Research on Intelligent Diagnosis of Corrosion in the Operation and Maintenance Stage of Steel Structure Engineering Based on U-Net Attention
Intelligent corrosion diagnosis plays a crucial role in enhancing the efficiency of operation and maintenance for steel structures. Presently, corrosion detection primarily depends on manual visual inspections and non-destructive testing methods, which are inefficient, costly, and subject to human b...
Saved in:
Published in | Buildings (Basel) Vol. 14; no. 12; p. 3972 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.12.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Intelligent corrosion diagnosis plays a crucial role in enhancing the efficiency of operation and maintenance for steel structures. Presently, corrosion detection primarily depends on manual visual inspections and non-destructive testing methods, which are inefficient, costly, and subject to human bias. While machine vision has demonstrated significant potential in controlled laboratory settings, most studies have focused on environments with limited background interference, restricting their practical applicability. To tackle the challenges posed by complex backgrounds and multiple interference factors in field-collected images of steel components, this study introduces an intelligent corrosion grading method designed specifically for images containing background elements. By integrating an attention mechanism into the traditional U-Net network, we achieve precise segmentation of component pixels from background pixels in engineering images, attaining an accuracy of up to 94.1%. The proposed framework is validated using images collected from actual engineering sites. A sliding window sampling technique divides on-site images into several rectangular windows, which are filtered based on U-Net Attention segmentation results. Leveraging a dataset of steel plate corrosion images with known grades, we train an Inception v3 corrosion classification model. Transfer learning techniques are then applied to determine the corrosion grade of each filtered window, culminating in a weighted average to estimate the overall corrosion grade of the target component. This study provides a quantitative index for assessing large-scale steel structure corrosion, significantly impacting the improvement of construction and maintenance quality while laying a solid foundation for further research and development in related fields. |
---|---|
AbstractList | Intelligent corrosion diagnosis plays a crucial role in enhancing the efficiency of operation and maintenance for steel structures. Presently, corrosion detection primarily depends on manual visual inspections and non-destructive testing methods, which are inefficient, costly, and subject to human bias. While machine vision has demonstrated significant potential in controlled laboratory settings, most studies have focused on environments with limited background interference, restricting their practical applicability. To tackle the challenges posed by complex backgrounds and multiple interference factors in field-collected images of steel components, this study introduces an intelligent corrosion grading method designed specifically for images containing background elements. By integrating an attention mechanism into the traditional U-Net network, we achieve precise segmentation of component pixels from background pixels in engineering images, attaining an accuracy of up to 94.1%. The proposed framework is validated using images collected from actual engineering sites. A sliding window sampling technique divides on-site images into several rectangular windows, which are filtered based on U-Net Attention segmentation results. Leveraging a dataset of steel plate corrosion images with known grades, we train an Inception v3 corrosion classification model. Transfer learning techniques are then applied to determine the corrosion grade of each filtered window, culminating in a weighted average to estimate the overall corrosion grade of the target component. This study provides a quantitative index for assessing large-scale steel structure corrosion, significantly impacting the improvement of construction and maintenance quality while laying a solid foundation for further research and development in related fields. |
Audience | Academic |
Author | Chen, Wei Duan, Zhen Hou, Jia Cai, Lixiong Huang, Xinghong |
Author_xml | – sequence: 1 givenname: Zhen surname: Duan fullname: Duan, Zhen – sequence: 2 givenname: Xinghong surname: Huang fullname: Huang, Xinghong – sequence: 3 givenname: Jia orcidid: 0000-0002-8038-335X surname: Hou fullname: Hou, Jia – sequence: 4 givenname: Wei surname: Chen fullname: Chen, Wei – sequence: 5 givenname: Lixiong surname: Cai fullname: Cai, Lixiong |
BookMark | eNplUc1q3DAYNCWBpkkeoDdBz071Y1nWcbtN04W0gaY5m8_SZ0eLI20l-dCHyDtXzpZQqATSxzAzGjTvqhMfPFbVe0avhND047C42To_JdYwLrTib6ozTpWspaD65J_5bXWZ0p6W1UnOZXNWPf_AhBDNIwme7HzGeXYT-kw-O5h8SC6RMJJtiLHMheI8yY9I7g4YIa8AeEu-gStKD94guc8w4aq5z4hzOeNi8hKRXPvJecRYcpJPkNCuLz7U3zGTTS7q1e2iOh1hTnj59z6vHr5c_9x-rW_vbnbbzW1thBK51qNhFFpumOJNZ1sr1WAME1aMLYhGMdPZQVolwXZWqw6YFI0WvFHt2A7civNqd_S1Afb9IboniL_7AK5_AUKceojZmRl72iKDFgfNpG2sFKC5UK2R1sJIG8aK14ej1yGGXwum3O_DEn2J3wvWaCmV5LSwro6sCYqp82PIEUzZFp-cKXWOruCbjjPVMkG7ImBHgSk_nyKOrzEZ7dfW-_9aF38A0l2kNw |
Cites_doi | 10.1016/j.heliyon.2024.e24142 10.1109/ICNSC.2019.8743190 10.1201/9780429279119-43 10.1016/j.jcsr.2024.108570 10.1016/j.dibe.2020.100022 10.1016/j.autcon.2022.104324 10.1016/j.jobe.2022.104098 10.1002/ima.23041 10.3390/jmse11020256 10.3390/jmse12071090 10.1177/1475921717737051 10.1007/s00170-023-11789-0 10.3390/electronics11182918 10.1109/ACCESS.2021.3093210 10.1109/ITNEC.2019.8729261 10.1109/ICCE50685.2021.9427616 10.1016/j.conbuildmat.2019.07.293 10.1109/ACCESS.2023.3343120 10.1007/s11042-023-17634-6 10.1007/s11042-023-14476-0 10.1109/AIM46323.2023.10196113 10.1109/ACCESS.2024.3352745 10.1007/s11276-023-03260-5 10.1007/s11042-022-13176-5 10.3390/app13158883 10.3390/s23010418 10.1155/2023/8899806 10.3390/s20020564 10.1109/ICARSC55462.2022.9784804 10.1007/s10853-023-09150-7 10.1007/s11042-023-17997-w 10.3390/app131910700 10.1109/ITOEC49072.2020.9141596 10.1016/j.jmrt.2020.05.070 10.1177/14759217231163777 10.23919/APSIPAASC55919.2022.9980142 10.1007/s00521-022-07700-9 10.1007/s13349-021-00515-7 10.26599/TST.2019.9010010 10.1111/mice.12563 10.1016/j.autcon.2024.105485 10.1108/EC-12-2022-0720 10.1109/ACCESS.2023.3242116 10.1109/TVT.2021.3051201 10.1109/JSTARS.2020.3017676 10.3390/app10217759 10.1007/s00170-024-13341-0 10.1061/(ASCE)CO.1943-7862.0002359 10.1016/j.corsci.2024.112077 10.1007/s11042-018-6449-8 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2024 MDPI AG 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2024 MDPI AG – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 8FD 8FE 8FG ABJCF ABUWG AFKRA ATCPS AZQEC BENPR BGLVJ BHPHI CCPQU DWQXO FR3 GNUQQ HCIFZ KR7 L.- L6V M7S PATMY PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS PYCSY DOA |
DOI | 10.3390/buildings14123972 |
DatabaseName | CrossRef Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central Agricultural & Environmental Science Collection ProQuest Central Essentials - QC ProQuest Central Technology Collection Natural Science Collection ProQuest One ProQuest Central Korea Engineering Research Database ProQuest Central Student ProQuest SciTech Premium Collection Civil Engineering Abstracts ABI/INFORM Professional Advanced ProQuest Engineering Collection Engineering Database Environmental Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Environmental Science Collection DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ABI/INFORM Professional Advanced ProQuest One Applied & Life Sciences ProQuest Engineering Collection Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection ProQuest Central (New) Engineering Collection Civil Engineering Abstracts Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Environmental Science Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection Environmental Science Database Engineering Research Database ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2075-5309 |
ExternalDocumentID | oai_doaj_org_article_06e1a6eb915d4d53a92376c5ddaf0411 A821761308 10_3390_buildings14123972 |
GroupedDBID | .4S 2XV 5VS 7XC 8FE 8FG 8FH AAFWJ AAYXX ABJCF ADBBV ADMLS AFKRA AFPKN ALMA_UNASSIGNED_HOLDINGS ARCSS ATCPS BCNDV BENPR BGLVJ BHPHI CCPQU CITATION GROUPED_DOAJ HCIFZ IAO IHM ITC KQ8 L6V M7S MODMG M~E OK1 PATMY PHGZM PHGZT PIMPY PROAC PTHSS PYCSY TUS 8FD ABUWG AZQEC DWQXO FR3 GNUQQ KR7 L.- PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PUEGO |
ID | FETCH-LOGICAL-c373t-9fc10a62c17248d6d57bcc13d3f6a3471c8db5d75ad8d978a1534932476f6b2d3 |
IEDL.DBID | DOA |
ISSN | 2075-5309 |
IngestDate | Wed Aug 27 01:33:57 EDT 2025 Fri Jul 25 11:59:48 EDT 2025 Sun Jun 15 06:17:40 EDT 2025 Tue Jul 01 01:45:23 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c373t-9fc10a62c17248d6d57bcc13d3f6a3471c8db5d75ad8d978a1534932476f6b2d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-8038-335X |
OpenAccessLink | https://doaj.org/article/06e1a6eb915d4d53a92376c5ddaf0411 |
PQID | 3149557520 |
PQPubID | 2032422 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_06e1a6eb915d4d53a92376c5ddaf0411 proquest_journals_3149557520 gale_infotracacademiconefile_A821761308 crossref_primary_10_3390_buildings14123972 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-12-01 |
PublicationDateYYYYMMDD | 2024-12-01 |
PublicationDate_xml | – month: 12 year: 2024 text: 2024-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Buildings (Basel) |
PublicationYear | 2024 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Yang (ref_7) 2023; 40 Meng (ref_16) 2022; 148 Bouguettaya (ref_34) 2024; 132 ref_14 ref_11 ref_54 Xu (ref_12) 2020; 35 Zhang (ref_45) 2021; 70 ref_18 Ali (ref_30) 2019; 226 Han (ref_5) 2024; 10 Mputu (ref_50) 2024; 12 Chi (ref_31) 2023; 23 Pravin (ref_51) 2023; 11 ref_25 ref_22 ref_21 Barakbayeva (ref_13) 2022; 35 Ivo (ref_35) 2020; 9 Chandankhede (ref_47) 2023; 82 Han (ref_2) 2022; 50 ref_28 Khayatazad (ref_1) 2020; 3 ref_26 Xu (ref_6) 2024; 233 Zheng (ref_46) 2020; 25 Santos (ref_27) 2022; 139 Atha (ref_10) 2018; 17 ref_36 Mannem (ref_15) 2024; 165 ref_33 ref_32 Han (ref_4) 2021; 11 ref_38 Liu (ref_49) 2020; 13 ref_37 Liu (ref_41) 2023; 30 Chavan (ref_39) 2024; 34 Wang (ref_23) 2023; 58 Zhai (ref_44) 2022; 81 ref_43 Singh (ref_52) 2023; 83 Zhang (ref_24) 2023; 20 ref_40 ref_3 Cui (ref_20) 2023; 11 Li (ref_19) 2024; 215 ref_48 ref_9 Bao (ref_29) 2023; 2023 ref_8 Wang (ref_42) 2021; 9 Sriraam (ref_53) 2024; 83 Zou (ref_17) 2018; 78 |
References_xml | – volume: 10 start-page: e24142 year: 2024 ident: ref_5 article-title: Intelligent analysis of corrosion characteristics of steel pipe piles of offshore construction wharfs based on computer vision publication-title: Heliyon doi: 10.1016/j.heliyon.2024.e24142 – ident: ref_9 – ident: ref_32 doi: 10.1109/ICNSC.2019.8743190 – ident: ref_11 doi: 10.1201/9780429279119-43 – volume: 215 start-page: 108570 year: 2024 ident: ref_19 article-title: Optimized deep learning for steel bridge bolt corrosion detection and classification publication-title: J. Constr. Steel Res. doi: 10.1016/j.jcsr.2024.108570 – volume: 3 start-page: 100022 year: 2020 ident: ref_1 article-title: Detection of corrosion on steel structures using automated image processing publication-title: Dev. Built Environ. doi: 10.1016/j.dibe.2020.100022 – volume: 139 start-page: 104324 year: 2022 ident: ref_27 article-title: Detection of exposed steel rebars based on deep-learning techniques and unmanned aerial vehicles publication-title: Autom. Constr. doi: 10.1016/j.autcon.2022.104324 – volume: 50 start-page: 104098 year: 2022 ident: ref_2 article-title: Detection and Location of Steel Structure Surface Cracks Based on Unmanned Aerial Vehicle Images publication-title: J. Build. Eng. doi: 10.1016/j.jobe.2022.104098 – volume: 34 start-page: e23041 year: 2024 ident: ref_39 article-title: Karyotyping of human chromosomes in metaphase images using faster R-CNN and inception models publication-title: Int. J. Imaging Syst. Technol. doi: 10.1002/ima.23041 – volume: 20 start-page: e02717 year: 2023 ident: ref_24 article-title: Deep learning-based extraction and quantification of features in XCT images of steel corrosion in concrete publication-title: Case Stud. Constr. Mater. – ident: ref_3 doi: 10.3390/jmse11020256 – ident: ref_8 doi: 10.3390/jmse12071090 – volume: 17 start-page: 1110 year: 2018 ident: ref_10 article-title: Evaluation of deep learning approaches based on convolutional neural networks for corrosion detection publication-title: Struct. Health Monit. doi: 10.1177/1475921717737051 – ident: ref_36 doi: 10.1007/s00170-023-11789-0 – ident: ref_48 doi: 10.3390/electronics11182918 – volume: 9 start-page: 93209 year: 2021 ident: ref_42 article-title: A Real-Time Bridge Crack Detection Method Based on an Improved Inception-Resnet-v2 Structure publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3093210 – ident: ref_43 doi: 10.1109/ITNEC.2019.8729261 – ident: ref_54 doi: 10.1109/ICCE50685.2021.9427616 – volume: 226 start-page: 376 year: 2019 ident: ref_30 article-title: Subsurface damage detection of a steel bridge using deep learning and uncooled micro-bolometer publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2019.07.293 – volume: 11 start-page: 141902 year: 2023 ident: ref_51 article-title: Underwater Animal Identification and Classification Using a Hybrid Classical-Quantum Algorithm publication-title: IEEE Access doi: 10.1109/ACCESS.2023.3343120 – volume: 83 start-page: 55175 year: 2023 ident: ref_52 article-title: An efficient model for detecting real-time facemask based on different Classification Algorithms publication-title: Multimed. Tools Appl. doi: 10.1007/s11042-023-17634-6 – volume: 82 start-page: 21045 year: 2023 ident: ref_47 article-title: Offline MODI script character recognition using deep learning techniques publication-title: Multimed. Tools Appl. doi: 10.1007/s11042-023-14476-0 – ident: ref_26 doi: 10.1109/AIM46323.2023.10196113 – volume: 12 start-page: 8283 year: 2024 ident: ref_50 article-title: Tomato Quality Classification Based on Transfer Learning Feature Extraction and Machine Learning Algorithm Classifiers publication-title: IEEE Access doi: 10.1109/ACCESS.2024.3352745 – volume: 30 start-page: 5201 year: 2023 ident: ref_41 article-title: WS-ICNN algorithm for robust adaptive beamforming publication-title: Wirel. Netw. doi: 10.1007/s11276-023-03260-5 – volume: 81 start-page: 33361 year: 2022 ident: ref_44 article-title: Retinal vessel image segmentation algorithm based on encoder-decoder structure publication-title: Multimed. Tools Appl. doi: 10.1007/s11042-022-13176-5 – ident: ref_18 doi: 10.3390/app13158883 – ident: ref_33 doi: 10.3390/s23010418 – volume: 2023 start-page: 8899806 year: 2023 ident: ref_29 article-title: A Deep Transfer Learning Network for Structural Condition Identification with Limited Real-World Training Data publication-title: Struct. Control. Health Monit. doi: 10.1155/2023/8899806 – ident: ref_37 doi: 10.3390/s20020564 – ident: ref_38 doi: 10.1109/ICARSC55462.2022.9784804 – volume: 58 start-page: 17675 year: 2023 ident: ref_23 article-title: Development and application of automatic identification methods based on deep learning for oxide scale structures of iron and steel materials publication-title: J. Mater. Sci. doi: 10.1007/s10853-023-09150-7 – volume: 83 start-page: 65149 year: 2024 ident: ref_53 article-title: Performance evaluation of convolution neural network models for detection of abnormal and ventricular ectopic beat cardiac episodes publication-title: Multimed. Tools Appl. doi: 10.1007/s11042-023-17997-w – ident: ref_14 doi: 10.3390/app131910700 – ident: ref_25 doi: 10.1109/ITOEC49072.2020.9141596 – volume: 9 start-page: 8580 year: 2020 ident: ref_35 article-title: Non-grain oriented electrical steel photomicrograph classification using transfer learning publication-title: J. Mater. Res. Technol. doi: 10.1016/j.jmrt.2020.05.070 – volume: 23 start-page: 57 year: 2023 ident: ref_31 article-title: Damage location diagnosis of frame structure based on wavelet denoising and convolution neural network implanted with Inception module and LSTM publication-title: Struct. Health Monit. doi: 10.1177/14759217231163777 – ident: ref_40 – ident: ref_21 doi: 10.23919/APSIPAASC55919.2022.9980142 – volume: 35 start-page: 1569 year: 2022 ident: ref_13 article-title: Fully automatic CNN design with inception and ResNet blocks publication-title: Neural Comput. Appl. doi: 10.1007/s00521-022-07700-9 – volume: 11 start-page: 1375 year: 2021 ident: ref_4 article-title: Recognition and location of steel structure surface corrosion based on unmanned aerial vehicle images publication-title: J. Civ. Struct. Health Monit. doi: 10.1007/s13349-021-00515-7 – volume: 25 start-page: 368 year: 2020 ident: ref_46 article-title: An inception module CNN classifiers fusion method on pulmonary nodule diagnosis by signs publication-title: Tsinghua Sci. Technol. doi: 10.26599/TST.2019.9010010 – volume: 35 start-page: 1160 year: 2020 ident: ref_12 article-title: Recognition of rust grade and rust ratio of steel structures based on ensembled convolutional neural network publication-title: Comput. Civ. Infrastruct. Eng. doi: 10.1111/mice.12563 – volume: 165 start-page: 105485 year: 2024 ident: ref_15 article-title: Smart audio signal classification for tracking of construction tasks publication-title: Autom. Constr. doi: 10.1016/j.autcon.2024.105485 – volume: 40 start-page: 1305 year: 2023 ident: ref_7 article-title: Steel plate surface defect classification technology based on image enhancement and combination feature extraction publication-title: Eng. Comput. doi: 10.1108/EC-12-2022-0720 – volume: 11 start-page: 11804 year: 2023 ident: ref_20 article-title: Optimizing Internet of Things-Based Intelligent Transportation System’s Information Acquisition Using Deep Learning publication-title: IEEE Access doi: 10.1109/ACCESS.2023.3242116 – volume: 70 start-page: 1190 year: 2021 ident: ref_45 article-title: Real-Time Optimization of Energy Management Strategy for Fuel Cell Vehicles Using Inflated 3D Inception Long Short-Term Memory Network-Based Speed Prediction publication-title: IEEE Trans. Veh. Technol. doi: 10.1109/TVT.2021.3051201 – volume: 13 start-page: 4738 year: 2020 ident: ref_49 article-title: An Improved InceptionV3 Network for Obscured Ship Classification in Remote Sensing Images publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2020.3017676 – ident: ref_28 doi: 10.3390/app10217759 – volume: 132 start-page: 399 year: 2024 ident: ref_34 article-title: CNN-based hot-rolled steel strip surface defects classification: A comparative study between different pre-trained CNN models publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-024-13341-0 – ident: ref_22 – volume: 148 start-page: 04022090 year: 2022 ident: ref_16 article-title: Construction Activity Classification Based on Vibration Monitoring Data: A Supervised Deep-Learning Approach with Time Series RandAugment publication-title: J. Constr. Eng. Manag. doi: 10.1061/(ASCE)CO.1943-7862.0002359 – volume: 233 start-page: 112077 year: 2024 ident: ref_6 article-title: Statistical analysis of metastable pitting behavior of 2024 aluminum alloy based on deep learning publication-title: Corros. Sci. doi: 10.1016/j.corsci.2024.112077 – volume: 78 start-page: 6969 year: 2018 ident: ref_17 article-title: A novel construction method of convolutional neural network model based on data-driven publication-title: Multimed. Tools Appl. doi: 10.1007/s11042-018-6449-8 |
SSID | ssj0000852254 |
Score | 2.2870605 |
Snippet | Intelligent corrosion diagnosis plays a crucial role in enhancing the efficiency of operation and maintenance for steel structures. Presently, corrosion... |
SourceID | doaj proquest gale crossref |
SourceType | Open Website Aggregation Database Index Database |
StartPage | 3972 |
SubjectTerms | Accuracy Attention Classification computer vision Construction Corrosion corrosion grading Corrosion mechanisms Corrosion resistance Corrosion tests Diagnosis Engineering Human bias Image filters Image processing Image segmentation intelligent corrosion diagnosis Learning strategies Machine vision Maintenance Neural networks Nondestructive testing Pixels R&D Research & development Scale (corrosion) Segmentation Semantics Steel Steel plates steel structure engineering Steel structures Transfer learning Visual perception Windows (computer programs) |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Na9wwEBVtcmkPIf2i2yZFh0KhIOIPWZZPYTdNSAvZlqYLuQlJMwqBYG93nZ_R_5yRrd2mlPbqD2T8pJn35PEbxt5j7iKRBZFZ9ELagMISqxCgHei80hiG9m0Xc3W-kF-uqqu04bZOZZWbmDgEauh83CM_KiOVJ25RZMfLnyJ2jYpfV1MLjcdsl0KwJvG1Ozudf_u-3WUhQkETVo6fM0vS90cudZte55KCdlMXfySkwbf_X9F5SDln-2wvcUU-HcF9xh5h-5w9feAg-IL92lTO8a7ln7f2mj3_NJbQ3ax5F_hJt6KxCQF-03JifPzrEkfkuW2BX9hoGhGdN5AT-bzGeM9lj3jLLwd72bsV8gfD8hmlPogjLsQcez7t-7Fo8iVbnJ3-ODkXqcOC8GVd9qIJPs-sKjzRGKlBQVU77_MSyqBsSXnLa3AV1JUFDaQ3LcVHSYxP1iooV0D5iu20XYuvGVcBnaodKRAgxpA1DtFSNFCqgUaGDCbs4-Y1m-VopGFIgERMzF-YTNgsArG9MHpgDwe61bVJS8pkCnOr0DV5BRKq0jaxwsdXADZkMs8n7EOE0cSV2q-st-mHA3re6HllpprkWJRPesIONkibtITX5veEe_P_02_Zk4KYzljjcsB2CBg8JKbSu3dpOt4Dtyjr2g priority: 102 providerName: ProQuest |
Title | Research on Intelligent Diagnosis of Corrosion in the Operation and Maintenance Stage of Steel Structure Engineering Based on U-Net Attention |
URI | https://www.proquest.com/docview/3149557520 https://doaj.org/article/06e1a6eb915d4d53a92376c5ddaf0411 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Na9wwEBVNekkOoV8h26aLDoVCwcS2ZFk-7qbZpoVsS9OF3ISkGYWE4g27zs_of-7I8oYtpeTSq7EZoRnNvIdHbxh7h4WLQBay3KLPpA2YWUIVGWgHuqg0hn5828VcnS_kl6vqamvUV-wJS_LAaeNOcoWFVeiaogIJlbBN7OPwFYANuUy3eqnmbZGp29R9RYEq029MQbz-xA1TpteFpGTd1OUfhajX6_9XVu5LzewZOxgwIp-ktT1nT7B9wfa3lANfsl-bjjm-bPnnB1nNjn9MrXM3a74M_HS5Itu08_ym5YT0-Nc7TB7ntgV-YaNYRFTcQE6g8xrjN5cd4k9-2cvK3q-Qb5nlUyp5EC0usjl2fNJ1qVnyFVvMzn6cnmfDZIXMi1p0WRN8kVtVeoIvUoOCqnbeFwJEUFZQvfIaXAV1ZUED8UxLeVES0pO1CsqVIA7Zbrts8YhxFdCp2hHzAEIKeeMQLWUBpRpoZMhhxD5sttncJQENQ8Qj-sT85ZMRm0ZHPLwYta_7BxQRZogI81hEjNj76EYTT2i3st4OFw1ovVHrykw00bBIm_SIHW88bYajuzYickYCsWX--n-s5g3bKwkHpQ6YY7ZL7sO3hGM6N2Y7evZpzJ5Oz-bfvo_7AP4NXT_1dw |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOQAHxFNsW8AHEBJS1CR2nOSA0LZl2aXd5dCu1JuxPZOqUpVsd4MQP4K_0t_YcR5LEYJbr3k58ry-scffMPYGI-uBLAShQRdIU2BgCFUEkFnIoiTDomnfNp2p8Vx-OU1ON9hVfxbGl1X2PrFx1FA5v0a-KzyUJ2wRhx8Xl4HvGuV3V_sWGq1aHOLPH5SyrT5MDki-b-N49Olkfxx0XQUCJ1JRB3nhotCo2FHolhkoSFLrXCRAFMoI8tUuA5tAmhjIgHIsQz5BEsqRqSqUjUHQd--wu1KI3FtUNvq8XtMh-ELmIdvNU7of7tqut_UqkhQi8jT-I_w1XQL-FQuaADd6xB52yJQPW1V6zDawfMIe3OArfMp-9XV6vCr5ZE3mWfODtmDvfMWrgu9XSxqb5M3PS074kn9dYKtn3JTAp8ZTVHieD-QEdc_Qv3NcI17w44bM9vsS-Y1h-R4FWvAjzoMZ1nxY122J5jM2v5WZf842y6rEF4yrAq1KLeU7QPgkzC2iId-jVA65LEIYsPf9NOtFS9uhKd3xMtF_yWTA9rwg1g96xu3mQrU8050B61BhZBTaPEpAQiJM7uuJXAJgilBG0YC982LU3i_US-NMd7yB_tczbOlhRsmfT9ayAdvpJa07h7HSv9V76_-3X7N745PpkT6azA632f2YMFZbXbPDNklI-JIwUm1fNYrJ2bfbtoRre0cm4w |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrYTggHiKhQI-gJCQok3ixEkOCO12u-pSulSUlXoztseuKqFk2Q1C_Aj-EL-OcR5LEYJbr3k58jePb-zxDMBzG2lPZDEIlTVBopwNFLGKAHONeZTm1jXt244X4nCZvD1Lz3bgZ38WxqdV9jaxMdRYGb9GPuKeyhO3iMOR69IiTqazN6svge8g5Xda-3YarYgc2e_fKHzbvJ5PCesXcTw7-Lh_GHQdBgLDM14HhTNRqERsyI0nOQpMM21MxJE7oTjZbZOjTjFLFeZI8ZYi-5AQ40ky4YSOkdN3r8FuRlFROIDdycHi5MN2hYfIDClL0m6lcl6EI911ut5ECTmMIov_cIZNz4B_eYbG3c1uw62Op7JxK1h3YMeWd-HmpeqF9-BHn7XHqpLNt6U9azZt0_cuNqxybL9a09iEPrsoGbFN9n5lW6ljqkR2rHzBCl_1wzIivufWv3NaW_uZnTalbb-uLbs0LJuQ20U_4jJY2JqN67pN2LwPyyuZ-wcwKKvSPgQmnNUi0xT9ILGVsNDWKrJEQhRYJC7EIbzqp1mu2iIekoIfj4n8C5MhTDwQ2wd9_e3mQrU-l506y1DYSAmriyjFBFOuCp9dZFJE5cIkiobw0sMovZWo18qo7rAD_a-vtyXHOYWCPnTLh7DXIy0787GRv4X90f9vP4PrpAXy3Xxx9BhuxES42lSbPRgQRvYJEaZaP-0kk8Gnq1aGX-G6LHU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Research+on+Intelligent+Diagnosis+of+Corrosion+in+the+Operation+and+Maintenance+Stage+of+Steel+Structure+Engineering+Based+on+U-Net+Attention&rft.jtitle=Buildings+%28Basel%29&rft.au=Duan%2C+Zhen&rft.au=Huang%2C+Xinghong&rft.au=Hou%2C+Jia&rft.au=Chen%2C+Wei&rft.date=2024-12-01&rft.pub=MDPI+AG&rft.issn=2075-5309&rft.eissn=2075-5309&rft.volume=14&rft.issue=12&rft_id=info:doi/10.3390%2Fbuildings14123972&rft.externalDocID=A821761308 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2075-5309&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2075-5309&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2075-5309&client=summon |