Calculating the square root with arbitrary order of convergence
In this paper an iterative algorithm has been presented for calculating the square root of a real number with arbitrary order of convergence using formulae derived by applying binomial theorem. The primary objective is to reduce the number of division operations required.
Saved in:
Published in | International journal of computer mathematics Vol. 75; no. 3; pp. 297 - 302 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Abingdon
Gordon and Breach Science Publishers
01.01.2000
Taylor and Francis |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this paper an iterative algorithm has been presented for calculating the square root of a real number with arbitrary order of convergence using formulae derived by applying binomial theorem. The primary objective is to reduce the number of division operations required. |
---|---|
AbstractList | In this paper an iterative algorithm has been presented for calculating the square root of a real number with arbitrary order of convergence using formulae derived by applying binomial theorem. The primary objective is to reduce the number of division operations required. |
Author | Chowdhury, Rezaul Alam Kaykobad, M. |
Author_xml | – sequence: 1 givenname: Rezaul Alam surname: Chowdhury fullname: Chowdhury, Rezaul Alam organization: Department of Computer Science and Engineering , Bangladesh University of Engineering and Technology – sequence: 2 givenname: M. surname: Kaykobad fullname: Kaykobad, M. email: shaikat@bdonline.com organization: Department of Computer Science and Engineering , Bangladesh University of Engineering and Technology |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1520061$$DView record in Pascal Francis |
BookMark | eNqFkE9PwzAMxSM0JLbBB-CWA9eC0zRpJyEhNPFPmsQFzpWbJltQl4w0Y-zb02qDAwiQDz74_ez3PCID550m5JTBOYMCLgBSyJkEgKKAbFKIAzJkkE4SSKUYkGE_T3rBERm17Uuvm-RySK6m2Kh1g9G6OY0LTdvXNQZNg_eRbmxcUAyVjQHDlvpQ60C9ocq7Nx3m2il9TA4NNq0-2fcxeb69eZreJ7PHu4fp9SxRPOcxqZQEXWcoasUwlwhd1ZXmWaqN1JB17mojigoFz0RqGDcql1JI5AqzotB8TM52e1fYKmxMQKdsW66CXXbWSiZSAMk6Wb6TqeDbNmhTKhu7cN51EWxTMij7d5U_3tWR7Bv5tfsPZn_NOuPDEjc-NHUZcdv48OnwB1XG99iRl_-S_PfDH1Cgkzc |
CODEN | IJCMAT |
CitedBy_id | crossref_primary_10_1007_s11075_024_01932_7 |
Cites_doi | 10.1109/ARITH.1993.378103 10.1109/ARITH.1993.378106 10.1109/TC.1972.5009039 10.1016/0898-1221(91)90151-S |
ContentType | Journal Article |
Copyright | Copyright Taylor & Francis Group, LLC 2000 2000 INIST-CNRS |
Copyright_xml | – notice: Copyright Taylor & Francis Group, LLC 2000 – notice: 2000 INIST-CNRS |
DBID | AAYXX CITATION IQODW |
DOI | 10.1080/00207160008804985 |
DatabaseName | CrossRef Pascal-Francis |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science Mathematics |
EISSN | 1029-0265 |
EndPage | 302 |
ExternalDocumentID | 1520061 10_1080_00207160008804985 8804985 |
GroupedDBID | -~X .7F .QJ 0BK 0R~ 1TA 30N 4.4 5GY 5VS AAENE AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABFIM ABHAV ABJNI ABLIJ ABPAQ ABPEM ABTAI ABXUL ABXYU ACAGQ ACGEJ ACGFS ACGOD ACIWK ACNCT ADCVX ADGTB ADXPE AEISY AENEX AEOZL AEPSL AEYOC AFKVX AGDLA AGMYJ AGROQ AHDZW AHMOU AI. AIJEM AJWEG AKBVH AKOOK ALCKM ALMA_UNASSIGNED_HOLDINGS ALQZU AMEWO AVBZW AWYRJ BLEHA CAG CCCUG CE4 COF CRFIH CS3 DGEBU DKSSO DMQIW DU5 EBS EJD ESX E~A E~B GTTXZ H13 HZ~ H~P J.P KYCEM M4Z NA5 NUSFT NY~ O9- P2P PQQKQ QCRFL RNANH ROSJB RTWRZ S-T SNACF TBQAZ TDBHL TEJ TFL TFT TFW TN5 TOXWX TTHFI TUROJ TWF UPT UT5 UU3 VH1 WH7 ZGOLN ~S~ .4S .DC 07G 29J AAGDL AAHIA AAIKQ AAKBW AAYJJ AAYXX ABDBF ABEFU ACGEE ACTIO ACUHS ADYSH AEUMN AFFNX AFRVT AGCQS AGLEN AIYEW AMPGV AMVHM AMXXU AQRUH ARCSS BCCOT BPLKW C06 CITATION DWIFK EAP EDO EMK EPL EST HF~ H~9 IPNFZ IVXBP LJTGL MK~ RIG TAQ TFMCV TUS UB9 UU8 V3K V4Q ZY4 IQODW TASJS |
ID | FETCH-LOGICAL-c373t-bc60ed4a5dc1a76a0a0adbe342ef6e04020df58ba53452f13fc76656a3ca488e3 |
ISSN | 0020-7160 |
IngestDate | Mon Jul 21 09:15:24 EDT 2025 Tue Jul 01 01:04:36 EDT 2025 Thu Apr 24 23:08:41 EDT 2025 Wed Dec 25 09:06:23 EST 2024 Mon May 13 12:10:04 EDT 2019 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Error estimation Square root Numerical method Belaga parameter Algorithm Newton Raphson method Complexity Convergence |
Language | English |
License | CC BY 4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c373t-bc60ed4a5dc1a76a0a0adbe342ef6e04020df58ba53452f13fc76656a3ca488e3 |
PageCount | 6 |
ParticipantIDs | crossref_citationtrail_10_1080_00207160008804985 crossref_primary_10_1080_00207160008804985 pascalfrancis_primary_1520061 informaworld_taylorfrancis_310_1080_00207160008804985 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 1/1/2000 2000-01-00 2000 |
PublicationDateYYYYMMDD | 2000-01-01 |
PublicationDate_xml | – month: 01 year: 2000 text: 1/1/2000 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | Abingdon |
PublicationPlace_xml | – name: Abingdon |
PublicationTitle | International journal of computer mathematics |
PublicationYear | 2000 |
Publisher | Gordon and Breach Science Publishers Taylor and Francis |
Publisher_xml | – name: Gordon and Breach Science Publishers – name: Taylor and Francis |
References | Hwang K. (CIT0003) 1979 Waser S. (CIT0009) 1982 Morii M. (CIT0006) 1990; 73 Fike C. T. (CIT0002) 1968 CIT0001 Kronsjö L. I. (CIT0004) 1978 CIT0005 CIT0007 CIT0008 |
References_xml | – ident: CIT0008 doi: 10.1109/ARITH.1993.378103 – volume-title: Computer Evaluation of Mathematical Functions year: 1968 ident: CIT0002 – volume-title: Computer Arithmetic: Principles, Architecture and Design year: 1979 ident: CIT0003 – ident: CIT0005 doi: 10.1109/ARITH.1993.378106 – volume: 73 year: 1990 ident: CIT0006 publication-title: The Transactions of the IEICE – volume-title: Algorithms: Their Complexity and Efficiency year: 1978 ident: CIT0004 – ident: CIT0007 doi: 10.1109/TC.1972.5009039 – volume-title: Introduction to Arithmetic for Digital System Designers year: 1982 ident: CIT0009 – ident: CIT0001 doi: 10.1016/0898-1221(91)90151-S |
SSID | ssj0008976 |
Score | 1.4983374 |
Snippet | In this paper an iterative algorithm has been presented for calculating the square root of a real number with arbitrary order of convergence using formulae... |
SourceID | pascalfrancis crossref informaworld |
SourceType | Index Database Enrichment Source Publisher |
StartPage | 297 |
SubjectTerms | Belaga parameters convergence division error Error analysis Exact sciences and technology G.1.0 Mathematics Numerical analysis Numerical analysis. Scientific computation Numerical approximation polynomial Sciences and techniques of general use Square root |
Title | Calculating the square root with arbitrary order of convergence |
URI | https://www.tandfonline.com/doi/abs/10.1080/00207160008804985 |
Volume | 75 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swEBejfdke1q3dWLql6GFPCx6yZdnOU3GTDNM2LZSGdn0JsizDoEu_3FH21-_0YdlOS7qNgAjyJ7qfpbvT3e8Q-izjYSxpwL2EFswLBXyKSQnNkBSJ4MTnXHN3To-ibBbun7Pzptqozi6p8q_i95N5Jf8jVegDuaos2X-QrLspdMB_kC-0IGFo_0rGI34pdPktm_J0d3OvArlAGa5s0tpt_kPn1Q80xaaJIV_8MhmXnSCgrmewxSchbNmHwU9H8NqEx08u0tnhID1Mp4NRdnw2zmYnTjU-SL8fHO-l48blWjsXiAOC8RfoDQxb4aM9i4LJCXYWac-ipv6JRQttT4km_taurlTnVz-euOtIx4CoG4NikoDpYor5dEmylxYvF1LoK_4oZQevB2AwwBS9nmbjizO3KidDXWjQvXu9w6141pef2tFROgy2KnSW38HXU5pBaekip2_Qa2tE4NQg4i16IRebaKMu0IHtfL2JXk0bmW2h3RZcMPRjAxes4IIVXLCDC9ZwwVclbsHlHZp9m5yOMs_Wz_AEjWnl5SIisgg5K4TP44gT-BW5pGEgy0gS5TkoSpbknNGQBaVPSxFHoN9zqqjuE0nfo7XF1UJ-QJhxllNSDGnk52EBejkJ_TJSOwqwPCZS9BCpR2wuLLm8qnFyOfcdB-3SIPfQF3fJtWFWWXUyaYthXml4WiE8Pn1ePVQ9xFZcQlc8qt8RcfNyBmHbzxz_iF4augblpvuE1qrbe9kHxbXKdywm_wB1zpW6 |
linkProvider | Library Specific Holdings |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFH_oPOjFb3HqNAdPQiVdmjQ9iYgyddtpgreSpomIo9MtgvjXm6TtdFN2kEJPL2k-3_vl9eX3AE5VnMSKtEXASU6DSNqtyLV9JTjnUuBQCM_d2euzzkN090gfK4fbpAqrdGdoXRJFeF3tNrdzRtchce4Kt7WMzNkvbhEup8uwQhMWuwwGBPenmpgnPrmcEw-cfP1X868qZuzSDGupC5cUEztiukx18cP-3GxAWre8DDt5OX832bn8nCN1_H_XNmG9gqboslxLW7Ckim3YqNM-oEoL7MDFlRhKn_WreEIWP6LJm11nClkMbpDz6yIxzp79dX7kmT3RSCMf3e4veqpdeLi5Hlx1gioPQyBJTEyQSYZVHgmay1DETGD75JkiUVtpprA7geaa8kxQEtG2DomWMbM4URBHmc4V2YNGMSrUPiAqaEZwnhAWZlFu8R2OQs2cZ9qqWa5kE3A9C6msSMpdroxhGk65TOcGqAln0yKvJUPHImH8c2pT490i1cT-Fk_Nh2kCXVCELPhUa2bZfDfOMV2x8OCf9Z7AamfQ66bd2_79IayV1ADOJXQEDTN-Vy0Lkkx27HfCF0jbBBo |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA5aQbxYn1i1moMnYSXbbLLpSaRa6qt4sNDbks1DxNLWdgvirzeT3VZbpQdZ2NMku5vHzJfZmW8QOjNxPTa0JgNBNQsi5baisO5WJ1ooSUIpPXfnY5u3OtFdl3WL2JxxEVYJZ2ibE0V4XQ2be6jtNCIOMridYeRgvoQDuIKtojUOxOGQwUHaM0Us6r62HIgHID_9qflXF3NmaY60FKIl5dgNmM0rXfwwP81yXmN17FkLIerk7WKSpRfqc4HT8d9ftoU2C2CKr_KVtI1WTH8HladFH3ChA3bRZUP2lK_51X_BDj3i8btbZQY7BJ5h8OpiOUpffTI_9ryeeGCxj233aZ5mD3WaN8-NVlBUYQgUjWkWpIoToyPJtAplzCVxl04NjWrGckPg_KktE6lkNGI1G1KrYu5QoqRAmC4M3Uel_qBvDhBmkqWU6DrlYRpph-5IFFoOfmmnZIVRFUSmk5CogqIcKmX0knDGZLowQBV0PmsyzPk5lgmTnzObZN4pUszrb_Ek-8gqiC1pQpc8qjq3ar5fDniueHj4z35P0frTdTN5uG3fH6GNnBcA_EHHqJSNJqbqEFKWnvh98AUJbQK- |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Calculating+the+square+root+with+arbitrary+order+of+convergence&rft.jtitle=International+journal+of+computer+mathematics&rft.au=REZAUL+ALAM+CHOWDHURY&rft.au=KAYKOBAD%2C+M&rft.date=2000&rft.pub=Taylor+and+Francis&rft.issn=0020-7160&rft.volume=75&rft.issue=3&rft.spage=297&rft.epage=302&rft_id=info:doi/10.1080%2F00207160008804985&rft.externalDBID=n%2Fa&rft.externalDocID=1520061 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-7160&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-7160&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-7160&client=summon |