The effect of weak magnetic photon emission from quark-gluon plasma

We propose a novel effect that accounts for the photon emission from a quark-gluon plasma in the presence of a weak external magnetic field. Although the weak magnetic photon emission from quark-gluon plasma only leads to a small correction to the photon production rate, the induced photon spectrum...

Full description

Saved in:
Bibliographic Details
Published inPhysics letters. B Vol. 858; p. 139046
Main Authors Sun, Jing-An, Yan, Li
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.11.2024
Elsevier
Online AccessGet full text

Cover

Loading…
Abstract We propose a novel effect that accounts for the photon emission from a quark-gluon plasma in the presence of a weak external magnetic field. Although the weak magnetic photon emission from quark-gluon plasma only leads to a small correction to the photon production rate, the induced photon spectrum can be highly azimuthally anisotropic, as a consequence of the coupled effect of the magnetic field and the longitudinal dynamics in the background medium. With respect to a realistic medium evolution containing a tilted fireball configuration, the direct photon elliptic flow from experiments is reproduced. In comparison to the experimental data of direct photon elliptic flow, the strength of the magnetic field during the evolution of quark-gluon plasma can be extracted. For the top energy of RHIC collisions, |eB| is found no larger than a few percent of the pion mass square.
AbstractList We propose a novel effect that accounts for the photon emission from a quark-gluon plasma in the presence of a weak external magnetic field. Although the weak magnetic photon emission from quark-gluon plasma only leads to a small correction to the photon production rate, the induced photon spectrum can be highly azimuthally anisotropic, as a consequence of the coupled effect of the magnetic field and the longitudinal dynamics in the background medium. With respect to a realistic medium evolution containing a tilted fireball configuration, the direct photon elliptic flow from experiments is reproduced. In comparison to the experimental data of direct photon elliptic flow, the strength of the magnetic field during the evolution of quark-gluon plasma can be extracted. For the top energy of RHIC collisions, |eB| is found no larger than a few percent of the pion mass square.
ArticleNumber 139046
Author Yan, Li
Sun, Jing-An
Author_xml – sequence: 1
  givenname: Jing-An
  surname: Sun
  fullname: Sun, Jing-An
  organization: Institute of Modern Physics, Fudan University, Handan Road 220, Yangpu District, Shanghai, 200433, China
– sequence: 2
  givenname: Li
  surname: Yan
  fullname: Yan, Li
  email: cliyan@fudan.edu.cn
  organization: Institute of Modern Physics, Fudan University, Handan Road 220, Yangpu District, Shanghai, 200433, China
BookMark eNqFkE1PGzEQhn2gEh_lL1T7Bzb1t9e3oqilkZB6oWdr7IwTh911sJci_j2GIK49zWik95mZ55KczXlGQr4xumKU6e-H1XH_Ukdc_IpTLldMWCr1GbmgwtCeayvOyWWtB0opU1RfkPX9HjuMEcPS5dg9Izx0E-xmXFLojvu85LnDKdWaWhNLnrrHJygP_W58aoPjCHWCr-RLhLHi9Ue9In9__bxf_-7v_txu1jd3fRBGLL3Xgw9eWiWlAYGRUj5ICyjNoKzxWw88cBi8AuRojTSMK8E1V1JvKVItrsjmxN1mOLhjSROUF5chufdBLjsHpd09orPCRrBceaWUBM-HqKRBy2gQAxrFGkufWKHkWgvGTx6j7k2laxs-VLo3le6ksgV_nILYPv2XsLgaEs4Bt6k0ie2U9D_EK4t1gyY
Cites_doi 10.1016/j.physletb.2018.11.039
10.1103/PhysRevC.105.014909
10.1016/j.physrep.2015.02.003
10.1103/PhysRevC.85.044907
10.1103/PhysRevC.103.024904
10.1007/s41365-016-0178-3
10.1103/PhysRevC.83.054911
10.1103/PhysRevLett.114.072301
10.1103/PhysRevD.89.026013
10.1016/j.nuclphysa.2021.122308
10.1016/j.physletb.2018.07.013
10.1103/PhysRevD.90.114009
10.1016/j.nuclphysa.2012.12.034
10.1103/PhysRevLett.106.042301
10.1103/PhysRevC.93.044906
10.1146/annurev-nucl-101917-020852
10.1007/s41365-020-00829-z
10.1016/j.nuclphysa.2014.07.041
10.1140/epjc/s10052-016-4451-8
10.1142/S0217751X13400113
10.1103/PhysRevC.95.054904
10.1103/PhysRevLett.110.192301
10.1088/0034-4885/79/7/076302
10.1103/PhysRevLett.120.192301
10.1103/PhysRevLett.109.202303
10.1142/S0217751X09047570
10.1103/PhysRevC.89.054905
10.1103/PhysRevC.82.014903
10.1016/j.ppnp.2016.01.001
10.3390/particles6010009
10.1016/j.physletb.2012.02.065
10.1103/PhysRevC.83.064904
10.1103/RevModPhys.89.035001
10.1016/j.nuclphysa.2014.05.008
ContentType Journal Article
Copyright 2024 The Author(s)
Copyright_xml – notice: 2024 The Author(s)
DBID 6I.
AAFTH
AAYXX
CITATION
DOA
DOI 10.1016/j.physletb.2024.139046
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Open Access Journals (DOAJ)
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Physics
ExternalDocumentID oai_doaj_org_article_939fa925b5554ab28f547e910c38e751
10_1016_j_physletb_2024_139046
S037026932400604X
GroupedDBID --K
--M
-~X
.~1
0R~
0SF
123
186
1B1
1RT
1~.
1~5
29O
4.4
457
4G.
53G
5VS
6I.
6TJ
7-5
71M
8P~
8WZ
9JN
A6W
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXKI
AAXUO
AAYJJ
ABDPE
ABFNM
ABLJU
ABMAC
ABNEU
ABXDB
ACDAQ
ACFVG
ACGFS
ACNCT
ACNNM
ACRLP
ADBBV
ADEZE
ADIYS
ADMUD
ADVLN
AEBSH
AEKER
AENEX
AEXQZ
AFFNX
AFKWA
AFPKN
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIBLX
AIEXJ
AIKHN
AITUG
AIVDX
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BCNDV
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
ER.
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GROUPED_DOAJ
HME
HVGLF
HZ~
IHE
IPNFZ
IXB
J1W
KOM
KQ8
LZ4
M41
MO0
MVM
N9A
NCXOZ
O-L
O9-
OAUVE
OGIMB
OK1
OZT
P-8
P-9
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SEW
SHN
SPC
SPCBC
SPD
SSQ
SSZ
T5K
TN5
WH7
WUQ
XJT
ZCG
~G-
AAFWJ
AATTM
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADXHL
AEIPS
AEUPX
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
BNPGV
CITATION
SSH
EFKBS
ID FETCH-LOGICAL-c373t-b68bcb495447a3ef002849ae478597bdba2c2a8b5ae2e97471253262546d0e063
IEDL.DBID .~1
ISSN 0370-2693
IngestDate Wed Aug 27 01:17:34 EDT 2025
Tue Jul 01 04:17:09 EDT 2025
Sat Nov 09 16:00:18 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License This is an open access article under the CC BY license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c373t-b68bcb495447a3ef002849ae478597bdba2c2a8b5ae2e97471253262546d0e063
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S037026932400604X
ParticipantIDs doaj_primary_oai_doaj_org_article_939fa925b5554ab28f547e910c38e751
crossref_primary_10_1016_j_physletb_2024_139046
elsevier_sciencedirect_doi_10_1016_j_physletb_2024_139046
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate November 2024
2024-11-00
2024-11-01
PublicationDateYYYYMMDD 2024-11-01
PublicationDate_xml – month: 11
  year: 2024
  text: November 2024
PublicationDecade 2020
PublicationTitle Physics letters. B
PublicationYear 2024
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Basar, Kharzeev, Kharzeev, Skokov (br0300) 2012; 109
Abelev (br0440) 2013; 111
Gale, Hidaka, Jeon, Lin, Paquet, Pisarski, Satow, Skokov, Vujanovic (br0150) 2015; 114
Schenke, Jeon, Gale (br0490) 2011; 106
Kharzeev, Liao, Voloshin, Wang (br0200) 2016; 88
Bzdak, Skokov (br0170) 2012; 710
Chatterjee, Srivastava (br0120) 2009; 79
Paquet, Shen, Denicol, Luzum, Schenke, Jeon, Gale (br0140) 2016; 93
Gale (br0050) 2013; 910–911
Hattori, Huang (br0220) 2017; 28
Gursoy, Kharzeev, Rajagopal (br0250) 2014; 89
Schenke, Jeon, Gale (br0480) 2010; 82
Abelev (br0430) 2008; 101
Adare (br0090) 2016; 94
Muller, Wu, Yang (br0320) 2014; 89
Arnold, Moore, Yaffe (br0500) 2000; 11
Yan, Huang (br0260) 2021
Shuryak (br0010) 2017; 89
Teaney, Yan (br0460) 2011; 83
Voronyuk, Toneev, Cassing, Bratkovskaya, Konchakovski, Voloshin (br0180) 2011; 83
Stewart, Tuchin (br0270) 2021; 1016
Busza, Rajagopal, van der Schee (br0020) 2018; 68
Huang, She, Shi, Huang, Liao (br0280) 2022
Zhang, Sheng, Pu, Chen, Peng, Wang, Wang (br0290) 2022; 4
Reygers (br0060) 2022
Adare (br0080) 2015; 91
Kapusta, Gale (br0380) 2011
Huang, Zhao, Zhuang (br0370) 2022
Acharya (br0100) 2019; 789
Churchill, Yan, Jeon, Gale (br0510) 2021; 103
Tuchin (br0330) 2015; 91
Puglisi, Plumari, Greco (br0410) 2014; 90
Shen, Yan (br0040) 2020; 31
Shen, Heinz, Paquet, Kozlov, Gale (br0110) 2015; 91
Sun, Yan (br0420) 2023
Huang (br0210) 2016; 79
Skokov, Illarionov, Toneev (br0160) 2009; 24
Zakharov (br0340) 2016; 76
Blau, Peresunko (br0070) 2023; 6
Deng, Huang (br0190) 2012; 85
Gale, Paquet, Schenke, Shen (br0130) 2022; 105
McLerran, Skokov (br0230) 2014; 929
Chatterjee, Bożek (br0450) 2018; 120
Blaizot, Wu, Yan (br0400) 2014; 930
Tuchin (br0240) 2013; 88
Adam (br0470) 2018; 784
Miransky, Shovkovy (br0360) 2015; 576
Bzdak, Skokov (br0310) 2013; 110
Gale, Jeon, Schenke (br0030) 2013; 28
Wang, Shovkovy, Yu, Huang (br0350) 2020; 102
Berges, Reygers, Tanji, Venugopalan (br0390) 2017; 95
Adare (10.1016/j.physletb.2024.139046_br0090) 2016; 94
Wang (10.1016/j.physletb.2024.139046_br0350) 2020; 102
Gale (10.1016/j.physletb.2024.139046_br0050) 2013; 910–911
Gursoy (10.1016/j.physletb.2024.139046_br0250) 2014; 89
Abelev (10.1016/j.physletb.2024.139046_br0430) 2008; 101
Puglisi (10.1016/j.physletb.2024.139046_br0410) 2014; 90
Stewart (10.1016/j.physletb.2024.139046_br0270) 2021; 1016
Voronyuk (10.1016/j.physletb.2024.139046_br0180) 2011; 83
Bzdak (10.1016/j.physletb.2024.139046_br0170) 2012; 710
Arnold (10.1016/j.physletb.2024.139046_br0500) 2000; 11
Zhang (10.1016/j.physletb.2024.139046_br0290) 2022; 4
Shen (10.1016/j.physletb.2024.139046_br0110) 2015; 91
Yan (10.1016/j.physletb.2024.139046_br0260)
Sun (10.1016/j.physletb.2024.139046_br0420)
Adare (10.1016/j.physletb.2024.139046_br0080) 2015; 91
Miransky (10.1016/j.physletb.2024.139046_br0360) 2015; 576
Basar (10.1016/j.physletb.2024.139046_br0300) 2012; 109
Shen (10.1016/j.physletb.2024.139046_br0040) 2020; 31
Acharya (10.1016/j.physletb.2024.139046_br0100) 2019; 789
Gale (10.1016/j.physletb.2024.139046_br0130) 2022; 105
Blau (10.1016/j.physletb.2024.139046_br0070) 2023; 6
Blaizot (10.1016/j.physletb.2024.139046_br0400) 2014; 930
Churchill (10.1016/j.physletb.2024.139046_br0510) 2021; 103
Gale (10.1016/j.physletb.2024.139046_br0150) 2015; 114
Schenke (10.1016/j.physletb.2024.139046_br0490) 2011; 106
Bzdak (10.1016/j.physletb.2024.139046_br0310) 2013; 110
Hattori (10.1016/j.physletb.2024.139046_br0220) 2017; 28
Kharzeev (10.1016/j.physletb.2024.139046_br0200) 2016; 88
Paquet (10.1016/j.physletb.2024.139046_br0140) 2016; 93
Busza (10.1016/j.physletb.2024.139046_br0020) 2018; 68
Reygers (10.1016/j.physletb.2024.139046_br0060)
McLerran (10.1016/j.physletb.2024.139046_br0230) 2014; 929
Huang (10.1016/j.physletb.2024.139046_br0370)
Skokov (10.1016/j.physletb.2024.139046_br0160) 2009; 24
Tuchin (10.1016/j.physletb.2024.139046_br0240) 2013; 88
Muller (10.1016/j.physletb.2024.139046_br0320) 2014; 89
Zakharov (10.1016/j.physletb.2024.139046_br0340) 2016; 76
Kapusta (10.1016/j.physletb.2024.139046_br0380) 2011
Huang (10.1016/j.physletb.2024.139046_br0210) 2016; 79
Gale (10.1016/j.physletb.2024.139046_br0030) 2013; 28
Berges (10.1016/j.physletb.2024.139046_br0390) 2017; 95
Abelev (10.1016/j.physletb.2024.139046_br0440) 2013; 111
Schenke (10.1016/j.physletb.2024.139046_br0480) 2010; 82
Shuryak (10.1016/j.physletb.2024.139046_br0010) 2017; 89
Chatterjee (10.1016/j.physletb.2024.139046_br0450) 2018; 120
Adam (10.1016/j.physletb.2024.139046_br0470) 2018; 784
Chatterjee (10.1016/j.physletb.2024.139046_br0120) 2009; 79
Tuchin (10.1016/j.physletb.2024.139046_br0330) 2015; 91
Teaney (10.1016/j.physletb.2024.139046_br0460) 2011; 83
Huang (10.1016/j.physletb.2024.139046_br0280)
Deng (10.1016/j.physletb.2024.139046_br0190) 2012; 85
References_xml – volume: 101
  year: 2008
  ident: br0430
  publication-title: Phys. Rev. Lett.
– volume: 110
  year: 2013
  ident: br0310
  publication-title: Phys. Rev. Lett.
– volume: 910–911
  start-page: 147
  year: 2013
  ident: br0050
  publication-title: Nucl. Phys. A
– volume: 784
  start-page: 26
  year: 2018
  ident: br0470
  publication-title: Phys. Lett. B
– volume: 91
  year: 2015
  ident: br0080
  publication-title: Phys. Rev. C
– volume: 79
  year: 2009
  ident: br0120
  publication-title: Phys. Rev. C
– year: 2011
  ident: br0380
  article-title: Finite-Temperature Field Theory: Principles and Applications
  publication-title: Cambridge Monographs on Mathematical Physics
– volume: 109
  year: 2012
  ident: br0300
  publication-title: Phys. Rev. Lett.
– volume: 28
  start-page: 26
  year: 2017
  ident: br0220
  publication-title: Nucl. Sci. Tech.
– volume: 68
  start-page: 339
  year: 2018
  ident: br0020
  publication-title: Annu. Rev. Nucl. Part. Sci.
– volume: 106
  year: 2011
  ident: br0490
  publication-title: Phys. Rev. Lett.
– volume: 929
  start-page: 184
  year: 2014
  ident: br0230
  publication-title: Nucl. Phys. A
– volume: 91
  year: 2015
  ident: br0330
  publication-title: Phys. Rev. C
– volume: 88
  start-page: 1
  year: 2016
  ident: br0200
  publication-title: Prog. Part. Nucl. Phys.
– volume: 82
  year: 2010
  ident: br0480
  publication-title: Phys. Rev. C
– volume: 4
  year: 2022
  ident: br0290
  publication-title: Phys. Rev. Res.
– volume: 90
  year: 2014
  ident: br0410
  publication-title: Phys. Rev. D
– volume: 24
  start-page: 5925
  year: 2009
  ident: br0160
  publication-title: Int. J. Mod. Phys. A
– year: 2023
  ident: br0420
– year: 2022
  ident: br0370
– volume: 102
  year: 2020
  ident: br0350
  publication-title: Phys. Rev. D
– volume: 120
  year: 2018
  ident: br0450
  publication-title: Phys. Rev. Lett.
– volume: 76
  start-page: 609
  year: 2016
  ident: br0340
  publication-title: Eur. Phys. J. C
– volume: 85
  year: 2012
  ident: br0190
  publication-title: Phys. Rev. C
– volume: 28
  year: 2013
  ident: br0030
  publication-title: Int. J. Mod. Phys. A
– volume: 789
  start-page: 308
  year: 2019
  ident: br0100
  publication-title: Phys. Lett. B
– volume: 83
  year: 2011
  ident: br0180
  publication-title: Phys. Rev. C
– year: 2022
  ident: br0060
  article-title: Experimental overview of electromagnetic probes in ultra-relativistic nucleus-nucleus collisions
– year: 2021
  ident: br0260
– volume: 103
  year: 2021
  ident: br0510
  publication-title: Phys. Rev. C
– volume: 576
  start-page: 1
  year: 2015
  ident: br0360
  publication-title: Phys. Rep.
– volume: 91
  year: 2015
  ident: br0110
  publication-title: Phys. Rev. C
– volume: 79
  year: 2016
  ident: br0210
  publication-title: Rep. Prog. Phys.
– volume: 930
  start-page: 139
  year: 2014
  ident: br0400
  publication-title: Nucl. Phys. A
– volume: 83
  year: 2011
  ident: br0460
  publication-title: Phys. Rev. C
– year: 2022
  ident: br0280
– volume: 1016
  year: 2021
  ident: br0270
  publication-title: Nucl. Phys. A
– volume: 31
  start-page: 122
  year: 2020
  ident: br0040
  publication-title: Nucl. Sci. Tech.
– volume: 93
  year: 2016
  ident: br0140
  publication-title: Phys. Rev. C
– volume: 105
  year: 2022
  ident: br0130
  publication-title: Phys. Rev. C
– volume: 89
  year: 2017
  ident: br0010
  publication-title: Rev. Mod. Phys.
– volume: 6
  start-page: 173
  year: 2023
  ident: br0070
  publication-title: Particles
– volume: 94
  year: 2016
  ident: br0090
  publication-title: Phys. Rev. C
– volume: 114
  year: 2015
  ident: br0150
  publication-title: Phys. Rev. Lett.
– volume: 95
  year: 2017
  ident: br0390
  publication-title: Phys. Rev. C
– volume: 89
  year: 2014
  ident: br0250
  publication-title: Phys. Rev. C
– volume: 89
  year: 2014
  ident: br0320
  publication-title: Phys. Rev. D
– volume: 11
  year: 2000
  ident: br0500
  publication-title: J. High Energy Phys.
– volume: 88
  year: 2013
  ident: br0240
  publication-title: Phys. Rev. C
– volume: 710
  start-page: 171
  year: 2012
  ident: br0170
  publication-title: Phys. Lett. B
– volume: 111
  year: 2013
  ident: br0440
  publication-title: Phys. Rev. Lett.
– volume: 789
  start-page: 308
  year: 2019
  ident: 10.1016/j.physletb.2024.139046_br0100
  publication-title: Phys. Lett. B
  doi: 10.1016/j.physletb.2018.11.039
– ident: 10.1016/j.physletb.2024.139046_br0420
– volume: 105
  year: 2022
  ident: 10.1016/j.physletb.2024.139046_br0130
  publication-title: Phys. Rev. C
  doi: 10.1103/PhysRevC.105.014909
– volume: 576
  start-page: 1
  year: 2015
  ident: 10.1016/j.physletb.2024.139046_br0360
  publication-title: Phys. Rep.
  doi: 10.1016/j.physrep.2015.02.003
– volume: 85
  year: 2012
  ident: 10.1016/j.physletb.2024.139046_br0190
  publication-title: Phys. Rev. C
  doi: 10.1103/PhysRevC.85.044907
– volume: 91
  year: 2015
  ident: 10.1016/j.physletb.2024.139046_br0330
  publication-title: Phys. Rev. C
– volume: 79
  year: 2009
  ident: 10.1016/j.physletb.2024.139046_br0120
  publication-title: Phys. Rev. C
– ident: 10.1016/j.physletb.2024.139046_br0260
– ident: 10.1016/j.physletb.2024.139046_br0060
– volume: 103
  year: 2021
  ident: 10.1016/j.physletb.2024.139046_br0510
  publication-title: Phys. Rev. C
  doi: 10.1103/PhysRevC.103.024904
– volume: 28
  start-page: 26
  year: 2017
  ident: 10.1016/j.physletb.2024.139046_br0220
  publication-title: Nucl. Sci. Tech.
  doi: 10.1007/s41365-016-0178-3
– volume: 83
  year: 2011
  ident: 10.1016/j.physletb.2024.139046_br0180
  publication-title: Phys. Rev. C
  doi: 10.1103/PhysRevC.83.054911
– volume: 114
  year: 2015
  ident: 10.1016/j.physletb.2024.139046_br0150
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.114.072301
– volume: 89
  year: 2014
  ident: 10.1016/j.physletb.2024.139046_br0320
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.89.026013
– ident: 10.1016/j.physletb.2024.139046_br0370
– volume: 11
  year: 2000
  ident: 10.1016/j.physletb.2024.139046_br0500
  publication-title: J. High Energy Phys.
– volume: 91
  year: 2015
  ident: 10.1016/j.physletb.2024.139046_br0110
  publication-title: Phys. Rev. C
– volume: 1016
  year: 2021
  ident: 10.1016/j.physletb.2024.139046_br0270
  publication-title: Nucl. Phys. A
  doi: 10.1016/j.nuclphysa.2021.122308
– volume: 784
  start-page: 26
  year: 2018
  ident: 10.1016/j.physletb.2024.139046_br0470
  publication-title: Phys. Lett. B
  doi: 10.1016/j.physletb.2018.07.013
– volume: 90
  year: 2014
  ident: 10.1016/j.physletb.2024.139046_br0410
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.90.114009
– volume: 910–911
  start-page: 147
  year: 2013
  ident: 10.1016/j.physletb.2024.139046_br0050
  publication-title: Nucl. Phys. A
  doi: 10.1016/j.nuclphysa.2012.12.034
– ident: 10.1016/j.physletb.2024.139046_br0280
– volume: 102
  year: 2020
  ident: 10.1016/j.physletb.2024.139046_br0350
  publication-title: Phys. Rev. D
– volume: 106
  year: 2011
  ident: 10.1016/j.physletb.2024.139046_br0490
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.106.042301
– volume: 93
  year: 2016
  ident: 10.1016/j.physletb.2024.139046_br0140
  publication-title: Phys. Rev. C
  doi: 10.1103/PhysRevC.93.044906
– volume: 68
  start-page: 339
  year: 2018
  ident: 10.1016/j.physletb.2024.139046_br0020
  publication-title: Annu. Rev. Nucl. Part. Sci.
  doi: 10.1146/annurev-nucl-101917-020852
– volume: 4
  year: 2022
  ident: 10.1016/j.physletb.2024.139046_br0290
  publication-title: Phys. Rev. Res.
– volume: 111
  year: 2013
  ident: 10.1016/j.physletb.2024.139046_br0440
  publication-title: Phys. Rev. Lett.
– volume: 31
  start-page: 122
  year: 2020
  ident: 10.1016/j.physletb.2024.139046_br0040
  publication-title: Nucl. Sci. Tech.
  doi: 10.1007/s41365-020-00829-z
– volume: 88
  year: 2013
  ident: 10.1016/j.physletb.2024.139046_br0240
  publication-title: Phys. Rev. C
– volume: 930
  start-page: 139
  year: 2014
  ident: 10.1016/j.physletb.2024.139046_br0400
  publication-title: Nucl. Phys. A
  doi: 10.1016/j.nuclphysa.2014.07.041
– year: 2011
  ident: 10.1016/j.physletb.2024.139046_br0380
  article-title: Finite-Temperature Field Theory: Principles and Applications
– volume: 76
  start-page: 609
  year: 2016
  ident: 10.1016/j.physletb.2024.139046_br0340
  publication-title: Eur. Phys. J. C
  doi: 10.1140/epjc/s10052-016-4451-8
– volume: 28
  year: 2013
  ident: 10.1016/j.physletb.2024.139046_br0030
  publication-title: Int. J. Mod. Phys. A
  doi: 10.1142/S0217751X13400113
– volume: 95
  year: 2017
  ident: 10.1016/j.physletb.2024.139046_br0390
  publication-title: Phys. Rev. C
  doi: 10.1103/PhysRevC.95.054904
– volume: 110
  year: 2013
  ident: 10.1016/j.physletb.2024.139046_br0310
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.110.192301
– volume: 79
  year: 2016
  ident: 10.1016/j.physletb.2024.139046_br0210
  publication-title: Rep. Prog. Phys.
  doi: 10.1088/0034-4885/79/7/076302
– volume: 120
  year: 2018
  ident: 10.1016/j.physletb.2024.139046_br0450
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.120.192301
– volume: 109
  year: 2012
  ident: 10.1016/j.physletb.2024.139046_br0300
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.109.202303
– volume: 91
  year: 2015
  ident: 10.1016/j.physletb.2024.139046_br0080
  publication-title: Phys. Rev. C
– volume: 24
  start-page: 5925
  year: 2009
  ident: 10.1016/j.physletb.2024.139046_br0160
  publication-title: Int. J. Mod. Phys. A
  doi: 10.1142/S0217751X09047570
– volume: 89
  year: 2014
  ident: 10.1016/j.physletb.2024.139046_br0250
  publication-title: Phys. Rev. C
  doi: 10.1103/PhysRevC.89.054905
– volume: 82
  year: 2010
  ident: 10.1016/j.physletb.2024.139046_br0480
  publication-title: Phys. Rev. C
  doi: 10.1103/PhysRevC.82.014903
– volume: 88
  start-page: 1
  year: 2016
  ident: 10.1016/j.physletb.2024.139046_br0200
  publication-title: Prog. Part. Nucl. Phys.
  doi: 10.1016/j.ppnp.2016.01.001
– volume: 6
  start-page: 173
  year: 2023
  ident: 10.1016/j.physletb.2024.139046_br0070
  publication-title: Particles
  doi: 10.3390/particles6010009
– volume: 710
  start-page: 171
  year: 2012
  ident: 10.1016/j.physletb.2024.139046_br0170
  publication-title: Phys. Lett. B
  doi: 10.1016/j.physletb.2012.02.065
– volume: 101
  year: 2008
  ident: 10.1016/j.physletb.2024.139046_br0430
  publication-title: Phys. Rev. Lett.
– volume: 83
  year: 2011
  ident: 10.1016/j.physletb.2024.139046_br0460
  publication-title: Phys. Rev. C
  doi: 10.1103/PhysRevC.83.064904
– volume: 94
  year: 2016
  ident: 10.1016/j.physletb.2024.139046_br0090
  publication-title: Phys. Rev. C
– volume: 89
  year: 2017
  ident: 10.1016/j.physletb.2024.139046_br0010
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.89.035001
– volume: 929
  start-page: 184
  year: 2014
  ident: 10.1016/j.physletb.2024.139046_br0230
  publication-title: Nucl. Phys. A
  doi: 10.1016/j.nuclphysa.2014.05.008
SSID ssj0001506
Score 2.466938
Snippet We propose a novel effect that accounts for the photon emission from a quark-gluon plasma in the presence of a weak external magnetic field. Although the weak...
SourceID doaj
crossref
elsevier
SourceType Open Website
Index Database
Publisher
StartPage 139046
SummonAdditionalLinks – databaseName: Open Access Journals (DOAJ)
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NS8MwFA8yELyInzi_yMFrt5qkTXPU4RiCnhzsFpL2Vd1YN3Xiv-97TSu97eI1lBB-L8nv99L3wdiN8ErLMoEIb8gUHRQpI5_gwZOlkbfCS5XHlOD89JxOpupxlsw6rb4oJiyUBw7ADY00pTMi8QkSn_MiKxOlAUkulxnoOnlaIOe1zlRzB1PdvPr_gY4jkRrZyQ2eD-jNAEHx6B0KNUAJFJP87dBSXb2_w04dxhkfsP1GKvK7sMRDtgPVEdutQzbzr2M2QgvzEI7BVyX_AbfgS_daUVYiX7-tUNRxauZGz2Gcskj4B26HBQWp48AaVfPSnbDp-OFlNImalghRLrXcRD7NfO7RqVFKOwkluUzKOFA6Q8_AF96JXLjMJw4EkKuA-gUFGhW9L2JAOXLKetWqgjPGC-kSWQijCoNToHoFIbzLNAAecoS8z4YtInYdKl_YNiRsblsMLWFoA4Z9dk_A_X1NlavrAbSnbexpt9mzz0wLu21EQCB3nOp9ywLO_2MBF2yPpgz5hpest_n8hisUHht_Xe-xX2i00bs
  priority: 102
  providerName: Directory of Open Access Journals
Title The effect of weak magnetic photon emission from quark-gluon plasma
URI https://dx.doi.org/10.1016/j.physletb.2024.139046
https://doaj.org/article/939fa925b5554ab28f547e910c38e751
Volume 858
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NT8IwFG8IxsSL8TPiB-nB62D0g65HIBLQyEVJuC3t1iEQYCLGm3-77-1D8eTBy5I1XbP9-tr-ft17r4TcMisUT6TzYIZsg0Dh3LMSBh5PNG8xy0XkY4Dz46g9GIv7iZxUSK-MhUG3ymLuz-f0bLYuSpoFms10Nms--VyBgNCYUQ4zwEwwgl0otPLG54-bB2bQy_4kKN_D2jtRwvMG7h4APBZ0IhMNIEM-EuGdBSrL47-zTu2sPf0jcliQRtrJ3-uYVNzqhOxnzpvR2ynpQV_T3DGDrhP64cyCLs10hfGJNH1ZA72jeKwbboxRjCehr2AYC3RXh4IU-PPSnJFx_-65N_CKwxG8iCu-9Ww7sJEFeQPfbLhLUDwJbZxQAWgEG1vDImYCK41jDkUDMBmgapj-PvYdEJNzUl2tV-6C0JgbyWOmRayhCeCxjjFrAuUcDPfE6BpploiEaZ4DIyydw-ZhiWGIGIY5hjXSReC-a2MO66xgvZmGRSeGmmtonEkrgdIYy4JECuWAvkQ8cEq2akSXsIe_TAKamv3xApf_ePaKHOBdHnB4Tarbzbu7AeaxtfXMtOpkrzN8GIzqmX6H63DS_QLxithC
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEB7xEIJLVUorUijsgR6dmH1kvQcOlILC8wJIuS279joERJJCEOqFP8UfZMYPCCcOiOvaHq2-Hc98Y88DYIN7qUWuQoQWso0BihCRV_jiidyITe6FTGMqcD4-aXfO5UFXdafgqa6FobTKyvaXNr2w1tVKq0KzNer3W6ex0BhAGOooRx1gulVm5WH4_4Bx293W_l885N-c7-2e7XSiarRAlAotxpFvJz71GBxIqZ0IOYUe0rggdYIM22fe8ZS7xCsXeCDKjTwAiQ41j8_igG4d5U7DrERzQWMTmo-veSXUsq_4daHjiLY3UZZ81aTPFXgeHgNTLpvIvmJi3hMesRgcMOEYJ5zd3lf4UrFUtl0CsQhTYfAN5ops0fRuCXZQuViZCcKGOXsI7prduN6ACiLZ6HKIfJLRHDn6EseogIX9Q028pvx4XBghYb9x3-H8UyD7ATOD4SAsA8uEUyLjRmYGRSBxDpx7l-gQ0L7kzjSgVSNiR2XTDVtno13ZGkNLGNoSwwb8IeBe7qam2cXC8LZnK62xRhgUzpVXyKGc50mupA7Il1KRBK02G2Bq2O0bHURR_Xc28PMDz67DfOfs-Mge7Z8crsACXSmrHVdhZnx7H34h7Rn7tULNGFx8tl4_A5HtEKQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+effect+of+weak+magnetic+photon+emission+from+quark-gluon+plasma&rft.jtitle=Physics+letters.+B&rft.au=Sun%2C+Jing-An&rft.au=Yan%2C+Li&rft.date=2024-11-01&rft.pub=Elsevier+B.V&rft.issn=0370-2693&rft.volume=858&rft_id=info:doi/10.1016%2Fj.physletb.2024.139046&rft.externalDocID=S037026932400604X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0370-2693&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0370-2693&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0370-2693&client=summon