An improved multi-source domain adaptation network for inter-subject mental fatigue detection based on DANN
Electroencephalogram (EEG) is often used to detect mental fatigue because of its real-time characteristic and objective nature. However, because of the individual variability of EEG among different individuals, tedious and time-consuming calibration sessions are needed. Therefore, we propose a multi...
Saved in:
Published in | Biomedizinische Technik Vol. 68; no. 3; pp. 317 - 327 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
De Gruyter
27.06.2023
Walter de Gruyter GmbH |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Electroencephalogram (EEG) is often used to detect mental fatigue because of its real-time characteristic and objective nature. However, because of the individual variability of EEG among different individuals, tedious and time-consuming calibration sessions are needed.
Therefore, we propose a multi-source domain adaptation network for inter-subject mental fatigue detection named FLDANN, which is short for focal loss based domain-adversarial training of neural network. As for mental state feature extraction, power spectrum density is extracted based on the Welch method from four sub-bands of EEG signals. The features of the source domain and target domain are fed into the FLDANN network. The contributions of FLDANN include: (1) It uses the idea of adversarial to reduce feature differences between the source and target domain. (2) A loss function named focal loss is used to assign weights to source and target domain samples.
The experiment result shows that when the number of the source domains increases, the classification accuracy of domain-adversarial training of neural network (DANN) gradually decreases and finally tends to be stable. The proposed method achieves an accuracy of 84.10% ± 8.75% on the SEED-VIG dataset and 65.42% ± 7.47% on the self-designed dataset. In addition, the proposed method is compared with other domain adaptation methods and the results show that the proposed method outperforms those state-of-the-art methods.
The result proves that the proposed method is able to solve the problem of individual differences across subjects and to solve the problem of low classification performance of multi-source domain transfer learning. |
---|---|
AbstractList | Electroencephalogram (EEG) is often used to detect mental fatigue because of its real-time characteristic and objective nature. However, because of the individual variability of EEG among different individuals, tedious and time-consuming calibration sessions are needed.
Therefore, we propose a multi-source domain adaptation network for inter-subject mental fatigue detection named FLDANN, which is short for focal loss based domain-adversarial training of neural network. As for mental state feature extraction, power spectrum density is extracted based on the Welch method from four sub-bands of EEG signals. The features of the source domain and target domain are fed into the FLDANN network. The contributions of FLDANN include: (1) It uses the idea of adversarial to reduce feature differences between the source and target domain. (2) A loss function named focal loss is used to assign weights to source and target domain samples.
The experiment result shows that when the number of the source domains increases, the classification accuracy of domain-adversarial training of neural network (DANN) gradually decreases and finally tends to be stable. The proposed method achieves an accuracy of 84.10% ± 8.75% on the SEED-VIG dataset and 65.42% ± 7.47% on the self-designed dataset. In addition, the proposed method is compared with other domain adaptation methods and the results show that the proposed method outperforms those state-of-the-art methods.
The result proves that the proposed method is able to solve the problem of individual differences across subjects and to solve the problem of low classification performance of multi-source domain transfer learning. Electroencephalogram (EEG) is often used to detect mental fatigue because of its real-time characteristic and objective nature. However, because of the individual variability of EEG among different individuals, tedious and time-consuming calibration sessions are needed.Therefore, we propose a multi-source domain adaptation network for inter-subject mental fatigue detection named FLDANN, which is short for focal loss based domain-adversarial training of neural network. As for mental state feature extraction, power spectrum density is extracted based on the Welch method from four sub-bands of EEG signals. The features of the source domain and target domain are fed into the FLDANN network. The contributions of FLDANN include: (1) It uses the idea of adversarial to reduce feature differences between the source and target domain. (2) A loss function named focal loss is used to assign weights to source and target domain samplesThe experiment result shows that when the number of the source domains increases, the classification accuracy of domain-adversarial training of neural network (DANN) gradually decreases and finally tends to be stable. The proposed method achieves an accuracy of 84.10% ± 8.75% on the SEED-VIG dataset and 65.42% ± 7.47% on the self-designed dataset. In addition, the proposed method is compared with other domain adaptation methods and the results show that the proposed method outperforms those state-of-the-art methods.The result proves that the proposed method is able to solve the problem of individual differences across subjects and to solve the problem of low classification performance of multi-source domain transfer learning. Electroencephalogram (EEG) is often used to detect mental fatigue because of its real-time characteristic and objective nature. However, because of the individual variability of EEG among different individuals, tedious and time-consuming calibration sessions are needed.OBJECTIVESElectroencephalogram (EEG) is often used to detect mental fatigue because of its real-time characteristic and objective nature. However, because of the individual variability of EEG among different individuals, tedious and time-consuming calibration sessions are needed.Therefore, we propose a multi-source domain adaptation network for inter-subject mental fatigue detection named FLDANN, which is short for focal loss based domain-adversarial training of neural network. As for mental state feature extraction, power spectrum density is extracted based on the Welch method from four sub-bands of EEG signals. The features of the source domain and target domain are fed into the FLDANN network. The contributions of FLDANN include: (1) It uses the idea of adversarial to reduce feature differences between the source and target domain. (2) A loss function named focal loss is used to assign weights to source and target domain samples.METHODSTherefore, we propose a multi-source domain adaptation network for inter-subject mental fatigue detection named FLDANN, which is short for focal loss based domain-adversarial training of neural network. As for mental state feature extraction, power spectrum density is extracted based on the Welch method from four sub-bands of EEG signals. The features of the source domain and target domain are fed into the FLDANN network. The contributions of FLDANN include: (1) It uses the idea of adversarial to reduce feature differences between the source and target domain. (2) A loss function named focal loss is used to assign weights to source and target domain samples.The experiment result shows that when the number of the source domains increases, the classification accuracy of domain-adversarial training of neural network (DANN) gradually decreases and finally tends to be stable. The proposed method achieves an accuracy of 84.10% ± 8.75% on the SEED-VIG dataset and 65.42% ± 7.47% on the self-designed dataset. In addition, the proposed method is compared with other domain adaptation methods and the results show that the proposed method outperforms those state-of-the-art methods.RESULTSThe experiment result shows that when the number of the source domains increases, the classification accuracy of domain-adversarial training of neural network (DANN) gradually decreases and finally tends to be stable. The proposed method achieves an accuracy of 84.10% ± 8.75% on the SEED-VIG dataset and 65.42% ± 7.47% on the self-designed dataset. In addition, the proposed method is compared with other domain adaptation methods and the results show that the proposed method outperforms those state-of-the-art methods.The result proves that the proposed method is able to solve the problem of individual differences across subjects and to solve the problem of low classification performance of multi-source domain transfer learning.CONCLUSIONSThe result proves that the proposed method is able to solve the problem of individual differences across subjects and to solve the problem of low classification performance of multi-source domain transfer learning. |
Author | Liu, Quan Liu, Zhiyong Chen, Kun Ai, Qingsong Ma, Li Li, Zhilei |
Author_xml | – sequence: 1 givenname: Kun orcidid: 0000-0002-2188-1439 surname: Chen fullname: Chen, Kun organization: School of Information Engineering, Wuhan University of Technology, Wuhan, China – sequence: 2 givenname: Zhiyong surname: Liu fullname: Liu, Zhiyong organization: School of Information Engineering, Wuhan University of Technology, Wuhan, China – sequence: 3 givenname: Zhilei surname: Li fullname: Li, Zhilei organization: School of Information Engineering, Wuhan University of Technology, Wuhan, China – sequence: 4 givenname: Quan surname: Liu fullname: Liu, Quan organization: School of Information Engineering, Wuhan University of Technology, Wuhan, China – sequence: 5 givenname: Qingsong surname: Ai fullname: Ai, Qingsong organization: School of Computer Science and Information Engineering, Hubei University, Wuhan, China – sequence: 6 givenname: Li surname: Ma fullname: Ma, Li email: excellentmary@whut.edu.cn organization: School of Information Engineering, Wuhan University of Technology, Wuhan, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36797837$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kc1rFTEUxYNU7OvTpVsZcOMmmu_J4OpRWxVK3Si4C5nMnZLXmeSZZCz9783wWoSiq1zC7xzuPecMnYQYAKHXlLynksoP_VwwI4xhwqV4hjZUK4ZZq3-eoA0hlGMptTxFZznvCRFSduQFOuWq7VrN2w263YXGz4cUf8PQzMtUPM5xSQ6aIc7Wh8YO9lBs8TE0AcpdTLfNGFPjQ4GE89LvwZVmhlDs1IyVu1mqFEr9XSW9zdW3Dp9219cv0fPRThlePbxb9OPy4vv5F3z17fPX890VdrzlBTtqO9mqUdJODVJYoXQ7DpQ57ajgo2NMQT8S1SnRSZCEWKss7QWT2koCjG_Ru6NvPevXArmY2WcH02QDxCUbphkngtCazha9fYLu6_WhbrdSNUZBdVepNw_U0s8wmEPys0335jHGCvAj4FLMOcFonD-GVpL1k6HErGWZWpZZyzJrWVWFn6gejf_Hfzzyd3aq6Q9wk5b7Ovzd-Z86pTmnLf8Dd06o3Q |
CitedBy_id | crossref_primary_10_1038_s41598_025_86234_1 |
Cites_doi | 10.1093/occmed/kqu168 10.1109/IJCNN.2018.8489212 10.1016/j.aei.2020.101157 10.1016/j.eswa.2019.02.005 10.1109/TFUZZ.2016.2633379 10.1109/ICCV.2013.274 10.1371/journal.pone.0188756 10.1109/TAU.1967.1161901 10.1109/ICCV.2017.324 10.1016/B978-1-78548-236-6.50002-7 10.1016/j.lfs.2008.12.004 10.1109/BIBM47256.2019.8982972 10.1109/TNN.2010.2091281 10.3390/e23040457 10.1111/psyp.13554 10.1007/s11571-018-9481-5 10.1109/VCIP.2016.7805516 10.3390/s20247251 10.1109/IJCNN.2018.8489480 10.1109/TKDE.2009.191 10.1109/TITS.2005.848368 10.3389/fnins.2021.773790 10.1007/s11571-020-09601-w 10.1007/978-3-319-49409-8_35 10.1088/1741-2552/aa5a98 10.1016/j.bspc.2021.102591 10.1016/j.jneumeth.2022.109722 10.2991/icitmi-15.2015.101 10.1109/CSO.2014.21 |
ContentType | Journal Article |
Copyright | 2023 Walter de Gruyter GmbH, Berlin/Boston. 2023 Walter de Gruyter GmbH, Berlin/Boston |
Copyright_xml | – notice: 2023 Walter de Gruyter GmbH, Berlin/Boston. – notice: 2023 Walter de Gruyter GmbH, Berlin/Boston |
DBID | AAYXX CITATION NPM 7QO 7TB 7U5 8FD FR3 L7M P64 7X8 |
DOI | 10.1515/bmt-2022-0354 |
DatabaseName | CrossRef PubMed Biotechnology Research Abstracts Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts Technology Research Database Engineering Research Database Advanced Technologies Database with Aerospace Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Biotechnology Research Abstracts Technology Research Database Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | PubMed Biotechnology Research Abstracts MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1862-278X |
EndPage | 327 |
ExternalDocumentID | 36797837 10_1515_bmt_2022_0354 10_1515_bmt_2022_0354683317 |
Genre | Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 52075398; 52275029 – fundername: Natural Science Foundation of Hubei Province grantid: 2022CFB896 |
GroupedDBID | 0R~ 0~D 23N 4.4 5GY AAAEU AAAVF AABBZ AACIX AAGVJ AALGR AAOQK AAOWA AAPJK AAQCX AARRE AASQH AAWFC AAXCG ABDRH ABFKT ABFQV ABJNI ABMIY ABPLS ABRDF ABUVI ABWLS ABXMZ ABYBW ACDEB ACEFL ACGFS ACPMA ACUND ACYCL ACZBO ADDWE ADEQT ADGQD ADGYE AECWL AEGVQ AEICA AEJTT AERZL AEXIE AFBAA AFBDD AFCXV AFGDO AFYRI AGBEV AGQYU AHGSO AHOVO AHVWV AHXUK AIERV AIWOI AJHHK AKXKS ALMA_UNASSIGNED_HOLDINGS ALYBR ASYPN BAKPI BCIFA CGQUA CS3 DU5 EBS EMOBN F5P HZ~ IY9 KDIRW O9- P2P QD8 RDG SA. SLJYH UK5 WTRAM AAYXX CITATION ABVMU NPM 7QO 7TB 7U5 8FD ADNPR FR3 L7M P64 7X8 |
ID | FETCH-LOGICAL-c373t-c1a9576f5196d54a4687fd12c8c143fc226ebf0696495e500aa6a1b4258a50e23 |
ISSN | 0013-5585 1862-278X |
IngestDate | Fri Jul 11 11:27:25 EDT 2025 Sat Jul 26 02:16:34 EDT 2025 Thu Apr 03 07:07:13 EDT 2025 Thu Apr 24 23:12:28 EDT 2025 Tue Jul 01 03:36:37 EDT 2025 Thu Jul 10 10:34:03 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | FLDANN mental fatigue domain adaptation inter-subject EEG multi-source domain |
Language | English |
License | 2023 Walter de Gruyter GmbH, Berlin/Boston. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c373t-c1a9576f5196d54a4687fd12c8c143fc226ebf0696495e500aa6a1b4258a50e23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-2188-1439 |
PMID | 36797837 |
PQID | 2822784189 |
PQPubID | 2045214 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_2823040101 proquest_journals_2822784189 pubmed_primary_36797837 crossref_citationtrail_10_1515_bmt_2022_0354 crossref_primary_10_1515_bmt_2022_0354 walterdegruyter_journals_10_1515_bmt_2022_0354683317 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-06-27 |
PublicationDateYYYYMMDD | 2023-06-27 |
PublicationDate_xml | – month: 06 year: 2023 text: 2023-06-27 day: 27 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Berlin |
PublicationTitle | Biomedizinische Technik |
PublicationTitleAlternate | Biomed Tech (Berl) |
PublicationYear | 2023 |
Publisher | De Gruyter Walter de Gruyter GmbH |
Publisher_xml | – name: De Gruyter – name: Walter de Gruyter GmbH |
References | 2023060616531451654_j_bmt-2022-0354_ref_020 2023060616531451654_j_bmt-2022-0354_ref_021 2023060616531451654_j_bmt-2022-0354_ref_022 2023060616531451654_j_bmt-2022-0354_ref_001 2023060616531451654_j_bmt-2022-0354_ref_023 2023060616531451654_j_bmt-2022-0354_ref_002 2023060616531451654_j_bmt-2022-0354_ref_024 2023060616531451654_j_bmt-2022-0354_ref_003 2023060616531451654_j_bmt-2022-0354_ref_025 2023060616531451654_j_bmt-2022-0354_ref_004 2023060616531451654_j_bmt-2022-0354_ref_026 2023060616531451654_j_bmt-2022-0354_ref_005 2023060616531451654_j_bmt-2022-0354_ref_027 2023060616531451654_j_bmt-2022-0354_ref_006 2023060616531451654_j_bmt-2022-0354_ref_028 2023060616531451654_j_bmt-2022-0354_ref_007 2023060616531451654_j_bmt-2022-0354_ref_029 2023060616531451654_j_bmt-2022-0354_ref_008 2023060616531451654_j_bmt-2022-0354_ref_009 2023060616531451654_j_bmt-2022-0354_ref_030 2023060616531451654_j_bmt-2022-0354_ref_031 2023060616531451654_j_bmt-2022-0354_ref_010 2023060616531451654_j_bmt-2022-0354_ref_032 2023060616531451654_j_bmt-2022-0354_ref_011 2023060616531451654_j_bmt-2022-0354_ref_033 2023060616531451654_j_bmt-2022-0354_ref_012 2023060616531451654_j_bmt-2022-0354_ref_013 2023060616531451654_j_bmt-2022-0354_ref_014 2023060616531451654_j_bmt-2022-0354_ref_015 2023060616531451654_j_bmt-2022-0354_ref_016 2023060616531451654_j_bmt-2022-0354_ref_017 2023060616531451654_j_bmt-2022-0354_ref_018 2023060616531451654_j_bmt-2022-0354_ref_019 |
References_xml | – ident: 2023060616531451654_j_bmt-2022-0354_ref_028 – ident: 2023060616531451654_j_bmt-2022-0354_ref_023 doi: 10.1093/occmed/kqu168 – ident: 2023060616531451654_j_bmt-2022-0354_ref_019 doi: 10.1109/IJCNN.2018.8489212 – ident: 2023060616531451654_j_bmt-2022-0354_ref_013 doi: 10.1016/j.aei.2020.101157 – ident: 2023060616531451654_j_bmt-2022-0354_ref_015 doi: 10.1016/j.eswa.2019.02.005 – ident: 2023060616531451654_j_bmt-2022-0354_ref_014 doi: 10.1109/TFUZZ.2016.2633379 – ident: 2023060616531451654_j_bmt-2022-0354_ref_030 doi: 10.1109/ICCV.2013.274 – ident: 2023060616531451654_j_bmt-2022-0354_ref_005 doi: 10.1371/journal.pone.0188756 – ident: 2023060616531451654_j_bmt-2022-0354_ref_025 doi: 10.1109/TAU.1967.1161901 – ident: 2023060616531451654_j_bmt-2022-0354_ref_027 doi: 10.1109/ICCV.2017.324 – ident: 2023060616531451654_j_bmt-2022-0354_ref_011 doi: 10.1016/B978-1-78548-236-6.50002-7 – ident: 2023060616531451654_j_bmt-2022-0354_ref_022 doi: 10.1016/j.lfs.2008.12.004 – ident: 2023060616531451654_j_bmt-2022-0354_ref_008 doi: 10.1109/BIBM47256.2019.8982972 – ident: 2023060616531451654_j_bmt-2022-0354_ref_010 doi: 10.1109/TNN.2010.2091281 – ident: 2023060616531451654_j_bmt-2022-0354_ref_024 doi: 10.3390/e23040457 – ident: 2023060616531451654_j_bmt-2022-0354_ref_001 doi: 10.1111/psyp.13554 – ident: 2023060616531451654_j_bmt-2022-0354_ref_004 doi: 10.1007/s11571-018-9481-5 – ident: 2023060616531451654_j_bmt-2022-0354_ref_033 doi: 10.1109/VCIP.2016.7805516 – ident: 2023060616531451654_j_bmt-2022-0354_ref_029 doi: 10.3390/s20247251 – ident: 2023060616531451654_j_bmt-2022-0354_ref_020 doi: 10.1109/IJCNN.2018.8489480 – ident: 2023060616531451654_j_bmt-2022-0354_ref_009 doi: 10.1109/TKDE.2009.191 – ident: 2023060616531451654_j_bmt-2022-0354_ref_016 doi: 10.1109/TITS.2005.848368 – ident: 2023060616531451654_j_bmt-2022-0354_ref_003 doi: 10.3389/fnins.2021.773790 – ident: 2023060616531451654_j_bmt-2022-0354_ref_006 doi: 10.1007/s11571-020-09601-w – ident: 2023060616531451654_j_bmt-2022-0354_ref_032 doi: 10.1007/978-3-319-49409-8_35 – ident: 2023060616531451654_j_bmt-2022-0354_ref_017 doi: 10.1088/1741-2552/aa5a98 – ident: 2023060616531451654_j_bmt-2022-0354_ref_007 doi: 10.1016/j.bspc.2021.102591 – ident: 2023060616531451654_j_bmt-2022-0354_ref_018 – ident: 2023060616531451654_j_bmt-2022-0354_ref_021 doi: 10.1088/1741-2552/aa5a98 – ident: 2023060616531451654_j_bmt-2022-0354_ref_002 doi: 10.1016/j.jneumeth.2022.109722 – ident: 2023060616531451654_j_bmt-2022-0354_ref_012 – ident: 2023060616531451654_j_bmt-2022-0354_ref_026 doi: 10.2991/icitmi-15.2015.101 – ident: 2023060616531451654_j_bmt-2022-0354_ref_031 doi: 10.1109/CSO.2014.21 |
SSID | ssj0045590 |
Score | 2.3040993 |
Snippet | Electroencephalogram (EEG) is often used to detect mental fatigue because of its real-time characteristic and objective nature. However, because of the... |
SourceID | proquest pubmed crossref walterdegruyter |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 317 |
SubjectTerms | Adaptation Calibration Classification Datasets domain adaptation Domains EEG Electroencephalography Fatigue Feature extraction FLDANN inter-subject mental fatigue multi-source domain Neural networks Training Transfer learning |
Title | An improved multi-source domain adaptation network for inter-subject mental fatigue detection based on DANN |
URI | https://www.degruyter.com/doi/10.1515/bmt-2022-0354 https://www.ncbi.nlm.nih.gov/pubmed/36797837 https://www.proquest.com/docview/2822784189 https://www.proquest.com/docview/2823040101 |
Volume | 68 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLZKJ6HtYeJOYCAjIV5KtjROnOSxjMEEohLShvZE5DjOqFjTqktA26_nHNu5dBcJeKkix42rfl-Oz_G5EfJajRPJAxW5nq-UGwi_cDNPcNfPQs4iT8gsxGzkL1N-eBx8OglPBoPvvailusp25eWNeSX_gyqMAa6YJfsPyLYPhQG4BnzhExCGz7_CeFJiluNq8Qu0Rh0Z6Jqz-FG-mIPFPxK5WNpowtKEe-uoQiwRsXLP6wzPYEa2un8B805rzKKqlGkfjhtcjs6E95PpdM35q1P2Z5dYlURibyBdB7ZN-dm3CR-f6y7cZ1ZrL8iP2cXCbpV61A6eqdmVmV9ry1p7IOFjcwjX5PfvKiNEwUqCEd0yuJWyPO6xifVEJjO5m9dEeairXmTzCiAHg9ljpth0D9blXOPKeITnV1G3o7Vxhs2tO2TDBzPCH5KNycd3B9-avToAe8qzlVdhvb211TbJ3eb760rLNUtki2z_1sENuTpd1RdV40zXOsrRPbJtjQs6MUy5TwaqfEC2eiUnH5Kfk5I2nKF9zlDDGdpxhlrOUOAMXeMMNZyhljO05QzVnKFwgZx5RI4_HBztH7q24YYrWcQqV45FAvZnAVo9z8NABDyOinzsy1iCWl1IUNVVVng84WBWq9DzhOBinIHYj0XoKZ89JsNyUaqnhPosKxhL4kj5SZAXcSyYFFEiCyUjzAxzyNvmH02lrUaPTVHOUrRKAYsUsEgRixSxcMibdvrSlGG5beJOA09q39TzFEOl0b8eJw551d4GOYrOMVGqRa3nMNjQYIdyyBMDa7tSQwOHBFdw7ta48dfwmAG9n936wOdks3uDdsiwWtXqBSi5VfbSMvUP_JupZg |
linkProvider | Walter de Gruyter |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7B9gA9lDcEChgJccLdbOzYznGBlgXaPbWIW2Q7TqnazVa7iRD8esZxEkoLF7hFsh2_Z755eAbgpZtkVnAnaZw4R7lOSmpiLWhiUsFkrK1J_Wvkg7mYHfGPX9Lem3DduVUW7njVfK9DhNRxsbSNV5QNsQaQA4_Nosb9RTkqZikff60XZ9dhQ3EUV0awMX3_ZvdzT445Qua4T2OQIjjuAm1e-cvvjOkK2tyErW-tAXsY3QU-tHcLTD-D4H5yutPUZsf-uBTc8b-meBu2OpRKpuFY3YFrrroLmxdiF96D02lFTlqNhCtI65ZIgyGAFMuFPqmILvR5sPOTKviaEwTIxMenWNF1Y7wCiITUAqTEescNNnV16xpWEc9dC4If76bz-X042ts9fDujXeYGaplkNbUTnaEgUyI8FEXKNRdKlsUkscoiPistYj5nylhkAuUzl8ax1kJPDNIPpdPYJewBjKpl5R4BSZgpGcuUdEnGi1IpzayWmS2dlf6JUQSv-23LbRfW3GfXOMu9eIMLmeNC5n4hc7-QEbwaqp-HeB5_q7jdn4G8u9br3PvcekOtyiJ4MRTjhfRWFl25ZdPWYUgZkdRF8DCcnaEnJqRXtckI-KXD9KuPP45GKIZA7_G_NXsON2aHB_v5_of5pydwE0t9Qg-ayG0Y1avGPUVYVZtn3cX5Car5Hlc |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7BVkL0UN4QKGAkxAl3s7FjJ8eFdimvFQeKeov8rKrS7GqbqCq_nnFeLC1c4BbJdvye-ebhGYCXbpIbwZ2kceIc5SrxVMdK0ESngslYGZ2G18if52L_gH84TA_XXvEHt0rrjlb1RdVGSB3bhamDomyINYAceKxPK9xflKNilvLx0vrrsJFxFGVGsDF992bvW0-NOSLmuM9ikCI27uJsXvnJ73zpCtjchK3zxn49DG6NDc1ugeon0HqfnOzUld4xPy7FdvyfGd6GrQ6jkml7qO7ANVfehc21yIX34GRakuNGH-EsaZwSaWsGIHZxqo5LoqxatlZ-Urae5gThMQnRKVb0rNZB_UPaxALEY72jGpu6qnEMK0ngrZbgx-50Pr8PB7O9r2_3aZe3gRomWUXNROUoxngEh8KmXHGRSW8nickMojNvEPE57WORC5TOXBrHSgk10Ug9MpXGLmEPYFQuSvcISMK0ZyzPpEtybn2WKWaUzI13RoYHRhG87netMF1Q85Bb43sRhBtcxwLXsQjrWIR1jODVUH3ZRvP4W8Xt_ggU3aU-K4LHbTDTZnkEL4ZivI7BxqJKt6ibOgzpIhK6CB62R2foiQkZFG0yAn7pLP3q44-jERlDmPf435o9hxtfdmfFp_fzj0_gJhaGbB40kdswqla1e4qYqtLPumvzEzKPHP4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+improved+multi-source+domain+adaptation+network+for+inter-subject+mental+fatigue+detection+based+on+DANN&rft.jtitle=Biomedizinische+Technik&rft.au=Chen%2C+Kun&rft.au=Liu%2C+Zhiyong&rft.au=Li%2C+Zhilei&rft.au=Liu%2C+Quan&rft.date=2023-06-27&rft.eissn=1862-278X&rft.volume=68&rft.issue=3&rft.spage=317&rft_id=info:doi/10.1515%2Fbmt-2022-0354&rft_id=info%3Apmid%2F36797837&rft.externalDocID=36797837 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0013-5585&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0013-5585&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0013-5585&client=summon |