A seed-epidermis-feature-recognition-based lightweight peanut seed selection method for embedded systems

High-quality seeds improve the germination rate. Therefore, seed selection before sowing peanuts is crucial. Current peanut seed selection methods include color sorters and sieving machines, which are efficient but lack accuracy due to their reliance on a single indicator. Manual selection is ineffi...

Full description

Saved in:
Bibliographic Details
Published inMeasurement and control (London) Vol. 58; no. 8; pp. 1039 - 1051
Main Authors Li, Dehao, Huang, Jinlong, Li, Xincheng, Yang, Zhaolei, An, Xueke, Xu, Pengfei, Yun, Yuliang
Format Journal Article
LanguageEnglish
Published London, England SAGE Publications 01.08.2025
Sage Publications Ltd
SAGE Publishing
Subjects
Online AccessGet full text

Cover

Loading…
Abstract High-quality seeds improve the germination rate. Therefore, seed selection before sowing peanuts is crucial. Current peanut seed selection methods include color sorters and sieving machines, which are efficient but lack accuracy due to their reliance on a single indicator. Manual selection is inefficient and subject to subjective influences. Although machine vision and deep learning have performed well in crops such as corn and pepper, most existing research is based on PC or MATLAB platforms, which are not portable and are prone to interference, making them unsuitable for field applications. This study developed a lightweight model for recognizing peanut seed epidermal features. The model was based on deep learning and model quantization techniques. The transfer learning method was used to use four pre-trained models, EfficientNet_b0, EfficientNetv2-b0, MobileNet_v2_35_224, and NasNet_Mobile, as feature extraction layers, the input layer was added before the feature extraction layer, and the dropout and dense layers were added after the feature extraction layer to construct a classifier. The peanut seed selection network(PSSNet) models were constructed and named PSSNet-E, PSSNet-E2, PSSNet-M, and PSSNet-N, respectively, and trained on the Huayu 22 peanut seed dataset constructed in this study. The constructed models were compressed using model quantization technology, and four quantized models were obtained, namely PSSNet-Ef, PSSNet-E2f, PSSNet-Mf, and PSSNet-Nf. Finally, PSSNet-Mf, which had the best model evaluation, was selected as the peanut selection model for this study and deployed on a prototype for testing. Compared with the unquantized model, the size of the quantized model was reduced by two-thirds and the running speed was increased by 37%. A total of 400 Huayu 22 peanut seeds were selected as test samples, and 5 selection tests were conducted.The results showed that the average accuracy was 95.3%, which met the requirements of peanut selection at the production site.
AbstractList High-quality seeds improve the germination rate. Therefore, seed selection before sowing peanuts is crucial. Current peanut seed selection methods include color sorters and sieving machines, which are efficient but lack accuracy due to their reliance on a single indicator. Manual selection is inefficient and subject to subjective influences. Although machine vision and deep learning have performed well in crops such as corn and pepper, most existing research is based on PC or MATLAB platforms, which are not portable and are prone to interference, making them unsuitable for field applications. This study developed a lightweight model for recognizing peanut seed epidermal features. The model was based on deep learning and model quantization techniques. The transfer learning method was used to use four pre-trained models, EfficientNet_b0, EfficientNetv2-b0, MobileNet_v2_35_224, and NasNet_Mobile, as feature extraction layers, the input layer was added before the feature extraction layer, and the dropout and dense layers were added after the feature extraction layer to construct a classifier. The peanut seed selection network(PSSNet) models were constructed and named PSSNet-E, PSSNet-E2, PSSNet-M, and PSSNet-N, respectively, and trained on the Huayu 22 peanut seed dataset constructed in this study. The constructed models were compressed using model quantization technology, and four quantized models were obtained, namely PSSNet-Ef, PSSNet-E2f, PSSNet-Mf, and PSSNet-Nf. Finally, PSSNet-Mf, which had the best model evaluation, was selected as the peanut selection model for this study and deployed on a prototype for testing. Compared with the unquantized model, the size of the quantized model was reduced by two-thirds and the running speed was increased by 37%. A total of 400 Huayu 22 peanut seeds were selected as test samples, and 5 selection tests were conducted.The results showed that the average accuracy was 95.3%, which met the requirements of peanut selection at the production site.
Author Li, Dehao
Yang, Zhaolei
Xu, Pengfei
Li, Xincheng
An, Xueke
Huang, Jinlong
Yun, Yuliang
Author_xml – sequence: 1
  givenname: Dehao
  orcidid: 0009-0009-3864-7655
  surname: Li
  fullname: Li, Dehao
– sequence: 2
  givenname: Jinlong
  surname: Huang
  fullname: Huang, Jinlong
– sequence: 3
  givenname: Xincheng
  surname: Li
  fullname: Li, Xincheng
– sequence: 4
  givenname: Zhaolei
  surname: Yang
  fullname: Yang, Zhaolei
– sequence: 5
  givenname: Xueke
  surname: An
  fullname: An, Xueke
– sequence: 6
  givenname: Pengfei
  surname: Xu
  fullname: Xu, Pengfei
– sequence: 7
  givenname: Yuliang
  surname: Yun
  fullname: Yun, Yuliang
  email: ylyun1981@163.com
BookMark eNp1kU1LBDEMhosouH78AG8Dnqv9nvYo4hcIXryXTpvuzrIzXdsu4r93xhU9iDkkkLzPm0BO0OGYRkDogpIrStv2mhBGmBGECcoM59QcoAUjkmLdcnKIFvMcz4JjdF7KmkyhlVJMLdDqpikAAcO2D5CHvuAIru4y4Aw-Lce-9mnEnSsQmk2_XNV3mHOzBTfu6hc7pQ34WdcMUFcpNDHlBoYOQpinH6XCUM7QUXSbAuff9RS93t-93j7i55eHp9ubZ-x5yyt2UXppqNRG0C4KbTTnKvi2iyZSbYLm2pvORce4lwokkZ0MzGvBtY4E-Cl62tuG5NZ2m_vB5Q-bXG-_Gikvrcu19xuwkmgmFQ0SGBUTa4IwEFxUpAWunJ68Lvde25zedlCqXaddHqfrLWecilZIIScV3at8TqVkiD9bKbHze-yf90zM1Z4pbgm_rv8Dn_i_kTo
Cites_doi 10.1111/jfpe.13955
10.1109/CVPR.2018.00474
10.1016/j.compag.2020.105744
10.1007/s11947-022-02939-5
10.1038/s41598-021-95240-y
10.1007/s11119-022-09959-3
10.1016/j.compag.2022.107393
10.1007/s00521-021-05715-2
10.1007/s11042-019-08564-3
10.1007/s11694-022-01612-x
10.1016/j.indcrop.2023.116455
10.1111/jfpe.14069
10.1109/ACCESS.2021.3114496
10.1016/j.compag.2022.107426
10.1016/j.compag.2021.106004
10.1007/978-1-4842-7341-8_6
10.1016/j.compag.2019.104874
10.1016/j.compag.2020.105951
10.1007/978-3-540-31865-1_25
ContentType Journal Article
Copyright The Author(s) 2024
The Author(s) 2024 This article is distributed under the terms of the Creative Commons Attribution 4.0 License (https://creativecommons.org/licenses/by/4.0/) which permits any use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2024
– notice: The Author(s) 2024 This article is distributed under the terms of the Creative Commons Attribution 4.0 License (https://creativecommons.org/licenses/by/4.0/) which permits any use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AFRWT
AAYXX
CITATION
7SP
7TB
8FD
FR3
L7M
DOA
DOI 10.1177/00202940241293319
DatabaseName Sage Journals GOLD Open Access 2024
CrossRef
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Advanced Technologies Database with Aerospace
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Engineering Research Database
CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: AFRWT
  name: Sage Journals GOLD Open Access 2024
  url: http://journals.sagepub.com/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2051-8730
EndPage 1051
ExternalDocumentID oai_doaj_org_article_5082561d5e214f0e9d49edaf607e36a8
10_1177_00202940241293319
10.1177_00202940241293319
GrantInformation_xml – fundername: Key Technology Research and Development Program of Shandong Province
  grantid: 2023TZXD023
  funderid: https://doi.org/10.13039/100014103
– fundername: Natural Science Foundation of Shandong Province
  grantid: ZR2022MC152
  funderid: https://doi.org/10.13039/501100007129
– fundername: Central government guiding local science and technology development special plan
  grantid: 23-1-3-6-zyyd-nsh
GroupedDBID -TM
-~X
01A
0R~
54M
6TJ
AABMB
AADUE
AAGGD
AAPEO
AARDL
AARIX
AASGM
AAYJJ
ABAWP
ABDWY
ABEIX
ABFWQ
ABKRH
ABQKF
ABQXT
ABRHV
ABVFX
ABYTW
ACARO
ACDSZ
ACDXX
ACGBL
ACGFS
ACHEB
ACOFE
ADBBV
ADEBD
ADEIA
ADOGD
ADTBJ
ADUKL
AEDFJ
AEQLS
AERKM
AEUHG
AEWDL
AEXNY
AFCOW
AFEET
AFFNX
AFKRA
AFKRG
AFRWT
AFUIA
AFYCX
AGNHF
AHJOV
AIZZC
AJEFB
AJUZI
ALMA_UNASSIGNED_HOLDINGS
APTNG
ARTOV
BCNDV
BDDNI
BENPR
BSEHC
CBRKF
CCPQU
CFDXU
CORYS
DC-
DOPDO
EBS
EJD
GROUPED_DOAJ
GROUPED_SAGE_PREMIER_JOURNAL_COLLECTION
H13
J8X
K.F
OK1
P.9
P.B
PHGZM
PHGZT
PIMPY
Q1R
ROL
SAUOL
SCDPB
SCNPE
SFC
ZONMY
ZPPRI
ZRKOI
ZY4
AAEJI
AAYXX
CITATION
7SP
7TB
8FD
FR3
L7M
PUEGO
ID FETCH-LOGICAL-c373t-af5c59158941bf4898336dc7bf9f189d838c9bafa23c56e505b5d2c84388f0e3
IEDL.DBID DOA
ISSN 0020-2940
IngestDate Wed Aug 27 01:12:07 EDT 2025
Sat Aug 23 14:45:15 EDT 2025
Thu Jul 24 01:55:11 EDT 2025
Sun Jul 20 05:40:28 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords deep learning
transfer learning
embedded deployment
Peanut seed selection
Language English
License This article is distributed under the terms of the Creative Commons Attribution 4.0 License (https://creativecommons.org/licenses/by/4.0/) which permits any use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c373t-af5c59158941bf4898336dc7bf9f189d838c9bafa23c56e505b5d2c84388f0e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0009-0009-3864-7655
OpenAccessLink https://doaj.org/article/5082561d5e214f0e9d49edaf607e36a8
PQID 3231474545
PQPubID 4450589
PageCount 13
ParticipantIDs doaj_primary_oai_doaj_org_article_5082561d5e214f0e9d49edaf607e36a8
proquest_journals_3231474545
crossref_primary_10_1177_00202940241293319
sage_journals_10_1177_00202940241293319
PublicationCentury 2000
PublicationDate 2025-08-01
PublicationDateYYYYMMDD 2025-08-01
PublicationDate_xml – month: 08
  year: 2025
  text: 2025-08-01
  day: 01
PublicationDecade 2020
PublicationPlace London, England
PublicationPlace_xml – name: London, England
– name: London
PublicationTitle Measurement and control (London)
PublicationYear 2025
Publisher SAGE Publications
Sage Publications Ltd
SAGE Publishing
Publisher_xml – name: SAGE Publications
– name: Sage Publications Ltd
– name: SAGE Publishing
References Nadimi, Divyanth, Paliwal 2023; 16
Howard, Zhu, Chen 2017
Bhargava, Bansal 2020; 79
Bozinovski, Fulgosi 1976; 3
Jin, Zhao, Bian 2023; 17
Sabanci, Aslan, Ropelewska 2022; 45
Feng, Xu, Ma 2023; 24
Chen, Zhai, Zhang 2020; 178
Gonzalez-Huitron, León-Borges, Rodriguez-Mata 2021; 181
Yang, Ni, Gao 2021; 11
Ju, Zheng, Xu 2022; 34
Ireri, Belal, Okinda 2019; 2
Huang, Wang, Cao 2022; 202
Zhao, Liu, Li 2022; 202
Cao, Sun, Zhang 2021; 183
Nagel, Fournarakis, Amjad 2021
Zoph, Vasudevan, Shlens 2018
Gan, Luo, Li 2022; 45
Yu, Li, Guo 2023; 196
Keskar, Socher 2017
Altuntaş, Cömert, Kocamaz 2019; 163
Fu, Li, Wei 2021; 9
Liu, Feng, Wang 2019; 35
Goyal, Dollár, Girshick 2019
e_1_3_2_27_2
e_1_3_2_29_2
Keskar N (e_1_3_2_25_2) 2017
e_1_3_2_21_2
e_1_3_2_23_2
Ireri D (e_1_3_2_11_2) 2019; 2
Liu Y (e_1_3_2_20_2) 2019; 35
e_1_3_2_9_2
e_1_3_2_8_2
Howard A (e_1_3_2_16_2) 2017
e_1_3_2_7_2
e_1_3_2_17_2
e_1_3_2_6_2
e_1_3_2_19_2
Zoph B (e_1_3_2_15_2) 2018
Bozinovski S (e_1_3_2_22_2) 1976; 3
e_1_3_2_30_2
e_1_3_2_10_2
e_1_3_2_31_2
e_1_3_2_5_2
e_1_3_2_4_2
e_1_3_2_12_2
e_1_3_2_3_2
e_1_3_2_13_2
e_1_3_2_2_2
e_1_3_2_14_2
Tan M (e_1_3_2_18_2) 2019
Nagel M (e_1_3_2_28_2) 2021
Le Q (e_1_3_2_26_2) 2011
Goyal P (e_1_3_2_24_2) 2019
References_xml – volume: 17
  start-page: 143
  issue: 1
  year: 2023
  end-page: 154
  article-title: Sunflower seeds classification based on self-attention focusing algorithm
  publication-title: J Food Meas Charact
– volume: 2
  start-page: 28
  year: 2019
  end-page: 37
  article-title: A computer vision system for defect discrimination and grading in tomatoes using machine learning and image processing
  publication-title: Artif Intell Agric
– volume: 3
  start-page: 121
  issue: 3
  year: 1976
  end-page: 126
  article-title: The influence of pattern similarity and transfer learning upon training of a base perceptron b2
  publication-title: Proc Symp Inform
– volume: 178
  start-page: 105744
  year: 2020
  article-title: Study on control strategy of the vine clamping conveying system in the peanut combine harvester
  publication-title: Comput Electron Agric
– volume: 163
  start-page: 104874
  year: 2019
  article-title: Identification of haploid and diploid maize seeds using convolutional neural networks and a transfer learning approach
  publication-title: Comput Electron Agric
– volume: 45
  start-page: e14069
  issue: 9
  year: 2022
  article-title: An automated cucumber inspection system based on neural network
  publication-title: J Food Process Eng
– year: 2017
  article-title: Improving generalization performance by switching from Adam to SGD
  publication-title: arXiv preprint arxiv 1712.07628
– volume: 202
  start-page: 107393
  year: 2022
  article-title: Deep learning based soybean seed classification
  publication-title: Comput Electron Agric
– volume: 196
  start-page: 116455
  year: 2023
  article-title: An estimation method of maize impurity rate based on the deep residual networks
  publication-title: Ind Crops Prod
– volume: 183
  start-page: 106004
  year: 2021
  article-title: An automated zizania quality grading method based on deep classification model
  publication-title: Comput Electron Agric
– volume: 16
  start-page: 526
  issue: 3
  year: 2023
  end-page: 536
  article-title: Automated detection of mechanical damage in flaxseeds using radiographic imaging and machine learning
  publication-title: Food Bioprocess Technol
– volume: 11
  start-page: 15756
  issue: 1
  year: 2021
  article-title: A novel method for peanut variety identification and classification by improved VGG16
  publication-title: Sci Rep
– volume: 34
  start-page: 3385
  issue: 5
  year: 2022
  end-page: 3398
  article-title: Classification of jujube defects in small data sets based on transfer learning
  publication-title: Neural Comput Appl
– start-page: 8697
  year: 2018
  end-page: 8710
  article-title: Learning transferable architectures for scalable image recognition
  publication-title: Proceedings of the IEEE conference on computer vision and pattern recognition
– year: 2017
  article-title: Mobilenets: efficient convolutional neural networks for mobile vision applications
  publication-title: arXiv preprint arxiv 1704.04861
– volume: 9
  start-page: 131134
  year: 2021
  end-page: 131146
  article-title: A novel intelligent garbage classification system based on deep learning and an embedded linux system
  publication-title: IEEE Access
– volume: 35
  start-page: 194
  issue: 17
  year: 2019
  end-page: 204
  article-title: Plant disease identification method based on lightweight CNN and mobile application
  publication-title: Trans Chin Soc Agric Eng
– volume: 79
  start-page: 7857
  issue: 11–12
  year: 2020
  end-page: 7874
  article-title: Quality evaluation of mono & bi-colored apples with computer vision and multispectral imaging
  publication-title: Multimed Tools Appl
– year: 2021
  article-title: A white paper on neural network quantization
  publication-title: arxiv 2106.08295
– volume: 181
  start-page: 105951
  year: 2021
  article-title: Disease detection in tomato leaves via CNN with lightweight architectures implemented in Raspberry Pi 4
  publication-title: Comput Electron Agric
– volume: 24
  start-page: 560
  issue: 2
  year: 2023
  end-page: 586
  article-title: Online recognition of peanut leaf diseases based on the data balance algorithm and deep transfer learning
  publication-title: Precis Agric
– volume: 202
  start-page: 107426
  year: 2022
  article-title: Fast and accurate wheat grain quality detection based on improved YOLOv5
  publication-title: Comput Electron Agric
– volume: 45
  start-page: e13955
  issue: 6
  year: 2022
  article-title: A convolutional neural network-based comparative study for pepper seed classification: Analysis of selected deep features with support vector machine
  publication-title: J Food Process Eng
– year: 2019
  article-title: Accurate, large Minibatch SGD: training ImageNet in 1 hour
  publication-title: arxiv preprint arxiv 1706.02677
– volume-title: arXiv preprint arxiv 1905.11946
  year: 2019
  ident: e_1_3_2_18_2
– ident: e_1_3_2_14_2
  doi: 10.1111/jfpe.13955
– volume: 2
  start-page: 28
  year: 2019
  ident: e_1_3_2_11_2
  article-title: A computer vision system for defect discrimination and grading in tomatoes using machine learning and image processing
  publication-title: Artif Intell Agric
– ident: e_1_3_2_17_2
  doi: 10.1109/CVPR.2018.00474
– start-page: 265
  volume-title: International conference on machine learning
  year: 2011
  ident: e_1_3_2_26_2
– ident: e_1_3_2_2_2
  doi: 10.1016/j.compag.2020.105744
– year: 2017
  ident: e_1_3_2_16_2
  article-title: Mobilenets: efficient convolutional neural networks for mobile vision applications
  publication-title: arXiv preprint arxiv 1704.04861
– ident: e_1_3_2_7_2
  doi: 10.1007/s11947-022-02939-5
– ident: e_1_3_2_3_2
  doi: 10.1038/s41598-021-95240-y
– ident: e_1_3_2_4_2
– ident: e_1_3_2_5_2
  doi: 10.1007/s11119-022-09959-3
– year: 2019
  ident: e_1_3_2_24_2
  article-title: Accurate, large Minibatch SGD: training ImageNet in 1 hour
  publication-title: arxiv preprint arxiv 1706.02677
– ident: e_1_3_2_31_2
  doi: 10.1016/j.compag.2022.107393
– volume: 3
  start-page: 121
  issue: 3
  year: 1976
  ident: e_1_3_2_22_2
  article-title: The influence of pattern similarity and transfer learning upon training of a base perceptron b2
  publication-title: Proc Symp Inform
– ident: e_1_3_2_9_2
  doi: 10.1007/s00521-021-05715-2
– ident: e_1_3_2_27_2
  doi: 10.1007/s11042-019-08564-3
– ident: e_1_3_2_8_2
  doi: 10.1007/s11694-022-01612-x
– volume: 35
  start-page: 194
  issue: 17
  year: 2019
  ident: e_1_3_2_20_2
  article-title: Plant disease identification method based on lightweight CNN and mobile application
  publication-title: Trans Chin Soc Agric Eng
– start-page: 8697
  year: 2018
  ident: e_1_3_2_15_2
  article-title: Learning transferable architectures for scalable image recognition
  publication-title: Proceedings of the IEEE conference on computer vision and pattern recognition
– ident: e_1_3_2_12_2
  doi: 10.1016/j.indcrop.2023.116455
– ident: e_1_3_2_6_2
  doi: 10.1111/jfpe.14069
– ident: e_1_3_2_19_2
  doi: 10.1109/ACCESS.2021.3114496
– ident: e_1_3_2_30_2
  doi: 10.1016/j.compag.2022.107426
– year: 2021
  ident: e_1_3_2_28_2
  article-title: A white paper on neural network quantization
  publication-title: arxiv 2106.08295
– ident: e_1_3_2_10_2
  doi: 10.1016/j.compag.2021.106004
– ident: e_1_3_2_23_2
  doi: 10.1007/978-1-4842-7341-8_6
– ident: e_1_3_2_13_2
  doi: 10.1016/j.compag.2019.104874
– ident: e_1_3_2_21_2
  doi: 10.1016/j.compag.2020.105951
– year: 2017
  ident: e_1_3_2_25_2
  article-title: Improving generalization performance by switching from Adam to SGD
  publication-title: arXiv preprint arxiv 1712.07628
– ident: e_1_3_2_29_2
  doi: 10.1007/978-3-540-31865-1_25
SSID ssj0000866626
ssib017845491
Score 2.339005
Snippet High-quality seeds improve the germination rate. Therefore, seed selection before sowing peanuts is crucial. Current peanut seed selection methods include...
SourceID doaj
proquest
crossref
sage
SourceType Open Website
Aggregation Database
Index Database
Publisher
StartPage 1039
SubjectTerms Accuracy
Deep learning
Embedded systems
Epidermis
Feature extraction
Feature recognition
Germination
Machine learning
Machine vision
Peanuts
Planting
Seeds
SummonAdditionalLinks – databaseName: Sage Journals GOLD Open Access 2024
  dbid: AFRWT
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3daxQxEB9q-6IPUlvF01byUBAKqbubj02eylk8imAfykn7tuRr9cG7k94e4n_vTHb3bEXBx01mmZBMMr9M5gPgJCpjk1GWBxUtl95IbqM13NUqFc4pF3OQ2KcrfflZfrxVtzuwGmNhhhlcn5FbFY4oH9a0u8ka_W54ZKQY7qKyePWRpK5Qis433aLpzd1jVQ1qoffpzYKetgM5RP7kY3jbI9iraq1wJ-9NZ9c3861ZBhG-1rlIG_HgxGR4C_0r3wfaLCf9f4BU7zmHZX0124enA9Bk014ynsFOWh7Ak3vpBw_h65StUXnxRFViacF5m3KeT751K1otOem5yL7RJf5HtqMyst5vuvwvW-c6OkjH-lrUDEEwSwuf8EDD3j4f-nOYzz7MLy75UHmBB1GLjrtWBWVLXEdZ-lYaa4TQMdS-tW1pbDTCBOtd6yoRlE6IoryKVTBSGNMWSbyA3eVqmV4CQ6KyKqITDpGblxE_fQzC1d4U3tRxAqfjBDbf-_waTTmmIP9ztifwnqZ4S0ipsXPD6u5LM-y0RtGlV5dRpaqUOBgbpU3IVxd1EtqZCRyNC9SM0tYIhLmylggnJ_CWFu131z9H8-q_KV_D44rKBme_wSPY7e426RixTOffDPL3C8Pq7Tg
  priority: 102
  providerName: SAGE Publications
Title A seed-epidermis-feature-recognition-based lightweight peanut seed selection method for embedded systems
URI https://journals.sagepub.com/doi/full/10.1177/00202940241293319
https://www.proquest.com/docview/3231474545
https://doaj.org/article/5082561d5e214f0e9d49edaf607e36a8
Volume 58
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PS8MwGA0yL3oQf2J1jhwEQQi2TdImx002huCQMXG3kjQpHnQT1-G_75e0nVUQL54KaQrhe23eS_rlfQhdGi6kFVySnBtJmBaMSCMFUSm3oVJcGX9I7H6SjB_Z3ZzPW6W-XE5YZQ9cBe6GuzVMEhlu44gVoZWGSWtUkYSppYnyx3yB81qLKT8HC5Dlvtaa00Mklqz5pendlqDNNQF7AdtR57LTIiXv3f9NcLZyvDztjPbRXq0Xcb8a5wHasotDtNtyETxCz328Ag4i1hV7dbiRwnq7TrLJDlouiKMrg1_cWvzDb4ditwm_Lv2zeOXL4UA_XJWUxqBlsX3VFuYluFvZmh-j2Wg4ux2TuoACyWlKS6IKnnMZARws0gUTUlCamDzVhSwiIY2gIpdaFSqmOU8siCHNTZwLRoWAUNMT1FksF_YUYegUxaFRVIEA0wziH2mTU5VqEWqRmgBdNwHM3iqbjCxqnMR_RjtAAxfiTUfncO0bAPesxj37C_cAdRuAsvqzW2UU1CpLGajCAF050L5u_Tqas_8YzTnaiV1hYJ8Z2EWd8n1tL0CtlLqHtvuj6dMMroPh5GHa8y_qJ0h25UI
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1RT9swED5N7cPGA4IBotAxP0yaNMkoie3EfixoVbe1PEyd6Ftkxw48QItoEX-fOzctdAKJx8TnxLqzfZ_t83cA37zSJmhleKW84dJpyY03mttChcRaZX28JDa6yAf_5O-JmjRRlXQXptHg_JTCqrBFcbJej25iSkJ8kxlc9UjyVIIYP9uSvFYL2r3-38vxeocFwXqex3xrVIdTpeZY89XvbDimyN-_ATpfxHlF19Pfge0GM7Le0si78CFMP8PWCybBPbjusTn6IR4o4SvZjtchUnbydYTQbMrJZXl2Q-vxx7glymgj_mER67J5TImDcmyZVpohnmXh1gWcm7B0SW2-D-P-z_H5gDdJFHglCrHgtlaVMimaRKaultpoIXJfFa42daqN10JXxtnaZqJSeUBA5JTPKi2F1nUSxAG0prNpOASGQmmWeCssgjAnPT46XwlbOJ04XfgO_FgpsLxbUmWU6YpN_H9td-CMVLwWJJbr-GJ2f1U2g6ZUtH7NU69ClkpsjPHSBPxvnhRB5FZ3oLsyULnqOKVAxCoLiciwA9_JaM9Fb7bm6N2SX-HjYDwalsNfF3-O4VNG2YBjOGAXWov7h_AFIcrCnTR98Qk_Atqh
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3da9swED9KCmV7GGu7saxfehgUCtpsS7Klx3Rb6McayshY34xkydtDm4TEof_-7hQnTcYGfbR1soVO0v10Ov0O4INX2gStDK-UN1w6LbnxRnNbqJBYq6yPl8RuBvnFD3l1p-5ahxvdhWl7cPaRwqqwRXGxptk98fWn9oyRrnAnmcGdjyRrJYj1c1tKtI0d2O71v_8crrwsCNjzPOZcozqcKrVHm__8zoZxihz-G8BzLdYrmp_-a3jV4kbWWyh6F7bCaA9errEJ7sPvHpuhLeKBkr6S_ngdIm0nX0UJjUeczJZn97Qnf4xuUUbO-HkT67JZTIuDcmyRWpohpmXhwQVcn7B0QW_-Bob9r8PPF7xNpMArUYiG21pVyqSoFpm6Wmqjhch9Vbja1Kk2XgtdGWdrm4lK5QFBkVM-q7QUWtdJEG-hMxqPwjtgKJRmibfCIhBz0uOj85WwhdOJ04XvwtmyA8vJgi6jTJeM4n_3dhfOqYtXgsR0HV-Mp7_KduKUivaweepVyFKJjTFemoD_zZMiiNzqLhwuFVQuB08pELXieEB02IVTUtpT0X9b8_7Zkiewc_ulX367HFwfwIuMEgLHiMBD6DTTeThClNK443Yo_gGgPdux
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+seed-epidermis-feature-recognition-based+lightweight+peanut+seed+selection+method+for+embedded+systems&rft.jtitle=Measurement+and+control+%28London%29&rft.au=Li%2C+Dehao&rft.au=Huang%2C+Jinlong&rft.au=Li%2C+Xincheng&rft.au=Yang%2C+Zhaolei&rft.date=2025-08-01&rft.issn=0020-2940&rft.volume=58&rft.issue=8&rft.spage=1039&rft.epage=1051&rft_id=info:doi/10.1177%2F00202940241293319&rft.externalDBID=n%2Fa&rft.externalDocID=10_1177_00202940241293319
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-2940&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-2940&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-2940&client=summon