Inferring left behind passengers in congested metro systems from automated data

•Developing performance metrics from the passenger’s point of view.•Estimating left behind probability using maximum likelihood or Bayesian inference.•Providing important input to passenger assignment models to improve accuracy.•Providing useful insights for route choice estimation. With subway syst...

Full description

Saved in:
Bibliographic Details
Published inTransportation research. Part C, Emerging technologies Vol. 94; pp. 323 - 337
Main Authors Zhu, Yiwen, Koutsopoulos, Haris N., Wilson, Nigel H.M.
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.09.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •Developing performance metrics from the passenger’s point of view.•Estimating left behind probability using maximum likelihood or Bayesian inference.•Providing important input to passenger assignment models to improve accuracy.•Providing useful insights for route choice estimation. With subway systems around the world experiencing increasing demand, measures such as passengers left behind are becoming increasingly important. This paper proposes a methodology for inferring the probability distribution of the number of times a passenger is left behind at stations in congested metro systems using automated data. Maximum likelihood estimation (MLE) and Bayesian inference methods are used to estimate the left behind probability mass function (LBPMF) for a given station and time period. The model is applied using actual and synthetic data. The results show that the model is able to estimate the probability of being left behind fairly accurately.
AbstractList •Developing performance metrics from the passenger’s point of view.•Estimating left behind probability using maximum likelihood or Bayesian inference.•Providing important input to passenger assignment models to improve accuracy.•Providing useful insights for route choice estimation. With subway systems around the world experiencing increasing demand, measures such as passengers left behind are becoming increasingly important. This paper proposes a methodology for inferring the probability distribution of the number of times a passenger is left behind at stations in congested metro systems using automated data. Maximum likelihood estimation (MLE) and Bayesian inference methods are used to estimate the left behind probability mass function (LBPMF) for a given station and time period. The model is applied using actual and synthetic data. The results show that the model is able to estimate the probability of being left behind fairly accurately.
Author Wilson, Nigel H.M.
Zhu, Yiwen
Koutsopoulos, Haris N.
Author_xml – sequence: 1
  givenname: Yiwen
  orcidid: 0000-0002-5498-7475
  surname: Zhu
  fullname: Zhu, Yiwen
  email: zhu.yiwen@microsoft.com
  organization: Northeastern University, Boston, MA 02115, USA
– sequence: 2
  givenname: Haris N.
  surname: Koutsopoulos
  fullname: Koutsopoulos, Haris N.
  organization: Northeastern University, Boston, MA 02115, USA
– sequence: 3
  givenname: Nigel H.M.
  surname: Wilson
  fullname: Wilson, Nigel H.M.
  organization: Massachusetts Institute of Technology, Cambridge, MA 02139, USA
BookMark eNp9kE1LAzEQhoNUsK3-AG_5A7sm-5Fs8CTFj0KhFwVvIZtMapZutiRR6L83Sz17mnln5h1mnhVa-MkDQveUlJRQ9jCUKeiyIpRnXRJSXaEl7bgoqroVC7QkgnUFEeTzBq1iHAghVLR8ifZbbyEE5w_4CDbhHr6cN_ikYgR_gBCx81hPOY0JDB4hhQnHcxZjxDZMI1bfaRrV3DQqqVt0bdUxwt1fXKOPl-f3zVux279uN0-7Qte8ToUwXIBRlIiG1aBow40ylLV9k19gXUvAWltx1Xakb3uted_3lOVpAaxhjajXiF726jDFGMDKU3CjCmdJiZyJyEFmInImMpcykex5vHggH_bjIMioHXgNxgXQSZrJ_eP-BVmnbBw
CitedBy_id crossref_primary_10_1016_j_tra_2023_103747
crossref_primary_10_1108_SRT_09_2020_0008
crossref_primary_10_1016_j_eswa_2024_124216
crossref_primary_10_1016_j_apm_2024_03_013
crossref_primary_10_1002_asmb_2660
crossref_primary_10_1016_j_tre_2020_102037
crossref_primary_10_1080_03081060_2024_2326908
crossref_primary_10_3390_math11061427
crossref_primary_10_1016_j_trc_2020_102727
crossref_primary_10_1155_2022_3633293
crossref_primary_10_3390_e26050388
crossref_primary_10_1155_2022_9925939
crossref_primary_10_1016_j_commtr_2022_100052
crossref_primary_10_2139_ssrn_4153290
crossref_primary_10_1109_ACCESS_2024_3400814
crossref_primary_10_2139_ssrn_4109861
crossref_primary_10_1007_s11116_019_10017_7
crossref_primary_10_1109_ACCESS_2020_3016398
crossref_primary_10_1007_s11116_022_10359_9
crossref_primary_10_2139_ssrn_4137912
Cites_doi 10.1016/j.tranpol.2005.06.008
10.3182/20060517-3-FR-2903.00211
10.1007/s11116-010-9290-0
10.1016/j.trb.2017.04.012
10.1214/ss/1177011137
10.3141/2391-03
10.1061/(ASCE)TE.1943-5436.0000812
10.1111/1467-9868.00095
10.1016/j.trb.2012.04.005
10.1016/j.trc.2015.03.033
10.1016/j.trc.2015.12.012
10.1155/2015/539756
10.3141/2284-07
10.1287/opre.2014.1268
10.1093/biomet/57.1.97
10.1111/j.2517-6161.1993.tb01466.x
10.1155/2015/350397
10.1016/j.trb.2015.08.008
10.3141/2275-07
10.1111/j.1467-8667.2007.00494.x
10.1016/j.trc.2010.12.003
ContentType Journal Article
Copyright 2017 Elsevier Ltd
Copyright_xml – notice: 2017 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.trc.2017.10.002
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Engineering
EISSN 1879-2359
EndPage 337
ExternalDocumentID 10_1016_j_trc_2017_10_002
S0968090X17302759
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
29Q
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AAAKG
AACTN
AAEDT
AAEDW
AAFJI
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
AAYFN
ABBOA
ABLJU
ABMAC
ABMMH
ABUCO
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKYCK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOMHK
AOUOD
APLSM
ASPBG
AVARZ
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HAMUX
HMY
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
LY1
LY7
M3Y
M41
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PRBVW
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDS
SES
SET
SEW
SPC
SPCBC
SSB
SSD
SSO
SSS
SST
SSV
SSZ
T5K
TN5
WUQ
XPP
~G-
AAXKI
AAYXX
AFJKZ
CITATION
ID FETCH-LOGICAL-c373t-9d79eda109463ea147dad165b42016850efff27a580b5bcc7bbb160949e646493
IEDL.DBID AIKHN
ISSN 0968-090X
IngestDate Thu Sep 26 21:38:14 EDT 2024
Fri Feb 23 02:45:48 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Automated data
Maximum likelihood estimation
Bayesian estimation
MCMC sampler
Passenger assignment
Left behind
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c373t-9d79eda109463ea147dad165b42016850efff27a580b5bcc7bbb160949e646493
ORCID 0000-0002-5498-7475
PageCount 15
ParticipantIDs crossref_primary_10_1016_j_trc_2017_10_002
elsevier_sciencedirect_doi_10_1016_j_trc_2017_10_002
PublicationCentury 2000
PublicationDate 2018-09-01
PublicationDateYYYYMMDD 2018-09-01
PublicationDate_xml – month: 09
  year: 2018
  text: 2018-09-01
  day: 01
PublicationDecade 2010
PublicationTitle Transportation research. Part C, Emerging technologies
PublicationYear 2018
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Kieu, Bhaskar, Chung (b0090) 2015; 58
Gerlough, D.L., Huber, M.J., 1975. Traffic flow theory.
Mayor of London, 2015. Travel in London Report 8. URL
Chen, Shao, Ibrahim (b0035) 2012
Sun, Schonfeld (b0145) 2015; 142
Geyer (b0065) 1992
Pelletier, Trpanier, Morency (b0130) 2011; 19
Delgado, Munoz, Giesen (b0040) 2012; 46
Gilks (b0070) 2005
Jones, E., Oliphant, T., Peterson, P., et al., 2001. Open source scientific tools for python.
MTR Coporation, 2016. MTR Patronage Figures. URL
Zhao, Rahbee, Wilson (b0165) 2007; 22
Paul (b0125) 2010
Yan, Vaze, Vanderboll, Barnhart (b0155) 2016; 83
Zhu, Y., Koutsopoulos, H.N., Wilson, N.H., 2017a. Passenger-to-itinerary assignment model for congested urban rail networks, working paper.
Fu, Q., Liu, R., Hess, S., 2014. A bayesian modelling framework for individual passengers probabilistic route choices: a case study on the london underground. In: Transportation Research Board 93rd Annual Meeting. No. 14-5328.
Zhang, Y.-S., Yao, E.-J., 2015. Splitting travel time based on AFC data: estimating walking, waiting, transfer, and in-vehicle travel times in metro system. Discrete Dynamics in Nature and Society 2015.
Ortega-Tong (b0120) 2013
Smith, Roberts (b0140) 1993
Chan (b0030) 2007
Kazagli, E., Koutsopoulos, H.N., 2013. Arterial travel time estimation from automatic number plate recognition data. In: 92nd Annual Transportation Research Board Meeting. No. EPFL-CONF-195873.
Sun, Xu (b0150) 2012
Barnhart, Fearing, Vaze (b0015) 2014; 62
Bishop (b0020) 2013
Hastings (b0075) 1970; 57
Agard, Morency, Trépanier (b0005) 2006; 39
.
Langlois, Koutsopoulos, Zhao (b0100) 2016; 64
Richardson, Green (b0135) 1997
Zhou, F., Shi, J.-g., Xu, R.-h., 2015. Estimation method of path-selecting proportion for urban rail transit based on AFC data. Math. Probl. Eng. 2015.
Gamerman, Lopes (b0050) 2006
Kusakabe, Iryo, Asakura (b0095) 2010; 37
Zhu, Y., Koutsopoulos, H.N., Wilson, N.H., 2017b. A probabilistic passenger-to-train assignment model based on automated data, transportation Research Part B: Methodological, Available online 5 May 2017
Buneman, K., 1984. Automated and passenger-based transit performance measures. No. 992.
Zhou, Xu (b0175) 2012
Geyer, C.J., 1991. Markov chain monte carlo maximum likelihood.
Bagchi, White (b0010) 2005; 12
Zhu, Y., 2014. Passenger-to-train assignment model based on automated data (Master’s thesis). Massachusetts Institute of Technology.
Lee, Sohn (b0105) 2015; 81
Barnhart (10.1016/j.trc.2017.10.002_b0015) 2014; 62
10.1016/j.trc.2017.10.002_b0055
Hastings (10.1016/j.trc.2017.10.002_b0075) 1970; 57
10.1016/j.trc.2017.10.002_b0110
10.1016/j.trc.2017.10.002_b0170
Pelletier (10.1016/j.trc.2017.10.002_b0130) 2011; 19
Yan (10.1016/j.trc.2017.10.002_b0155) 2016; 83
Gilks (10.1016/j.trc.2017.10.002_b0070) 2005
10.1016/j.trc.2017.10.002_b0115
Bishop (10.1016/j.trc.2017.10.002_b0020) 2013
Sun (10.1016/j.trc.2017.10.002_b0145) 2015; 142
Zhou (10.1016/j.trc.2017.10.002_b0175) 2012
Bagchi (10.1016/j.trc.2017.10.002_b0010) 2005; 12
Ortega-Tong (10.1016/j.trc.2017.10.002_b0120) 2013
Delgado (10.1016/j.trc.2017.10.002_b0040) 2012; 46
Chen (10.1016/j.trc.2017.10.002_b0035) 2012
10.1016/j.trc.2017.10.002_b0080
Kieu (10.1016/j.trc.2017.10.002_b0090) 2015; 58
Smith (10.1016/j.trc.2017.10.002_b0140) 1993
10.1016/j.trc.2017.10.002_b0085
Zhao (10.1016/j.trc.2017.10.002_b0165) 2007; 22
10.1016/j.trc.2017.10.002_b0185
10.1016/j.trc.2017.10.002_b0160
Paul (10.1016/j.trc.2017.10.002_b0125) 2010
10.1016/j.trc.2017.10.002_b0180
10.1016/j.trc.2017.10.002_b0060
Lee (10.1016/j.trc.2017.10.002_b0105) 2015; 81
Geyer (10.1016/j.trc.2017.10.002_b0065) 1992
Richardson (10.1016/j.trc.2017.10.002_b0135) 1997
Sun (10.1016/j.trc.2017.10.002_b0150) 2012
Agard (10.1016/j.trc.2017.10.002_b0005) 2006; 39
10.1016/j.trc.2017.10.002_b0025
Gamerman (10.1016/j.trc.2017.10.002_b0050) 2006
10.1016/j.trc.2017.10.002_b0045
Kusakabe (10.1016/j.trc.2017.10.002_b0095) 2010; 37
Chan (10.1016/j.trc.2017.10.002_b0030) 2007
Langlois (10.1016/j.trc.2017.10.002_b0100) 2016; 64
10.1016/j.trc.2017.10.002_b0190
References_xml – volume: 81
  start-page: 1
  year: 2015
  end-page: 17
  ident: b0105
  article-title: Inferring the route-use patterns of metro passengers based only on travel-time data within a bayesian framework using a reversible-jump markov chain monte carlo (mcmc) simulation
  publication-title: Transp. Res. Part B: Methodol.
  contributor:
    fullname: Sohn
– volume: 19
  start-page: 557
  year: 2011
  end-page: 568
  ident: b0130
  article-title: Smart card data use in public transit: a literature review
  publication-title: Transp. Res. Part C: Emerg. Technol.
  contributor:
    fullname: Morency
– volume: 22
  start-page: 376
  year: 2007
  end-page: 387
  ident: b0165
  article-title: Estimating a rail passenger trip origin-destination matrix using automatic data collection systems
  publication-title: Comput.-Aided Civil Infrastruct. Eng.
  contributor:
    fullname: Wilson
– year: 2005
  ident: b0070
  article-title: Markov Chain Monte Carlo
  contributor:
    fullname: Gilks
– year: 2006
  ident: b0050
  article-title: Markov Chain Monte Carlo: Stochastic Simulation for Bayesian Inference
  contributor:
    fullname: Lopes
– start-page: 731
  year: 1997
  end-page: 792
  ident: b0135
  article-title: On bayesian analysis of mixtures with an unknown number of components
  publication-title: J. Roy. Stat. Soc. Ser. B (Methodol.)
  contributor:
    fullname: Green
– volume: 57
  start-page: 97
  year: 1970
  end-page: 109
  ident: b0075
  article-title: Monte carlo sampling methods using markov chains and their applications
  publication-title: Biometrika
  contributor:
    fullname: Hastings
– year: 2010
  ident: b0125
  article-title: Estimating train passenger load from automated data systems: Application to london underground
  contributor:
    fullname: Paul
– year: 2007
  ident: b0030
  article-title: Rail transit od matrix estimation and journey time reliability metrics using automated fare data
  contributor:
    fullname: Chan
– year: 2012
  ident: b0035
  article-title: Monte Carlo Methods in Bayesian Computation
  contributor:
    fullname: Ibrahim
– start-page: 473
  year: 1992
  end-page: 483
  ident: b0065
  article-title: Practical markov chain monte carlo
  publication-title: Stat. Sci.
  contributor:
    fullname: Geyer
– volume: 62
  start-page: 580
  year: 2014
  end-page: 601
  ident: b0015
  article-title: Modeling passenger travel and delays in the national air transportation system
  publication-title: Oper. Res.
  contributor:
    fullname: Vaze
– volume: 58
  start-page: 193
  year: 2015
  end-page: 207
  ident: b0090
  article-title: A modified density-based scanning algorithm with noise for spatial travel pattern analysis from smart card afc data
  publication-title: Transp. Res. Part C: Emerg. Technol.
  contributor:
    fullname: Chung
– volume: 64
  start-page: 1
  year: 2016
  end-page: 16
  ident: b0100
  article-title: Inferring patterns in the multi-week activity sequences of public transport users
  publication-title: Transp. Res. Part C: Emerg. Technol.
  contributor:
    fullname: Zhao
– year: 2013
  ident: b0020
  article-title: Pattern Recognition and Machine Learning
  contributor:
    fullname: Bishop
– volume: 83
  start-page: 42
  year: 2016
  end-page: 62
  ident: b0155
  article-title: Tarmac delay policies: a passenger-centric analysis
  publication-title: Transp. Res. Part A: Policy Pract.
  contributor:
    fullname: Barnhart
– volume: 46
  start-page: 1202
  year: 2012
  end-page: 1217
  ident: b0040
  article-title: How much can holding and/or limiting boarding improve transit performance?
  publication-title: Transp. Res. Part B: Methodol.
  contributor:
    fullname: Giesen
– start-page: 58
  year: 2012
  end-page: 67
  ident: b0150
  article-title: Rail transit travel time reliability and estimation of passenger route choice behavior: analysis using automatic fare collection data
  publication-title: Transp. Res. Rec.: J. Transp. Res. Board
  contributor:
    fullname: Xu
– volume: 39
  start-page: 399
  year: 2006
  end-page: 404
  ident: b0005
  article-title: Mining public transport user behaviour from smart card data
  publication-title: IFAC Proc. Vol.
  contributor:
    fullname: Trépanier
– volume: 37
  start-page: 731
  year: 2010
  end-page: 749
  ident: b0095
  article-title: Estimation method for railway passengers train choice behavior with smart card transaction data
  publication-title: Transportation
  contributor:
    fullname: Asakura
– volume: 12
  start-page: 464
  year: 2005
  end-page: 474
  ident: b0010
  article-title: The potential of public transport smart card data
  publication-title: Transp. Policy
  contributor:
    fullname: White
– start-page: 3
  year: 1993
  end-page: 23
  ident: b0140
  article-title: Bayesian computation via the gibbs sampler and related markov chain monte carlo methods
  publication-title: J. Roy. Stat. Soc. Ser. B (Methodol.)
  contributor:
    fullname: Roberts
– volume: 142
  start-page: 04015037
  year: 2015
  ident: b0145
  article-title: Schedule-based rail transit path-choice estimation using automatic fare collection data
  publication-title: J. Transp. Eng.
  contributor:
    fullname: Schonfeld
– start-page: 57
  year: 2012
  end-page: 61
  ident: b0175
  article-title: Model of passenger flow assignment for urban rail transit based on entry and exit time constraints
  publication-title: Transp. Res. Rec.: J. Transp. Res. Board
  contributor:
    fullname: Xu
– year: 2013
  ident: b0120
  article-title: Classification of london’s public transport users using smart card data
  contributor:
    fullname: Ortega-Tong
– ident: 10.1016/j.trc.2017.10.002_b0025
– volume: 12
  start-page: 464
  issue: 5
  year: 2005
  ident: 10.1016/j.trc.2017.10.002_b0010
  article-title: The potential of public transport smart card data
  publication-title: Transp. Policy
  doi: 10.1016/j.tranpol.2005.06.008
  contributor:
    fullname: Bagchi
– ident: 10.1016/j.trc.2017.10.002_b0180
– ident: 10.1016/j.trc.2017.10.002_b0115
– volume: 39
  start-page: 399
  issue: 3
  year: 2006
  ident: 10.1016/j.trc.2017.10.002_b0005
  article-title: Mining public transport user behaviour from smart card data
  publication-title: IFAC Proc. Vol.
  doi: 10.3182/20060517-3-FR-2903.00211
  contributor:
    fullname: Agard
– year: 2010
  ident: 10.1016/j.trc.2017.10.002_b0125
  contributor:
    fullname: Paul
– volume: 37
  start-page: 731
  issue: 5
  year: 2010
  ident: 10.1016/j.trc.2017.10.002_b0095
  article-title: Estimation method for railway passengers train choice behavior with smart card transaction data
  publication-title: Transportation
  doi: 10.1007/s11116-010-9290-0
  contributor:
    fullname: Kusakabe
– ident: 10.1016/j.trc.2017.10.002_b0190
  doi: 10.1016/j.trb.2017.04.012
– ident: 10.1016/j.trc.2017.10.002_b0060
  doi: 10.1214/ss/1177011137
– ident: 10.1016/j.trc.2017.10.002_b0085
  doi: 10.3141/2391-03
– volume: 142
  start-page: 04015037
  issue: 1
  year: 2015
  ident: 10.1016/j.trc.2017.10.002_b0145
  article-title: Schedule-based rail transit path-choice estimation using automatic fare collection data
  publication-title: J. Transp. Eng.
  doi: 10.1061/(ASCE)TE.1943-5436.0000812
  contributor:
    fullname: Sun
– start-page: 473
  year: 1992
  ident: 10.1016/j.trc.2017.10.002_b0065
  article-title: Practical markov chain monte carlo
  publication-title: Stat. Sci.
  doi: 10.1214/ss/1177011137
  contributor:
    fullname: Geyer
– start-page: 731
  year: 1997
  ident: 10.1016/j.trc.2017.10.002_b0135
  article-title: On bayesian analysis of mixtures with an unknown number of components
  publication-title: J. Roy. Stat. Soc. Ser. B (Methodol.)
  doi: 10.1111/1467-9868.00095
  contributor:
    fullname: Richardson
– volume: 46
  start-page: 1202
  issue: 9
  year: 2012
  ident: 10.1016/j.trc.2017.10.002_b0040
  article-title: How much can holding and/or limiting boarding improve transit performance?
  publication-title: Transp. Res. Part B: Methodol.
  doi: 10.1016/j.trb.2012.04.005
  contributor:
    fullname: Delgado
– volume: 58
  start-page: 193
  year: 2015
  ident: 10.1016/j.trc.2017.10.002_b0090
  article-title: A modified density-based scanning algorithm with noise for spatial travel pattern analysis from smart card afc data
  publication-title: Transp. Res. Part C: Emerg. Technol.
  doi: 10.1016/j.trc.2015.03.033
  contributor:
    fullname: Kieu
– ident: 10.1016/j.trc.2017.10.002_b0185
– ident: 10.1016/j.trc.2017.10.002_b0110
– volume: 64
  start-page: 1
  year: 2016
  ident: 10.1016/j.trc.2017.10.002_b0100
  article-title: Inferring patterns in the multi-week activity sequences of public transport users
  publication-title: Transp. Res. Part C: Emerg. Technol.
  doi: 10.1016/j.trc.2015.12.012
  contributor:
    fullname: Langlois
– year: 2013
  ident: 10.1016/j.trc.2017.10.002_b0120
  contributor:
    fullname: Ortega-Tong
– ident: 10.1016/j.trc.2017.10.002_b0160
  doi: 10.1155/2015/539756
– start-page: 57
  issue: 2284
  year: 2012
  ident: 10.1016/j.trc.2017.10.002_b0175
  article-title: Model of passenger flow assignment for urban rail transit based on entry and exit time constraints
  publication-title: Transp. Res. Rec.: J. Transp. Res. Board
  doi: 10.3141/2284-07
  contributor:
    fullname: Zhou
– volume: 62
  start-page: 580
  issue: 3
  year: 2014
  ident: 10.1016/j.trc.2017.10.002_b0015
  article-title: Modeling passenger travel and delays in the national air transportation system
  publication-title: Oper. Res.
  doi: 10.1287/opre.2014.1268
  contributor:
    fullname: Barnhart
– year: 2006
  ident: 10.1016/j.trc.2017.10.002_b0050
  contributor:
    fullname: Gamerman
– year: 2013
  ident: 10.1016/j.trc.2017.10.002_b0020
  contributor:
    fullname: Bishop
– ident: 10.1016/j.trc.2017.10.002_b0045
– volume: 83
  start-page: 42
  year: 2016
  ident: 10.1016/j.trc.2017.10.002_b0155
  article-title: Tarmac delay policies: a passenger-centric analysis
  publication-title: Transp. Res. Part A: Policy Pract.
  contributor:
    fullname: Yan
– volume: 57
  start-page: 97
  issue: 1
  year: 1970
  ident: 10.1016/j.trc.2017.10.002_b0075
  article-title: Monte carlo sampling methods using markov chains and their applications
  publication-title: Biometrika
  doi: 10.1093/biomet/57.1.97
  contributor:
    fullname: Hastings
– ident: 10.1016/j.trc.2017.10.002_b0080
– year: 2012
  ident: 10.1016/j.trc.2017.10.002_b0035
  contributor:
    fullname: Chen
– year: 2005
  ident: 10.1016/j.trc.2017.10.002_b0070
  contributor:
    fullname: Gilks
– start-page: 3
  year: 1993
  ident: 10.1016/j.trc.2017.10.002_b0140
  article-title: Bayesian computation via the gibbs sampler and related markov chain monte carlo methods
  publication-title: J. Roy. Stat. Soc. Ser. B (Methodol.)
  doi: 10.1111/j.2517-6161.1993.tb01466.x
  contributor:
    fullname: Smith
– ident: 10.1016/j.trc.2017.10.002_b0170
  doi: 10.1155/2015/350397
– year: 2007
  ident: 10.1016/j.trc.2017.10.002_b0030
  contributor:
    fullname: Chan
– volume: 81
  start-page: 1
  year: 2015
  ident: 10.1016/j.trc.2017.10.002_b0105
  article-title: Inferring the route-use patterns of metro passengers based only on travel-time data within a bayesian framework using a reversible-jump markov chain monte carlo (mcmc) simulation
  publication-title: Transp. Res. Part B: Methodol.
  doi: 10.1016/j.trb.2015.08.008
  contributor:
    fullname: Lee
– start-page: 58
  issue: 2275
  year: 2012
  ident: 10.1016/j.trc.2017.10.002_b0150
  article-title: Rail transit travel time reliability and estimation of passenger route choice behavior: analysis using automatic fare collection data
  publication-title: Transp. Res. Rec.: J. Transp. Res. Board
  doi: 10.3141/2275-07
  contributor:
    fullname: Sun
– volume: 22
  start-page: 376
  issue: 5
  year: 2007
  ident: 10.1016/j.trc.2017.10.002_b0165
  article-title: Estimating a rail passenger trip origin-destination matrix using automatic data collection systems
  publication-title: Comput.-Aided Civil Infrastruct. Eng.
  doi: 10.1111/j.1467-8667.2007.00494.x
  contributor:
    fullname: Zhao
– ident: 10.1016/j.trc.2017.10.002_b0055
– volume: 19
  start-page: 557
  issue: 4
  year: 2011
  ident: 10.1016/j.trc.2017.10.002_b0130
  article-title: Smart card data use in public transit: a literature review
  publication-title: Transp. Res. Part C: Emerg. Technol.
  doi: 10.1016/j.trc.2010.12.003
  contributor:
    fullname: Pelletier
SSID ssj0001957
Score 2.3974462
Snippet •Developing performance metrics from the passenger’s point of view.•Estimating left behind probability using maximum likelihood or Bayesian...
SourceID crossref
elsevier
SourceType Aggregation Database
Publisher
StartPage 323
SubjectTerms Automated data
Bayesian estimation
Left behind
Maximum likelihood estimation
MCMC sampler
Passenger assignment
Title Inferring left behind passengers in congested metro systems from automated data
URI https://dx.doi.org/10.1016/j.trc.2017.10.002
Volume 94
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED6VdgAGBAVEeVQemJDSxk1ix2NVUbUgygCVskV24kARpFWarvx2znmgIsHCljg-KbnE5-_uvrsAXFPlS6kGkUUZwjf0v7glGBcWc1QiqXIRNJt4x8OMTebuXeAFDRjVtTCGVlnZ_tKmF9a6GulX2uyvFov-E4Jv3xZ2QHmRexM70CqSRE1oDaf3k9m3QaaibPiJ801YIqiTmwXNK89MI0PKewXHa_D79rS15YwP4aDCimRY3s4RNHTaht26lHjdhv2tboLH8Dg1xXvmmLzrJCdKv6LDTVYIjw11NVuTRUpQ-KUIcZIPnWdLUnZyXhNTZkLkJl8igsWLhjh6AvPx7fNoYlX_S7Aihzu5JWIudCwpemzM0ZK6PJYxZZ5y8QGZ79k6SZIBl55vK09FEVdKUYazhWYuc4VzCs10meozIDGNEBcwlNPKdQaJH-NKpTiTai_BJduBm1pN4apsixHWfLG3EHUaGp2aIdRpB9xakeGPdxui2f5b7Px_Yhewh2d-yQO7hGaebfQVAodcdWGn90m71efxBeMlwP8
link.rule.ids 315,783,787,4511,24130,27938,27939,45599,45693
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED6VdigMCAqI8vTAhBQaN4kdj1VFldIHA62ULYoTB4qgrdL0_3POAxUJFrbIvpOSs33-fP7uAnBHpRuGshsZlCF8w_MXNwTjwmCWTEIqbQTNOt4xmTJvbj_5jl-DfpULo2mVpe8vfHrurcuWTmnNznqx6Lwg-HZNYfqU53dvYg8aiAYETvZGbzjypt8OmYqi4CfK67CEX11u5jSvLNWFDCl_yDle3d-3p50tZ3AEhyVWJL3idY6hppYtaFapxJsWHOxUEzyB56FO3tPP5EMlGZHqDQ_cZI3wWFNX0w1ZLAkqv-YhTvKpsnRFikrOG6LTTEi4zVaIYLFTE0dPYT54nPU9o_xfghFZ3MoMEXOh4pDiiY1ZKqQ2j8OYMkfa-IHMdUyVJEmXh45rSkdGEZdSUobSQjGb2cI6g_pytVTnQGIaIS5gqKekbXUTN8aVSlGSKifBJduG-8pMwbooixFUfLH3AG0aaJvqJrRpG-zKkMGPsQ3Qbf-tdvE_tVtoerPJOBgPp6NL2Mcet-CEXUE9S7fqGkFEJm_KSfIFpyrC_A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Inferring+left+behind+passengers+in+congested+metro+systems+from+automated+data&rft.jtitle=Transportation+research.+Part+C%2C+Emerging+technologies&rft.au=Zhu%2C+Yiwen&rft.au=Koutsopoulos%2C+Haris+N.&rft.au=Wilson%2C+Nigel+H.M.&rft.date=2018-09-01&rft.pub=Elsevier+Ltd&rft.issn=0968-090X&rft.eissn=1879-2359&rft.volume=94&rft.spage=323&rft.epage=337&rft_id=info:doi/10.1016%2Fj.trc.2017.10.002&rft.externalDocID=S0968090X17302759
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0968-090X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0968-090X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0968-090X&client=summon