Research on Intelligent Diagnosis of Corrosion in the Operation and Maintenance Stage of Steel Structure Engineering Based on U-Net Attention

Intelligent corrosion diagnosis plays a crucial role in enhancing the efficiency of operation and maintenance for steel structures. Presently, corrosion detection primarily depends on manual visual inspections and non-destructive testing methods, which are inefficient, costly, and subject to human b...

Full description

Saved in:
Bibliographic Details
Published inBuildings (Basel) Vol. 14; no. 12; p. 3972
Main Authors Duan, Zhen, Huang, Xinghong, Hou, Jia, Chen, Wei, Cai, Lixiong
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.12.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Intelligent corrosion diagnosis plays a crucial role in enhancing the efficiency of operation and maintenance for steel structures. Presently, corrosion detection primarily depends on manual visual inspections and non-destructive testing methods, which are inefficient, costly, and subject to human bias. While machine vision has demonstrated significant potential in controlled laboratory settings, most studies have focused on environments with limited background interference, restricting their practical applicability. To tackle the challenges posed by complex backgrounds and multiple interference factors in field-collected images of steel components, this study introduces an intelligent corrosion grading method designed specifically for images containing background elements. By integrating an attention mechanism into the traditional U-Net network, we achieve precise segmentation of component pixels from background pixels in engineering images, attaining an accuracy of up to 94.1%. The proposed framework is validated using images collected from actual engineering sites. A sliding window sampling technique divides on-site images into several rectangular windows, which are filtered based on U-Net Attention segmentation results. Leveraging a dataset of steel plate corrosion images with known grades, we train an Inception v3 corrosion classification model. Transfer learning techniques are then applied to determine the corrosion grade of each filtered window, culminating in a weighted average to estimate the overall corrosion grade of the target component. This study provides a quantitative index for assessing large-scale steel structure corrosion, significantly impacting the improvement of construction and maintenance quality while laying a solid foundation for further research and development in related fields.
AbstractList Intelligent corrosion diagnosis plays a crucial role in enhancing the efficiency of operation and maintenance for steel structures. Presently, corrosion detection primarily depends on manual visual inspections and non-destructive testing methods, which are inefficient, costly, and subject to human bias. While machine vision has demonstrated significant potential in controlled laboratory settings, most studies have focused on environments with limited background interference, restricting their practical applicability. To tackle the challenges posed by complex backgrounds and multiple interference factors in field-collected images of steel components, this study introduces an intelligent corrosion grading method designed specifically for images containing background elements. By integrating an attention mechanism into the traditional U-Net network, we achieve precise segmentation of component pixels from background pixels in engineering images, attaining an accuracy of up to 94.1%. The proposed framework is validated using images collected from actual engineering sites. A sliding window sampling technique divides on-site images into several rectangular windows, which are filtered based on U-Net Attention segmentation results. Leveraging a dataset of steel plate corrosion images with known grades, we train an Inception v3 corrosion classification model. Transfer learning techniques are then applied to determine the corrosion grade of each filtered window, culminating in a weighted average to estimate the overall corrosion grade of the target component. This study provides a quantitative index for assessing large-scale steel structure corrosion, significantly impacting the improvement of construction and maintenance quality while laying a solid foundation for further research and development in related fields.
Audience Academic
Author Chen, Wei
Duan, Zhen
Hou, Jia
Cai, Lixiong
Huang, Xinghong
Author_xml – sequence: 1
  givenname: Zhen
  surname: Duan
  fullname: Duan, Zhen
– sequence: 2
  givenname: Xinghong
  surname: Huang
  fullname: Huang, Xinghong
– sequence: 3
  givenname: Jia
  orcidid: 0000-0002-8038-335X
  surname: Hou
  fullname: Hou, Jia
– sequence: 4
  givenname: Wei
  surname: Chen
  fullname: Chen, Wei
– sequence: 5
  givenname: Lixiong
  surname: Cai
  fullname: Cai, Lixiong
BookMark eNplUc1q3DAYNCWBpkkeoDdBz071Y1nWcbtN04W0gaY5m8_SZ0eLI20l-dCHyDtXzpZQqATSxzAzGjTvqhMfPFbVe0avhND047C42To_JdYwLrTib6ozTpWspaD65J_5bXWZ0p6W1UnOZXNWPf_AhBDNIwme7HzGeXYT-kw-O5h8SC6RMJJtiLHMheI8yY9I7g4YIa8AeEu-gStKD94guc8w4aq5z4hzOeNi8hKRXPvJecRYcpJPkNCuLz7U3zGTTS7q1e2iOh1hTnj59z6vHr5c_9x-rW_vbnbbzW1thBK51qNhFFpumOJNZ1sr1WAME1aMLYhGMdPZQVolwXZWqw6YFI0WvFHt2A7civNqd_S1Afb9IboniL_7AK5_AUKceojZmRl72iKDFgfNpG2sFKC5UK2R1sJIG8aK14ej1yGGXwum3O_DEn2J3wvWaCmV5LSwro6sCYqp82PIEUzZFp-cKXWOruCbjjPVMkG7ImBHgSk_nyKOrzEZ7dfW-_9aF38A0l2kNw
Cites_doi 10.1016/j.heliyon.2024.e24142
10.1109/ICNSC.2019.8743190
10.1201/9780429279119-43
10.1016/j.jcsr.2024.108570
10.1016/j.dibe.2020.100022
10.1016/j.autcon.2022.104324
10.1016/j.jobe.2022.104098
10.1002/ima.23041
10.3390/jmse11020256
10.3390/jmse12071090
10.1177/1475921717737051
10.1007/s00170-023-11789-0
10.3390/electronics11182918
10.1109/ACCESS.2021.3093210
10.1109/ITNEC.2019.8729261
10.1109/ICCE50685.2021.9427616
10.1016/j.conbuildmat.2019.07.293
10.1109/ACCESS.2023.3343120
10.1007/s11042-023-17634-6
10.1007/s11042-023-14476-0
10.1109/AIM46323.2023.10196113
10.1109/ACCESS.2024.3352745
10.1007/s11276-023-03260-5
10.1007/s11042-022-13176-5
10.3390/app13158883
10.3390/s23010418
10.1155/2023/8899806
10.3390/s20020564
10.1109/ICARSC55462.2022.9784804
10.1007/s10853-023-09150-7
10.1007/s11042-023-17997-w
10.3390/app131910700
10.1109/ITOEC49072.2020.9141596
10.1016/j.jmrt.2020.05.070
10.1177/14759217231163777
10.23919/APSIPAASC55919.2022.9980142
10.1007/s00521-022-07700-9
10.1007/s13349-021-00515-7
10.26599/TST.2019.9010010
10.1111/mice.12563
10.1016/j.autcon.2024.105485
10.1108/EC-12-2022-0720
10.1109/ACCESS.2023.3242116
10.1109/TVT.2021.3051201
10.1109/JSTARS.2020.3017676
10.3390/app10217759
10.1007/s00170-024-13341-0
10.1061/(ASCE)CO.1943-7862.0002359
10.1016/j.corsci.2024.112077
10.1007/s11042-018-6449-8
ContentType Journal Article
Copyright COPYRIGHT 2024 MDPI AG
2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2024 MDPI AG
– notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
ATCPS
AZQEC
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
KR7
L.-
L6V
M7S
PATMY
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
PYCSY
DOA
DOI 10.3390/buildings14123972
DatabaseName CrossRef
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central
Agricultural & Environmental Science Collection
ProQuest Central Essentials - QC
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One
ProQuest Central Korea
Engineering Research Database
ProQuest Central Student
ProQuest SciTech Premium Collection
Civil Engineering Abstracts
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
Engineering Database
Environmental Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Environmental Science Collection
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
ProQuest Central (New)
Engineering Collection
Civil Engineering Abstracts
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Environmental Science Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Environmental Science Database
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList CrossRef
Publicly Available Content Database


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2075-5309
ExternalDocumentID oai_doaj_org_article_06e1a6eb915d4d53a92376c5ddaf0411
A821761308
10_3390_buildings14123972
GroupedDBID .4S
2XV
5VS
7XC
8FE
8FG
8FH
AAFWJ
AAYXX
ABJCF
ADBBV
ADMLS
AFKRA
AFPKN
ALMA_UNASSIGNED_HOLDINGS
ARCSS
ATCPS
BCNDV
BENPR
BGLVJ
BHPHI
CCPQU
CITATION
GROUPED_DOAJ
HCIFZ
IAO
IHM
ITC
KQ8
L6V
M7S
MODMG
M~E
OK1
PATMY
PHGZM
PHGZT
PIMPY
PROAC
PTHSS
PYCSY
TUS
8FD
ABUWG
AZQEC
DWQXO
FR3
GNUQQ
KR7
L.-
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PUEGO
ID FETCH-LOGICAL-c373t-9fc10a62c17248d6d57bcc13d3f6a3471c8db5d75ad8d978a1534932476f6b2d3
IEDL.DBID DOA
ISSN 2075-5309
IngestDate Wed Aug 27 01:33:57 EDT 2025
Fri Jul 25 11:59:48 EDT 2025
Sun Jun 15 06:17:40 EDT 2025
Tue Jul 01 01:45:23 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c373t-9fc10a62c17248d6d57bcc13d3f6a3471c8db5d75ad8d978a1534932476f6b2d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-8038-335X
OpenAccessLink https://doaj.org/article/06e1a6eb915d4d53a92376c5ddaf0411
PQID 3149557520
PQPubID 2032422
ParticipantIDs doaj_primary_oai_doaj_org_article_06e1a6eb915d4d53a92376c5ddaf0411
proquest_journals_3149557520
gale_infotracacademiconefile_A821761308
crossref_primary_10_3390_buildings14123972
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-12-01
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Buildings (Basel)
PublicationYear 2024
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Yang (ref_7) 2023; 40
Meng (ref_16) 2022; 148
Bouguettaya (ref_34) 2024; 132
ref_14
ref_11
ref_54
Xu (ref_12) 2020; 35
Zhang (ref_45) 2021; 70
ref_18
Ali (ref_30) 2019; 226
Han (ref_5) 2024; 10
Mputu (ref_50) 2024; 12
Chi (ref_31) 2023; 23
Pravin (ref_51) 2023; 11
ref_25
ref_22
ref_21
Barakbayeva (ref_13) 2022; 35
Ivo (ref_35) 2020; 9
Chandankhede (ref_47) 2023; 82
Han (ref_2) 2022; 50
ref_28
Khayatazad (ref_1) 2020; 3
ref_26
Xu (ref_6) 2024; 233
Zheng (ref_46) 2020; 25
Santos (ref_27) 2022; 139
Atha (ref_10) 2018; 17
ref_36
Mannem (ref_15) 2024; 165
ref_33
ref_32
Han (ref_4) 2021; 11
ref_38
Liu (ref_49) 2020; 13
ref_37
Liu (ref_41) 2023; 30
Chavan (ref_39) 2024; 34
Wang (ref_23) 2023; 58
Zhai (ref_44) 2022; 81
ref_43
Singh (ref_52) 2023; 83
Zhang (ref_24) 2023; 20
ref_40
ref_3
Cui (ref_20) 2023; 11
Li (ref_19) 2024; 215
ref_48
ref_9
Bao (ref_29) 2023; 2023
ref_8
Wang (ref_42) 2021; 9
Sriraam (ref_53) 2024; 83
Zou (ref_17) 2018; 78
References_xml – volume: 10
  start-page: e24142
  year: 2024
  ident: ref_5
  article-title: Intelligent analysis of corrosion characteristics of steel pipe piles of offshore construction wharfs based on computer vision
  publication-title: Heliyon
  doi: 10.1016/j.heliyon.2024.e24142
– ident: ref_9
– ident: ref_32
  doi: 10.1109/ICNSC.2019.8743190
– ident: ref_11
  doi: 10.1201/9780429279119-43
– volume: 215
  start-page: 108570
  year: 2024
  ident: ref_19
  article-title: Optimized deep learning for steel bridge bolt corrosion detection and classification
  publication-title: J. Constr. Steel Res.
  doi: 10.1016/j.jcsr.2024.108570
– volume: 3
  start-page: 100022
  year: 2020
  ident: ref_1
  article-title: Detection of corrosion on steel structures using automated image processing
  publication-title: Dev. Built Environ.
  doi: 10.1016/j.dibe.2020.100022
– volume: 139
  start-page: 104324
  year: 2022
  ident: ref_27
  article-title: Detection of exposed steel rebars based on deep-learning techniques and unmanned aerial vehicles
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2022.104324
– volume: 50
  start-page: 104098
  year: 2022
  ident: ref_2
  article-title: Detection and Location of Steel Structure Surface Cracks Based on Unmanned Aerial Vehicle Images
  publication-title: J. Build. Eng.
  doi: 10.1016/j.jobe.2022.104098
– volume: 34
  start-page: e23041
  year: 2024
  ident: ref_39
  article-title: Karyotyping of human chromosomes in metaphase images using faster R-CNN and inception models
  publication-title: Int. J. Imaging Syst. Technol.
  doi: 10.1002/ima.23041
– volume: 20
  start-page: e02717
  year: 2023
  ident: ref_24
  article-title: Deep learning-based extraction and quantification of features in XCT images of steel corrosion in concrete
  publication-title: Case Stud. Constr. Mater.
– ident: ref_3
  doi: 10.3390/jmse11020256
– ident: ref_8
  doi: 10.3390/jmse12071090
– volume: 17
  start-page: 1110
  year: 2018
  ident: ref_10
  article-title: Evaluation of deep learning approaches based on convolutional neural networks for corrosion detection
  publication-title: Struct. Health Monit.
  doi: 10.1177/1475921717737051
– ident: ref_36
  doi: 10.1007/s00170-023-11789-0
– ident: ref_48
  doi: 10.3390/electronics11182918
– volume: 9
  start-page: 93209
  year: 2021
  ident: ref_42
  article-title: A Real-Time Bridge Crack Detection Method Based on an Improved Inception-Resnet-v2 Structure
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3093210
– ident: ref_43
  doi: 10.1109/ITNEC.2019.8729261
– ident: ref_54
  doi: 10.1109/ICCE50685.2021.9427616
– volume: 226
  start-page: 376
  year: 2019
  ident: ref_30
  article-title: Subsurface damage detection of a steel bridge using deep learning and uncooled micro-bolometer
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2019.07.293
– volume: 11
  start-page: 141902
  year: 2023
  ident: ref_51
  article-title: Underwater Animal Identification and Classification Using a Hybrid Classical-Quantum Algorithm
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2023.3343120
– volume: 83
  start-page: 55175
  year: 2023
  ident: ref_52
  article-title: An efficient model for detecting real-time facemask based on different Classification Algorithms
  publication-title: Multimed. Tools Appl.
  doi: 10.1007/s11042-023-17634-6
– volume: 82
  start-page: 21045
  year: 2023
  ident: ref_47
  article-title: Offline MODI script character recognition using deep learning techniques
  publication-title: Multimed. Tools Appl.
  doi: 10.1007/s11042-023-14476-0
– ident: ref_26
  doi: 10.1109/AIM46323.2023.10196113
– volume: 12
  start-page: 8283
  year: 2024
  ident: ref_50
  article-title: Tomato Quality Classification Based on Transfer Learning Feature Extraction and Machine Learning Algorithm Classifiers
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2024.3352745
– volume: 30
  start-page: 5201
  year: 2023
  ident: ref_41
  article-title: WS-ICNN algorithm for robust adaptive beamforming
  publication-title: Wirel. Netw.
  doi: 10.1007/s11276-023-03260-5
– volume: 81
  start-page: 33361
  year: 2022
  ident: ref_44
  article-title: Retinal vessel image segmentation algorithm based on encoder-decoder structure
  publication-title: Multimed. Tools Appl.
  doi: 10.1007/s11042-022-13176-5
– ident: ref_18
  doi: 10.3390/app13158883
– ident: ref_33
  doi: 10.3390/s23010418
– volume: 2023
  start-page: 8899806
  year: 2023
  ident: ref_29
  article-title: A Deep Transfer Learning Network for Structural Condition Identification with Limited Real-World Training Data
  publication-title: Struct. Control. Health Monit.
  doi: 10.1155/2023/8899806
– ident: ref_37
  doi: 10.3390/s20020564
– ident: ref_38
  doi: 10.1109/ICARSC55462.2022.9784804
– volume: 58
  start-page: 17675
  year: 2023
  ident: ref_23
  article-title: Development and application of automatic identification methods based on deep learning for oxide scale structures of iron and steel materials
  publication-title: J. Mater. Sci.
  doi: 10.1007/s10853-023-09150-7
– volume: 83
  start-page: 65149
  year: 2024
  ident: ref_53
  article-title: Performance evaluation of convolution neural network models for detection of abnormal and ventricular ectopic beat cardiac episodes
  publication-title: Multimed. Tools Appl.
  doi: 10.1007/s11042-023-17997-w
– ident: ref_14
  doi: 10.3390/app131910700
– ident: ref_25
  doi: 10.1109/ITOEC49072.2020.9141596
– volume: 9
  start-page: 8580
  year: 2020
  ident: ref_35
  article-title: Non-grain oriented electrical steel photomicrograph classification using transfer learning
  publication-title: J. Mater. Res. Technol.
  doi: 10.1016/j.jmrt.2020.05.070
– volume: 23
  start-page: 57
  year: 2023
  ident: ref_31
  article-title: Damage location diagnosis of frame structure based on wavelet denoising and convolution neural network implanted with Inception module and LSTM
  publication-title: Struct. Health Monit.
  doi: 10.1177/14759217231163777
– ident: ref_40
– ident: ref_21
  doi: 10.23919/APSIPAASC55919.2022.9980142
– volume: 35
  start-page: 1569
  year: 2022
  ident: ref_13
  article-title: Fully automatic CNN design with inception and ResNet blocks
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-022-07700-9
– volume: 11
  start-page: 1375
  year: 2021
  ident: ref_4
  article-title: Recognition and location of steel structure surface corrosion based on unmanned aerial vehicle images
  publication-title: J. Civ. Struct. Health Monit.
  doi: 10.1007/s13349-021-00515-7
– volume: 25
  start-page: 368
  year: 2020
  ident: ref_46
  article-title: An inception module CNN classifiers fusion method on pulmonary nodule diagnosis by signs
  publication-title: Tsinghua Sci. Technol.
  doi: 10.26599/TST.2019.9010010
– volume: 35
  start-page: 1160
  year: 2020
  ident: ref_12
  article-title: Recognition of rust grade and rust ratio of steel structures based on ensembled convolutional neural network
  publication-title: Comput. Civ. Infrastruct. Eng.
  doi: 10.1111/mice.12563
– volume: 165
  start-page: 105485
  year: 2024
  ident: ref_15
  article-title: Smart audio signal classification for tracking of construction tasks
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2024.105485
– volume: 40
  start-page: 1305
  year: 2023
  ident: ref_7
  article-title: Steel plate surface defect classification technology based on image enhancement and combination feature extraction
  publication-title: Eng. Comput.
  doi: 10.1108/EC-12-2022-0720
– volume: 11
  start-page: 11804
  year: 2023
  ident: ref_20
  article-title: Optimizing Internet of Things-Based Intelligent Transportation System’s Information Acquisition Using Deep Learning
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2023.3242116
– volume: 70
  start-page: 1190
  year: 2021
  ident: ref_45
  article-title: Real-Time Optimization of Energy Management Strategy for Fuel Cell Vehicles Using Inflated 3D Inception Long Short-Term Memory Network-Based Speed Prediction
  publication-title: IEEE Trans. Veh. Technol.
  doi: 10.1109/TVT.2021.3051201
– volume: 13
  start-page: 4738
  year: 2020
  ident: ref_49
  article-title: An Improved InceptionV3 Network for Obscured Ship Classification in Remote Sensing Images
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2020.3017676
– ident: ref_28
  doi: 10.3390/app10217759
– volume: 132
  start-page: 399
  year: 2024
  ident: ref_34
  article-title: CNN-based hot-rolled steel strip surface defects classification: A comparative study between different pre-trained CNN models
  publication-title: Int. J. Adv. Manuf. Technol.
  doi: 10.1007/s00170-024-13341-0
– ident: ref_22
– volume: 148
  start-page: 04022090
  year: 2022
  ident: ref_16
  article-title: Construction Activity Classification Based on Vibration Monitoring Data: A Supervised Deep-Learning Approach with Time Series RandAugment
  publication-title: J. Constr. Eng. Manag.
  doi: 10.1061/(ASCE)CO.1943-7862.0002359
– volume: 233
  start-page: 112077
  year: 2024
  ident: ref_6
  article-title: Statistical analysis of metastable pitting behavior of 2024 aluminum alloy based on deep learning
  publication-title: Corros. Sci.
  doi: 10.1016/j.corsci.2024.112077
– volume: 78
  start-page: 6969
  year: 2018
  ident: ref_17
  article-title: A novel construction method of convolutional neural network model based on data-driven
  publication-title: Multimed. Tools Appl.
  doi: 10.1007/s11042-018-6449-8
SSID ssj0000852254
Score 2.2870605
Snippet Intelligent corrosion diagnosis plays a crucial role in enhancing the efficiency of operation and maintenance for steel structures. Presently, corrosion...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Index Database
StartPage 3972
SubjectTerms Accuracy
Attention
Classification
computer vision
Construction
Corrosion
corrosion grading
Corrosion mechanisms
Corrosion resistance
Corrosion tests
Diagnosis
Engineering
Human bias
Image filters
Image processing
Image segmentation
intelligent corrosion diagnosis
Learning strategies
Machine vision
Maintenance
Neural networks
Nondestructive testing
Pixels
R&D
Research & development
Scale (corrosion)
Segmentation
Semantics
Steel
Steel plates
steel structure engineering
Steel structures
Transfer learning
Visual perception
Windows (computer programs)
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Na9wwEBVtcmkPIf2i2yZFh0KhIOIPWZZPYTdNSAvZlqYLuQlJMwqBYG93nZ_R_5yRrd2mlPbqD2T8pJn35PEbxt5j7iKRBZFZ9ELagMISqxCgHei80hiG9m0Xc3W-kF-uqqu04bZOZZWbmDgEauh83CM_KiOVJ25RZMfLnyJ2jYpfV1MLjcdsl0KwJvG1Ozudf_u-3WUhQkETVo6fM0vS90cudZte55KCdlMXfySkwbf_X9F5SDln-2wvcUU-HcF9xh5h-5w9feAg-IL92lTO8a7ln7f2mj3_NJbQ3ax5F_hJt6KxCQF-03JifPzrEkfkuW2BX9hoGhGdN5AT-bzGeM9lj3jLLwd72bsV8gfD8hmlPogjLsQcez7t-7Fo8iVbnJ3-ODkXqcOC8GVd9qIJPs-sKjzRGKlBQVU77_MSyqBsSXnLa3AV1JUFDaQ3LcVHSYxP1iooV0D5iu20XYuvGVcBnaodKRAgxpA1DtFSNFCqgUaGDCbs4-Y1m-VopGFIgERMzF-YTNgsArG9MHpgDwe61bVJS8pkCnOr0DV5BRKq0jaxwsdXADZkMs8n7EOE0cSV2q-st-mHA3re6HllpprkWJRPesIONkibtITX5veEe_P_02_Zk4KYzljjcsB2CBg8JKbSu3dpOt4Dtyjr2g
  priority: 102
  providerName: ProQuest
Title Research on Intelligent Diagnosis of Corrosion in the Operation and Maintenance Stage of Steel Structure Engineering Based on U-Net Attention
URI https://www.proquest.com/docview/3149557520
https://doaj.org/article/06e1a6eb915d4d53a92376c5ddaf0411
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Na9wwEBVNekkOoV8h26aLDoVCwcS2ZFk-7qbZpoVsS9OF3ISkGYWE4g27zs_of-7I8oYtpeTSq7EZoRnNvIdHbxh7h4WLQBay3KLPpA2YWUIVGWgHuqg0hn5828VcnS_kl6vqamvUV-wJS_LAaeNOcoWFVeiaogIJlbBN7OPwFYANuUy3eqnmbZGp29R9RYEq029MQbz-xA1TpteFpGTd1OUfhajX6_9XVu5LzewZOxgwIp-ktT1nT7B9wfa3lANfsl-bjjm-bPnnB1nNjn9MrXM3a74M_HS5Itu08_ym5YT0-Nc7TB7ntgV-YaNYRFTcQE6g8xrjN5cd4k9-2cvK3q-Qb5nlUyp5EC0usjl2fNJ1qVnyFVvMzn6cnmfDZIXMi1p0WRN8kVtVeoIvUoOCqnbeFwJEUFZQvfIaXAV1ZUED8UxLeVES0pO1CsqVIA7Zbrts8YhxFdCp2hHzAEIKeeMQLWUBpRpoZMhhxD5sttncJQENQ8Qj-sT85ZMRm0ZHPLwYta_7BxQRZogI81hEjNj76EYTT2i3st4OFw1ovVHrykw00bBIm_SIHW88bYajuzYickYCsWX--n-s5g3bKwkHpQ6YY7ZL7sO3hGM6N2Y7evZpzJ5Oz-bfvo_7AP4NXT_1dw
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOQAHxFNsW8AHEBJS1CR2nOSA0LZl2aXd5dCu1JuxPZOqUpVsd4MQP4K_0t_YcR5LEYJbr3k58ry-scffMPYGI-uBLAShQRdIU2BgCFUEkFnIoiTDomnfNp2p8Vx-OU1ON9hVfxbGl1X2PrFx1FA5v0a-KzyUJ2wRhx8Xl4HvGuV3V_sWGq1aHOLPH5SyrT5MDki-b-N49Olkfxx0XQUCJ1JRB3nhotCo2FHolhkoSFLrXCRAFMoI8tUuA5tAmhjIgHIsQz5BEsqRqSqUjUHQd--wu1KI3FtUNvq8XtMh-ELmIdvNU7of7tqut_UqkhQi8jT-I_w1XQL-FQuaADd6xB52yJQPW1V6zDawfMIe3OArfMp-9XV6vCr5ZE3mWfODtmDvfMWrgu9XSxqb5M3PS074kn9dYKtn3JTAp8ZTVHieD-QEdc_Qv3NcI17w44bM9vsS-Y1h-R4FWvAjzoMZ1nxY122J5jM2v5WZf842y6rEF4yrAq1KLeU7QPgkzC2iId-jVA65LEIYsPf9NOtFS9uhKd3xMtF_yWTA9rwg1g96xu3mQrU8050B61BhZBTaPEpAQiJM7uuJXAJgilBG0YC982LU3i_US-NMd7yB_tczbOlhRsmfT9ayAdvpJa07h7HSv9V76_-3X7N745PpkT6azA632f2YMFZbXbPDNklI-JIwUm1fNYrJ2bfbtoRre0cm4w
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrYTggHiKhQI-gJCQok3ixEkOCO12u-pSulSUlXoztseuKqFk2Q1C_Aj-EL-OcR5LEYJbr3k58jePb-zxDMBzG2lPZDEIlTVBopwNFLGKAHONeZTm1jXt244X4nCZvD1Lz3bgZ38WxqdV9jaxMdRYGb9GPuKeyhO3iMOR69IiTqazN6svge8g5Xda-3YarYgc2e_fKHzbvJ5PCesXcTw7-Lh_GHQdBgLDM14HhTNRqERsyI0nOQpMM21MxJE7oTjZbZOjTjFLFeZI8ZYi-5AQ40ky4YSOkdN3r8FuRlFROIDdycHi5MN2hYfIDClL0m6lcl6EI911ut5ECTmMIov_cIZNz4B_eYbG3c1uw62Op7JxK1h3YMeWd-HmpeqF9-BHn7XHqpLNt6U9azZt0_cuNqxybL9a09iEPrsoGbFN9n5lW6ljqkR2rHzBCl_1wzIivufWv3NaW_uZnTalbb-uLbs0LJuQ20U_4jJY2JqN67pN2LwPyyuZ-wcwKKvSPgQmnNUi0xT9ILGVsNDWKrJEQhRYJC7EIbzqp1mu2iIekoIfj4n8C5MhTDwQ2wd9_e3mQrU-l506y1DYSAmriyjFBFOuCp9dZFJE5cIkiobw0sMovZWo18qo7rAD_a-vtyXHOYWCPnTLh7DXIy0787GRv4X90f9vP4PrpAXy3Xxx9BhuxES42lSbPRgQRvYJEaZaP-0kk8Gnq1aGX-G6LHU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Research+on+Intelligent+Diagnosis+of+Corrosion+in+the+Operation+and+Maintenance+Stage+of+Steel+Structure+Engineering+Based+on+U-Net+Attention&rft.jtitle=Buildings+%28Basel%29&rft.au=Duan%2C+Zhen&rft.au=Huang%2C+Xinghong&rft.au=Hou%2C+Jia&rft.au=Chen%2C+Wei&rft.date=2024-12-01&rft.pub=MDPI+AG&rft.issn=2075-5309&rft.eissn=2075-5309&rft.volume=14&rft.issue=12&rft_id=info:doi/10.3390%2Fbuildings14123972&rft.externalDocID=A821761308
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2075-5309&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2075-5309&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2075-5309&client=summon