Verification and validation of Large Eddy Simulation of attached cavitating flow around a Clark-Y hydrofoil
•The turbulent cavitating flow around a hydrofoil is simulated by LES.•The three equation method is used to assess the LES results in cavitating flow.•The effect of verification and validation in cavitating flow is discussed.•The vortex structure and spectrum characteristic during cavity shedding is...
Saved in:
Published in | International journal of multiphase flow Vol. 115; pp. 93 - 107 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.06.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •The turbulent cavitating flow around a hydrofoil is simulated by LES.•The three equation method is used to assess the LES results in cavitating flow.•The effect of verification and validation in cavitating flow is discussed.•The vortex structure and spectrum characteristic during cavity shedding is clarified.
This study uses implicitly filtered Large Eddy Simulation with a homogenous cavitation model to investigate the transient turbulent cavitating flow around a Clark-Y hydrofoil with emphasis on Verification and Validation (V&V). The numerical results indicate that the present simulation can predict the time evolution process of the periodic cavity shedding and agree reasonably with the available experimental data. This study presents the first practical application of LES V&V in a transient cavitating flow. The three-equation method is used to assess the LES error magnitudes in unsteady cavitating flow. The results show that a noticeable difference can be observed between the modeling error and numerical error, and the former has a larger magnitude than the latter in cavitating flow. It is demonstrated that the unsteady cavitation has a big impact on the LES errors. Additionally, compared with non-cavitating flow, the unsteady cavitation increases the values and fluctuation amplitudes of numerical, modeling, and total errors. Grid requirement for modeling the cavitating flow has been discussed from the viewpoint of LES V&V. The numerical results also reveal that the periodic cavity shedding causes the complex and turbulent flow feature by vortex and spectrum analyses, and this has a great influence on the simulation accuracy. |
---|---|
AbstractList | •The turbulent cavitating flow around a hydrofoil is simulated by LES.•The three equation method is used to assess the LES results in cavitating flow.•The effect of verification and validation in cavitating flow is discussed.•The vortex structure and spectrum characteristic during cavity shedding is clarified.
This study uses implicitly filtered Large Eddy Simulation with a homogenous cavitation model to investigate the transient turbulent cavitating flow around a Clark-Y hydrofoil with emphasis on Verification and Validation (V&V). The numerical results indicate that the present simulation can predict the time evolution process of the periodic cavity shedding and agree reasonably with the available experimental data. This study presents the first practical application of LES V&V in a transient cavitating flow. The three-equation method is used to assess the LES error magnitudes in unsteady cavitating flow. The results show that a noticeable difference can be observed between the modeling error and numerical error, and the former has a larger magnitude than the latter in cavitating flow. It is demonstrated that the unsteady cavitation has a big impact on the LES errors. Additionally, compared with non-cavitating flow, the unsteady cavitation increases the values and fluctuation amplitudes of numerical, modeling, and total errors. Grid requirement for modeling the cavitating flow has been discussed from the viewpoint of LES V&V. The numerical results also reveal that the periodic cavity shedding causes the complex and turbulent flow feature by vortex and spectrum analyses, and this has a great influence on the simulation accuracy. |
Author | Ji, Bin Xing, Tao Long, Xinping Long, Yun |
Author_xml | – sequence: 1 givenname: Yun surname: Long fullname: Long, Yun email: whulongyun@whu.edu.cn organization: State Key Lab of Water Resources and Hydropower Engineering Science, School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China – sequence: 2 givenname: Xinping surname: Long fullname: Long, Xinping organization: State Key Lab of Water Resources and Hydropower Engineering Science, School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China – sequence: 3 givenname: Bin orcidid: 0000-0002-5282-7224 surname: Ji fullname: Ji, Bin email: jibin@whu.edu.cn organization: State Key Lab of Water Resources and Hydropower Engineering Science, School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China – sequence: 4 givenname: Tao orcidid: 0000-0003-1889-0825 surname: Xing fullname: Xing, Tao email: xing@uidaho.edu organization: Department of Mechanical Engineering, College of Engineering, University of Idaho, Moscow, Idaho 83844, United States |
BookMark | eNqNkE1PAjEQhhuDiYD-h5687dpStru9mBhEMSHx4EfiqRn6AV2WLekWDP_eXTEeOHGazDvJMzPPAPVqXxuEbilJKaH8rkxdudlV0W1X0Bhb-e90RKhICUvJiF-gPi1ykbCMsR7qE0ZoIthodIUGTVMSQrJ8zPpo_WmCs05BdL7GUGu8h8rpY-stnkNYGjzV-oDfXLvtfwAxgloZjRXsXWzjeom7GzAEv2sxgCcVhHXyhVcHHbz1rrpGlxaqxtz81SH6eJq-T2bJ_PX5ZfIwTxTLWUyELQSIscm0YLlWCz7OAbIFCGE4JdwUgheZYsA0sVxoq621gneh4TxXwIbo8chVwTdNMFaq3wt9HQO4SlIiO4GylKcCZSdQEiZbgS3m_gSzDW4D4XA-YHYEmPbZvTNBNsqZWhntglFRau_ORf0AUoOfEQ |
CitedBy_id | crossref_primary_10_1063_5_0222510 crossref_primary_10_1016_j_euromechflu_2023_12_002 crossref_primary_10_1063_5_0138773 crossref_primary_10_1007_s42241_021_0022_z crossref_primary_10_1016_j_oceaneng_2021_109866 crossref_primary_10_1016_j_renene_2020_01_006 crossref_primary_10_1063_5_0084275 crossref_primary_10_1016_j_oceaneng_2021_109861 crossref_primary_10_1142_S0217984920500207 crossref_primary_10_1016_j_ijmultiphaseflow_2019_103155 crossref_primary_10_1016_j_apor_2021_102723 crossref_primary_10_1021_acs_iecr_0c05045 crossref_primary_10_1016_j_fuel_2023_128386 crossref_primary_10_1177_09544089211025119 crossref_primary_10_1016_j_apor_2020_102300 crossref_primary_10_1016_j_oceaneng_2024_118876 crossref_primary_10_1007_s11431_022_2322_9 crossref_primary_10_1115_1_4050136 crossref_primary_10_1115_1_4050135 crossref_primary_10_1142_S0217984921500111 crossref_primary_10_1002_apj_2862 crossref_primary_10_1007_s10409_022_22399_x crossref_primary_10_1007_s42241_019_0034_0 crossref_primary_10_1080_17445302_2024_2335441 crossref_primary_10_1063_5_0187241 crossref_primary_10_3390_en14227635 crossref_primary_10_3390_pr12040686 crossref_primary_10_1016_j_apor_2020_102491 crossref_primary_10_1063_5_0197532 crossref_primary_10_1063_5_0064162 crossref_primary_10_1016_j_apm_2019_08_005 crossref_primary_10_1016_j_renene_2019_08_038 crossref_primary_10_1063_5_0073266 crossref_primary_10_1016_j_euromechflu_2020_08_008 crossref_primary_10_1063_1_5099089 crossref_primary_10_1016_j_oceaneng_2019_106310 crossref_primary_10_3390_en16186592 crossref_primary_10_1016_j_oceaneng_2022_111477 crossref_primary_10_1016_j_energy_2020_119005 crossref_primary_10_1115_1_4045209 crossref_primary_10_1016_j_cej_2021_130234 crossref_primary_10_1016_j_ijmultiphaseflow_2024_104820 crossref_primary_10_1016_j_oceaneng_2023_115970 crossref_primary_10_1007_s12206_019_1135_y crossref_primary_10_3390_jmse9101138 crossref_primary_10_1016_j_ijmultiphaseflow_2024_104821 crossref_primary_10_3390_jmse12112074 crossref_primary_10_1142_S0217984919502282 crossref_primary_10_1177_14750902221128140 crossref_primary_10_3390_pr11082460 crossref_primary_10_1016_j_apm_2021_02_003 crossref_primary_10_1016_j_ijmecsci_2022_107853 crossref_primary_10_1016_j_wear_2019_203091 crossref_primary_10_1007_s42241_023_0011_5 crossref_primary_10_1038_s41598_025_88582_4 crossref_primary_10_1016_j_oceaneng_2022_112953 crossref_primary_10_1142_S0217984920501845 crossref_primary_10_1063_5_0131906 crossref_primary_10_3390_pr12071329 crossref_primary_10_1016_j_ijmecsci_2022_107490 crossref_primary_10_1016_j_renene_2020_02_003 crossref_primary_10_1088_1742_6596_2707_1_012143 crossref_primary_10_1007_s42241_019_0050_0 crossref_primary_10_1016_j_ijmultiphaseflow_2020_103415 crossref_primary_10_1007_s10409_024_24127_x crossref_primary_10_1016_j_ijmultiphaseflow_2024_104876 crossref_primary_10_1007_s42241_021_0004_1 crossref_primary_10_1016_j_oceaneng_2021_109308 crossref_primary_10_1103_PhysRevFluids_9_114302 crossref_primary_10_1016_j_oceaneng_2024_119359 crossref_primary_10_1016_j_est_2024_114094 crossref_primary_10_1063_5_0148149 crossref_primary_10_1007_s10409_020_01008_4 crossref_primary_10_1007_s42241_022_0062_z crossref_primary_10_1007_s42241_025_0001_x crossref_primary_10_1080_17445302_2022_2076992 crossref_primary_10_1016_j_oceaneng_2019_106547 crossref_primary_10_1142_S0217984921504406 crossref_primary_10_1016_j_ijmultiphaseflow_2020_103408 crossref_primary_10_1142_S0217984921500329 crossref_primary_10_1016_j_oceaneng_2024_119082 crossref_primary_10_1016_j_apor_2024_104038 crossref_primary_10_3390_en16196990 crossref_primary_10_1007_s11431_019_9556_6 crossref_primary_10_1016_j_oceaneng_2025_120693 crossref_primary_10_1016_j_wear_2023_204747 crossref_primary_10_1016_j_ijheatfluidflow_2019_108517 crossref_primary_10_1063_5_0089093 crossref_primary_10_1016_j_apm_2021_03_018 crossref_primary_10_1016_j_oceaneng_2019_106512 crossref_primary_10_1063_5_0130192 crossref_primary_10_1016_j_oceaneng_2019_106236 crossref_primary_10_3390_jmse9111193 crossref_primary_10_1063_5_0122844 crossref_primary_10_1063_5_0178692 crossref_primary_10_1016_j_ijmultiphaseflow_2022_104252 crossref_primary_10_1016_j_oceaneng_2022_111685 crossref_primary_10_1063_5_0190010 crossref_primary_10_1016_j_oceaneng_2019_04_070 crossref_primary_10_1063_5_0030907 crossref_primary_10_1016_j_ijheatmasstransfer_2020_119835 crossref_primary_10_1007_s42241_024_0001_2 crossref_primary_10_1016_j_oceaneng_2020_107661 crossref_primary_10_1007_s42241_020_0005_5 crossref_primary_10_1063_5_0137411 crossref_primary_10_1016_j_oceaneng_2019_106884 crossref_primary_10_1007_s12206_022_0623_7 crossref_primary_10_1063_5_0187311 crossref_primary_10_1016_j_apm_2020_04_004 crossref_primary_10_1016_j_oceaneng_2023_115257 crossref_primary_10_1007_s11804_024_00480_9 crossref_primary_10_1063_5_0137019 crossref_primary_10_1016_j_apor_2021_102864 crossref_primary_10_1016_j_ultsonch_2024_106780 crossref_primary_10_1016_j_apor_2020_102167 crossref_primary_10_1016_j_flowmeasinst_2023_102375 crossref_primary_10_1016_j_ijheatmasstransfer_2020_120808 crossref_primary_10_1016_j_renene_2020_05_081 crossref_primary_10_3390_w11071332 crossref_primary_10_1016_j_oceaneng_2021_109058 crossref_primary_10_1108_EC_07_2020_0414 crossref_primary_10_1016_j_est_2022_106107 |
Cites_doi | 10.1016/S0021-9991(02)00020-7 10.1080/14685240600726710 10.1115/1.4005030 10.1016/j.oceaneng.2017.03.054 10.1016/S1001-6058(16)60805-3 10.1016/S1001-6058(16)60715-1 10.1007/s10494-005-8581-6 10.1016/j.oceaneng.2016.07.065 10.1016/j.apm.2012.09.002 10.1146/annurev.fluid.34.082301.114957 10.1016/S1001-6058(16)60774-6 10.1016/j.ijmultiphaseflow.2016.05.013 10.1017/jfm.2017.882 10.1017/jfm.2018.63 10.1016/j.ijmultiphaseflow.2016.03.015 10.1115/1.4023650 10.1063/1.1480830 10.1115/1.1412235 10.1016/j.apm.2016.01.031 10.1115/1.4001771 10.1115/1.1780171 10.1007/s42241-018-0002-0 10.1016/j.ijmultiphaseflow.2017.12.002 10.1115/1.1990201 10.1016/j.jcp.2014.01.006 10.1007/s42241-018-0023-8 10.1016/j.nucengdes.2012.03.047 10.1016/S1001-6058(14)60004-4 10.1002/(SICI)1097-0363(19960229)22:4<297::AID-FLD361>3.0.CO;2-X 10.1103/PhysRevFluids.2.084303 10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2 10.1016/j.ijmultiphaseflow.2013.12.004 10.1016/j.ijmultiphaseflow.2014.10.008 10.1016/j.ijmultiphaseflow.2017.10.006 10.1006/jcph.1996.5597 10.1016/S1001-6058(15)60469-3 10.1017/jfm.2016.425 10.1017/S0022112007004934 10.1016/j.compfluid.2013.03.006 10.1017/S0022112001005420 10.1115/1.3059703 10.1080/14685240600794379 10.1063/1.858280 |
ContentType | Journal Article |
Copyright | 2019 Elsevier Ltd |
Copyright_xml | – notice: 2019 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.ijmultiphaseflow.2019.03.026 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1879-3533 |
EndPage | 107 |
ExternalDocumentID | 10_1016_j_ijmultiphaseflow_2019_03_026 S030193221830524X |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 29J 4.4 457 4G. 5GY 5VS 6TJ 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABEFU ABFNM ABJNI ABMAC ABNUV ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ADBBV ADEWK ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHPOS AI. AIEXJ AIKHN AITUG AJBFU AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ H~9 IHE J1W JJJVA KOM LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SES SET SEW SPC SPCBC SPD SSG SST SSZ T5K TN5 VH1 WUQ XPP ZMT ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c373t-9f89a94e5d937dcb647aa5ba99e6106e89685c3a3d0f69dfdfff969685e667ca3 |
IEDL.DBID | .~1 |
ISSN | 0301-9322 |
IngestDate | Tue Jul 01 02:45:07 EDT 2025 Thu Apr 24 23:07:24 EDT 2025 Fri Feb 23 02:25:58 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Cavitating flow Large Eddy Simulation Verification and Validation (V&V) Grid resolution Error analyses |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c373t-9f89a94e5d937dcb647aa5ba99e6106e89685c3a3d0f69dfdfff969685e667ca3 |
ORCID | 0000-0003-1889-0825 0000-0002-5282-7224 |
PageCount | 15 |
ParticipantIDs | crossref_citationtrail_10_1016_j_ijmultiphaseflow_2019_03_026 crossref_primary_10_1016_j_ijmultiphaseflow_2019_03_026 elsevier_sciencedirect_doi_10_1016_j_ijmultiphaseflow_2019_03_026 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-06-01 |
PublicationDateYYYYMMDD | 2019-06-01 |
PublicationDate_xml | – month: 06 year: 2019 text: 2019-06-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | International journal of multiphase flow |
PublicationYear | 2019 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Geurts, Fröhlich (bib0019) 2002; 14 Ji, Long, Long, Qian, Zhou (bib0026) 2017; 29 Lilly (bib0032) 1992; 4 Smagorinsky (bib0041) 1963; 91 Sathiah, Komen, Roekaerts (bib0040) 2012; 248 Celik, Klein, Janicka (bib0006) 2009; 131 Zwart, Gerber, Belamri (bib0051) 2004 Cui, Zhang, Wang, Khoo (bib0011) 2018; 841 Huang, Young, Wang, Wei (bib0024) 2013; 135 Kravchenko, Moin (bib0029) 1997; 131 Coutierdelgosha, Stutz, Vabre, Legoupil (bib0010) 2007; 578 Epps (bib0016) 2017 Long, Long, Ji, Huai, Qian (bib0036) 2017; 29 Hunt, Wray, Moin (bib0025) 1988 Xing, Stern (bib0050) 2011; 133 Dutta, Xing (bib0012) 2017 Freitag, Klein (bib0017) 2006; 7 Chow, Moin (bib0009) 2003; 184 Eça, Hoekstra (bib0014) 2008; 18 Wang, Xu, Wu, Huang, Wu (bib0045) 2017; 2 Dutta, Xing (bib0013) 2018; 30 Long, Cheng, Ji, Arndt (bib0033) 2017; 137 Vreman, Geurts, Kuerten (bib0043) 1996; 22 Long, Cheng, Ji, Arndt, Peng (bib0034) 2018; 100 Wu, Huang, Wang, Cao (bib0047) 2018; 99 Xing (bib0048) 2015; 27 Long, Long, Wang, Cheng, Ji (bib0035) 2018; 30 Kravtsova, Markovich, Pervunin, Timoshevskiy, Hanjalić (bib0030) 2014; 60 Roache (bib0038) 1998 Roohi, Zahiri, Passandideh-Fard (bib0039) 2013; 37 Asnaghi, Feymark, Bensow (bib0002) 2018 Klein (bib0028) 2005; 75 Celik, Cehreli, Yavuz (bib0007) 2005; 127 Gousseau, Blocken, Heijst (bib0021) 2013; 79 Li, Li, Hu, Lin, Cheung (bib0031) 2016; 125 Celik, Klein, Freitag, Janicka (bib0005) 2006; 7 Harish, Mäkiharju, Ceccio (bib0022) 2016; 802 Xing, Stern (bib0049) 2010; 132 Huang, Wang, Zhao (bib0023) 2014; 26 Stern, Wilson, Coleman, Paterson (bib0042) 2001; 123 Wilson, Shao, Stern (bib0046) 2004; 126 Callenaere, Franc, Michel, Riondet (bib0004) 2015; 444 Arndt (bib0001) 2002; 34 Gnanaskandan, Mahesh (bib0020) 2016; 83 Chen, Chen, Gong, Li, Lu (bib0008) 2016; 40 Eça, Hoekstra (bib0015) 2014; 262 Oberkampf, Roy (bib0037) 2010 Wang, Wu, Huang, Wu (bib0044) 2016; 85 Budich, Schmidt, Adams (bib0003) 2018; 838 Ji, Luo, Arndt, Peng, Wu (bib0027) 2015; 68 Ganesh, Mäkiharju, Ceccio (bib0018) 2017; 29 Ji (10.1016/j.ijmultiphaseflow.2019.03.026_bib0027) 2015; 68 Lilly (10.1016/j.ijmultiphaseflow.2019.03.026_bib0032) 1992; 4 Wilson (10.1016/j.ijmultiphaseflow.2019.03.026_bib0046) 2004; 126 Eça (10.1016/j.ijmultiphaseflow.2019.03.026_bib0015) 2014; 262 Roohi (10.1016/j.ijmultiphaseflow.2019.03.026_bib0039) 2013; 37 Xing (10.1016/j.ijmultiphaseflow.2019.03.026_bib0050) 2011; 133 Budich (10.1016/j.ijmultiphaseflow.2019.03.026_bib0003) 2018; 838 Long (10.1016/j.ijmultiphaseflow.2019.03.026_bib0036) 2017; 29 Callenaere (10.1016/j.ijmultiphaseflow.2019.03.026_bib0004) 2015; 444 Celik (10.1016/j.ijmultiphaseflow.2019.03.026_bib0006) 2009; 131 Oberkampf (10.1016/j.ijmultiphaseflow.2019.03.026_bib0037) 2010 Smagorinsky (10.1016/j.ijmultiphaseflow.2019.03.026_bib0041) 1963; 91 Dutta (10.1016/j.ijmultiphaseflow.2019.03.026_bib0013) 2018; 30 Stern (10.1016/j.ijmultiphaseflow.2019.03.026_bib0042) 2001; 123 Coutierdelgosha (10.1016/j.ijmultiphaseflow.2019.03.026_bib0010) 2007; 578 Gnanaskandan (10.1016/j.ijmultiphaseflow.2019.03.026_bib0020) 2016; 83 Xing (10.1016/j.ijmultiphaseflow.2019.03.026_bib0048) 2015; 27 Wang (10.1016/j.ijmultiphaseflow.2019.03.026_bib0045) 2017; 2 Celik (10.1016/j.ijmultiphaseflow.2019.03.026_bib0005) 2006; 7 Ji (10.1016/j.ijmultiphaseflow.2019.03.026_bib0026) 2017; 29 Epps (10.1016/j.ijmultiphaseflow.2019.03.026_bib0016) 2017 Klein (10.1016/j.ijmultiphaseflow.2019.03.026_bib0028) 2005; 75 Celik (10.1016/j.ijmultiphaseflow.2019.03.026_bib0007) 2005; 127 Li (10.1016/j.ijmultiphaseflow.2019.03.026_bib0031) 2016; 125 Long (10.1016/j.ijmultiphaseflow.2019.03.026_bib0033) 2017; 137 Geurts (10.1016/j.ijmultiphaseflow.2019.03.026_bib0019) 2002; 14 Gousseau (10.1016/j.ijmultiphaseflow.2019.03.026_bib0021) 2013; 79 Huang (10.1016/j.ijmultiphaseflow.2019.03.026_bib0024) 2013; 135 Long (10.1016/j.ijmultiphaseflow.2019.03.026_bib0034) 2018; 100 Kravchenko (10.1016/j.ijmultiphaseflow.2019.03.026_bib0029) 1997; 131 Xing (10.1016/j.ijmultiphaseflow.2019.03.026_bib0049) 2010; 132 Cui (10.1016/j.ijmultiphaseflow.2019.03.026_bib0011) 2018; 841 Sathiah (10.1016/j.ijmultiphaseflow.2019.03.026_bib0040) 2012; 248 Long (10.1016/j.ijmultiphaseflow.2019.03.026_bib0035) 2018; 30 Eça (10.1016/j.ijmultiphaseflow.2019.03.026_bib0014) 2008; 18 Huang (10.1016/j.ijmultiphaseflow.2019.03.026_bib0023) 2014; 26 Dutta (10.1016/j.ijmultiphaseflow.2019.03.026_bib0012) 2017 Wang (10.1016/j.ijmultiphaseflow.2019.03.026_bib0044) 2016; 85 Kravtsova (10.1016/j.ijmultiphaseflow.2019.03.026_bib0030) 2014; 60 Chen (10.1016/j.ijmultiphaseflow.2019.03.026_bib0008) 2016; 40 Harish (10.1016/j.ijmultiphaseflow.2019.03.026_bib0022) 2016; 802 Freitag (10.1016/j.ijmultiphaseflow.2019.03.026_bib0017) 2006; 7 Hunt (10.1016/j.ijmultiphaseflow.2019.03.026_bib0025) 1988 Zwart (10.1016/j.ijmultiphaseflow.2019.03.026_bib0051) 2004 Chow (10.1016/j.ijmultiphaseflow.2019.03.026_bib0009) 2003; 184 Roache (10.1016/j.ijmultiphaseflow.2019.03.026_bib0038) 1998 Ganesh (10.1016/j.ijmultiphaseflow.2019.03.026_bib0018) 2017; 29 Wu (10.1016/j.ijmultiphaseflow.2019.03.026_bib0047) 2018; 99 Asnaghi (10.1016/j.ijmultiphaseflow.2019.03.026_bib0002) 2018 Vreman (10.1016/j.ijmultiphaseflow.2019.03.026_bib0043) 1996; 22 Arndt (10.1016/j.ijmultiphaseflow.2019.03.026_bib0001) 2002; 34 |
References_xml | – year: 2010 ident: bib0037 article-title: Verification and Validation in Scientific Computing – volume: 85 start-page: 48 year: 2016 end-page: 56 ident: bib0044 article-title: Unsteady characteristics of cloud cavitating flow near the free surface around an axisymmetric projectile publication-title: Int. J. Multiphase Flow – volume: 7 start-page: 1 year: 2006 end-page: 11 ident: bib0017 article-title: An improved method to assess the quality of Large Eddy Simulations in the context of implicit filtering publication-title: J. Turbul. – volume: 578 start-page: 171 year: 2007 end-page: 222 ident: bib0010 article-title: Analysis of cavitating flow structure by experimental and numerical investigations publication-title: J. Fluid Mech. – volume: 30 start-page: 23 year: 2018 end-page: 33 ident: bib0013 article-title: Five-equation and robust three-equation method for solution verification of Large Eddy Simulations publication-title: J. Hydrodyn. Ser. B – start-page: 193 year: 1988 end-page: 208 ident: bib0025 article-title: Eddies, streams, and convergence zones in turbulent flows publication-title: Stud. Turb. Num. Simul. Databases – volume: 100 start-page: 41 year: 2018 end-page: 56 ident: bib0034 article-title: Large Eddy Simulation and Euler–Lagrangian coupling investigation of the transient cavitating turbulent flow around a twisted hydrofoil publication-title: Int. J. Multiphase Flow – volume: 184 start-page: 366 year: 2003 end-page: 380 ident: bib0009 article-title: A further study of numerical errors in large-eddy simulations publication-title: J. Comput. Phys. – volume: 18 start-page: 120 year: 2008 end-page: 126 ident: bib0014 article-title: Code verification of unsteady flow solvers with method of manufactured solutions publication-title: Int. J. Offshore Polar Eng. – volume: 40 start-page: 5835 year: 2016 end-page: 5857 ident: bib0008 article-title: Numerical investigation on the dynamic behavior of sheet/cloud cavitation regimes around hydrofoil publication-title: Appl. Math. Model. – volume: 79 start-page: 120 year: 2013 end-page: 133 ident: bib0021 article-title: Quality assessment of Large-Eddy Simulation of wind flow around a high-rise building: validation and solution verification publication-title: Comput. Fluids – volume: 248 start-page: 93 year: 2012 end-page: 107 ident: bib0040 article-title: The role of CFD combustion modeling in hydrogen safety management—Part I: validation based on small scale experiments publication-title: Nucl. Eng. Des. – volume: 4 start-page: 633 year: 1992 end-page: 635 ident: bib0032 article-title: A proposed modification of the Germano subgrid‐scale closure method publication-title: Phys. Fluids – volume: 123 start-page: 792 year: 2001 end-page: 802 ident: bib0042 article-title: Comprehensive approach to verification and validation of CFD simulations—part 1: methodology and procedures publication-title: J. Fluids Eng. – year: 2017 ident: bib0016 article-title: Review of vortex identification methods publication-title: 55th AIAA Aerospace Sciences Meeting – volume: 68 start-page: 121 year: 2015 end-page: 134 ident: bib0027 article-title: Large Eddy Simulation and theoretical investigations of the transient cavitating vortical flow structure around a NACA66 hydrofoil publication-title: Int. J. Multiphase Flow – volume: 75 start-page: 131 year: 2005 end-page: 147 ident: bib0028 article-title: An attempt to assess the quality of Large Eddy Simulations in the context of implicit filtering publication-title: Flow Turbul. Combust. – volume: 37 start-page: 6469 year: 2013 end-page: 6488 ident: bib0039 article-title: Numerical simulation of cavitation around a two-dimensional hydrofoil using VOF method and LES turbulence model publication-title: Appl. Math. Model. – volume: 29 start-page: 610 year: 2017 end-page: 620 ident: bib0036 article-title: Verification and validation of URANS simulations of the turbulent cavitating flow around the hydrofoil publication-title: J. Hydrodyn. Ser. B – volume: 135 year: 2013 ident: bib0024 article-title: Combined experimental and computational investigation of unsteady structure of sheet/cloud cavitation publication-title: J. Fluids Eng. – volume: 99 start-page: 162 year: 2018 end-page: 173 ident: bib0047 article-title: The transient characteristics of cloud cavitating flow over a flexible hydrofoil publication-title: Int. J. Multiphase Flow – volume: 29 start-page: 27 year: 2017 end-page: 39 ident: bib0026 article-title: Large Eddy Simulation of turbulent attached cavitating flow with special emphasis on large scale structures of the hydrofoil wake and turbulence-cavitation interactions publication-title: J. Hydrodyn. Ser. B – volume: 132 year: 2010 ident: bib0049 article-title: Factors of safety for Richardson extrapolation publication-title: J. Fluids Eng. – volume: 838 start-page: 759 year: 2018 end-page: 813 ident: bib0003 article-title: Numerical simulation and analysis of condensation shocks in cavitating flow publication-title: J. Fluid Mech. – year: 2017 ident: bib0012 article-title: Quantitative solution verification of Large Eddy Simulation of channel flow publication-title: Proceedings of the 2nd Thermal and Fluid Engineering Conference – volume: 802 start-page: 37 year: 2016 end-page: 78 ident: bib0022 article-title: Bubbly shock propagation as a mechanism for sheet-to-cloud transition of partial cavities publication-title: J. Fluid Mech. – volume: 131 start-page: 310 year: 1997 end-page: 322 ident: bib0029 article-title: On the effect of numerical errors in Large Eddy Simulations of turbulent flows publication-title: J. Comput. Phys. – volume: 22 start-page: 297 year: 1996 end-page: 311 ident: bib0043 article-title: Comparision of numerical schemes in Large Eddy Simulation of the temporal mixing layer publication-title: Int. J. Numer. Methods Fluids – volume: 133 year: 2011 ident: bib0050 article-title: Closure to “Discussion of ‘Factors of Safety for Richardson Extrapolation’ ” (2011, ASME J. Fluids Eng., 133, p. 115501) publication-title: J. Fluids Eng.-Trans. ASME – volume: 83 start-page: 86 year: 2016 end-page: 102 ident: bib0020 article-title: Large Eddy Simulation of the transition from sheet to cloud cavitation over a wedge publication-title: Int. J. Multiphase Flow – volume: 91 start-page: 99 year: 1963 end-page: 164 ident: bib0041 article-title: General circulation experiments with the primitive equations publication-title: Mon. Weather Rev. – volume: 841 start-page: 287 year: 2018 end-page: 309 ident: bib0011 article-title: Ice breaking by a collapsing bubble publication-title: J. Fluid Mech. – volume: 131 start-page: 031102 year: 2009 end-page: 031111 ident: bib0006 article-title: Assessment measures for engineering LES applications publication-title: J. Fluids Eng. – volume: 262 start-page: 104 year: 2014 end-page: 130 ident: bib0015 article-title: A procedure for the estimation of the numerical uncertainty of CFD calculations based on grid refinement studies publication-title: J. Comput. Phys. – volume: 444 start-page: 223 year: 2015 end-page: 256 ident: bib0004 article-title: The cavitation instability induced by the development of a re-entrant jet publication-title: J. Fluid Mech. – volume: 137 start-page: 247 year: 2017 end-page: 261 ident: bib0033 article-title: Numerical investigation of attached cavitation shedding dynamics around the Clark-Y hydrofoil with the FBDCM and an integral method publication-title: Ocean Eng. – volume: 34 start-page: 143 year: 2002 end-page: 175 ident: bib0001 article-title: Cavitation in vortical flows publication-title: Annu. Rev. Fluid Mech. – volume: 30 start-page: 369 year: 2018 end-page: 372 ident: bib0035 article-title: Some notes on numerical simulation and error analyses of the attached turbulent cavitating flow by LES publication-title: J. Hydrodyn. Ser. B – volume: 14 start-page: L41 year: 2002 end-page: L44 ident: bib0019 article-title: A framework for predicting accuracy limitations in large-eddy simulation publication-title: Phys. Fluids – volume: 27 start-page: 163 year: 2015 end-page: 175 ident: bib0048 article-title: A general framework for verification and validation of Large Eddy Simulations publication-title: J. Hydrodyn. Ser. B – volume: 7 start-page: 1 year: 2006 end-page: 27 ident: bib0005 article-title: Assessment measures for URANS/DES/LES: an overview with applications publication-title: J. Turbul. – volume: 29 start-page: 907 year: 2017 end-page: 916 ident: bib0018 article-title: Bubbly shock propagation as a mechanism of shedding in separated cavitating flows publication-title: J. Hydrodyn. Ser. B – volume: 125 start-page: 1 year: 2016 end-page: 11 ident: bib0031 article-title: Large Eddy Simulation of unsteady shedding behavior in cavitating flows with time-average validation publication-title: Ocean Eng. – volume: 127 start-page: 949 year: 2005 end-page: 958 ident: bib0007 article-title: Index of resolution quality for Large Eddy Simulations publication-title: J. Fluids Eng. – volume: 26 start-page: 26 year: 2014 end-page: 36 ident: bib0023 article-title: Numerical simulation unsteady cloud cavitating flow with a filter-based density correction model publication-title: J. Hydrodyn. Ser. B – year: 2004 ident: bib0051 article-title: A two-phase flow model for predicting cavitation dynamics publication-title: ICMF 2004 International Conference on Multiphase Flow – volume: 126 start-page: 704 year: 2004 end-page: 706 ident: bib0046 article-title: Discussion: criticisms of the “Correction Factor” verification method 1 publication-title: J. Fluids Eng. – volume: 60 start-page: 119 year: 2014 end-page: 134 ident: bib0030 article-title: High-speed visualization and PIV measurements of cavitating flows around a semi-circular leading-edge flat plate and NACA0015 hydrofoil publication-title: Int. J. Multiphase Flow – start-page: 1 year: 2018 end-page: 18 ident: bib0002 article-title: Numerical investigation of the impact of computational resolution on shedding cavity structures publication-title: Int. J. Multiphase Flow – volume: 2 year: 2017 ident: bib0045 article-title: Ventilated cloud cavitating flow around a blunt body close to the free surface publication-title: Phys. Rev. Fluids – year: 1998 ident: bib0038 article-title: Verification and Validation in Computational Science and Engineering – volume: 184 start-page: 366 year: 2003 ident: 10.1016/j.ijmultiphaseflow.2019.03.026_bib0009 article-title: A further study of numerical errors in large-eddy simulations publication-title: J. Comput. Phys. doi: 10.1016/S0021-9991(02)00020-7 – volume: 18 start-page: 120 year: 2008 ident: 10.1016/j.ijmultiphaseflow.2019.03.026_bib0014 article-title: Code verification of unsteady flow solvers with method of manufactured solutions publication-title: Int. J. Offshore Polar Eng. – volume: 7 start-page: 1 year: 2006 ident: 10.1016/j.ijmultiphaseflow.2019.03.026_bib0017 article-title: An improved method to assess the quality of Large Eddy Simulations in the context of implicit filtering publication-title: J. Turbul. doi: 10.1080/14685240600726710 – volume: 133 year: 2011 ident: 10.1016/j.ijmultiphaseflow.2019.03.026_bib0050 article-title: Closure to “Discussion of ‘Factors of Safety for Richardson Extrapolation’ ” (2011, ASME J. Fluids Eng., 133, p. 115501) publication-title: J. Fluids Eng.-Trans. ASME doi: 10.1115/1.4005030 – volume: 137 start-page: 247 year: 2017 ident: 10.1016/j.ijmultiphaseflow.2019.03.026_bib0033 article-title: Numerical investigation of attached cavitation shedding dynamics around the Clark-Y hydrofoil with the FBDCM and an integral method publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2017.03.054 – volume: 29 start-page: 907 year: 2017 ident: 10.1016/j.ijmultiphaseflow.2019.03.026_bib0018 article-title: Bubbly shock propagation as a mechanism of shedding in separated cavitating flows publication-title: J. Hydrodyn. Ser. B doi: 10.1016/S1001-6058(16)60805-3 – volume: 29 start-page: 27 year: 2017 ident: 10.1016/j.ijmultiphaseflow.2019.03.026_bib0026 article-title: Large Eddy Simulation of turbulent attached cavitating flow with special emphasis on large scale structures of the hydrofoil wake and turbulence-cavitation interactions publication-title: J. Hydrodyn. Ser. B doi: 10.1016/S1001-6058(16)60715-1 – volume: 75 start-page: 131 year: 2005 ident: 10.1016/j.ijmultiphaseflow.2019.03.026_bib0028 article-title: An attempt to assess the quality of Large Eddy Simulations in the context of implicit filtering publication-title: Flow Turbul. Combust. doi: 10.1007/s10494-005-8581-6 – volume: 125 start-page: 1 year: 2016 ident: 10.1016/j.ijmultiphaseflow.2019.03.026_bib0031 article-title: Large Eddy Simulation of unsteady shedding behavior in cavitating flows with time-average validation publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2016.07.065 – volume: 37 start-page: 6469 year: 2013 ident: 10.1016/j.ijmultiphaseflow.2019.03.026_bib0039 article-title: Numerical simulation of cavitation around a two-dimensional hydrofoil using VOF method and LES turbulence model publication-title: Appl. Math. Model. doi: 10.1016/j.apm.2012.09.002 – volume: 34 start-page: 143 year: 2002 ident: 10.1016/j.ijmultiphaseflow.2019.03.026_bib0001 article-title: Cavitation in vortical flows publication-title: Annu. Rev. Fluid Mech. doi: 10.1146/annurev.fluid.34.082301.114957 – volume: 29 start-page: 610 year: 2017 ident: 10.1016/j.ijmultiphaseflow.2019.03.026_bib0036 article-title: Verification and validation of URANS simulations of the turbulent cavitating flow around the hydrofoil publication-title: J. Hydrodyn. Ser. B doi: 10.1016/S1001-6058(16)60774-6 – volume: 85 start-page: 48 year: 2016 ident: 10.1016/j.ijmultiphaseflow.2019.03.026_bib0044 article-title: Unsteady characteristics of cloud cavitating flow near the free surface around an axisymmetric projectile publication-title: Int. J. Multiphase Flow doi: 10.1016/j.ijmultiphaseflow.2016.05.013 – volume: 838 start-page: 759 year: 2018 ident: 10.1016/j.ijmultiphaseflow.2019.03.026_bib0003 article-title: Numerical simulation and analysis of condensation shocks in cavitating flow publication-title: J. Fluid Mech. doi: 10.1017/jfm.2017.882 – volume: 841 start-page: 287 year: 2018 ident: 10.1016/j.ijmultiphaseflow.2019.03.026_bib0011 article-title: Ice breaking by a collapsing bubble publication-title: J. Fluid Mech. doi: 10.1017/jfm.2018.63 – year: 2017 ident: 10.1016/j.ijmultiphaseflow.2019.03.026_bib0012 article-title: Quantitative solution verification of Large Eddy Simulation of channel flow – volume: 83 start-page: 86 year: 2016 ident: 10.1016/j.ijmultiphaseflow.2019.03.026_bib0020 article-title: Large Eddy Simulation of the transition from sheet to cloud cavitation over a wedge publication-title: Int. J. Multiphase Flow doi: 10.1016/j.ijmultiphaseflow.2016.03.015 – volume: 135 year: 2013 ident: 10.1016/j.ijmultiphaseflow.2019.03.026_bib0024 article-title: Combined experimental and computational investigation of unsteady structure of sheet/cloud cavitation publication-title: J. Fluids Eng. doi: 10.1115/1.4023650 – volume: 14 start-page: L41 year: 2002 ident: 10.1016/j.ijmultiphaseflow.2019.03.026_bib0019 article-title: A framework for predicting accuracy limitations in large-eddy simulation publication-title: Phys. Fluids doi: 10.1063/1.1480830 – volume: 123 start-page: 792 year: 2001 ident: 10.1016/j.ijmultiphaseflow.2019.03.026_bib0042 article-title: Comprehensive approach to verification and validation of CFD simulations—part 1: methodology and procedures publication-title: J. Fluids Eng. doi: 10.1115/1.1412235 – volume: 40 start-page: 5835 year: 2016 ident: 10.1016/j.ijmultiphaseflow.2019.03.026_bib0008 article-title: Numerical investigation on the dynamic behavior of sheet/cloud cavitation regimes around hydrofoil publication-title: Appl. Math. Model. doi: 10.1016/j.apm.2016.01.031 – volume: 132 year: 2010 ident: 10.1016/j.ijmultiphaseflow.2019.03.026_bib0049 article-title: Factors of safety for Richardson extrapolation publication-title: J. Fluids Eng. doi: 10.1115/1.4001771 – volume: 126 start-page: 704 year: 2004 ident: 10.1016/j.ijmultiphaseflow.2019.03.026_bib0046 article-title: Discussion: criticisms of the “Correction Factor” verification method 1 publication-title: J. Fluids Eng. doi: 10.1115/1.1780171 – volume: 30 start-page: 23 year: 2018 ident: 10.1016/j.ijmultiphaseflow.2019.03.026_bib0013 article-title: Five-equation and robust three-equation method for solution verification of Large Eddy Simulations publication-title: J. Hydrodyn. Ser. B doi: 10.1007/s42241-018-0002-0 – volume: 100 start-page: 41 year: 2018 ident: 10.1016/j.ijmultiphaseflow.2019.03.026_bib0034 article-title: Large Eddy Simulation and Euler–Lagrangian coupling investigation of the transient cavitating turbulent flow around a twisted hydrofoil publication-title: Int. J. Multiphase Flow doi: 10.1016/j.ijmultiphaseflow.2017.12.002 – volume: 127 start-page: 949 year: 2005 ident: 10.1016/j.ijmultiphaseflow.2019.03.026_bib0007 article-title: Index of resolution quality for Large Eddy Simulations publication-title: J. Fluids Eng. doi: 10.1115/1.1990201 – volume: 262 start-page: 104 year: 2014 ident: 10.1016/j.ijmultiphaseflow.2019.03.026_bib0015 article-title: A procedure for the estimation of the numerical uncertainty of CFD calculations based on grid refinement studies publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2014.01.006 – volume: 30 start-page: 369 year: 2018 ident: 10.1016/j.ijmultiphaseflow.2019.03.026_bib0035 article-title: Some notes on numerical simulation and error analyses of the attached turbulent cavitating flow by LES publication-title: J. Hydrodyn. Ser. B doi: 10.1007/s42241-018-0023-8 – volume: 248 start-page: 93 year: 2012 ident: 10.1016/j.ijmultiphaseflow.2019.03.026_bib0040 article-title: The role of CFD combustion modeling in hydrogen safety management—Part I: validation based on small scale experiments publication-title: Nucl. Eng. Des. doi: 10.1016/j.nucengdes.2012.03.047 – volume: 26 start-page: 26 year: 2014 ident: 10.1016/j.ijmultiphaseflow.2019.03.026_bib0023 article-title: Numerical simulation unsteady cloud cavitating flow with a filter-based density correction model publication-title: J. Hydrodyn. Ser. B doi: 10.1016/S1001-6058(14)60004-4 – start-page: 1 year: 2018 ident: 10.1016/j.ijmultiphaseflow.2019.03.026_bib0002 article-title: Numerical investigation of the impact of computational resolution on shedding cavity structures publication-title: Int. J. Multiphase Flow – year: 1998 ident: 10.1016/j.ijmultiphaseflow.2019.03.026_bib0038 – volume: 22 start-page: 297 year: 1996 ident: 10.1016/j.ijmultiphaseflow.2019.03.026_bib0043 article-title: Comparision of numerical schemes in Large Eddy Simulation of the temporal mixing layer publication-title: Int. J. Numer. Methods Fluids doi: 10.1002/(SICI)1097-0363(19960229)22:4<297::AID-FLD361>3.0.CO;2-X – volume: 2 year: 2017 ident: 10.1016/j.ijmultiphaseflow.2019.03.026_bib0045 article-title: Ventilated cloud cavitating flow around a blunt body close to the free surface publication-title: Phys. Rev. Fluids doi: 10.1103/PhysRevFluids.2.084303 – volume: 91 start-page: 99 year: 1963 ident: 10.1016/j.ijmultiphaseflow.2019.03.026_bib0041 article-title: General circulation experiments with the primitive equations publication-title: Mon. Weather Rev. doi: 10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2 – start-page: 193 year: 1988 ident: 10.1016/j.ijmultiphaseflow.2019.03.026_bib0025 article-title: Eddies, streams, and convergence zones in turbulent flows publication-title: Stud. Turb. Num. Simul. Databases – volume: 60 start-page: 119 year: 2014 ident: 10.1016/j.ijmultiphaseflow.2019.03.026_bib0030 article-title: High-speed visualization and PIV measurements of cavitating flows around a semi-circular leading-edge flat plate and NACA0015 hydrofoil publication-title: Int. J. Multiphase Flow doi: 10.1016/j.ijmultiphaseflow.2013.12.004 – volume: 68 start-page: 121 year: 2015 ident: 10.1016/j.ijmultiphaseflow.2019.03.026_bib0027 article-title: Large Eddy Simulation and theoretical investigations of the transient cavitating vortical flow structure around a NACA66 hydrofoil publication-title: Int. J. Multiphase Flow doi: 10.1016/j.ijmultiphaseflow.2014.10.008 – year: 2010 ident: 10.1016/j.ijmultiphaseflow.2019.03.026_bib0037 – volume: 99 start-page: 162 year: 2018 ident: 10.1016/j.ijmultiphaseflow.2019.03.026_bib0047 article-title: The transient characteristics of cloud cavitating flow over a flexible hydrofoil publication-title: Int. J. Multiphase Flow doi: 10.1016/j.ijmultiphaseflow.2017.10.006 – year: 2017 ident: 10.1016/j.ijmultiphaseflow.2019.03.026_bib0016 article-title: Review of vortex identification methods – volume: 131 start-page: 310 year: 1997 ident: 10.1016/j.ijmultiphaseflow.2019.03.026_bib0029 article-title: On the effect of numerical errors in Large Eddy Simulations of turbulent flows publication-title: J. Comput. Phys. doi: 10.1006/jcph.1996.5597 – volume: 27 start-page: 163 year: 2015 ident: 10.1016/j.ijmultiphaseflow.2019.03.026_bib0048 article-title: A general framework for verification and validation of Large Eddy Simulations publication-title: J. Hydrodyn. Ser. B doi: 10.1016/S1001-6058(15)60469-3 – year: 2004 ident: 10.1016/j.ijmultiphaseflow.2019.03.026_bib0051 article-title: A two-phase flow model for predicting cavitation dynamics – volume: 802 start-page: 37 year: 2016 ident: 10.1016/j.ijmultiphaseflow.2019.03.026_bib0022 article-title: Bubbly shock propagation as a mechanism for sheet-to-cloud transition of partial cavities publication-title: J. Fluid Mech. doi: 10.1017/jfm.2016.425 – volume: 578 start-page: 171 year: 2007 ident: 10.1016/j.ijmultiphaseflow.2019.03.026_bib0010 article-title: Analysis of cavitating flow structure by experimental and numerical investigations publication-title: J. Fluid Mech. doi: 10.1017/S0022112007004934 – volume: 79 start-page: 120 year: 2013 ident: 10.1016/j.ijmultiphaseflow.2019.03.026_bib0021 article-title: Quality assessment of Large-Eddy Simulation of wind flow around a high-rise building: validation and solution verification publication-title: Comput. Fluids doi: 10.1016/j.compfluid.2013.03.006 – volume: 444 start-page: 223 year: 2015 ident: 10.1016/j.ijmultiphaseflow.2019.03.026_bib0004 article-title: The cavitation instability induced by the development of a re-entrant jet publication-title: J. Fluid Mech. doi: 10.1017/S0022112001005420 – volume: 131 start-page: 031102 year: 2009 ident: 10.1016/j.ijmultiphaseflow.2019.03.026_bib0006 article-title: Assessment measures for engineering LES applications publication-title: J. Fluids Eng. doi: 10.1115/1.3059703 – volume: 7 start-page: 1 year: 2006 ident: 10.1016/j.ijmultiphaseflow.2019.03.026_bib0005 article-title: Assessment measures for URANS/DES/LES: an overview with applications publication-title: J. Turbul. doi: 10.1080/14685240600794379 – volume: 4 start-page: 633 year: 1992 ident: 10.1016/j.ijmultiphaseflow.2019.03.026_bib0032 article-title: A proposed modification of the Germano subgrid‐scale closure method publication-title: Phys. Fluids doi: 10.1063/1.858280 |
SSID | ssj0005743 |
Score | 2.5763152 |
Snippet | •The turbulent cavitating flow around a hydrofoil is simulated by LES.•The three equation method is used to assess the LES results in cavitating flow.•The... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 93 |
SubjectTerms | Cavitating flow Error analyses Grid resolution Large Eddy Simulation Verification and Validation (V&V) |
Title | Verification and validation of Large Eddy Simulation of attached cavitating flow around a Clark-Y hydrofoil |
URI | https://dx.doi.org/10.1016/j.ijmultiphaseflow.2019.03.026 |
Volume | 115 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwED6hIhAMCAqIZ-UBsYWmzdMDQ4VA5SEWKCpTdPGDppQUlQDqwm_Hl6RQEEMHxji2Zfkud1-sz98BHDQ5Nh2XlFu1FOYHxXyKoXTQsn10lWcLSlvEtrj22x33out15-BkcheGaJVl7C9ieh6ty5Z6uZv15ySp3xCYN-iDcrztNd0u3WB3A_Lyo48pmkdBsqfOFvVehMNvjlfSL2h7PZMx9GD4TlSvQvSUxBb-SlRTyedsFVZK1MhaxcLWYE6lVVie0hKswkLO5RQv6_B4Z5p0eRbHMJXMeFNS1E5iQ82uiPzNTqUcs5vkqSzfRS8wy0jeWTKBb7l0d_rAaL0MR1R8iSHL2TzWPeuNpYnfw2SwAZ2z09uTtlXWVLCEEziZxXXIkRszSINLpIh9N0D0YuRcGSDlq5D7oSccdKStfS611FrnAjqe8v1AoLMJlXSYqi1gJreHSum40URBOvWxiAU2goCj7RmcobbheLKBkSgFx6nuxSCaMMv60W8DRGSAyHYiY4BtCL7GPxfSGzOPbE3sFf1wpsjkiRnn2PmHOXZhiZ4KZtkeVLLRq9o3GCaLa7mT1mC-dX7Zvv4EqG33HA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NbxMxEB2VREB7QBBALS3gA-K2yma_feAQVa1SGnJJgsLJmvVHsyXdVGVp1X9fz67TBMQhB6722rI83nlvV89vAD4FHIMwIudWo6T9QLGvYqZC9PwEIx37kmCL1BajZDCNvs7i2Q4cr-7CkKzS5f4mp9fZ2rV03W52r4uiOyYyb9kHYbwfB9HsCbTJnSpuQbt_dj4YrZUejc6envdowDP4vJZ5FZeNcm9uQcMslnek9mp8T8lv4V9YtYE_py_hhSOOrN-s7RXs6LIDext2gh14Wss55a_X8PO7bTLudxzDUjF7oIqmfBJbGjYk_Tc7UeqejYsrV8GLOrCqyOFZMYm3tXt3ecFovQxvqP4SQ1YLerwfbH6vbApfFos3MD09mRwPPFdWwZNhGlYeNxlHbiOhLDVRMk-iFDHOkXNtuVSiM55ksQwxVL5JuDLKGFN76MQ6SVKJ4VtolctS7wOz8J5pbfJegJKs6nOZS-ylKUc_tlRDH8CX1QYK6TzHqfTFQqzEZZfi7wAICoDwQ2EDcADp4_jrxn1j65H9VbzEH-dJWKjYco53_2GOj_B8MPk2FMOz0fkh7FJPIzQ7glZ181u_t5Smyj-4I_sADuz5zQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Verification+and+validation+of+Large+Eddy+Simulation+of+attached+cavitating+flow+around+a+Clark-Y+hydrofoil&rft.jtitle=International+journal+of+multiphase+flow&rft.au=Long%2C+Yun&rft.au=Long%2C+Xinping&rft.au=Ji%2C+Bin&rft.au=Xing%2C+Tao&rft.date=2019-06-01&rft.pub=Elsevier+Ltd&rft.issn=0301-9322&rft.eissn=1879-3533&rft.volume=115&rft.spage=93&rft.epage=107&rft_id=info:doi/10.1016%2Fj.ijmultiphaseflow.2019.03.026&rft.externalDocID=S030193221830524X |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0301-9322&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0301-9322&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0301-9322&client=summon |