-07
– volume: 46
  start-page: 8050
  year: 2007
  ident: D4RA03568B/cit18/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200702908
– volume: 20
  start-page: 114
  year: 1999
  ident: D4RA03568B/cit73/1
  publication-title: J. Comput. Chem.
  doi: 10.1002/(SICI)1096-987X(19990115)20:1<114::AID-JCC12>3.0.CO;2-L
– volume: 37
  start-page: 2832
  year: 2008
  ident: D4RA03568B/cit84/1
  publication-title: Dalton Trans.
  doi: 10.1039/b801115j
– volume: 142
  start-page: 12635
  year: 2020
  ident: D4RA03568B/cit41/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.0c03343
– volume: 48
  start-page: 9214
  year: 2019
  ident: D4RA03568B/cit43/1
  publication-title: Dalton Trans.
  doi: 10.1039/C9DT01489F
– volume: 41
  start-page: 374
  year: 2022
  ident: D4RA03568B/cit45/1
  publication-title: Organometallics
  doi: 10.1021/acs.organomet.1c00599
– volume: 8
  start-page: 1057
  year: 2006
  ident: D4RA03568B/cit56/1
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/b515623h
– volume: 262
  start-page: 122
  year: 2007
  ident: D4RA03568B/cit4/1
  publication-title: J. Neurol. Sci.
  doi: 10.1016/j.jns.2007.06.037
– volume: 54
  start-page: 2
  year: 2015
  ident: D4RA03568B/cit26/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201409800
– volume: 60
  start-page: 15253
  year: 2021
  ident: D4RA03568B/cit44/1
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.1c01809
– volume: 132
  start-page: 13559
  year: 2010
  ident: D4RA03568B/cit35/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja1064153
– volume: 6
  start-page: 1535
  year: 2008
  ident: D4RA03568B/cit19/1
  publication-title: Org. Biomol. Chem.
  doi: 10.1039/b802575b
– volume: 41
  start-page: 3664
  year: 2022
  ident: D4RA03568B/cit47/1
  publication-title: Organometallics
  doi: 10.1021/acs.organomet.2c00453
– volume: 129
  start-page: 10646
  year: 2007
  ident: D4RA03568B/cit79/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja0734086
– volume: 43
  start-page: 4953
  year: 2014
  ident: D4RA03568B/cit75/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C4CS00055B
– volume: 17
  start-page: 803
  year: 2017
  ident: D4RA03568B/cit32/1
  publication-title: Chem. Rec.
  doi: 10.1002/tcr.201700010
– volume: 57
  start-page: 12528
  year: 2021
  ident: D4RA03568B/cit38/1
  publication-title: Chem. Commun.
  doi: 10.1039/D1CC05673E
– volume: 20
  start-page: 114
  year: 1999
  ident: D4RA03568B/cit62/1
  publication-title: J. Comput. Chem.
  doi: 10.1002/(SICI)1096-987X(19990115)20:1<114::AID-JCC12>3.0.CO;2-L
– volume: 137
  start-page: 10018
  year: 2015
  ident: D4RA03568B/cit28/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b06794
– volume: 162
  start-page: 787
  year: 1987
  ident: D4RA03568B/cit6/1
  publication-title: Radiology
  doi: 10.1148/radiology.162.3.3809495
– volume: 56
  start-page: 423
  year: 1981
  ident: D4RA03568B/cit10/1
  publication-title: J. Chem. Educ.
  doi: 10.1021/ed058p423
– volume: 34
  start-page: 394
  year: 1986
  ident: D4RA03568B/cit67/1
  publication-title: Phys. Scr.
  doi: 10.1088/0031-8949/34/5/007
– volume: 55
  start-page: 1236
  year: 1971
  ident: D4RA03568B/cit58/1
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1676210
– volume: 33
  start-page: 1140
  year: 2015
  ident: D4RA03568B/cit7/1
  publication-title: Am. J. Emerg. Med.
  doi: 10.1016/j.ajem.2015.05.002
– start-page: 96
  volume-title: The Chemical Bond
  year: 1985
  ident: D4RA03568B/cit11/1
– volume: 46
  start-page: 1289
  year: 1975
  ident: D4RA03568B/cit1/1
  publication-title: Aviat., Space Environ. Med.
– volume: 48
  start-page: 306
  year: 2015
  ident: D4RA03568B/cit29/1
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar500375j
– volume: 14
  start-page: 384
  year: 2023
  ident: D4RA03568B/cit87/1
  publication-title: Chem. Sci.
  doi: 10.1039/D2SC05769G
– volume: 48
  start-page: 6643
  year: 2009
  ident: D4RA03568B/cit21/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200901636
– start-page: 223
  volume-title: Instant Notes Physical Chemistry
  year: 2000
  ident: D4RA03568B/cit12/1
  doi: 10.4324/9780203009925
– start-page: 59
  volume-title: Instant Notes Inorganic Chemistry
  year: 2000
  ident: D4RA03568B/cit13/1
– volume: 314
  start-page: 1124
  year: 2006
  ident: D4RA03568B/cit16/1
  publication-title: Science
  doi: 10.1126/science.1134230
– volume: 5
  start-page: 2625
  year: 2014
  ident: D4RA03568B/cit24/1
  publication-title: Chem. Sci.
  doi: 10.1039/C4SC00395K
– volume: 6
  start-page: 1520
  year: 2020
  ident: D4RA03568B/cit34/1
  publication-title: Chem
  doi: 10.1016/j.chempr.2020.05.007
– volume: 3
  start-page: 1814
  year: 2012
  ident: D4RA03568B/cit36/1
  publication-title: Chem. Sci.
  doi: 10.1039/c2sc20336g
– volume: 135
  start-page: 4974
  year: 2013
  ident: D4RA03568B/cit37/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja401492s
– volume: 48
  start-page: 306
  year: 2015
  ident: D4RA03568B/cit25/1
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar500375j
– volume: 54
  start-page: 6400
  year: 2015
  ident: D4RA03568B/cit27/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201409800
– volume: 49
  start-page: 46
  year: 2010
  ident: D4RA03568B/cit22/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200903708
– volume: 129
  start-page: 7596
  year: 2007
  ident: D4RA03568B/cit86/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja0691324
– start-page: 165
  volume-title: Discoveringthe Future of Molecular Sciences
  year: 2014
  ident: D4RA03568B/cit78/1
  doi: 10.1002/9783527673223.ch7
– volume: 38
  start-page: 3129
  year: 2009
  ident: D4RA03568B/cit20/1
  publication-title: Dalton Trans.
  doi: 10.1039/b819621d
– volume: 14
  start-page: 2288
  year: 1995
  ident: D4RA03568B/cit61/1
  publication-title: Organometallics
  doi: 10.1021/om00005a030
– volume: 5
  start-page: 962
  year: 2009
  ident: D4RA03568B/cit72/1
  publication-title: J. Chem. Theory Comput.
  doi: 10.1021/ct800503d
– volume: 26
  start-page: 6576
  year: 2007
  ident: D4RA03568B/cit70/1
  publication-title: Organometallics
  doi: 10.1021/om700754n
– volume: 112
  start-page: 1933
  year: 2008
  ident: D4RA03568B/cit71/1
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp075460u
– volume-title: Carbon Monoxide (CO)
  ident: D4RA03568B/cit8/1
– volume: 339
  start-page: 1603
  year: 1998
  ident: D4RA03568B/cit3/1
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJM199811263392206
– volume: 126
  start-page: 5534
  year: 2022
  ident: D4RA03568B/cit46/1
  publication-title: J. Phys. Chem. A
  doi: 10.1021/acs.jpca.2c03602
– volume: 32
  start-page: 1456
  year: 2011
  ident: D4RA03568B/cit54/1
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.21759
– volume: 46
  start-page: 4968
  year: 2007
  ident: D4RA03568B/cit17/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200701215
– volume: 63
  start-page: 253A
  year: 1981
  ident: D4RA03568B/cit5/1
  publication-title: Circulation
– volume: 22
  start-page: 596
  year: 1988
  ident: D4RA03568B/cit14/1
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es00171a607
– volume: 51
  start-page: 6275
  year: 2022
  ident: D4RA03568B/cit42/1
  publication-title: Dalton Trans.
  doi: 10.1039/D2DT00691J
– volume: 44
  start-page: 19606
  year: 2015
  ident: D4RA03568B/cit39/1
  publication-title: Dalton Trans.
  doi: 10.1039/C5DT01966D
– volume: 117
  start-page: 8981
  year: 2013
  ident: D4RA03568B/cit15/1
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp406200w
– volume: 132
  start-page: 154104
  year: 2010
  ident: D4RA03568B/cit53/1
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3382344
– volume: 105
  start-page: 1656
  year: 2001
  ident: D4RA03568B/cit9/1
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp002019u
– volume: 18
  start-page: 1558
  year: 1979
  ident: D4RA03568B/cit60/1
  publication-title: Inorg. Chem.
  doi: 10.1021/ic50196a034
– volume: 10
  start-page: 1633
  year: 2008
  ident: D4RA03568B/cit81/1
  publication-title: Org. Lett.
  doi: 10.1021/ol8003657
SSID ssj0000651261
Score 2.4102595
Snippet Incomplete combustion yields a significant byproduct, known for its high toxicity to humans: gas phase carbon monoxide (CO). This study utilized several...
SourceID proquest
pubmed
crossref
rsc
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 19446
SubjectTerms Activation energy
Carbon
Carbon monoxide
Electronic structure
Electrons
Lewis acid
Molecular orbitals
Strain analysis
Structural analysis
Vapor phases
Title Understanding the CO capture reaction through electronic structure analysis of four-membered-ring group-13/N- and B/group-15-based Lewis acid-base pairs
URI https://www.ncbi.nlm.nih.gov/pubmed/38919374
https://www.proquest.com/docview/3071899261
https://www.proquest.com/docview/3072293752
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELbKcoAL4rVQWJARXFBlmsTO67jt7mqFSitBK1Vcovi1HKCtSldInBB_gRs_j1_C2I6dVl0h4GKlthWn-b54xp7xDEIvVMQ4zRQgICJOWE0l4WnJCS90neikEEVqDgq_GWfnM_Z6ns47ne9bXkuXG_5KfL3yXMn_oAp1gKs5JfsPyIabQgVcA75QAsJQ_hXGs52TKUaFHE56ol5ZqwBogy4NuE_Fs5XxxkWNdbaDNiiJhjHJJ2VShChJrGOePfRBYhN2YUysoWEAl01tSowMlL2R-gI3qAX8_8Z1gpqG3irYinwE8HdD73QQVPn3H9TigsBrtXOO3b8OJIAnICdqDbPb9uZEwojN6hPo5LZAvP-p9S9pstg58WPnuQSW6ACry9gSJmW2RT4XPaCZYuOSNZuWyv92wd_3hEFETSxVydZ1RNOs4K3I82b-8aQ6m41G1fR0Pr2Griew1Ei2luVOmoNKlMU-si0t--0Nd3WZvQUKqCtrn0bGqivT2-hWs87Ax440d1BHLe6iG-HF3EM_d8iDgTx4OMENebAnD27Ig1vy4EAe7MmDlxrvkwd78vTHBLpKPOjvEgdb4mBDnF_ffpgqbClzH83OTqfDc9Ik6iCC5nQDpZSg2ma6ZDRjOmUyh4LLLK6pZjXXLOIqzeM8VplIM50pnQtVlMYLQBeC0UN0sFgu1EOEi0ikqtRCZglnAkSgBI1VKF3zSHOeRl300r_ySjRR7E0ylY-V9aagZXXC3h5beAZd9Dz0XbnYLVf2OvLIVc23_bkCyRcXZQnAd9Gz0AwIGXNavVDLS9snAWU5T5MueuAQD8MY6z80sS46BAqE6pY6j_486mN0s_2cjtABAKuegPa74U8tPX8DESq2kA
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Understanding+the+CO+capture+reaction+through+electronic+structure+analysis+of+four-membered-ring+group-13%2FN-+and+B%2Fgroup-15-based+Lewis+acid%E2%80%93base+pairs&rft.jtitle=RSC+advances&rft.au=Zheng-Feng%2C+Zhang&rft.au=Ming-Der+Su&rft.date=2024-06-12&rft.pub=Royal+Society+of+Chemistry&rft.eissn=2046-2069&rft.volume=14&rft.issue=27&rft.spage=19446&rft.epage=19458&rft_id=info:doi/10.1039%2Fd4ra03568b&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2046-2069&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2046-2069&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2046-2069&client=summon