Inferring left behind passengers in congested metro systems from automated data
•Developing performance metrics from the passenger’s point of view.•Estimating left behind probability using maximum likelihood or Bayesian inference.•Providing important input to passenger assignment models to improve accuracy.•Providing useful insights for route choice estimation. With subway syst...
Saved in:
Published in | Transportation research. Part C, Emerging technologies Vol. 94; pp. 323 - 337 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.09.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •Developing performance metrics from the passenger’s point of view.•Estimating left behind probability using maximum likelihood or Bayesian inference.•Providing important input to passenger assignment models to improve accuracy.•Providing useful insights for route choice estimation.
With subway systems around the world experiencing increasing demand, measures such as passengers left behind are becoming increasingly important. This paper proposes a methodology for inferring the probability distribution of the number of times a passenger is left behind at stations in congested metro systems using automated data. Maximum likelihood estimation (MLE) and Bayesian inference methods are used to estimate the left behind probability mass function (LBPMF) for a given station and time period. The model is applied using actual and synthetic data. The results show that the model is able to estimate the probability of being left behind fairly accurately. |
---|---|
AbstractList | •Developing performance metrics from the passenger’s point of view.•Estimating left behind probability using maximum likelihood or Bayesian inference.•Providing important input to passenger assignment models to improve accuracy.•Providing useful insights for route choice estimation.
With subway systems around the world experiencing increasing demand, measures such as passengers left behind are becoming increasingly important. This paper proposes a methodology for inferring the probability distribution of the number of times a passenger is left behind at stations in congested metro systems using automated data. Maximum likelihood estimation (MLE) and Bayesian inference methods are used to estimate the left behind probability mass function (LBPMF) for a given station and time period. The model is applied using actual and synthetic data. The results show that the model is able to estimate the probability of being left behind fairly accurately. |
Author | Wilson, Nigel H.M. Zhu, Yiwen Koutsopoulos, Haris N. |
Author_xml | – sequence: 1 givenname: Yiwen orcidid: 0000-0002-5498-7475 surname: Zhu fullname: Zhu, Yiwen email: zhu.yiwen@microsoft.com organization: Northeastern University, Boston, MA 02115, USA – sequence: 2 givenname: Haris N. surname: Koutsopoulos fullname: Koutsopoulos, Haris N. organization: Northeastern University, Boston, MA 02115, USA – sequence: 3 givenname: Nigel H.M. surname: Wilson fullname: Wilson, Nigel H.M. organization: Massachusetts Institute of Technology, Cambridge, MA 02139, USA |
BookMark | eNp9kE1LAzEQhoNUsK3-AG_5A7sm-5Fs8CTFj0KhFwVvIZtMapZutiRR6L83Sz17mnln5h1mnhVa-MkDQveUlJRQ9jCUKeiyIpRnXRJSXaEl7bgoqroVC7QkgnUFEeTzBq1iHAghVLR8ifZbbyEE5w_4CDbhHr6cN_ikYgR_gBCx81hPOY0JDB4hhQnHcxZjxDZMI1bfaRrV3DQqqVt0bdUxwt1fXKOPl-f3zVux279uN0-7Qte8ToUwXIBRlIiG1aBow40ylLV9k19gXUvAWltx1Xakb3uted_3lOVpAaxhjajXiF726jDFGMDKU3CjCmdJiZyJyEFmInImMpcykex5vHggH_bjIMioHXgNxgXQSZrJ_eP-BVmnbBw |
CitedBy_id | crossref_primary_10_1016_j_tra_2023_103747 crossref_primary_10_1108_SRT_09_2020_0008 crossref_primary_10_1016_j_eswa_2024_124216 crossref_primary_10_1016_j_apm_2024_03_013 crossref_primary_10_1002_asmb_2660 crossref_primary_10_1016_j_tre_2020_102037 crossref_primary_10_1080_03081060_2024_2326908 crossref_primary_10_3390_math11061427 crossref_primary_10_1016_j_trc_2020_102727 crossref_primary_10_1155_2022_3633293 crossref_primary_10_3390_e26050388 crossref_primary_10_1155_2022_9925939 crossref_primary_10_1016_j_commtr_2022_100052 crossref_primary_10_2139_ssrn_4153290 crossref_primary_10_1109_ACCESS_2024_3400814 crossref_primary_10_2139_ssrn_4109861 crossref_primary_10_1007_s11116_019_10017_7 crossref_primary_10_1109_ACCESS_2020_3016398 crossref_primary_10_1007_s11116_022_10359_9 crossref_primary_10_2139_ssrn_4137912 |
Cites_doi | 10.1016/j.tranpol.2005.06.008 10.3182/20060517-3-FR-2903.00211 10.1007/s11116-010-9290-0 10.1016/j.trb.2017.04.012 10.1214/ss/1177011137 10.3141/2391-03 10.1061/(ASCE)TE.1943-5436.0000812 10.1111/1467-9868.00095 10.1016/j.trb.2012.04.005 10.1016/j.trc.2015.03.033 10.1016/j.trc.2015.12.012 10.1155/2015/539756 10.3141/2284-07 10.1287/opre.2014.1268 10.1093/biomet/57.1.97 10.1111/j.2517-6161.1993.tb01466.x 10.1155/2015/350397 10.1016/j.trb.2015.08.008 10.3141/2275-07 10.1111/j.1467-8667.2007.00494.x 10.1016/j.trc.2010.12.003 |
ContentType | Journal Article |
Copyright | 2017 Elsevier Ltd |
Copyright_xml | – notice: 2017 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.trc.2017.10.002 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Economics Engineering |
EISSN | 1879-2359 |
EndPage | 337 |
ExternalDocumentID | 10_1016_j_trc_2017_10_002 S0968090X17302759 |
GroupedDBID | --K --M -~X .DC .~1 0R~ 123 1B1 1RT 1~. 1~5 29Q 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN 9JO AAAKF AAAKG AACTN AAEDT AAEDW AAFJI AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARIN AAXUO AAYFN ABBOA ABLJU ABMAC ABMMH ABUCO ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEKER AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV AKYCK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOMHK AOUOD APLSM ASPBG AVARZ AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HAMUX HMY HVGLF HZ~ H~9 IHE J1W JJJVA KOM LY1 LY7 M3Y M41 MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PRBVW Q38 R2- RIG ROL RPZ SDF SDG SDS SES SET SEW SPC SPCBC SSB SSD SSO SSS SST SSV SSZ T5K TN5 WUQ XPP ~G- AAXKI AAYXX AFJKZ CITATION |
ID | FETCH-LOGICAL-c373t-9d79eda109463ea147dad165b42016850efff27a580b5bcc7bbb160949e646493 |
IEDL.DBID | AIKHN |
ISSN | 0968-090X |
IngestDate | Thu Sep 26 21:38:14 EDT 2024 Fri Feb 23 02:45:48 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Automated data Maximum likelihood estimation Bayesian estimation MCMC sampler Passenger assignment Left behind |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c373t-9d79eda109463ea147dad165b42016850efff27a580b5bcc7bbb160949e646493 |
ORCID | 0000-0002-5498-7475 |
PageCount | 15 |
ParticipantIDs | crossref_primary_10_1016_j_trc_2017_10_002 elsevier_sciencedirect_doi_10_1016_j_trc_2017_10_002 |
PublicationCentury | 2000 |
PublicationDate | 2018-09-01 |
PublicationDateYYYYMMDD | 2018-09-01 |
PublicationDate_xml | – month: 09 year: 2018 text: 2018-09-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Transportation research. Part C, Emerging technologies |
PublicationYear | 2018 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Kieu, Bhaskar, Chung (b0090) 2015; 58 Gerlough, D.L., Huber, M.J., 1975. Traffic flow theory. Mayor of London, 2015. Travel in London Report 8. URL Chen, Shao, Ibrahim (b0035) 2012 Sun, Schonfeld (b0145) 2015; 142 Geyer (b0065) 1992 Pelletier, Trpanier, Morency (b0130) 2011; 19 Delgado, Munoz, Giesen (b0040) 2012; 46 Gilks (b0070) 2005 Jones, E., Oliphant, T., Peterson, P., et al., 2001. Open source scientific tools for python. MTR Coporation, 2016. MTR Patronage Figures. URL Zhao, Rahbee, Wilson (b0165) 2007; 22 Paul (b0125) 2010 Yan, Vaze, Vanderboll, Barnhart (b0155) 2016; 83 Zhu, Y., Koutsopoulos, H.N., Wilson, N.H., 2017a. Passenger-to-itinerary assignment model for congested urban rail networks, working paper. Fu, Q., Liu, R., Hess, S., 2014. A bayesian modelling framework for individual passengers probabilistic route choices: a case study on the london underground. In: Transportation Research Board 93rd Annual Meeting. No. 14-5328. Zhang, Y.-S., Yao, E.-J., 2015. Splitting travel time based on AFC data: estimating walking, waiting, transfer, and in-vehicle travel times in metro system. Discrete Dynamics in Nature and Society 2015. Ortega-Tong (b0120) 2013 Smith, Roberts (b0140) 1993 Chan (b0030) 2007 Kazagli, E., Koutsopoulos, H.N., 2013. Arterial travel time estimation from automatic number plate recognition data. In: 92nd Annual Transportation Research Board Meeting. No. EPFL-CONF-195873. Sun, Xu (b0150) 2012 Barnhart, Fearing, Vaze (b0015) 2014; 62 Bishop (b0020) 2013 Hastings (b0075) 1970; 57 Agard, Morency, Trépanier (b0005) 2006; 39 . Langlois, Koutsopoulos, Zhao (b0100) 2016; 64 Richardson, Green (b0135) 1997 Zhou, F., Shi, J.-g., Xu, R.-h., 2015. Estimation method of path-selecting proportion for urban rail transit based on AFC data. Math. Probl. Eng. 2015. Gamerman, Lopes (b0050) 2006 Kusakabe, Iryo, Asakura (b0095) 2010; 37 Zhu, Y., Koutsopoulos, H.N., Wilson, N.H., 2017b. A probabilistic passenger-to-train assignment model based on automated data, transportation Research Part B: Methodological, Available online 5 May 2017 Buneman, K., 1984. Automated and passenger-based transit performance measures. No. 992. Zhou, Xu (b0175) 2012 Geyer, C.J., 1991. Markov chain monte carlo maximum likelihood. Bagchi, White (b0010) 2005; 12 Zhu, Y., 2014. Passenger-to-train assignment model based on automated data (Master’s thesis). Massachusetts Institute of Technology. Lee, Sohn (b0105) 2015; 81 Barnhart (10.1016/j.trc.2017.10.002_b0015) 2014; 62 10.1016/j.trc.2017.10.002_b0055 Hastings (10.1016/j.trc.2017.10.002_b0075) 1970; 57 10.1016/j.trc.2017.10.002_b0110 10.1016/j.trc.2017.10.002_b0170 Pelletier (10.1016/j.trc.2017.10.002_b0130) 2011; 19 Yan (10.1016/j.trc.2017.10.002_b0155) 2016; 83 Gilks (10.1016/j.trc.2017.10.002_b0070) 2005 10.1016/j.trc.2017.10.002_b0115 Bishop (10.1016/j.trc.2017.10.002_b0020) 2013 Sun (10.1016/j.trc.2017.10.002_b0145) 2015; 142 Zhou (10.1016/j.trc.2017.10.002_b0175) 2012 Bagchi (10.1016/j.trc.2017.10.002_b0010) 2005; 12 Ortega-Tong (10.1016/j.trc.2017.10.002_b0120) 2013 Delgado (10.1016/j.trc.2017.10.002_b0040) 2012; 46 Chen (10.1016/j.trc.2017.10.002_b0035) 2012 10.1016/j.trc.2017.10.002_b0080 Kieu (10.1016/j.trc.2017.10.002_b0090) 2015; 58 Smith (10.1016/j.trc.2017.10.002_b0140) 1993 10.1016/j.trc.2017.10.002_b0085 Zhao (10.1016/j.trc.2017.10.002_b0165) 2007; 22 10.1016/j.trc.2017.10.002_b0185 10.1016/j.trc.2017.10.002_b0160 Paul (10.1016/j.trc.2017.10.002_b0125) 2010 10.1016/j.trc.2017.10.002_b0180 10.1016/j.trc.2017.10.002_b0060 Lee (10.1016/j.trc.2017.10.002_b0105) 2015; 81 Geyer (10.1016/j.trc.2017.10.002_b0065) 1992 Richardson (10.1016/j.trc.2017.10.002_b0135) 1997 Sun (10.1016/j.trc.2017.10.002_b0150) 2012 Agard (10.1016/j.trc.2017.10.002_b0005) 2006; 39 10.1016/j.trc.2017.10.002_b0025 Gamerman (10.1016/j.trc.2017.10.002_b0050) 2006 10.1016/j.trc.2017.10.002_b0045 Kusakabe (10.1016/j.trc.2017.10.002_b0095) 2010; 37 Chan (10.1016/j.trc.2017.10.002_b0030) 2007 Langlois (10.1016/j.trc.2017.10.002_b0100) 2016; 64 10.1016/j.trc.2017.10.002_b0190 |
References_xml | – volume: 81 start-page: 1 year: 2015 end-page: 17 ident: b0105 article-title: Inferring the route-use patterns of metro passengers based only on travel-time data within a bayesian framework using a reversible-jump markov chain monte carlo (mcmc) simulation publication-title: Transp. Res. Part B: Methodol. contributor: fullname: Sohn – volume: 19 start-page: 557 year: 2011 end-page: 568 ident: b0130 article-title: Smart card data use in public transit: a literature review publication-title: Transp. Res. Part C: Emerg. Technol. contributor: fullname: Morency – volume: 22 start-page: 376 year: 2007 end-page: 387 ident: b0165 article-title: Estimating a rail passenger trip origin-destination matrix using automatic data collection systems publication-title: Comput.-Aided Civil Infrastruct. Eng. contributor: fullname: Wilson – year: 2005 ident: b0070 article-title: Markov Chain Monte Carlo contributor: fullname: Gilks – year: 2006 ident: b0050 article-title: Markov Chain Monte Carlo: Stochastic Simulation for Bayesian Inference contributor: fullname: Lopes – start-page: 731 year: 1997 end-page: 792 ident: b0135 article-title: On bayesian analysis of mixtures with an unknown number of components publication-title: J. Roy. Stat. Soc. Ser. B (Methodol.) contributor: fullname: Green – volume: 57 start-page: 97 year: 1970 end-page: 109 ident: b0075 article-title: Monte carlo sampling methods using markov chains and their applications publication-title: Biometrika contributor: fullname: Hastings – year: 2010 ident: b0125 article-title: Estimating train passenger load from automated data systems: Application to london underground contributor: fullname: Paul – year: 2007 ident: b0030 article-title: Rail transit od matrix estimation and journey time reliability metrics using automated fare data contributor: fullname: Chan – year: 2012 ident: b0035 article-title: Monte Carlo Methods in Bayesian Computation contributor: fullname: Ibrahim – start-page: 473 year: 1992 end-page: 483 ident: b0065 article-title: Practical markov chain monte carlo publication-title: Stat. Sci. contributor: fullname: Geyer – volume: 62 start-page: 580 year: 2014 end-page: 601 ident: b0015 article-title: Modeling passenger travel and delays in the national air transportation system publication-title: Oper. Res. contributor: fullname: Vaze – volume: 58 start-page: 193 year: 2015 end-page: 207 ident: b0090 article-title: A modified density-based scanning algorithm with noise for spatial travel pattern analysis from smart card afc data publication-title: Transp. Res. Part C: Emerg. Technol. contributor: fullname: Chung – volume: 64 start-page: 1 year: 2016 end-page: 16 ident: b0100 article-title: Inferring patterns in the multi-week activity sequences of public transport users publication-title: Transp. Res. Part C: Emerg. Technol. contributor: fullname: Zhao – year: 2013 ident: b0020 article-title: Pattern Recognition and Machine Learning contributor: fullname: Bishop – volume: 83 start-page: 42 year: 2016 end-page: 62 ident: b0155 article-title: Tarmac delay policies: a passenger-centric analysis publication-title: Transp. Res. Part A: Policy Pract. contributor: fullname: Barnhart – volume: 46 start-page: 1202 year: 2012 end-page: 1217 ident: b0040 article-title: How much can holding and/or limiting boarding improve transit performance? publication-title: Transp. Res. Part B: Methodol. contributor: fullname: Giesen – start-page: 58 year: 2012 end-page: 67 ident: b0150 article-title: Rail transit travel time reliability and estimation of passenger route choice behavior: analysis using automatic fare collection data publication-title: Transp. Res. Rec.: J. Transp. Res. Board contributor: fullname: Xu – volume: 39 start-page: 399 year: 2006 end-page: 404 ident: b0005 article-title: Mining public transport user behaviour from smart card data publication-title: IFAC Proc. Vol. contributor: fullname: Trépanier – volume: 37 start-page: 731 year: 2010 end-page: 749 ident: b0095 article-title: Estimation method for railway passengers train choice behavior with smart card transaction data publication-title: Transportation contributor: fullname: Asakura – volume: 12 start-page: 464 year: 2005 end-page: 474 ident: b0010 article-title: The potential of public transport smart card data publication-title: Transp. Policy contributor: fullname: White – start-page: 3 year: 1993 end-page: 23 ident: b0140 article-title: Bayesian computation via the gibbs sampler and related markov chain monte carlo methods publication-title: J. Roy. Stat. Soc. Ser. B (Methodol.) contributor: fullname: Roberts – volume: 142 start-page: 04015037 year: 2015 ident: b0145 article-title: Schedule-based rail transit path-choice estimation using automatic fare collection data publication-title: J. Transp. Eng. contributor: fullname: Schonfeld – start-page: 57 year: 2012 end-page: 61 ident: b0175 article-title: Model of passenger flow assignment for urban rail transit based on entry and exit time constraints publication-title: Transp. Res. Rec.: J. Transp. Res. Board contributor: fullname: Xu – year: 2013 ident: b0120 article-title: Classification of london’s public transport users using smart card data contributor: fullname: Ortega-Tong – ident: 10.1016/j.trc.2017.10.002_b0025 – volume: 12 start-page: 464 issue: 5 year: 2005 ident: 10.1016/j.trc.2017.10.002_b0010 article-title: The potential of public transport smart card data publication-title: Transp. Policy doi: 10.1016/j.tranpol.2005.06.008 contributor: fullname: Bagchi – ident: 10.1016/j.trc.2017.10.002_b0180 – ident: 10.1016/j.trc.2017.10.002_b0115 – volume: 39 start-page: 399 issue: 3 year: 2006 ident: 10.1016/j.trc.2017.10.002_b0005 article-title: Mining public transport user behaviour from smart card data publication-title: IFAC Proc. Vol. doi: 10.3182/20060517-3-FR-2903.00211 contributor: fullname: Agard – year: 2010 ident: 10.1016/j.trc.2017.10.002_b0125 contributor: fullname: Paul – volume: 37 start-page: 731 issue: 5 year: 2010 ident: 10.1016/j.trc.2017.10.002_b0095 article-title: Estimation method for railway passengers train choice behavior with smart card transaction data publication-title: Transportation doi: 10.1007/s11116-010-9290-0 contributor: fullname: Kusakabe – ident: 10.1016/j.trc.2017.10.002_b0190 doi: 10.1016/j.trb.2017.04.012 – ident: 10.1016/j.trc.2017.10.002_b0060 doi: 10.1214/ss/1177011137 – ident: 10.1016/j.trc.2017.10.002_b0085 doi: 10.3141/2391-03 – volume: 142 start-page: 04015037 issue: 1 year: 2015 ident: 10.1016/j.trc.2017.10.002_b0145 article-title: Schedule-based rail transit path-choice estimation using automatic fare collection data publication-title: J. Transp. Eng. doi: 10.1061/(ASCE)TE.1943-5436.0000812 contributor: fullname: Sun – start-page: 473 year: 1992 ident: 10.1016/j.trc.2017.10.002_b0065 article-title: Practical markov chain monte carlo publication-title: Stat. Sci. doi: 10.1214/ss/1177011137 contributor: fullname: Geyer – start-page: 731 year: 1997 ident: 10.1016/j.trc.2017.10.002_b0135 article-title: On bayesian analysis of mixtures with an unknown number of components publication-title: J. Roy. Stat. Soc. Ser. B (Methodol.) doi: 10.1111/1467-9868.00095 contributor: fullname: Richardson – volume: 46 start-page: 1202 issue: 9 year: 2012 ident: 10.1016/j.trc.2017.10.002_b0040 article-title: How much can holding and/or limiting boarding improve transit performance? publication-title: Transp. Res. Part B: Methodol. doi: 10.1016/j.trb.2012.04.005 contributor: fullname: Delgado – volume: 58 start-page: 193 year: 2015 ident: 10.1016/j.trc.2017.10.002_b0090 article-title: A modified density-based scanning algorithm with noise for spatial travel pattern analysis from smart card afc data publication-title: Transp. Res. Part C: Emerg. Technol. doi: 10.1016/j.trc.2015.03.033 contributor: fullname: Kieu – ident: 10.1016/j.trc.2017.10.002_b0185 – ident: 10.1016/j.trc.2017.10.002_b0110 – volume: 64 start-page: 1 year: 2016 ident: 10.1016/j.trc.2017.10.002_b0100 article-title: Inferring patterns in the multi-week activity sequences of public transport users publication-title: Transp. Res. Part C: Emerg. Technol. doi: 10.1016/j.trc.2015.12.012 contributor: fullname: Langlois – year: 2013 ident: 10.1016/j.trc.2017.10.002_b0120 contributor: fullname: Ortega-Tong – ident: 10.1016/j.trc.2017.10.002_b0160 doi: 10.1155/2015/539756 – start-page: 57 issue: 2284 year: 2012 ident: 10.1016/j.trc.2017.10.002_b0175 article-title: Model of passenger flow assignment for urban rail transit based on entry and exit time constraints publication-title: Transp. Res. Rec.: J. Transp. Res. Board doi: 10.3141/2284-07 contributor: fullname: Zhou – volume: 62 start-page: 580 issue: 3 year: 2014 ident: 10.1016/j.trc.2017.10.002_b0015 article-title: Modeling passenger travel and delays in the national air transportation system publication-title: Oper. Res. doi: 10.1287/opre.2014.1268 contributor: fullname: Barnhart – year: 2006 ident: 10.1016/j.trc.2017.10.002_b0050 contributor: fullname: Gamerman – year: 2013 ident: 10.1016/j.trc.2017.10.002_b0020 contributor: fullname: Bishop – ident: 10.1016/j.trc.2017.10.002_b0045 – volume: 83 start-page: 42 year: 2016 ident: 10.1016/j.trc.2017.10.002_b0155 article-title: Tarmac delay policies: a passenger-centric analysis publication-title: Transp. Res. Part A: Policy Pract. contributor: fullname: Yan – volume: 57 start-page: 97 issue: 1 year: 1970 ident: 10.1016/j.trc.2017.10.002_b0075 article-title: Monte carlo sampling methods using markov chains and their applications publication-title: Biometrika doi: 10.1093/biomet/57.1.97 contributor: fullname: Hastings – ident: 10.1016/j.trc.2017.10.002_b0080 – year: 2012 ident: 10.1016/j.trc.2017.10.002_b0035 contributor: fullname: Chen – year: 2005 ident: 10.1016/j.trc.2017.10.002_b0070 contributor: fullname: Gilks – start-page: 3 year: 1993 ident: 10.1016/j.trc.2017.10.002_b0140 article-title: Bayesian computation via the gibbs sampler and related markov chain monte carlo methods publication-title: J. Roy. Stat. Soc. Ser. B (Methodol.) doi: 10.1111/j.2517-6161.1993.tb01466.x contributor: fullname: Smith – ident: 10.1016/j.trc.2017.10.002_b0170 doi: 10.1155/2015/350397 – year: 2007 ident: 10.1016/j.trc.2017.10.002_b0030 contributor: fullname: Chan – volume: 81 start-page: 1 year: 2015 ident: 10.1016/j.trc.2017.10.002_b0105 article-title: Inferring the route-use patterns of metro passengers based only on travel-time data within a bayesian framework using a reversible-jump markov chain monte carlo (mcmc) simulation publication-title: Transp. Res. Part B: Methodol. doi: 10.1016/j.trb.2015.08.008 contributor: fullname: Lee – start-page: 58 issue: 2275 year: 2012 ident: 10.1016/j.trc.2017.10.002_b0150 article-title: Rail transit travel time reliability and estimation of passenger route choice behavior: analysis using automatic fare collection data publication-title: Transp. Res. Rec.: J. Transp. Res. Board doi: 10.3141/2275-07 contributor: fullname: Sun – volume: 22 start-page: 376 issue: 5 year: 2007 ident: 10.1016/j.trc.2017.10.002_b0165 article-title: Estimating a rail passenger trip origin-destination matrix using automatic data collection systems publication-title: Comput.-Aided Civil Infrastruct. Eng. doi: 10.1111/j.1467-8667.2007.00494.x contributor: fullname: Zhao – ident: 10.1016/j.trc.2017.10.002_b0055 – volume: 19 start-page: 557 issue: 4 year: 2011 ident: 10.1016/j.trc.2017.10.002_b0130 article-title: Smart card data use in public transit: a literature review publication-title: Transp. Res. Part C: Emerg. Technol. doi: 10.1016/j.trc.2010.12.003 contributor: fullname: Pelletier |
SSID | ssj0001957 |
Score | 2.3974462 |
Snippet | •Developing performance metrics from the passenger’s point of view.•Estimating left behind probability using maximum likelihood or Bayesian... |
SourceID | crossref elsevier |
SourceType | Aggregation Database Publisher |
StartPage | 323 |
SubjectTerms | Automated data Bayesian estimation Left behind Maximum likelihood estimation MCMC sampler Passenger assignment |
Title | Inferring left behind passengers in congested metro systems from automated data |
URI | https://dx.doi.org/10.1016/j.trc.2017.10.002 |
Volume | 94 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED6VdgAGBAVEeVQemJDSxk1ix2NVUbUgygCVskV24kARpFWarvx2znmgIsHCljg-KbnE5-_uvrsAXFPlS6kGkUUZwjf0v7glGBcWc1QiqXIRNJt4x8OMTebuXeAFDRjVtTCGVlnZ_tKmF9a6GulX2uyvFov-E4Jv3xZ2QHmRexM70CqSRE1oDaf3k9m3QaaibPiJ801YIqiTmwXNK89MI0PKewXHa_D79rS15YwP4aDCimRY3s4RNHTaht26lHjdhv2tboLH8Dg1xXvmmLzrJCdKv6LDTVYIjw11NVuTRUpQ-KUIcZIPnWdLUnZyXhNTZkLkJl8igsWLhjh6AvPx7fNoYlX_S7Aihzu5JWIudCwpemzM0ZK6PJYxZZ5y8QGZ79k6SZIBl55vK09FEVdKUYazhWYuc4VzCs10meozIDGNEBcwlNPKdQaJH-NKpTiTai_BJduBm1pN4apsixHWfLG3EHUaGp2aIdRpB9xakeGPdxui2f5b7Px_Yhewh2d-yQO7hGaebfQVAodcdWGn90m71efxBeMlwP8 |
link.rule.ids | 315,783,787,4511,24130,27938,27939,45599,45693 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED6VdigMCAqI8vTAhBQaN4kdj1VFldIHA62ULYoTB4qgrdL0_3POAxUJFrbIvpOSs33-fP7uAnBHpRuGshsZlCF8w_MXNwTjwmCWTEIqbQTNOt4xmTJvbj_5jl-DfpULo2mVpe8vfHrurcuWTmnNznqx6Lwg-HZNYfqU53dvYg8aiAYETvZGbzjypt8OmYqi4CfK67CEX11u5jSvLNWFDCl_yDle3d-3p50tZ3AEhyVWJL3idY6hppYtaFapxJsWHOxUEzyB56FO3tPP5EMlGZHqDQ_cZI3wWFNX0w1ZLAkqv-YhTvKpsnRFikrOG6LTTEi4zVaIYLFTE0dPYT54nPU9o_xfghFZ3MoMEXOh4pDiiY1ZKqQ2j8OYMkfa-IHMdUyVJEmXh45rSkdGEZdSUobSQjGb2cI6g_pytVTnQGIaIS5gqKekbXUTN8aVSlGSKifBJduG-8pMwbooixFUfLH3AG0aaJvqJrRpG-zKkMGPsQ3Qbf-tdvE_tVtoerPJOBgPp6NL2Mcet-CEXUE9S7fqGkFEJm_KSfIFpyrC_A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Inferring+left+behind+passengers+in+congested+metro+systems+from+automated+data&rft.jtitle=Transportation+research.+Part+C%2C+Emerging+technologies&rft.au=Zhu%2C+Yiwen&rft.au=Koutsopoulos%2C+Haris+N.&rft.au=Wilson%2C+Nigel+H.M.&rft.date=2018-09-01&rft.pub=Elsevier+Ltd&rft.issn=0968-090X&rft.eissn=1879-2359&rft.volume=94&rft.spage=323&rft.epage=337&rft_id=info:doi/10.1016%2Fj.trc.2017.10.002&rft.externalDocID=S0968090X17302759 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0968-090X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0968-090X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0968-090X&client=summon |