An improved multi-source domain adaptation network for inter-subject mental fatigue detection based on DANN

Electroencephalogram (EEG) is often used to detect mental fatigue because of its real-time characteristic and objective nature. However, because of the individual variability of EEG among different individuals, tedious and time-consuming calibration sessions are needed. Therefore, we propose a multi...

Full description

Saved in:
Bibliographic Details
Published inBiomedizinische Technik Vol. 68; no. 3; pp. 317 - 327
Main Authors Chen, Kun, Liu, Zhiyong, Li, Zhilei, Liu, Quan, Ai, Qingsong, Ma, Li
Format Journal Article
LanguageEnglish
Published Germany De Gruyter 27.06.2023
Walter de Gruyter GmbH
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Electroencephalogram (EEG) is often used to detect mental fatigue because of its real-time characteristic and objective nature. However, because of the individual variability of EEG among different individuals, tedious and time-consuming calibration sessions are needed. Therefore, we propose a multi-source domain adaptation network for inter-subject mental fatigue detection named FLDANN, which is short for focal loss based domain-adversarial training of neural network. As for mental state feature extraction, power spectrum density is extracted based on the Welch method from four sub-bands of EEG signals. The features of the source domain and target domain are fed into the FLDANN network. The contributions of FLDANN include: (1) It uses the idea of adversarial to reduce feature differences between the source and target domain. (2) A loss function named focal loss is used to assign weights to source and target domain samples. The experiment result shows that when the number of the source domains increases, the classification accuracy of domain-adversarial training of neural network (DANN) gradually decreases and finally tends to be stable. The proposed method achieves an accuracy of 84.10% ± 8.75% on the SEED-VIG dataset and 65.42% ± 7.47% on the self-designed dataset. In addition, the proposed method is compared with other domain adaptation methods and the results show that the proposed method outperforms those state-of-the-art methods. The result proves that the proposed method is able to solve the problem of individual differences across subjects and to solve the problem of low classification performance of multi-source domain transfer learning.
AbstractList Electroencephalogram (EEG) is often used to detect mental fatigue because of its real-time characteristic and objective nature. However, because of the individual variability of EEG among different individuals, tedious and time-consuming calibration sessions are needed. Therefore, we propose a multi-source domain adaptation network for inter-subject mental fatigue detection named FLDANN, which is short for focal loss based domain-adversarial training of neural network. As for mental state feature extraction, power spectrum density is extracted based on the Welch method from four sub-bands of EEG signals. The features of the source domain and target domain are fed into the FLDANN network. The contributions of FLDANN include: (1) It uses the idea of adversarial to reduce feature differences between the source and target domain. (2) A loss function named focal loss is used to assign weights to source and target domain samples. The experiment result shows that when the number of the source domains increases, the classification accuracy of domain-adversarial training of neural network (DANN) gradually decreases and finally tends to be stable. The proposed method achieves an accuracy of 84.10% ± 8.75% on the SEED-VIG dataset and 65.42% ± 7.47% on the self-designed dataset. In addition, the proposed method is compared with other domain adaptation methods and the results show that the proposed method outperforms those state-of-the-art methods. The result proves that the proposed method is able to solve the problem of individual differences across subjects and to solve the problem of low classification performance of multi-source domain transfer learning.
Electroencephalogram (EEG) is often used to detect mental fatigue because of its real-time characteristic and objective nature. However, because of the individual variability of EEG among different individuals, tedious and time-consuming calibration sessions are needed.Therefore, we propose a multi-source domain adaptation network for inter-subject mental fatigue detection named FLDANN, which is short for focal loss based domain-adversarial training of neural network. As for mental state feature extraction, power spectrum density is extracted based on the Welch method from four sub-bands of EEG signals. The features of the source domain and target domain are fed into the FLDANN network. The contributions of FLDANN include: (1) It uses the idea of adversarial to reduce feature differences between the source and target domain. (2) A loss function named focal loss is used to assign weights to source and target domain samplesThe experiment result shows that when the number of the source domains increases, the classification accuracy of domain-adversarial training of neural network (DANN) gradually decreases and finally tends to be stable. The proposed method achieves an accuracy of 84.10% ± 8.75% on the SEED-VIG dataset and 65.42% ± 7.47% on the self-designed dataset. In addition, the proposed method is compared with other domain adaptation methods and the results show that the proposed method outperforms those state-of-the-art methods.The result proves that the proposed method is able to solve the problem of individual differences across subjects and to solve the problem of low classification performance of multi-source domain transfer learning.
Electroencephalogram (EEG) is often used to detect mental fatigue because of its real-time characteristic and objective nature. However, because of the individual variability of EEG among different individuals, tedious and time-consuming calibration sessions are needed.OBJECTIVESElectroencephalogram (EEG) is often used to detect mental fatigue because of its real-time characteristic and objective nature. However, because of the individual variability of EEG among different individuals, tedious and time-consuming calibration sessions are needed.Therefore, we propose a multi-source domain adaptation network for inter-subject mental fatigue detection named FLDANN, which is short for focal loss based domain-adversarial training of neural network. As for mental state feature extraction, power spectrum density is extracted based on the Welch method from four sub-bands of EEG signals. The features of the source domain and target domain are fed into the FLDANN network. The contributions of FLDANN include: (1) It uses the idea of adversarial to reduce feature differences between the source and target domain. (2) A loss function named focal loss is used to assign weights to source and target domain samples.METHODSTherefore, we propose a multi-source domain adaptation network for inter-subject mental fatigue detection named FLDANN, which is short for focal loss based domain-adversarial training of neural network. As for mental state feature extraction, power spectrum density is extracted based on the Welch method from four sub-bands of EEG signals. The features of the source domain and target domain are fed into the FLDANN network. The contributions of FLDANN include: (1) It uses the idea of adversarial to reduce feature differences between the source and target domain. (2) A loss function named focal loss is used to assign weights to source and target domain samples.The experiment result shows that when the number of the source domains increases, the classification accuracy of domain-adversarial training of neural network (DANN) gradually decreases and finally tends to be stable. The proposed method achieves an accuracy of 84.10% ± 8.75% on the SEED-VIG dataset and 65.42% ± 7.47% on the self-designed dataset. In addition, the proposed method is compared with other domain adaptation methods and the results show that the proposed method outperforms those state-of-the-art methods.RESULTSThe experiment result shows that when the number of the source domains increases, the classification accuracy of domain-adversarial training of neural network (DANN) gradually decreases and finally tends to be stable. The proposed method achieves an accuracy of 84.10% ± 8.75% on the SEED-VIG dataset and 65.42% ± 7.47% on the self-designed dataset. In addition, the proposed method is compared with other domain adaptation methods and the results show that the proposed method outperforms those state-of-the-art methods.The result proves that the proposed method is able to solve the problem of individual differences across subjects and to solve the problem of low classification performance of multi-source domain transfer learning.CONCLUSIONSThe result proves that the proposed method is able to solve the problem of individual differences across subjects and to solve the problem of low classification performance of multi-source domain transfer learning.
Author Liu, Quan
Liu, Zhiyong
Chen, Kun
Ai, Qingsong
Ma, Li
Li, Zhilei
Author_xml – sequence: 1
  givenname: Kun
  orcidid: 0000-0002-2188-1439
  surname: Chen
  fullname: Chen, Kun
  organization: School of Information Engineering, Wuhan University of Technology, Wuhan, China
– sequence: 2
  givenname: Zhiyong
  surname: Liu
  fullname: Liu, Zhiyong
  organization: School of Information Engineering, Wuhan University of Technology, Wuhan, China
– sequence: 3
  givenname: Zhilei
  surname: Li
  fullname: Li, Zhilei
  organization: School of Information Engineering, Wuhan University of Technology, Wuhan, China
– sequence: 4
  givenname: Quan
  surname: Liu
  fullname: Liu, Quan
  organization: School of Information Engineering, Wuhan University of Technology, Wuhan, China
– sequence: 5
  givenname: Qingsong
  surname: Ai
  fullname: Ai, Qingsong
  organization: School of Computer Science and Information Engineering, Hubei University, Wuhan, China
– sequence: 6
  givenname: Li
  surname: Ma
  fullname: Ma, Li
  email: excellentmary@whut.edu.cn
  organization: School of Information Engineering, Wuhan University of Technology, Wuhan, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36797837$$D View this record in MEDLINE/PubMed
BookMark eNp1kc1rFTEUxYNU7OvTpVsZcOMmmu_J4OpRWxVK3Si4C5nMnZLXmeSZZCz9783wWoSiq1zC7xzuPecMnYQYAKHXlLynksoP_VwwI4xhwqV4hjZUK4ZZq3-eoA0hlGMptTxFZznvCRFSduQFOuWq7VrN2w263YXGz4cUf8PQzMtUPM5xSQ6aIc7Wh8YO9lBs8TE0AcpdTLfNGFPjQ4GE89LvwZVmhlDs1IyVu1mqFEr9XSW9zdW3Dp9219cv0fPRThlePbxb9OPy4vv5F3z17fPX890VdrzlBTtqO9mqUdJODVJYoXQ7DpQ57ajgo2NMQT8S1SnRSZCEWKss7QWT2koCjG_Ru6NvPevXArmY2WcH02QDxCUbphkngtCazha9fYLu6_WhbrdSNUZBdVepNw_U0s8wmEPys0335jHGCvAj4FLMOcFonD-GVpL1k6HErGWZWpZZyzJrWVWFn6gejf_Hfzzyd3aq6Q9wk5b7Ovzd-Z86pTmnLf8Dd06o3Q
CitedBy_id crossref_primary_10_1038_s41598_025_86234_1
Cites_doi 10.1093/occmed/kqu168
10.1109/IJCNN.2018.8489212
10.1016/j.aei.2020.101157
10.1016/j.eswa.2019.02.005
10.1109/TFUZZ.2016.2633379
10.1109/ICCV.2013.274
10.1371/journal.pone.0188756
10.1109/TAU.1967.1161901
10.1109/ICCV.2017.324
10.1016/B978-1-78548-236-6.50002-7
10.1016/j.lfs.2008.12.004
10.1109/BIBM47256.2019.8982972
10.1109/TNN.2010.2091281
10.3390/e23040457
10.1111/psyp.13554
10.1007/s11571-018-9481-5
10.1109/VCIP.2016.7805516
10.3390/s20247251
10.1109/IJCNN.2018.8489480
10.1109/TKDE.2009.191
10.1109/TITS.2005.848368
10.3389/fnins.2021.773790
10.1007/s11571-020-09601-w
10.1007/978-3-319-49409-8_35
10.1088/1741-2552/aa5a98
10.1016/j.bspc.2021.102591
10.1016/j.jneumeth.2022.109722
10.2991/icitmi-15.2015.101
10.1109/CSO.2014.21
ContentType Journal Article
Copyright 2023 Walter de Gruyter GmbH, Berlin/Boston.
2023 Walter de Gruyter GmbH, Berlin/Boston
Copyright_xml – notice: 2023 Walter de Gruyter GmbH, Berlin/Boston.
– notice: 2023 Walter de Gruyter GmbH, Berlin/Boston
DBID AAYXX
CITATION
NPM
7QO
7TB
7U5
8FD
FR3
L7M
P64
7X8
DOI 10.1515/bmt-2022-0354
DatabaseName CrossRef
PubMed
Biotechnology Research Abstracts
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Engineering Research Database
Advanced Technologies Database with Aerospace
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Biotechnology Research Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList PubMed
Biotechnology Research Abstracts
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1862-278X
EndPage 327
ExternalDocumentID 36797837
10_1515_bmt_2022_0354
10_1515_bmt_2022_0354683317
Genre Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 52075398; 52275029
– fundername: Natural Science Foundation of Hubei Province
  grantid: 2022CFB896
GroupedDBID 0R~
0~D
23N
4.4
5GY
AAAEU
AAAVF
AABBZ
AACIX
AAGVJ
AALGR
AAOQK
AAOWA
AAPJK
AAQCX
AARRE
AASQH
AAWFC
AAXCG
ABDRH
ABFKT
ABFQV
ABJNI
ABMIY
ABPLS
ABRDF
ABUVI
ABWLS
ABXMZ
ABYBW
ACDEB
ACEFL
ACGFS
ACPMA
ACUND
ACYCL
ACZBO
ADDWE
ADEQT
ADGQD
ADGYE
AECWL
AEGVQ
AEICA
AEJTT
AERZL
AEXIE
AFBAA
AFBDD
AFCXV
AFGDO
AFYRI
AGBEV
AGQYU
AHGSO
AHOVO
AHVWV
AHXUK
AIERV
AIWOI
AJHHK
AKXKS
ALMA_UNASSIGNED_HOLDINGS
ALYBR
ASYPN
BAKPI
BCIFA
CGQUA
CS3
DU5
EBS
EMOBN
F5P
HZ~
IY9
KDIRW
O9-
P2P
QD8
RDG
SA.
SLJYH
UK5
WTRAM
AAYXX
CITATION
ABVMU
NPM
7QO
7TB
7U5
8FD
ADNPR
FR3
L7M
P64
7X8
ID FETCH-LOGICAL-c373t-c1a9576f5196d54a4687fd12c8c143fc226ebf0696495e500aa6a1b4258a50e23
ISSN 0013-5585
1862-278X
IngestDate Fri Jul 11 11:27:25 EDT 2025
Sat Jul 26 02:16:34 EDT 2025
Thu Apr 03 07:07:13 EDT 2025
Thu Apr 24 23:12:28 EDT 2025
Tue Jul 01 03:36:37 EDT 2025
Thu Jul 10 10:34:03 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords FLDANN
mental fatigue
domain adaptation
inter-subject
EEG
multi-source domain
Language English
License 2023 Walter de Gruyter GmbH, Berlin/Boston.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c373t-c1a9576f5196d54a4687fd12c8c143fc226ebf0696495e500aa6a1b4258a50e23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-2188-1439
PMID 36797837
PQID 2822784189
PQPubID 2045214
PageCount 11
ParticipantIDs proquest_miscellaneous_2823040101
proquest_journals_2822784189
pubmed_primary_36797837
crossref_citationtrail_10_1515_bmt_2022_0354
crossref_primary_10_1515_bmt_2022_0354
walterdegruyter_journals_10_1515_bmt_2022_0354683317
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-06-27
PublicationDateYYYYMMDD 2023-06-27
PublicationDate_xml – month: 06
  year: 2023
  text: 2023-06-27
  day: 27
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Berlin
PublicationTitle Biomedizinische Technik
PublicationTitleAlternate Biomed Tech (Berl)
PublicationYear 2023
Publisher De Gruyter
Walter de Gruyter GmbH
Publisher_xml – name: De Gruyter
– name: Walter de Gruyter GmbH
References 2023060616531451654_j_bmt-2022-0354_ref_020
2023060616531451654_j_bmt-2022-0354_ref_021
2023060616531451654_j_bmt-2022-0354_ref_022
2023060616531451654_j_bmt-2022-0354_ref_001
2023060616531451654_j_bmt-2022-0354_ref_023
2023060616531451654_j_bmt-2022-0354_ref_002
2023060616531451654_j_bmt-2022-0354_ref_024
2023060616531451654_j_bmt-2022-0354_ref_003
2023060616531451654_j_bmt-2022-0354_ref_025
2023060616531451654_j_bmt-2022-0354_ref_004
2023060616531451654_j_bmt-2022-0354_ref_026
2023060616531451654_j_bmt-2022-0354_ref_005
2023060616531451654_j_bmt-2022-0354_ref_027
2023060616531451654_j_bmt-2022-0354_ref_006
2023060616531451654_j_bmt-2022-0354_ref_028
2023060616531451654_j_bmt-2022-0354_ref_007
2023060616531451654_j_bmt-2022-0354_ref_029
2023060616531451654_j_bmt-2022-0354_ref_008
2023060616531451654_j_bmt-2022-0354_ref_009
2023060616531451654_j_bmt-2022-0354_ref_030
2023060616531451654_j_bmt-2022-0354_ref_031
2023060616531451654_j_bmt-2022-0354_ref_010
2023060616531451654_j_bmt-2022-0354_ref_032
2023060616531451654_j_bmt-2022-0354_ref_011
2023060616531451654_j_bmt-2022-0354_ref_033
2023060616531451654_j_bmt-2022-0354_ref_012
2023060616531451654_j_bmt-2022-0354_ref_013
2023060616531451654_j_bmt-2022-0354_ref_014
2023060616531451654_j_bmt-2022-0354_ref_015
2023060616531451654_j_bmt-2022-0354_ref_016
2023060616531451654_j_bmt-2022-0354_ref_017
2023060616531451654_j_bmt-2022-0354_ref_018
2023060616531451654_j_bmt-2022-0354_ref_019
References_xml – ident: 2023060616531451654_j_bmt-2022-0354_ref_028
– ident: 2023060616531451654_j_bmt-2022-0354_ref_023
  doi: 10.1093/occmed/kqu168
– ident: 2023060616531451654_j_bmt-2022-0354_ref_019
  doi: 10.1109/IJCNN.2018.8489212
– ident: 2023060616531451654_j_bmt-2022-0354_ref_013
  doi: 10.1016/j.aei.2020.101157
– ident: 2023060616531451654_j_bmt-2022-0354_ref_015
  doi: 10.1016/j.eswa.2019.02.005
– ident: 2023060616531451654_j_bmt-2022-0354_ref_014
  doi: 10.1109/TFUZZ.2016.2633379
– ident: 2023060616531451654_j_bmt-2022-0354_ref_030
  doi: 10.1109/ICCV.2013.274
– ident: 2023060616531451654_j_bmt-2022-0354_ref_005
  doi: 10.1371/journal.pone.0188756
– ident: 2023060616531451654_j_bmt-2022-0354_ref_025
  doi: 10.1109/TAU.1967.1161901
– ident: 2023060616531451654_j_bmt-2022-0354_ref_027
  doi: 10.1109/ICCV.2017.324
– ident: 2023060616531451654_j_bmt-2022-0354_ref_011
  doi: 10.1016/B978-1-78548-236-6.50002-7
– ident: 2023060616531451654_j_bmt-2022-0354_ref_022
  doi: 10.1016/j.lfs.2008.12.004
– ident: 2023060616531451654_j_bmt-2022-0354_ref_008
  doi: 10.1109/BIBM47256.2019.8982972
– ident: 2023060616531451654_j_bmt-2022-0354_ref_010
  doi: 10.1109/TNN.2010.2091281
– ident: 2023060616531451654_j_bmt-2022-0354_ref_024
  doi: 10.3390/e23040457
– ident: 2023060616531451654_j_bmt-2022-0354_ref_001
  doi: 10.1111/psyp.13554
– ident: 2023060616531451654_j_bmt-2022-0354_ref_004
  doi: 10.1007/s11571-018-9481-5
– ident: 2023060616531451654_j_bmt-2022-0354_ref_033
  doi: 10.1109/VCIP.2016.7805516
– ident: 2023060616531451654_j_bmt-2022-0354_ref_029
  doi: 10.3390/s20247251
– ident: 2023060616531451654_j_bmt-2022-0354_ref_020
  doi: 10.1109/IJCNN.2018.8489480
– ident: 2023060616531451654_j_bmt-2022-0354_ref_009
  doi: 10.1109/TKDE.2009.191
– ident: 2023060616531451654_j_bmt-2022-0354_ref_016
  doi: 10.1109/TITS.2005.848368
– ident: 2023060616531451654_j_bmt-2022-0354_ref_003
  doi: 10.3389/fnins.2021.773790
– ident: 2023060616531451654_j_bmt-2022-0354_ref_006
  doi: 10.1007/s11571-020-09601-w
– ident: 2023060616531451654_j_bmt-2022-0354_ref_032
  doi: 10.1007/978-3-319-49409-8_35
– ident: 2023060616531451654_j_bmt-2022-0354_ref_017
  doi: 10.1088/1741-2552/aa5a98
– ident: 2023060616531451654_j_bmt-2022-0354_ref_007
  doi: 10.1016/j.bspc.2021.102591
– ident: 2023060616531451654_j_bmt-2022-0354_ref_018
– ident: 2023060616531451654_j_bmt-2022-0354_ref_021
  doi: 10.1088/1741-2552/aa5a98
– ident: 2023060616531451654_j_bmt-2022-0354_ref_002
  doi: 10.1016/j.jneumeth.2022.109722
– ident: 2023060616531451654_j_bmt-2022-0354_ref_012
– ident: 2023060616531451654_j_bmt-2022-0354_ref_026
  doi: 10.2991/icitmi-15.2015.101
– ident: 2023060616531451654_j_bmt-2022-0354_ref_031
  doi: 10.1109/CSO.2014.21
SSID ssj0045590
Score 2.3040993
Snippet Electroencephalogram (EEG) is often used to detect mental fatigue because of its real-time characteristic and objective nature. However, because of the...
SourceID proquest
pubmed
crossref
walterdegruyter
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 317
SubjectTerms Adaptation
Calibration
Classification
Datasets
domain adaptation
Domains
EEG
Electroencephalography
Fatigue
Feature extraction
FLDANN
inter-subject
mental fatigue
multi-source domain
Neural networks
Training
Transfer learning
Title An improved multi-source domain adaptation network for inter-subject mental fatigue detection based on DANN
URI https://www.degruyter.com/doi/10.1515/bmt-2022-0354
https://www.ncbi.nlm.nih.gov/pubmed/36797837
https://www.proquest.com/docview/2822784189
https://www.proquest.com/docview/2823040101
Volume 68
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZKJ6HtYeJOYCAjIV5KtjROnOSxjMEEohLShvZE5DjOqFjTqktA26_nHNu5dBcJeKkix42rfl-Oz_G5EfJajRPJAxW5nq-UGwi_cDNPcNfPQs4iT8gsxGzkL1N-eBx8OglPBoPvvailusp25eWNeSX_gyqMAa6YJfsPyLYPhQG4BnzhExCGz7_CeFJiluNq8Qu0Rh0Z6Jqz-FG-mIPFPxK5WNpowtKEe-uoQiwRsXLP6wzPYEa2un8B805rzKKqlGkfjhtcjs6E95PpdM35q1P2Z5dYlURibyBdB7ZN-dm3CR-f6y7cZ1ZrL8iP2cXCbpV61A6eqdmVmV9ry1p7IOFjcwjX5PfvKiNEwUqCEd0yuJWyPO6xifVEJjO5m9dEeairXmTzCiAHg9ljpth0D9blXOPKeITnV1G3o7Vxhs2tO2TDBzPCH5KNycd3B9-avToAe8qzlVdhvb211TbJ3eb760rLNUtki2z_1sENuTpd1RdV40zXOsrRPbJtjQs6MUy5TwaqfEC2eiUnH5Kfk5I2nKF9zlDDGdpxhlrOUOAMXeMMNZyhljO05QzVnKFwgZx5RI4_HBztH7q24YYrWcQqV45FAvZnAVo9z8NABDyOinzsy1iCWl1IUNVVVng84WBWq9DzhOBinIHYj0XoKZ89JsNyUaqnhPosKxhL4kj5SZAXcSyYFFEiCyUjzAxzyNvmH02lrUaPTVHOUrRKAYsUsEgRixSxcMibdvrSlGG5beJOA09q39TzFEOl0b8eJw551d4GOYrOMVGqRa3nMNjQYIdyyBMDa7tSQwOHBFdw7ta48dfwmAG9n936wOdks3uDdsiwWtXqBSi5VfbSMvUP_JupZg
linkProvider Walter de Gruyter
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7B9gA9lDcEChgJccLdbOzYznGBlgXaPbWIW2Q7TqnazVa7iRD8esZxEkoLF7hFsh2_Z755eAbgpZtkVnAnaZw4R7lOSmpiLWhiUsFkrK1J_Wvkg7mYHfGPX9Lem3DduVUW7njVfK9DhNRxsbSNV5QNsQaQA4_Nosb9RTkqZikff60XZ9dhQ3EUV0awMX3_ZvdzT445Qua4T2OQIjjuAm1e-cvvjOkK2tyErW-tAXsY3QU-tHcLTD-D4H5yutPUZsf-uBTc8b-meBu2OpRKpuFY3YFrrroLmxdiF96D02lFTlqNhCtI65ZIgyGAFMuFPqmILvR5sPOTKviaEwTIxMenWNF1Y7wCiITUAqTEescNNnV16xpWEc9dC4If76bz-X042ts9fDujXeYGaplkNbUTnaEgUyI8FEXKNRdKlsUkscoiPistYj5nylhkAuUzl8ax1kJPDNIPpdPYJewBjKpl5R4BSZgpGcuUdEnGi1IpzayWmS2dlf6JUQSv-23LbRfW3GfXOMu9eIMLmeNC5n4hc7-QEbwaqp-HeB5_q7jdn4G8u9br3PvcekOtyiJ4MRTjhfRWFl25ZdPWYUgZkdRF8DCcnaEnJqRXtckI-KXD9KuPP45GKIZA7_G_NXsON2aHB_v5_of5pydwE0t9Qg-ayG0Y1avGPUVYVZtn3cX5Car5Hlc
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7BVkL0UN4QKGAkxAl3s7FjJ8eFdimvFQeKeov8rKrS7GqbqCq_nnFeLC1c4BbJdvye-ebhGYCXbpIbwZ2kceIc5SrxVMdK0ESngslYGZ2G18if52L_gH84TA_XXvEHt0rrjlb1RdVGSB3bhamDomyINYAceKxPK9xflKNilvLx0vrrsJFxFGVGsDF992bvW0-NOSLmuM9ikCI27uJsXvnJ73zpCtjchK3zxn49DG6NDc1ugeon0HqfnOzUld4xPy7FdvyfGd6GrQ6jkml7qO7ANVfehc21yIX34GRakuNGH-EsaZwSaWsGIHZxqo5LoqxatlZ-Urae5gThMQnRKVb0rNZB_UPaxALEY72jGpu6qnEMK0ngrZbgx-50Pr8PB7O9r2_3aZe3gRomWUXNROUoxngEh8KmXHGRSW8nickMojNvEPE57WORC5TOXBrHSgk10Ug9MpXGLmEPYFQuSvcISMK0ZyzPpEtybn2WKWaUzI13RoYHRhG87netMF1Q85Bb43sRhBtcxwLXsQjrWIR1jODVUH3ZRvP4W8Xt_ggU3aU-K4LHbTDTZnkEL4ZivI7BxqJKt6ibOgzpIhK6CB62R2foiQkZFG0yAn7pLP3q44-jERlDmPf435o9hxtfdmfFp_fzj0_gJhaGbB40kdswqla1e4qYqtLPumvzEzKPHP4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+improved+multi-source+domain+adaptation+network+for+inter-subject+mental+fatigue+detection+based+on+DANN&rft.jtitle=Biomedizinische+Technik&rft.au=Chen%2C+Kun&rft.au=Liu%2C+Zhiyong&rft.au=Li%2C+Zhilei&rft.au=Liu%2C+Quan&rft.date=2023-06-27&rft.eissn=1862-278X&rft.volume=68&rft.issue=3&rft.spage=317&rft_id=info:doi/10.1515%2Fbmt-2022-0354&rft_id=info%3Apmid%2F36797837&rft.externalDocID=36797837
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-5585&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-5585&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-5585&client=summon