NONLINEARITY QUANTIFICATION AND ITS APPLICATION TO NONLINEAR SYSTEM IDENTIFICATION

In a series of previous works (Nikolaou, 1993) we introduced an inner product and a corresponding 2-norm for discrete-time nonlinear dynamic systems. Unlike induced norms of nonlinear systems, which are difficult to compute (albeit extremely useful), the 2-norm mentioned above is straightforward to...

Full description

Saved in:
Bibliographic Details
Published inChemical engineering communications Vol. 166; no. 1; pp. 1 - 33
Main Authors NIKOLAOU, MICHAEL, HANAGANDI, VIJAYKUMAR
Format Journal Article
LanguageEnglish
Published Elmont, NY Taylor & Francis Group 01.01.1998
Taylor & Francis
Subjects
Online AccessGet full text
ISSN0098-6445
1563-5201
DOI10.1080/00986449808912379

Cover

Abstract In a series of previous works (Nikolaou, 1993) we introduced an inner product and a corresponding 2-norm for discrete-time nonlinear dynamic systems. Unlike induced norms of nonlinear systems, which are difficult to compute (albeit extremely useful), the 2-norm mentioned above is straightforward to compute, through Monte Carlo calculations with either experimental or simulated data. Loosely speaking, the 2-norm captures the average effect of a class of inputs on the output of a dynamic system. In this presentation we will give a brief introduction to this 2-norm, based on our previous results, and will discuss our latest work and applications on this subject. In particular, we will address the following points: (a) How is the nonlinearity of a dynamic system quantified by the 2-norm? (b) How adequate is a linear model for the representation of a nonlinear system? (c) What nonlinear model can be used for the representation of a nonlinear system for which a linear model is inadequate? An important result of this theory is that appropriate orthogonal bases for the representation of a nonlinear dynamic system can be constructed, that allow the successive refinement of a moving average nonlinear model through inclusion of additional basis terms, without requirement for readjustment of the entire model. Parallel (neural) implementation issues for the proposed algorithms are discussed. Nonlinear models based on Volterra-Legendre series are discussed in detail; and (d) How does feedback alter the nonlinearity characteristics of a dynamic system? Examples on four chemical processes are presented to elucidate the computational and conceptual merits of the proposed methodologies.
AbstractList In a series of previous works (Nikolaou, 1993) we introduced an inner product and a corresponding 2-norm for discrete-time nonlinear dynamic systems. Unlike induced norms of nonlinear systems, which are difficult to compute (albeit extremely useful), the 2-norm mentioned above is straightforward to compute, through Monte Carlo calculations with either experimental or simulated data. Loosely speaking, the 2-norm captures the average effect of a class of inputs on the output of a dynamic system. In this presentation we will give a brief introduction to this 2-norm, based on our previous results, and will discuss our latest work and applications on this subject. In particular, we will address the following points: (a) How is the nonlinearity of a dynamic system quantified by the 2-norm? (b) How adequate is a linear model for the representation of a nonlinear system? (c) What nonlinear model can be used for the representation of a nonlinear system for which a linear model is inadequate? An important result of this theory is that appropriate orthogonal bases for the representation of a nonlinear dynamic system can be constructed, that allow the successive refinement of a moving average nonlinear model through inclusion of additional basis terms, without requirement for readjustment of the entire model. Parallel (neural) implementation issues for the proposed algorithms are discussed. Nonlinear models based on Volterra-Legendre series are discussed in detail; and (d) How does feedback alter the nonlinearity characteristics of a dynamic system? Examples on four chemical processes are presented to elucidate the computational and conceptual merits of the proposed methodologies.
Author NIKOLAOU, MICHAEL
HANAGANDI, VIJAYKUMAR
Author_xml – sequence: 1
  givenname: MICHAEL
  surname: NIKOLAOU
  fullname: NIKOLAOU, MICHAEL
  organization: Dept. of Chemical Engineering , Texas A&M University
– sequence: 2
  givenname: VIJAYKUMAR
  surname: HANAGANDI
  fullname: HANAGANDI, VIJAYKUMAR
  organization: Dept. of Chemical Engineering , Texas A&M University
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1796149$$DView record in Pascal Francis
BookMark eNqNkMFOg0AQQDemJrbVD_DGwSs6y7LLbuKFtFRJEGpLDz2RZQsJhkKzkGj_XhqsGps0niYz897MZEZoUNVVhtAthnsMHB4ABGe2LThwgS3iiAs0xJQRk1qAB2h46JsdQK_QqGneADAhGA_RIozCwA89d-HHa-N15YaxP_MnbuxHoeGGU8OPl4Y7nwfHWhwZ34qxXC9j78Xwp94v7Rpd5rJsspuvOEarmRdPns0geuqQwFTEIa0pCLUdyjBYhDPsbBjPOJfcopRzm_FUCshTRWGTAqVdhpXKMMklYRZIOyVkjO76uTvZKFnmWlaqaJKdLrZS7xPsCIZt0WG4x5Sum0Zn-Q8ByeF3ycnvOsf546iilW1RV62WRXnWfOzNosprvZXvtS43SSv3Za2PF5J_LD6jn1hJ-9GST4m4kT4
CODEN CEGCAK
CitedBy_id crossref_primary_10_2118_84064_PA
crossref_primary_10_1021_ie010155v
crossref_primary_10_3182_20020721_6_ES_1901_00646
crossref_primary_10_1109_TAC_2008_2009569
crossref_primary_10_1002_cben_202000017
crossref_primary_10_1016_S0959_1524_00_00050_0
crossref_primary_10_1002_aic_690480912
crossref_primary_10_1080_00986445_2014_962689
crossref_primary_10_1002_aic_10326
crossref_primary_10_1016_j_jprocont_2006_10_012
crossref_primary_10_1021_ie020910k
crossref_primary_10_1016_S0098_1354_03_00036_X
crossref_primary_10_1115_1_4050553
crossref_primary_10_1109_ACCESS_2020_2993102
Cites_doi 10.1007/978-1-4757-2101-0
10.1021/ie00108a002
10.1007/978-3-642-96208-0
10.1002/aic.690410909
10.1021/ie00055a001
10.1002/aic.690420809
10.1093/oso/9780198522249.001.0001
10.1109/MSPEC.1977.6501721
10.1038/323533a0
10.1002/aic.690390108
10.1109/TCS.1985.1085649
10.1002/aic.690190202
10.1109/TCS.1980.1084787
10.23919/ACC.1993.4792995
10.1016/B978-0-409-90136-8.40010-1
10.1021/ie00108a001
10.1002/j.1538-7305.1934.tb00652.x
10.1080/00986449508936361
10.23919/ACC.1993.4793113
10.1002/aic.690391116
10.1002/aic.690361118
10.1016/0167-2789(92)90102-S
10.1214/aos/1176347963
ContentType Journal Article
Copyright Copyright Taylor & Francis Group, LLC 1998
1999 INIST-CNRS
Copyright_xml – notice: Copyright Taylor & Francis Group, LLC 1998
– notice: 1999 INIST-CNRS
DBID AAYXX
CITATION
IQODW
DOI 10.1080/00986449808912379
DatabaseName CrossRef
Pascal-Francis
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Applied Sciences
EISSN 1563-5201
EndPage 33
ExternalDocumentID 1796149
10_1080_00986449808912379
8912379
GroupedDBID -~X
.7F
.QJ
0BK
0R~
1TA
29B
2DF
30N
4.4
5GY
5VS
AAENE
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABFIM
ABHAV
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGEJ
ACGFS
ACGOD
ACIWK
ACTIO
ACTTO
ADCVX
ADGTB
ADXPE
AEISY
AENEX
AEOZL
AEPSL
AEYOC
AFBWG
AFION
AFKVX
AGDLA
AGMYJ
AGVKY
AGWUF
AHDZW
AIJEM
AJWEG
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
ALRRR
AQRUH
AVBZW
AWYRJ
BLEHA
BWMZZ
CAG
CCCUG
CE4
COF
CS3
CYRSC
DAOYK
DGEBU
DKSSO
DU5
EBS
EJD
ESX
E~A
E~B
GTTXZ
H13
HZ~
H~P
J.P
KYCEM
M4Z
NA5
NUSFT
NX~
O9-
OPCYK
P2P
PQQKQ
RNANH
ROSJB
RTWRZ
S-T
SNACF
TAJZE
TBQAZ
TDBHL
TEN
TFL
TFT
TFW
TNC
TTHFI
TUROJ
TWF
UT5
UU3
ZGOLN
~02
~S~
07I
4B5
AAGDL
AAHIA
AAYXX
ABDBF
ABEFU
ACUHS
ADMLS
ADUMR
ADXEU
ADYSH
AEHZU
AEZBV
AFFNX
AFRVT
AGBLW
AIYEW
AKHJE
AKMBP
ALXIB
AMPGV
BGSSV
C0-
C5H
CITATION
DEXXA
EAP
EMK
EPL
EST
FETWF
HF~
I-F
IFELN
IPNFZ
L8C
L8X
LJTGL
ML-
RIG
TAP
TUS
UB6
ZY4
IQODW
TASJS
ID FETCH-LOGICAL-c373t-935475610238617d68e88a825588468ba90fbc50db055ba91cce13fa3620a4b33
ISSN 0098-6445
IngestDate Mon Jul 21 09:11:15 EDT 2025
Thu Apr 24 23:07:43 EDT 2025
Tue Jul 01 04:29:04 EDT 2025
Wed Dec 25 09:03:39 EST 2024
Mon May 13 12:10:02 EDT 2019
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Isothermal condition
Dynamical system
Continuous stirred tank reactor
Non linear system
Modeling
Linear model
Non linear model
Non isothermal condition
Nonlinearity
System identification
In series
Dynamic model
Predictive control
Language English
License CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c373t-935475610238617d68e88a825588468ba90fbc50db055ba91cce13fa3620a4b33
PageCount 33
ParticipantIDs crossref_primary_10_1080_00986449808912379
pascalfrancis_primary_1796149
informaworld_taylorfrancis_310_1080_00986449808912379
crossref_citationtrail_10_1080_00986449808912379
ProviderPackageCode CITATION
AAYXX
PublicationCentury 1900
PublicationDate 1/1/1998
1998-01-00
1998
PublicationDateYYYYMMDD 1998-01-01
PublicationDate_xml – month: 01
  year: 1998
  text: 1/1/1998
  day: 01
PublicationDecade 1990
PublicationPlace Elmont, NY
PublicationPlace_xml – name: Elmont, NY
PublicationTitle Chemical engineering communications
PublicationYear 1998
Publisher Taylor & Francis Group
Taylor & Francis
Publisher_xml – name: Taylor & Francis Group
– name: Taylor & Francis
References Kumar A. (CIT0025) 1996; 42
(CIT0019) 1989
Schetzen M. (CIT0046) 1980
Soroush M. (CIT0047) 1996
Mayne D. Q. (CIT0029) 1996
(CIT0032) 1988
Zafiriou E. (CIT0053) 1993
Morari M. (CIT0031) 1986
Manousiouthakis V. (CIT0028) 1992
Rugh W. J. (CIT0044) 1983
Buckley P. S. (CIT0006) 1981
CIT0036
CIT0035
Doyle F. (CIT0010) 1996
CIT0038
CIT0037
Doyle F. J. (CIT0009) 1992
Prett D. M. (CIT0041) 1988
CIT0001
Pearson R. K. (CIT0040) 1992
CIT0045
Ray W. H. (CIT0043) 1981
CIT0002
Hopfield J. J. (CIT0018) 1982; 79
CIT0005
CIT0049
Black H. S. (CIT0003) 1977
CIT0008
Nijmeijer H. (CIT0033) 1990
Luenberger D. G. (CIT0027) 1969
CIT0054
Longwell E. J. (CIT0026) 1991
Yosida K. (CIT0052) 1974
Edgar T. F. (CIT0011) 1989
Morari M. (CIT0030) 1989
CIT0014
CIT0013
CIT0016
CIT0015
CIT0017
Nikolaou M. (CIT0034) 1989; 35
Black H.S. (CIT0004) 1934
Desoer C. A. (CIT0007) 1975
CIT0020
CIT0023
Kane L. (CIT0021) 1993
Multivariable Processes (CIT0048); 42
Fleming W. H. (CIT0012) 1988
Tong H. (CIT0050) 1990
Tsay R. S. (CIT0051) 1991; 1
CIT0024
Ogunnaike B. (CIT0039) 1996
Kolmogorov A. N. (CIT0022) 1970
Rawlings J. B. (CIT0042) 1994
References_xml – volume-title: Nonlinear Dynamical Control Systems,
  year: 1990
  ident: CIT0033
  doi: 10.1007/978-1-4757-2101-0
– ident: CIT0024
  doi: 10.1021/ie00108a002
– volume: 35
  start-page: 559
  issue: 4
  year: 1989
  ident: CIT0034
  publication-title: A Hybrid Approach to Nonlinear System Stability and Performance, AIChE Journal
– volume-title: Robust Process Control,
  year: 1989
  ident: CIT0030
– volume-title: Shell Process Control Workshop,
  year: 1986
  ident: CIT0031
– volume-title: Functional Analysis,
  year: 1974
  ident: CIT0052
  doi: 10.1007/978-3-642-96208-0
– ident: CIT0054
– start-page: 6
  issue: 3
  year: 1993
  ident: CIT0021
  publication-title: IN CONTROL
– ident: CIT0016
  doi: 10.1002/aic.690410909
– ident: CIT0002
  doi: 10.1021/ie00055a001
– volume-title: Introductory Real Analysis,
  year: 1970
  ident: CIT0022
– volume: 42
  start-page: 8
  year: 1996
  ident: CIT0025
  publication-title: AICh E Journal
  doi: 10.1002/aic.690420809
– volume-title: User's Manual-IMSLmathj Library,
  year: 1989
  ident: CIT0019
– volume: 1
  start-page: 431
  year: 1991
  ident: CIT0051
  publication-title: Statistical Sinica
– volume-title: National Research Council Committee, Frontiers in Chemical Engineering: Research Needs and Opportunities
  year: 1988
  ident: CIT0032
– volume: 42
  start-page: 187
  issue: 1
  ident: CIT0048
  publication-title: AIChE Journal
– start-page: 13
  year: 1989
  ident: CIT0011
  publication-title: IEEE Control Systems magazine
– volume-title: CPCV preprints,
  year: 1996
  ident: CIT0010
– volume-title: Non-linear Time Series: A Dynamical System Approach,
  year: 1990
  ident: CIT0050
  doi: 10.1093/oso/9780198522249.001.0001
– volume-title: AIChE Annual Meeting,
  year: 1992
  ident: CIT0009
– start-page: 55
  year: 1977
  ident: CIT0003
  publication-title: IEEE Spectrum
  doi: 10.1109/MSPEC.1977.6501721
– volume-title: CPC V preprints,
  year: 1996
  ident: CIT0029
– ident: CIT0045
  doi: 10.1038/323533a0
– volume-title: Optimization by Vector Space Methods,
  year: 1969
  ident: CIT0027
– volume-title: AICh E Annual Meeting,
  year: 1992
  ident: CIT0028
– year: 1996
  ident: CIT0047
  publication-title: Discrete-Time Nonlinear Feedback Control Of
– ident: CIT0001
  doi: 10.1002/aic.690390108
– ident: CIT0005
  doi: 10.1109/TCS.1985.1085649
– ident: CIT0013
  doi: 10.1002/aic.690190202
– ident: CIT0008
  doi: 10.1109/TCS.1980.1084787
– ident: CIT0036
  doi: 10.23919/ACC.1993.4792995
– ident: CIT0015
  doi: 10.1016/B978-0-409-90136-8.40010-1
– volume: 79
  start-page: 2554
  volume-title: Proc. Natl. Acad. Sci.
  year: 1982
  ident: CIT0018
– ident: CIT0023
  doi: 10.1021/ie00108a001
– start-page: 1
  year: 1934
  ident: CIT0004
  publication-title: Bell Syst. Tech. J.
  doi: 10.1002/j.1538-7305.1934.tb00652.x
– volume-title: Feedback Systems: Input-Output Properties,
  year: 1975
  ident: CIT0007
– start-page: 445
  year: 1991
  ident: CIT0026
  publication-title: Proceedings of CPC IV
– ident: CIT0038
  doi: 10.1080/00986449508936361
– ident: CIT0035
  doi: 10.23919/ACC.1993.4793113
– ident: CIT0037
  doi: 10.1002/aic.690391116
– volume-title: SIAM Report of the Panel of Future Directions in Control Theory: A Mathematical Perspective,
  year: 1988
  ident: CIT0012
– volume-title: AIChE Annual Meeting,
  year: 1992
  ident: CIT0040
– volume-title: Fundamental Process Control,
  year: 1988
  ident: CIT0041
– ident: CIT0017
  doi: 10.1002/aic.690361118
– ident: CIT0020
– volume-title: Industrial Applications of Nonlinear Control,
  year: 1996
  ident: CIT0039
– volume-title: Advanced Process Control,
  year: 1981
  ident: CIT0043
– ident: CIT0049
  doi: 10.1016/0167-2789(92)90102-S
– ident: CIT0014
  doi: 10.1214/aos/1176347963
– volume-title: Nonlinear System Theory,
  year: 1983
  ident: CIT0044
– year: 1993
  ident: CIT0053
  publication-title: AIChE Annual
– volume-title: Nonlinear Model Predictive Control: A Tutorial and Survey
  year: 1994
  ident: CIT0042
– volume-title: The Volterra and Wiener Theories of Nonlinear Systems,
  year: 1980
  ident: CIT0046
– volume-title: Second Eng. Found. Conf. on Chem. Proc. Corttr.,
  year: 1981
  ident: CIT0006
SSID ssj0013311
Score 1.5193714
Snippet In a series of previous works (Nikolaou, 1993) we introduced an inner product and a corresponding 2-norm for discrete-time nonlinear dynamic systems. Unlike...
SourceID pascalfrancis
crossref
informaworld
SourceType Index Database
Enrichment Source
Publisher
StartPage 1
SubjectTerms Applied sciences
Chemical engineering
Computer science; control theory; systems
Control theory. Systems
Exact sciences and technology
identification
inner product spaces
Modelling and identification
nonlinear systems
Nonlinearity quantification
norm
Reactors
Title NONLINEARITY QUANTIFICATION AND ITS APPLICATION TO NONLINEAR SYSTEM IDENTIFICATION
URI https://www.tandfonline.com/doi/abs/10.1080/00986449808912379
Volume 166
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JS8QwFA4uFz24i-NGDp6USmqaNjkOLrhRQWbA25CkKQgyilYQf70vky7pjIzLpbSdZlLyPl6-NO99D6EDDqxYJbEIBDEkiDKwheSRDhIWCwOAliQbBcim8WU_un5gD01ZxVF2SaGO9ee3eSX_sSrcA7vaLNk_WLb-U7gB52BfOIKF4fgrG6dO50LaAnQ2PdIF_jiTVpsC3g615ZnDqkmp4Xz0mBmvmc9Vay0B02gW2hD0JqGk5uPp1c3dbfeu3_68aosFdNOzqyaWNqvy7Woo9CZqfPh-VPAAmBRr-dHY94ShN6U6qYsJZ11FN1qF-EhwwgVMo660TFsYe2zCqsMIwZkAuxCzaP4kSUIb0ElJ2uwh0TCsFFPtu1Z72lZZfbzPFitpadbaYFn5BoOdu0Hw2EdvBS2VywbcdRhYRTNmuIaWyyUELh302xpa9PQl19G9DxDcBggGgGAACPYAgotnXAMEO4DgNkA2UP_ivHd6GZRFNAJNE1oEgrIosSQZuBmw1SzmhnPJYSXJgXpyJQXJlWYkU4QxuAq1NiHNJRAbIiNF6Saag57NFsI6k4YYYLgqP4lUlPNYM6HDONN2IqC6g0g1iANdKszbQidPg7AWoh0b9w46rJu8OHmVaQ8T3zKDYoTQ0i6Tjw-Kj6KD2JQmdEpXey2rNy_nILf9w-87aMElr9pvdbtornh9N3vAXgu1PwLpF8oNmEA
linkProvider Taylor & Francis
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED5BGYCBN6I8PTAhBRwcJ_ZY0VYNj4BokGCKYsdZQAVBkBC_nnOTlBZQB8ZIPsfxnX1fznefAQ4FomIV-NKR1FDHy1AXqfC0E3BfGjTolGbDBNnI79155_f8vgq4vVVplfYfOi-JIoZ7tV3cNhhdp8SdWBJM9ONSUCFx5w3kLMxxxO3WwhmNvk8RmOvWnJnYntenmn91MeGXJlhLbbpk-oYzlpdXXYz5n-4yJPXIy7STx-P3Qh3rzx-kjv__tBVYqqApaZW2tAozZrAGi2OEhetwG11Hl2HUad2G8QNBNBzFYbeqRSatqE3CuE9aNzd1fTKJr8lIhPQf-nHnioTtzpjYBtx1O_FZz6luZXA0C1jhSMa9wKIudPYIfzJfGCFS_NG0Ja--UKmkudKcZopyjk-u1sZleYqekqaeYmwTGoPngdkCorPUUIOQSeWnnvJy4Wsutetn2u4sTDeB1jpJdEVZbm_OeErcEbPpj-lqwtFI5KXk65jWmI4rOimGQZJKzb-bJ8VH0QQ-RYRNedXehBF9Dy6QiJDk9j_7PYD5Xnx1maAiL3ZgoayYtAGiXWgUr-9mDyFTofaH6-IL_c8A-Q
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZ4SAgG3ogCBQ9MSAEHx4k9VrRVwyNUbSqVKYodZwEVRIOE-PWc8ygtoA4dI_mcxHf2fbbvvkPonAMqlp4rLEE0sZwEdBFzR1kec4UGg45JkgfIBm5n4NwO2bCMzRmXYZVmD50WRBH5Wm0m91uSVhFxV4YDE9y44IQLWHg9sYxWXYAmJqKPkuDnEoHadkWZCe1Zdan5XxczbmmGtNRES8ZjGLC0qHQx5X7aW0WN1XHOWmiiTp4vPzJ5qb5-cTou_GfbaLMEprhRWNIOWtKjXbQxRVe4h3rBY3DvB61Gzw-fMGDhIPTbZSYybgRN7Id93Oh2q-xkHD7iiQjuP_XD1gP2m60psX00aLfCm45V1mSwFPVoZgnKHM9gLnD1AH4Sl2vOY9hmmoRXl8tYkFQqRhJJGIMnWylt0zQGP0liR1J6gFZGryN9iLBKYk00ACaZXjvSSbmrmFC2myizrlBVQ6RSSaRKwnJTN-Mlsie8pr-Gq4YuJiJvBVvHvMZkWs9Rlh-RlFr-2zzKPrMaYnNE6JxX1Wds6OfjPAH4SBwt2O8ZWus22xHo8e4YrRfpkuZ06AStZO8fug54KZOn-az4BrRL_44
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nonlinearity+quantification+and+its+application+to+nonlinear+system+identification&rft.jtitle=Chemical+engineering+communications&rft.au=NIKOLAOU%2C+M&rft.au=HANAGANDI%2C+V&rft.date=1998&rft.pub=Taylor+%26+Francis&rft.issn=0098-6445&rft.volume=166&rft.spage=1&rft.epage=33&rft_id=info:doi/10.1080%2F00986449808912379&rft.externalDBID=n%2Fa&rft.externalDocID=1796149
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0098-6445&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0098-6445&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0098-6445&client=summon