The effect of weak magnetic photon emission from quark-gluon plasma
We propose a novel effect that accounts for the photon emission from a quark-gluon plasma in the presence of a weak external magnetic field. Although the weak magnetic photon emission from quark-gluon plasma only leads to a small correction to the photon production rate, the induced photon spectrum...
Saved in:
Published in | Physics letters. B Vol. 858; p. 139046 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.11.2024
Elsevier |
Online Access | Get full text |
Cover
Loading…
Abstract | We propose a novel effect that accounts for the photon emission from a quark-gluon plasma in the presence of a weak external magnetic field. Although the weak magnetic photon emission from quark-gluon plasma only leads to a small correction to the photon production rate, the induced photon spectrum can be highly azimuthally anisotropic, as a consequence of the coupled effect of the magnetic field and the longitudinal dynamics in the background medium. With respect to a realistic medium evolution containing a tilted fireball configuration, the direct photon elliptic flow from experiments is reproduced. In comparison to the experimental data of direct photon elliptic flow, the strength of the magnetic field during the evolution of quark-gluon plasma can be extracted. For the top energy of RHIC collisions, |eB| is found no larger than a few percent of the pion mass square. |
---|---|
AbstractList | We propose a novel effect that accounts for the photon emission from a quark-gluon plasma in the presence of a weak external magnetic field. Although the weak magnetic photon emission from quark-gluon plasma only leads to a small correction to the photon production rate, the induced photon spectrum can be highly azimuthally anisotropic, as a consequence of the coupled effect of the magnetic field and the longitudinal dynamics in the background medium. With respect to a realistic medium evolution containing a tilted fireball configuration, the direct photon elliptic flow from experiments is reproduced. In comparison to the experimental data of direct photon elliptic flow, the strength of the magnetic field during the evolution of quark-gluon plasma can be extracted. For the top energy of RHIC collisions, |eB| is found no larger than a few percent of the pion mass square. |
ArticleNumber | 139046 |
Author | Yan, Li Sun, Jing-An |
Author_xml | – sequence: 1 givenname: Jing-An surname: Sun fullname: Sun, Jing-An organization: Institute of Modern Physics, Fudan University, Handan Road 220, Yangpu District, Shanghai, 200433, China – sequence: 2 givenname: Li surname: Yan fullname: Yan, Li email: cliyan@fudan.edu.cn organization: Institute of Modern Physics, Fudan University, Handan Road 220, Yangpu District, Shanghai, 200433, China |
BookMark | eNqFkE1PGzEQhn2gEh_lL1T7Bzb1t9e3oqilkZB6oWdr7IwTh911sJci_j2GIK49zWik95mZ55KczXlGQr4xumKU6e-H1XH_Ukdc_IpTLldMWCr1GbmgwtCeayvOyWWtB0opU1RfkPX9HjuMEcPS5dg9Izx0E-xmXFLojvu85LnDKdWaWhNLnrrHJygP_W58aoPjCHWCr-RLhLHi9Ue9In9__bxf_-7v_txu1jd3fRBGLL3Xgw9eWiWlAYGRUj5ICyjNoKzxWw88cBi8AuRojTSMK8E1V1JvKVItrsjmxN1mOLhjSROUF5chufdBLjsHpd09orPCRrBceaWUBM-HqKRBy2gQAxrFGkufWKHkWgvGTx6j7k2laxs-VLo3le6ksgV_nILYPv2XsLgaEs4Bt6k0ie2U9D_EK4t1gyY |
Cites_doi | 10.1016/j.physletb.2018.11.039 10.1103/PhysRevC.105.014909 10.1016/j.physrep.2015.02.003 10.1103/PhysRevC.85.044907 10.1103/PhysRevC.103.024904 10.1007/s41365-016-0178-3 10.1103/PhysRevC.83.054911 10.1103/PhysRevLett.114.072301 10.1103/PhysRevD.89.026013 10.1016/j.nuclphysa.2021.122308 10.1016/j.physletb.2018.07.013 10.1103/PhysRevD.90.114009 10.1016/j.nuclphysa.2012.12.034 10.1103/PhysRevLett.106.042301 10.1103/PhysRevC.93.044906 10.1146/annurev-nucl-101917-020852 10.1007/s41365-020-00829-z 10.1016/j.nuclphysa.2014.07.041 10.1140/epjc/s10052-016-4451-8 10.1142/S0217751X13400113 10.1103/PhysRevC.95.054904 10.1103/PhysRevLett.110.192301 10.1088/0034-4885/79/7/076302 10.1103/PhysRevLett.120.192301 10.1103/PhysRevLett.109.202303 10.1142/S0217751X09047570 10.1103/PhysRevC.89.054905 10.1103/PhysRevC.82.014903 10.1016/j.ppnp.2016.01.001 10.3390/particles6010009 10.1016/j.physletb.2012.02.065 10.1103/PhysRevC.83.064904 10.1103/RevModPhys.89.035001 10.1016/j.nuclphysa.2014.05.008 |
ContentType | Journal Article |
Copyright | 2024 The Author(s) |
Copyright_xml | – notice: 2024 The Author(s) |
DBID | 6I. AAFTH AAYXX CITATION DOA |
DOI | 10.1016/j.physletb.2024.139046 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Open Access Journals (DOAJ) |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
ExternalDocumentID | oai_doaj_org_article_939fa925b5554ab28f547e910c38e751 10_1016_j_physletb_2024_139046 S037026932400604X |
GroupedDBID | --K --M -~X .~1 0R~ 0SF 123 186 1B1 1RT 1~. 1~5 29O 4.4 457 4G. 53G 5VS 6I. 6TJ 7-5 71M 8P~ 8WZ 9JN A6W AABNK AACTN AAEDT AAEDW AAFTH AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXKI AAXUO AAYJJ ABDPE ABFNM ABLJU ABMAC ABNEU ABXDB ACDAQ ACFVG ACGFS ACNCT ACNNM ACRLP ADBBV ADEZE ADIYS ADMUD ADVLN AEBSH AEKER AENEX AEXQZ AFFNX AFKWA AFPKN AFTJW AGHFR AGUBO AGYEJ AHHHB AIBLX AIEXJ AIKHN AITUG AIVDX AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BCNDV BKOJK BLXMC CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 ER. FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GROUPED_DOAJ HME HVGLF HZ~ IHE IPNFZ IXB J1W KOM KQ8 LZ4 M41 MO0 MVM N9A NCXOZ O-L O9- OAUVE OGIMB OK1 OZT P-8 P-9 PC. Q38 R2- RIG RNS ROL RPZ SCC SDF SDG SDP SES SEW SHN SPC SPCBC SPD SSQ SSZ T5K TN5 WH7 WUQ XJT ZCG ~G- AAFWJ AATTM AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO ADXHL AEIPS AEUPX AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP ANKPU BNPGV CITATION SSH EFKBS |
ID | FETCH-LOGICAL-c373t-b68bcb495447a3ef002849ae478597bdba2c2a8b5ae2e97471253262546d0e063 |
IEDL.DBID | .~1 |
ISSN | 0370-2693 |
IngestDate | Wed Aug 27 01:17:34 EDT 2025 Tue Jul 01 04:17:09 EDT 2025 Sat Nov 09 16:00:18 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
License | This is an open access article under the CC BY license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c373t-b68bcb495447a3ef002849ae478597bdba2c2a8b5ae2e97471253262546d0e063 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S037026932400604X |
ParticipantIDs | doaj_primary_oai_doaj_org_article_939fa925b5554ab28f547e910c38e751 crossref_primary_10_1016_j_physletb_2024_139046 elsevier_sciencedirect_doi_10_1016_j_physletb_2024_139046 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | November 2024 2024-11-00 2024-11-01 |
PublicationDateYYYYMMDD | 2024-11-01 |
PublicationDate_xml | – month: 11 year: 2024 text: November 2024 |
PublicationDecade | 2020 |
PublicationTitle | Physics letters. B |
PublicationYear | 2024 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Basar, Kharzeev, Kharzeev, Skokov (br0300) 2012; 109 Abelev (br0440) 2013; 111 Gale, Hidaka, Jeon, Lin, Paquet, Pisarski, Satow, Skokov, Vujanovic (br0150) 2015; 114 Schenke, Jeon, Gale (br0490) 2011; 106 Kharzeev, Liao, Voloshin, Wang (br0200) 2016; 88 Bzdak, Skokov (br0170) 2012; 710 Chatterjee, Srivastava (br0120) 2009; 79 Paquet, Shen, Denicol, Luzum, Schenke, Jeon, Gale (br0140) 2016; 93 Gale (br0050) 2013; 910–911 Hattori, Huang (br0220) 2017; 28 Gursoy, Kharzeev, Rajagopal (br0250) 2014; 89 Schenke, Jeon, Gale (br0480) 2010; 82 Abelev (br0430) 2008; 101 Adare (br0090) 2016; 94 Muller, Wu, Yang (br0320) 2014; 89 Arnold, Moore, Yaffe (br0500) 2000; 11 Yan, Huang (br0260) 2021 Shuryak (br0010) 2017; 89 Teaney, Yan (br0460) 2011; 83 Voronyuk, Toneev, Cassing, Bratkovskaya, Konchakovski, Voloshin (br0180) 2011; 83 Stewart, Tuchin (br0270) 2021; 1016 Busza, Rajagopal, van der Schee (br0020) 2018; 68 Huang, She, Shi, Huang, Liao (br0280) 2022 Zhang, Sheng, Pu, Chen, Peng, Wang, Wang (br0290) 2022; 4 Reygers (br0060) 2022 Adare (br0080) 2015; 91 Kapusta, Gale (br0380) 2011 Huang, Zhao, Zhuang (br0370) 2022 Acharya (br0100) 2019; 789 Churchill, Yan, Jeon, Gale (br0510) 2021; 103 Tuchin (br0330) 2015; 91 Puglisi, Plumari, Greco (br0410) 2014; 90 Shen, Yan (br0040) 2020; 31 Shen, Heinz, Paquet, Kozlov, Gale (br0110) 2015; 91 Sun, Yan (br0420) 2023 Huang (br0210) 2016; 79 Skokov, Illarionov, Toneev (br0160) 2009; 24 Zakharov (br0340) 2016; 76 Blau, Peresunko (br0070) 2023; 6 Deng, Huang (br0190) 2012; 85 Gale, Paquet, Schenke, Shen (br0130) 2022; 105 McLerran, Skokov (br0230) 2014; 929 Chatterjee, Bożek (br0450) 2018; 120 Blaizot, Wu, Yan (br0400) 2014; 930 Tuchin (br0240) 2013; 88 Adam (br0470) 2018; 784 Miransky, Shovkovy (br0360) 2015; 576 Bzdak, Skokov (br0310) 2013; 110 Gale, Jeon, Schenke (br0030) 2013; 28 Wang, Shovkovy, Yu, Huang (br0350) 2020; 102 Berges, Reygers, Tanji, Venugopalan (br0390) 2017; 95 Adare (10.1016/j.physletb.2024.139046_br0090) 2016; 94 Wang (10.1016/j.physletb.2024.139046_br0350) 2020; 102 Gale (10.1016/j.physletb.2024.139046_br0050) 2013; 910–911 Gursoy (10.1016/j.physletb.2024.139046_br0250) 2014; 89 Abelev (10.1016/j.physletb.2024.139046_br0430) 2008; 101 Puglisi (10.1016/j.physletb.2024.139046_br0410) 2014; 90 Stewart (10.1016/j.physletb.2024.139046_br0270) 2021; 1016 Voronyuk (10.1016/j.physletb.2024.139046_br0180) 2011; 83 Bzdak (10.1016/j.physletb.2024.139046_br0170) 2012; 710 Arnold (10.1016/j.physletb.2024.139046_br0500) 2000; 11 Zhang (10.1016/j.physletb.2024.139046_br0290) 2022; 4 Shen (10.1016/j.physletb.2024.139046_br0110) 2015; 91 Yan (10.1016/j.physletb.2024.139046_br0260) Sun (10.1016/j.physletb.2024.139046_br0420) Adare (10.1016/j.physletb.2024.139046_br0080) 2015; 91 Miransky (10.1016/j.physletb.2024.139046_br0360) 2015; 576 Basar (10.1016/j.physletb.2024.139046_br0300) 2012; 109 Shen (10.1016/j.physletb.2024.139046_br0040) 2020; 31 Acharya (10.1016/j.physletb.2024.139046_br0100) 2019; 789 Gale (10.1016/j.physletb.2024.139046_br0130) 2022; 105 Blau (10.1016/j.physletb.2024.139046_br0070) 2023; 6 Blaizot (10.1016/j.physletb.2024.139046_br0400) 2014; 930 Churchill (10.1016/j.physletb.2024.139046_br0510) 2021; 103 Gale (10.1016/j.physletb.2024.139046_br0150) 2015; 114 Schenke (10.1016/j.physletb.2024.139046_br0490) 2011; 106 Bzdak (10.1016/j.physletb.2024.139046_br0310) 2013; 110 Hattori (10.1016/j.physletb.2024.139046_br0220) 2017; 28 Kharzeev (10.1016/j.physletb.2024.139046_br0200) 2016; 88 Paquet (10.1016/j.physletb.2024.139046_br0140) 2016; 93 Busza (10.1016/j.physletb.2024.139046_br0020) 2018; 68 Reygers (10.1016/j.physletb.2024.139046_br0060) McLerran (10.1016/j.physletb.2024.139046_br0230) 2014; 929 Huang (10.1016/j.physletb.2024.139046_br0370) Skokov (10.1016/j.physletb.2024.139046_br0160) 2009; 24 Tuchin (10.1016/j.physletb.2024.139046_br0240) 2013; 88 Muller (10.1016/j.physletb.2024.139046_br0320) 2014; 89 Zakharov (10.1016/j.physletb.2024.139046_br0340) 2016; 76 Kapusta (10.1016/j.physletb.2024.139046_br0380) 2011 Huang (10.1016/j.physletb.2024.139046_br0210) 2016; 79 Gale (10.1016/j.physletb.2024.139046_br0030) 2013; 28 Berges (10.1016/j.physletb.2024.139046_br0390) 2017; 95 Abelev (10.1016/j.physletb.2024.139046_br0440) 2013; 111 Schenke (10.1016/j.physletb.2024.139046_br0480) 2010; 82 Shuryak (10.1016/j.physletb.2024.139046_br0010) 2017; 89 Chatterjee (10.1016/j.physletb.2024.139046_br0450) 2018; 120 Adam (10.1016/j.physletb.2024.139046_br0470) 2018; 784 Chatterjee (10.1016/j.physletb.2024.139046_br0120) 2009; 79 Tuchin (10.1016/j.physletb.2024.139046_br0330) 2015; 91 Teaney (10.1016/j.physletb.2024.139046_br0460) 2011; 83 Huang (10.1016/j.physletb.2024.139046_br0280) Deng (10.1016/j.physletb.2024.139046_br0190) 2012; 85 |
References_xml | – volume: 101 year: 2008 ident: br0430 publication-title: Phys. Rev. Lett. – volume: 110 year: 2013 ident: br0310 publication-title: Phys. Rev. Lett. – volume: 910–911 start-page: 147 year: 2013 ident: br0050 publication-title: Nucl. Phys. A – volume: 784 start-page: 26 year: 2018 ident: br0470 publication-title: Phys. Lett. B – volume: 91 year: 2015 ident: br0080 publication-title: Phys. Rev. C – volume: 79 year: 2009 ident: br0120 publication-title: Phys. Rev. C – year: 2011 ident: br0380 article-title: Finite-Temperature Field Theory: Principles and Applications publication-title: Cambridge Monographs on Mathematical Physics – volume: 109 year: 2012 ident: br0300 publication-title: Phys. Rev. Lett. – volume: 28 start-page: 26 year: 2017 ident: br0220 publication-title: Nucl. Sci. Tech. – volume: 68 start-page: 339 year: 2018 ident: br0020 publication-title: Annu. Rev. Nucl. Part. Sci. – volume: 106 year: 2011 ident: br0490 publication-title: Phys. Rev. Lett. – volume: 929 start-page: 184 year: 2014 ident: br0230 publication-title: Nucl. Phys. A – volume: 91 year: 2015 ident: br0330 publication-title: Phys. Rev. C – volume: 88 start-page: 1 year: 2016 ident: br0200 publication-title: Prog. Part. Nucl. Phys. – volume: 82 year: 2010 ident: br0480 publication-title: Phys. Rev. C – volume: 4 year: 2022 ident: br0290 publication-title: Phys. Rev. Res. – volume: 90 year: 2014 ident: br0410 publication-title: Phys. Rev. D – volume: 24 start-page: 5925 year: 2009 ident: br0160 publication-title: Int. J. Mod. Phys. A – year: 2023 ident: br0420 – year: 2022 ident: br0370 – volume: 102 year: 2020 ident: br0350 publication-title: Phys. Rev. D – volume: 120 year: 2018 ident: br0450 publication-title: Phys. Rev. Lett. – volume: 76 start-page: 609 year: 2016 ident: br0340 publication-title: Eur. Phys. J. C – volume: 85 year: 2012 ident: br0190 publication-title: Phys. Rev. C – volume: 28 year: 2013 ident: br0030 publication-title: Int. J. Mod. Phys. A – volume: 789 start-page: 308 year: 2019 ident: br0100 publication-title: Phys. Lett. B – volume: 83 year: 2011 ident: br0180 publication-title: Phys. Rev. C – year: 2022 ident: br0060 article-title: Experimental overview of electromagnetic probes in ultra-relativistic nucleus-nucleus collisions – year: 2021 ident: br0260 – volume: 103 year: 2021 ident: br0510 publication-title: Phys. Rev. C – volume: 576 start-page: 1 year: 2015 ident: br0360 publication-title: Phys. Rep. – volume: 91 year: 2015 ident: br0110 publication-title: Phys. Rev. C – volume: 79 year: 2016 ident: br0210 publication-title: Rep. Prog. Phys. – volume: 930 start-page: 139 year: 2014 ident: br0400 publication-title: Nucl. Phys. A – volume: 83 year: 2011 ident: br0460 publication-title: Phys. Rev. C – year: 2022 ident: br0280 – volume: 1016 year: 2021 ident: br0270 publication-title: Nucl. Phys. A – volume: 31 start-page: 122 year: 2020 ident: br0040 publication-title: Nucl. Sci. Tech. – volume: 93 year: 2016 ident: br0140 publication-title: Phys. Rev. C – volume: 105 year: 2022 ident: br0130 publication-title: Phys. Rev. C – volume: 89 year: 2017 ident: br0010 publication-title: Rev. Mod. Phys. – volume: 6 start-page: 173 year: 2023 ident: br0070 publication-title: Particles – volume: 94 year: 2016 ident: br0090 publication-title: Phys. Rev. C – volume: 114 year: 2015 ident: br0150 publication-title: Phys. Rev. Lett. – volume: 95 year: 2017 ident: br0390 publication-title: Phys. Rev. C – volume: 89 year: 2014 ident: br0250 publication-title: Phys. Rev. C – volume: 89 year: 2014 ident: br0320 publication-title: Phys. Rev. D – volume: 11 year: 2000 ident: br0500 publication-title: J. High Energy Phys. – volume: 88 year: 2013 ident: br0240 publication-title: Phys. Rev. C – volume: 710 start-page: 171 year: 2012 ident: br0170 publication-title: Phys. Lett. B – volume: 111 year: 2013 ident: br0440 publication-title: Phys. Rev. Lett. – volume: 789 start-page: 308 year: 2019 ident: 10.1016/j.physletb.2024.139046_br0100 publication-title: Phys. Lett. B doi: 10.1016/j.physletb.2018.11.039 – ident: 10.1016/j.physletb.2024.139046_br0420 – volume: 105 year: 2022 ident: 10.1016/j.physletb.2024.139046_br0130 publication-title: Phys. Rev. C doi: 10.1103/PhysRevC.105.014909 – volume: 576 start-page: 1 year: 2015 ident: 10.1016/j.physletb.2024.139046_br0360 publication-title: Phys. Rep. doi: 10.1016/j.physrep.2015.02.003 – volume: 85 year: 2012 ident: 10.1016/j.physletb.2024.139046_br0190 publication-title: Phys. Rev. C doi: 10.1103/PhysRevC.85.044907 – volume: 91 year: 2015 ident: 10.1016/j.physletb.2024.139046_br0330 publication-title: Phys. Rev. C – volume: 79 year: 2009 ident: 10.1016/j.physletb.2024.139046_br0120 publication-title: Phys. Rev. C – ident: 10.1016/j.physletb.2024.139046_br0260 – ident: 10.1016/j.physletb.2024.139046_br0060 – volume: 103 year: 2021 ident: 10.1016/j.physletb.2024.139046_br0510 publication-title: Phys. Rev. C doi: 10.1103/PhysRevC.103.024904 – volume: 28 start-page: 26 year: 2017 ident: 10.1016/j.physletb.2024.139046_br0220 publication-title: Nucl. Sci. Tech. doi: 10.1007/s41365-016-0178-3 – volume: 83 year: 2011 ident: 10.1016/j.physletb.2024.139046_br0180 publication-title: Phys. Rev. C doi: 10.1103/PhysRevC.83.054911 – volume: 114 year: 2015 ident: 10.1016/j.physletb.2024.139046_br0150 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.114.072301 – volume: 89 year: 2014 ident: 10.1016/j.physletb.2024.139046_br0320 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.89.026013 – ident: 10.1016/j.physletb.2024.139046_br0370 – volume: 11 year: 2000 ident: 10.1016/j.physletb.2024.139046_br0500 publication-title: J. High Energy Phys. – volume: 91 year: 2015 ident: 10.1016/j.physletb.2024.139046_br0110 publication-title: Phys. Rev. C – volume: 1016 year: 2021 ident: 10.1016/j.physletb.2024.139046_br0270 publication-title: Nucl. Phys. A doi: 10.1016/j.nuclphysa.2021.122308 – volume: 784 start-page: 26 year: 2018 ident: 10.1016/j.physletb.2024.139046_br0470 publication-title: Phys. Lett. B doi: 10.1016/j.physletb.2018.07.013 – volume: 90 year: 2014 ident: 10.1016/j.physletb.2024.139046_br0410 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.90.114009 – volume: 910–911 start-page: 147 year: 2013 ident: 10.1016/j.physletb.2024.139046_br0050 publication-title: Nucl. Phys. A doi: 10.1016/j.nuclphysa.2012.12.034 – ident: 10.1016/j.physletb.2024.139046_br0280 – volume: 102 year: 2020 ident: 10.1016/j.physletb.2024.139046_br0350 publication-title: Phys. Rev. D – volume: 106 year: 2011 ident: 10.1016/j.physletb.2024.139046_br0490 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.106.042301 – volume: 93 year: 2016 ident: 10.1016/j.physletb.2024.139046_br0140 publication-title: Phys. Rev. C doi: 10.1103/PhysRevC.93.044906 – volume: 68 start-page: 339 year: 2018 ident: 10.1016/j.physletb.2024.139046_br0020 publication-title: Annu. Rev. Nucl. Part. Sci. doi: 10.1146/annurev-nucl-101917-020852 – volume: 4 year: 2022 ident: 10.1016/j.physletb.2024.139046_br0290 publication-title: Phys. Rev. Res. – volume: 111 year: 2013 ident: 10.1016/j.physletb.2024.139046_br0440 publication-title: Phys. Rev. Lett. – volume: 31 start-page: 122 year: 2020 ident: 10.1016/j.physletb.2024.139046_br0040 publication-title: Nucl. Sci. Tech. doi: 10.1007/s41365-020-00829-z – volume: 88 year: 2013 ident: 10.1016/j.physletb.2024.139046_br0240 publication-title: Phys. Rev. C – volume: 930 start-page: 139 year: 2014 ident: 10.1016/j.physletb.2024.139046_br0400 publication-title: Nucl. Phys. A doi: 10.1016/j.nuclphysa.2014.07.041 – year: 2011 ident: 10.1016/j.physletb.2024.139046_br0380 article-title: Finite-Temperature Field Theory: Principles and Applications – volume: 76 start-page: 609 year: 2016 ident: 10.1016/j.physletb.2024.139046_br0340 publication-title: Eur. Phys. J. C doi: 10.1140/epjc/s10052-016-4451-8 – volume: 28 year: 2013 ident: 10.1016/j.physletb.2024.139046_br0030 publication-title: Int. J. Mod. Phys. A doi: 10.1142/S0217751X13400113 – volume: 95 year: 2017 ident: 10.1016/j.physletb.2024.139046_br0390 publication-title: Phys. Rev. C doi: 10.1103/PhysRevC.95.054904 – volume: 110 year: 2013 ident: 10.1016/j.physletb.2024.139046_br0310 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.110.192301 – volume: 79 year: 2016 ident: 10.1016/j.physletb.2024.139046_br0210 publication-title: Rep. Prog. Phys. doi: 10.1088/0034-4885/79/7/076302 – volume: 120 year: 2018 ident: 10.1016/j.physletb.2024.139046_br0450 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.120.192301 – volume: 109 year: 2012 ident: 10.1016/j.physletb.2024.139046_br0300 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.109.202303 – volume: 91 year: 2015 ident: 10.1016/j.physletb.2024.139046_br0080 publication-title: Phys. Rev. C – volume: 24 start-page: 5925 year: 2009 ident: 10.1016/j.physletb.2024.139046_br0160 publication-title: Int. J. Mod. Phys. A doi: 10.1142/S0217751X09047570 – volume: 89 year: 2014 ident: 10.1016/j.physletb.2024.139046_br0250 publication-title: Phys. Rev. C doi: 10.1103/PhysRevC.89.054905 – volume: 82 year: 2010 ident: 10.1016/j.physletb.2024.139046_br0480 publication-title: Phys. Rev. C doi: 10.1103/PhysRevC.82.014903 – volume: 88 start-page: 1 year: 2016 ident: 10.1016/j.physletb.2024.139046_br0200 publication-title: Prog. Part. Nucl. Phys. doi: 10.1016/j.ppnp.2016.01.001 – volume: 6 start-page: 173 year: 2023 ident: 10.1016/j.physletb.2024.139046_br0070 publication-title: Particles doi: 10.3390/particles6010009 – volume: 710 start-page: 171 year: 2012 ident: 10.1016/j.physletb.2024.139046_br0170 publication-title: Phys. Lett. B doi: 10.1016/j.physletb.2012.02.065 – volume: 101 year: 2008 ident: 10.1016/j.physletb.2024.139046_br0430 publication-title: Phys. Rev. Lett. – volume: 83 year: 2011 ident: 10.1016/j.physletb.2024.139046_br0460 publication-title: Phys. Rev. C doi: 10.1103/PhysRevC.83.064904 – volume: 94 year: 2016 ident: 10.1016/j.physletb.2024.139046_br0090 publication-title: Phys. Rev. C – volume: 89 year: 2017 ident: 10.1016/j.physletb.2024.139046_br0010 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.89.035001 – volume: 929 start-page: 184 year: 2014 ident: 10.1016/j.physletb.2024.139046_br0230 publication-title: Nucl. Phys. A doi: 10.1016/j.nuclphysa.2014.05.008 |
SSID | ssj0001506 |
Score | 2.466938 |
Snippet | We propose a novel effect that accounts for the photon emission from a quark-gluon plasma in the presence of a weak external magnetic field. Although the weak... |
SourceID | doaj crossref elsevier |
SourceType | Open Website Index Database Publisher |
StartPage | 139046 |
SummonAdditionalLinks | – databaseName: Open Access Journals (DOAJ) dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NS8MwFA8yELyInzi_yMFrt5qkTXPU4RiCnhzsFpL2Vd1YN3Xiv-97TSu97eI1lBB-L8nv99L3wdiN8ErLMoEIb8gUHRQpI5_gwZOlkbfCS5XHlOD89JxOpupxlsw6rb4oJiyUBw7ADY00pTMi8QkSn_MiKxOlAUkulxnoOnlaIOe1zlRzB1PdvPr_gY4jkRrZyQ2eD-jNAEHx6B0KNUAJFJP87dBSXb2_w04dxhkfsP1GKvK7sMRDtgPVEdutQzbzr2M2QgvzEI7BVyX_AbfgS_daUVYiX7-tUNRxauZGz2Gcskj4B26HBQWp48AaVfPSnbDp-OFlNImalghRLrXcRD7NfO7RqVFKOwkluUzKOFA6Q8_AF96JXLjMJw4EkKuA-gUFGhW9L2JAOXLKetWqgjPGC-kSWQijCoNToHoFIbzLNAAecoS8z4YtInYdKl_YNiRsblsMLWFoA4Z9dk_A_X1NlavrAbSnbexpt9mzz0wLu21EQCB3nOp9ywLO_2MBF2yPpgz5hpest_n8hisUHht_Xe-xX2i00bs priority: 102 providerName: Directory of Open Access Journals |
Title | The effect of weak magnetic photon emission from quark-gluon plasma |
URI | https://dx.doi.org/10.1016/j.physletb.2024.139046 https://doaj.org/article/939fa925b5554ab28f547e910c38e751 |
Volume | 858 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NT8IwFG8IxsSL8TPiB-nB62D0g65HIBLQyEVJuC3t1iEQYCLGm3-77-1D8eTBy5I1XbP9-tr-ft17r4TcMisUT6TzYIZsg0Dh3LMSBh5PNG8xy0XkY4Dz46g9GIv7iZxUSK-MhUG3ymLuz-f0bLYuSpoFms10Nms--VyBgNCYUQ4zwEwwgl0otPLG54-bB2bQy_4kKN_D2jtRwvMG7h4APBZ0IhMNIEM-EuGdBSrL47-zTu2sPf0jcliQRtrJ3-uYVNzqhOxnzpvR2ynpQV_T3DGDrhP64cyCLs10hfGJNH1ZA72jeKwbboxRjCehr2AYC3RXh4IU-PPSnJFx_-65N_CKwxG8iCu-9Ww7sJEFeQPfbLhLUDwJbZxQAWgEG1vDImYCK41jDkUDMBmgapj-PvYdEJNzUl2tV-6C0JgbyWOmRayhCeCxjjFrAuUcDPfE6BpploiEaZ4DIyydw-ZhiWGIGIY5hjXSReC-a2MO66xgvZmGRSeGmmtonEkrgdIYy4JECuWAvkQ8cEq2akSXsIe_TAKamv3xApf_ePaKHOBdHnB4Tarbzbu7AeaxtfXMtOpkrzN8GIzqmX6H63DS_QLxithC |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEB7xEIJLVUorUijsgR6dmH1kvQcOlILC8wJIuS279joERJJCEOqFP8UfZMYPCCcOiOvaHq2-Hc98Y88DYIN7qUWuQoQWso0BihCRV_jiidyITe6FTGMqcD4-aXfO5UFXdafgqa6FobTKyvaXNr2w1tVKq0KzNer3W6ex0BhAGOooRx1gulVm5WH4_4Bx293W_l885N-c7-2e7XSiarRAlAotxpFvJz71GBxIqZ0IOYUe0rggdYIM22fe8ZS7xCsXeCDKjTwAiQ41j8_igG4d5U7DrERzQWMTmo-veSXUsq_4daHjiLY3UZZ81aTPFXgeHgNTLpvIvmJi3hMesRgcMOEYJ5zd3lf4UrFUtl0CsQhTYfAN5ops0fRuCXZQuViZCcKGOXsI7prduN6ACiLZ6HKIfJLRHDn6EseogIX9Q028pvx4XBghYb9x3-H8UyD7ATOD4SAsA8uEUyLjRmYGRSBxDpx7l-gQ0L7kzjSgVSNiR2XTDVtno13ZGkNLGNoSwwb8IeBe7qam2cXC8LZnK62xRhgUzpVXyKGc50mupA7Il1KRBK02G2Bq2O0bHURR_Xc28PMDz67DfOfs-Mge7Z8crsACXSmrHVdhZnx7H34h7Rn7tULNGFx8tl4_A5HtEKQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+effect+of+weak+magnetic+photon+emission+from+quark-gluon+plasma&rft.jtitle=Physics+letters.+B&rft.au=Sun%2C+Jing-An&rft.au=Yan%2C+Li&rft.date=2024-11-01&rft.pub=Elsevier+B.V&rft.issn=0370-2693&rft.volume=858&rft_id=info:doi/10.1016%2Fj.physletb.2024.139046&rft.externalDocID=S037026932400604X |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0370-2693&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0370-2693&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0370-2693&client=summon |