Numerical solution of nonlinear Volterra–Fredholm–Hammerstein integral equations via Tau-collocation method with convergence analysis
In this paper, we consider the nonlinear Volterra–Fredholm–Hammerstein integral equations. The approximate solution for the nonlinear Volterra–Fredholm–Hammerstein integral equations is obtained by using the Tau-Collocation method. To do this, the nonlinear Volterra–Fredholm–Hammerstein integral equ...
Saved in:
Published in | Journal of computational and applied mathematics Vol. 308; pp. 435 - 446 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
15.12.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this paper, we consider the nonlinear Volterra–Fredholm–Hammerstein integral equations. The approximate solution for the nonlinear Volterra–Fredholm–Hammerstein integral equations is obtained by using the Tau-Collocation method. To do this, the nonlinear Volterra–Fredholm–Hammerstein integral equations is transformed into a system of nonlinear algebraic equations in matrix form. Thus by solving this system unknown coefficients are obtained. The spectral rate of convergence for the proposed method is established in the L2-norm. The numerical results obtained with minimum amount of computation are compared with the exact solutions to show the efficiency of the method. The results show that the Tau-collocation method is of high accuracy, more convenient and efficient for solving nonlinear Volterra–Fredholm–Hammerstein integral equations. |
---|---|
AbstractList | In this paper, we consider the nonlinear Volterra–Fredholm–Hammerstein integral equations. The approximate solution for the nonlinear Volterra–Fredholm–Hammerstein integral equations is obtained by using the Tau-Collocation method. To do this, the nonlinear Volterra–Fredholm–Hammerstein integral equations is transformed into a system of nonlinear algebraic equations in matrix form. Thus by solving this system unknown coefficients are obtained. The spectral rate of convergence for the proposed method is established in the L2-norm. The numerical results obtained with minimum amount of computation are compared with the exact solutions to show the efficiency of the method. The results show that the Tau-collocation method is of high accuracy, more convenient and efficient for solving nonlinear Volterra–Fredholm–Hammerstein integral equations. In this paper, we consider the nonlinear Volterra-Fredholm-Hammerstein integral equations. The approximate solution for the nonlinear Volterra-Fredholm-Hammerstein integral equations is obtained by using the Tau-Collocation method. To do this, the nonlinear Volterra-Fredholm-Hammerstein integral equations is transformed into a system of nonlinear algebraic equations in matrix form. Thus by solving this system unknown coefficients are obtained. The spectral rate of convergence for the proposed method is established in the L-norm. The numerical results obtained with minimum amount of computation are compared with the exact solutions to show the efficiency of the method. The results show that the Tau-collocation method is of high accuracy, more convenient and efficient for solving nonlinear Volterra-Fredholm-Hammerstein integral equations. |
Author | Allahviranloo, T. Gouyandeh, Z. Armand, A. |
Author_xml | – sequence: 1 givenname: Z. orcidid: 0000-0002-8485-7436 surname: Gouyandeh fullname: Gouyandeh, Z. email: Zgouyandeh@yahoo.com organization: Department of Mathematics, Najafabad Branch, Islamic Azad University, Najafabad, Isfahan, Iran – sequence: 2 givenname: T. surname: Allahviranloo fullname: Allahviranloo, T. email: Tofigh@allahviranloo.com organization: Department of Mathematics, Science and Research Branch, Islamic Azad University, Tehran, Iran – sequence: 3 givenname: A. surname: Armand fullname: Armand, A. email: Atefeh.armand@ymail.com organization: Young researchers and Elite Club, Yadegar-e-Imam Khomeini (RAH) Shahr-e-Rey Branch, Islamic Azad University, Tehran, Iran |
BookMark | eNp9UM1KAzEYDFLB-vMA3nL0sjXJ_mXxJGJVKHpRryGb_damZBNNspXevHr2DX0SU-tZGPiGj5mBmUM0sc4CQqeUzCih1flqpuQwY4nOSALje2hKed1ktK75BE1JXtcZKVh9gA5DWBFCqoYWU_R5Pw7gtZIGB2fGqJ3Frscp3WgL0uNnZyJ4L78_vuYeuqUzQ6K3cki2EEFbrG2EF58C4G2U24CA11riRzlmyhnj1O8TDxCXrsPvOi6xcnYN_gWsAiytNJugwzHa76UJcPJ3j9DT_Prx6jZbPNzcXV0uMpXXecwaxjmUsuW0KfuqLQsFilaENhWrirbqJes4b1nd87aEhgFUDaeFUgykYqzo8iN0tst99e5thBDFoIMCY6QFNwZBeV6WvKCUJSndSZV3IXjoxavXg_QbQYnYzi5WIs0utrMLksB48lzsPJA6rDV4EZTeFu20BxVF5_Q_7h9y7ZKY |
CitedBy_id | crossref_primary_10_1016_j_apnum_2018_09_014 crossref_primary_10_3390_fractalfract7100730 crossref_primary_10_1007_s40995_019_00783_5 crossref_primary_10_3934_math_20231406 crossref_primary_10_1016_j_cam_2018_05_035 crossref_primary_10_1016_j_cam_2019_112533 crossref_primary_10_3390_sym15071408 crossref_primary_10_1002_num_22496 crossref_primary_10_1002_mma_8154 crossref_primary_10_1016_j_matcom_2024_04_008 crossref_primary_10_3390_a15060203 |
Cites_doi | 10.1016/S0377-0427(99)00297-6 10.1016/S0898-1221(01)00300-5 10.1016/0022-247X(80)90297-8 10.1016/j.matcom.2005.02.035 10.1016/j.cnsns.2010.06.013 10.1016/0168-9274(92)90018-9 10.2140/pjm.1988.135.157 10.1007/s11075-009-9297-9 10.1137/0706044 10.1016/S0377-0427(02)00862-2 10.1016/j.jcp.2003.10.001 10.1016/0895-7177(88)90577-8 10.1016/j.cnsns.2011.04.023 |
ContentType | Journal Article |
Copyright | 2016 Elsevier B.V. |
Copyright_xml | – notice: 2016 Elsevier B.V. |
DBID | AAYXX CITATION 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D |
DOI | 10.1016/j.cam.2016.06.028 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Civil Engineering Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1879-1778 |
EndPage | 446 |
ExternalDocumentID | 10_1016_j_cam_2016_06_028 S0377042716303004 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAXUO ABAOU ABJNI ABMAC ABVKL ABYKQ ACAZW ACDAQ ACGFS ACRLP ADBBV ADEZE AEBSH AEKER AENEX AEXQZ AFKWA AFTJW AGUBO AGYEJ AHHHB AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ARUGR AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FIRID FNPLU FYGXN G-Q GBLVA HVGLF IHE IXB J1W KOM LG9 M26 M41 MHUIS MO0 N9A O-L O9- OAUVE OK1 OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SSW SSZ T5K TN5 UPT XPP YQT ZMT ~02 ~G- 0SF 29K 5VS 6I. AAFWJ AAQFI AAQXK AAXKI AAYXX ABEFU ABFNM ABTAH ABXDB ADMUD ADVLN AFJKZ AGHFR AKRWK ASPBG AVWKF AZFZN CITATION D-I FGOYB G-2 G8K HZ~ NCXOZ NHB R2- SEW WUQ ZY4 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D |
ID | FETCH-LOGICAL-c373t-9288e5ab8195f6b54cec160196264b6fa2d88b27f8b5e92ee69814cc2eac224d3 |
IEDL.DBID | AIKHN |
ISSN | 0377-0427 |
IngestDate | Fri Oct 25 02:39:47 EDT 2024 Thu Sep 26 17:39:37 EDT 2024 Fri Feb 23 02:31:37 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Nonlinear Volterra–Fredholm–Hammerstein integral equations Matrix representation Tau-collocation method Sobolev space |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c373t-9288e5ab8195f6b54cec160196264b6fa2d88b27f8b5e92ee69814cc2eac224d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-8485-7436 |
OpenAccessLink | https://doi.org/10.1016/j.cam.2016.06.028 |
PQID | 1835584112 |
PQPubID | 23500 |
PageCount | 12 |
ParticipantIDs | proquest_miscellaneous_1835584112 crossref_primary_10_1016_j_cam_2016_06_028 elsevier_sciencedirect_doi_10_1016_j_cam_2016_06_028 |
PublicationCentury | 2000 |
PublicationDate | 2016-12-15 |
PublicationDateYYYYMMDD | 2016-12-15 |
PublicationDate_xml | – month: 12 year: 2016 text: 2016-12-15 day: 15 |
PublicationDecade | 2010 |
PublicationTitle | Journal of computational and applied mathematics |
PublicationYear | 2016 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Lardy (br000050) 1981; 3 Brunner (br000055) 1992; 9 Marzban, Tabrizidooz, Razzaghi (br000060) 2011; 16 Ghoreishi, Hadizadeh (br000080) 2009; 52 Galperin, Kansa (br000070) 2002; 43 Marzban, Tabrizidooz, Razzaghi (br000130) 2011; 16 Wai Wai (br000105) 2004 Qu, Wong (br000125) 1988; 135 Chi Ngai (br000100) 2004 Ortiz (br000115) 1969; 6 Semetanian (br000035) 2007; 200 Voitovich, Reshnyak (br000040) 1999; 2 Canuto, Hussaini, Quarteroni, Zang (br000120) 2006 Liu (br000095) 1988; 11 Liu (br000090) 1986 Allahviranloo, Gouyandeh, Armand (br000110) 2015; 271 Schiavane, Constanda, Mioduchowski (br000030) 2002 Abdou (br000005) 2003; 154 Bloom (br000010) 1980; 73 Jaswon, Symm (br000015) 1977 Galperin, Kansa, Makroglou, Nelson (br000075) 2000; 115 Yousefia, Razzaghi (br000065) 2005; 70 Tricomi (br000045) 1982 Jiang, Rokhlin (br000020) 2004; 195 Parand, Rad (br000085) 2012; 218 Maleknejad, Hashemizadeh, Basirat (br000025) 2012; 17 Ghoreishi (10.1016/j.cam.2016.06.028_br000080) 2009; 52 Parand (10.1016/j.cam.2016.06.028_br000085) 2012; 218 Allahviranloo (10.1016/j.cam.2016.06.028_br000110) 2015; 271 Liu (10.1016/j.cam.2016.06.028_br000095) 1988; 11 Galperin (10.1016/j.cam.2016.06.028_br000070) 2002; 43 Chi Ngai (10.1016/j.cam.2016.06.028_br000100) 2004 Ortiz (10.1016/j.cam.2016.06.028_br000115) 1969; 6 Lardy (10.1016/j.cam.2016.06.028_br000050) 1981; 3 Maleknejad (10.1016/j.cam.2016.06.028_br000025) 2012; 17 Brunner (10.1016/j.cam.2016.06.028_br000055) 1992; 9 Wai Wai (10.1016/j.cam.2016.06.028_br000105) 2004 Galperin (10.1016/j.cam.2016.06.028_br000075) 2000; 115 Bloom (10.1016/j.cam.2016.06.028_br000010) 1980; 73 Jaswon (10.1016/j.cam.2016.06.028_br000015) 1977 Schiavane (10.1016/j.cam.2016.06.028_br000030) 2002 Marzban (10.1016/j.cam.2016.06.028_br000060) 2011; 16 Abdou (10.1016/j.cam.2016.06.028_br000005) 2003; 154 Qu (10.1016/j.cam.2016.06.028_br000125) 1988; 135 Jiang (10.1016/j.cam.2016.06.028_br000020) 2004; 195 Semetanian (10.1016/j.cam.2016.06.028_br000035) 2007; 200 Tricomi (10.1016/j.cam.2016.06.028_br000045) 1982 Marzban (10.1016/j.cam.2016.06.028_br000130) 2011; 16 Liu (10.1016/j.cam.2016.06.028_br000090) 1986 Voitovich (10.1016/j.cam.2016.06.028_br000040) 1999; 2 Canuto (10.1016/j.cam.2016.06.028_br000120) 2006 Yousefia (10.1016/j.cam.2016.06.028_br000065) 2005; 70 |
References_xml | – volume: 11 start-page: 72 year: 1988 end-page: 675 ident: br000095 article-title: Numerical solution of differential eigenvalue problems with variable coefficients with the Tau-Collocation method publication-title: Math. Comput. Modelling contributor: fullname: Liu – volume: 16 start-page: 1186 year: 2011 end-page: 1194 ident: br000060 article-title: A composite collocation method for the nonlinear mixed Volterra–Fredholm–Hammerstein integral equations publication-title: Commun. Nonlinear Sci. Numer. Simul. contributor: fullname: Razzaghi – volume: 195 start-page: 1 year: 2004 end-page: 16 ident: br000020 article-title: Second kind integral equations for the classical potential theory on open surface II publication-title: J. Comput. Phys. contributor: fullname: Rokhlin – volume: 6 start-page: 480 year: 1969 end-page: 492 ident: br000115 article-title: The Tau method publication-title: SIAM J. Numer. Anal. contributor: fullname: Ortiz – volume: 115 start-page: 193 year: 2000 end-page: 211 ident: br000075 article-title: Variable transformations in the numerical solution of second kind Volterra integral equations with continuous and weakly singular kernels; extensions to Fredholm integral equations publication-title: J. Comput. Appl. Math. contributor: fullname: Nelson – volume: 52 start-page: 541 year: 2009 end-page: 559 ident: br000080 article-title: Numerical computation of the Tau approximation for the Volterra-Hammerstein integral equations publication-title: Numer. Algorithms contributor: fullname: Hadizadeh – volume: 154 start-page: 431 year: 2003 end-page: 446 ident: br000005 article-title: On asymptotic methods for Fredholm–Volterra integral equation of the second kind in contact problems publication-title: J. Comput. Appl. Math. contributor: fullname: Abdou – year: 2006 ident: br000120 article-title: Spectral Methods Fundamentals in Single Domains contributor: fullname: Zang – year: 2004 ident: br000100 article-title: Numerical Solution of Partial Differential Equations with the Tau-Collocation Method contributor: fullname: Chi Ngai – volume: 9 start-page: 235 year: 1992 end-page: 247 ident: br000055 article-title: Implicitly linear collocation method for nonlinear Volterra equations publication-title: J. Appl. Numer. Math. contributor: fullname: Brunner – volume: 135 start-page: 157 year: 1988 end-page: 188 ident: br000125 article-title: Szegos conjecture on Lebesgue constants for Legendre series publication-title: Pacific J. Math. contributor: fullname: Wong – volume: 2 start-page: 43 year: 1999 end-page: 52 ident: br000040 article-title: Solutions of nonlinear integral equation of synthesis of the linear antenna arrays publication-title: BSUAE J. Appl. Electron. contributor: fullname: Reshnyak – year: 2004 ident: br000105 article-title: Numerical Solution of Linear and Nonlinear Ordinary Differential Equations with the Tau-Collocation Method contributor: fullname: Wai Wai – volume: 17 start-page: 52 year: 2012 end-page: 61 ident: br000025 article-title: Computational method based on Bernstein operational matrices for nonlinear Volterra–Fredholm–Hammerstein integral equations publication-title: Commun. Nonlinear Sci. Numer. Simul. contributor: fullname: Basirat – year: 1982 ident: br000045 article-title: Integral Equations contributor: fullname: Tricomi – volume: 16 start-page: 1186 year: 2011 end-page: 1194 ident: br000130 article-title: A composite collocation method for the nonlinear mixed Volterra–Fredholm–Hammerstein integral equations publication-title: Commun. Nonlinear Sci. Numer. Simul. contributor: fullname: Razzaghi – year: 1986 ident: br000090 article-title: A New Formulation of the Tau-Collocation Method for the Numerical Solution of Differential Equations. Res. Rep. 0286 contributor: fullname: Liu – year: 1977 ident: br000015 article-title: Integral Equation Methods in Potential Theory and Elastostatics contributor: fullname: Symm – volume: 200 start-page: 12 year: 2007 end-page: 20 ident: br000035 article-title: On an integral equation for axially symmetric problem in the case of an elastic body containing an inclusion publication-title: J. Comput. Appl. Math. contributor: fullname: Semetanian – volume: 271 start-page: 979 year: 2015 end-page: 990 ident: br000110 article-title: Numerical solutions for fractional differential equations by Tau-Collocation method publication-title: Appl. Math. Comput. contributor: fullname: Armand – volume: 43 start-page: 491 year: 2002 end-page: 499 ident: br000070 article-title: Application of global optimization and radial basis functions to numerical solutions of weakly singular Volterra integral equations publication-title: Comput. Math. Appl. contributor: fullname: Kansa – volume: 70 start-page: 1 year: 2005 end-page: 8 ident: br000065 article-title: Legendre wavelets method for the nonlinear Volterra–Fredholm integral equations publication-title: Math. Comput. Simulation contributor: fullname: Razzaghi – volume: 218 start-page: 5292 year: 2012 end-page: 5309 ident: br000085 article-title: Numerical solution of nonlinear Volterra–Fredholm–Hammerstein integral equations via collocation method based on radial basis functions publication-title: Appl. Math. Comput. contributor: fullname: Rad – volume: 3 start-page: 43 year: 1981 end-page: 60 ident: br000050 article-title: A variation of Nystrom’s method for Hammerstein equations publication-title: J. Integral Equations contributor: fullname: Lardy – volume: 73 start-page: 524 year: 1980 end-page: 542 ident: br000010 article-title: Asymptotic bounds for solutions to a system of damped integro-differential equations of electromagnetic theory publication-title: J. Math. Anal. Appl. contributor: fullname: Bloom – year: 2002 ident: br000030 article-title: Integral Methods in Science and Engineering contributor: fullname: Mioduchowski – volume: 271 start-page: 979 year: 2015 ident: 10.1016/j.cam.2016.06.028_br000110 article-title: Numerical solutions for fractional differential equations by Tau-Collocation method publication-title: Appl. Math. Comput. contributor: fullname: Allahviranloo – volume: 115 start-page: 193 year: 2000 ident: 10.1016/j.cam.2016.06.028_br000075 article-title: Variable transformations in the numerical solution of second kind Volterra integral equations with continuous and weakly singular kernels; extensions to Fredholm integral equations publication-title: J. Comput. Appl. Math. doi: 10.1016/S0377-0427(99)00297-6 contributor: fullname: Galperin – year: 2004 ident: 10.1016/j.cam.2016.06.028_br000105 contributor: fullname: Wai Wai – volume: 43 start-page: 491 year: 2002 ident: 10.1016/j.cam.2016.06.028_br000070 article-title: Application of global optimization and radial basis functions to numerical solutions of weakly singular Volterra integral equations publication-title: Comput. Math. Appl. doi: 10.1016/S0898-1221(01)00300-5 contributor: fullname: Galperin – volume: 73 start-page: 524 year: 1980 ident: 10.1016/j.cam.2016.06.028_br000010 article-title: Asymptotic bounds for solutions to a system of damped integro-differential equations of electromagnetic theory publication-title: J. Math. Anal. Appl. doi: 10.1016/0022-247X(80)90297-8 contributor: fullname: Bloom – year: 1982 ident: 10.1016/j.cam.2016.06.028_br000045 contributor: fullname: Tricomi – volume: 70 start-page: 1 year: 2005 ident: 10.1016/j.cam.2016.06.028_br000065 article-title: Legendre wavelets method for the nonlinear Volterra–Fredholm integral equations publication-title: Math. Comput. Simulation doi: 10.1016/j.matcom.2005.02.035 contributor: fullname: Yousefia – volume: 16 start-page: 1186 year: 2011 ident: 10.1016/j.cam.2016.06.028_br000130 article-title: A composite collocation method for the nonlinear mixed Volterra–Fredholm–Hammerstein integral equations publication-title: Commun. Nonlinear Sci. Numer. Simul. doi: 10.1016/j.cnsns.2010.06.013 contributor: fullname: Marzban – volume: 9 start-page: 235 year: 1992 ident: 10.1016/j.cam.2016.06.028_br000055 article-title: Implicitly linear collocation method for nonlinear Volterra equations publication-title: J. Appl. Numer. Math. doi: 10.1016/0168-9274(92)90018-9 contributor: fullname: Brunner – volume: 135 start-page: 157 year: 1988 ident: 10.1016/j.cam.2016.06.028_br000125 article-title: Szegos conjecture on Lebesgue constants for Legendre series publication-title: Pacific J. Math. doi: 10.2140/pjm.1988.135.157 contributor: fullname: Qu – volume: 2 start-page: 43 year: 1999 ident: 10.1016/j.cam.2016.06.028_br000040 article-title: Solutions of nonlinear integral equation of synthesis of the linear antenna arrays publication-title: BSUAE J. Appl. Electron. contributor: fullname: Voitovich – volume: 16 start-page: 1186 year: 2011 ident: 10.1016/j.cam.2016.06.028_br000060 article-title: A composite collocation method for the nonlinear mixed Volterra–Fredholm–Hammerstein integral equations publication-title: Commun. Nonlinear Sci. Numer. Simul. doi: 10.1016/j.cnsns.2010.06.013 contributor: fullname: Marzban – volume: 52 start-page: 541 year: 2009 ident: 10.1016/j.cam.2016.06.028_br000080 article-title: Numerical computation of the Tau approximation for the Volterra-Hammerstein integral equations publication-title: Numer. Algorithms doi: 10.1007/s11075-009-9297-9 contributor: fullname: Ghoreishi – year: 1986 ident: 10.1016/j.cam.2016.06.028_br000090 contributor: fullname: Liu – year: 2002 ident: 10.1016/j.cam.2016.06.028_br000030 contributor: fullname: Schiavane – volume: 6 start-page: 480 year: 1969 ident: 10.1016/j.cam.2016.06.028_br000115 article-title: The Tau method publication-title: SIAM J. Numer. Anal. doi: 10.1137/0706044 contributor: fullname: Ortiz – volume: 3 start-page: 43 year: 1981 ident: 10.1016/j.cam.2016.06.028_br000050 article-title: A variation of Nystrom’s method for Hammerstein equations publication-title: J. Integral Equations contributor: fullname: Lardy – volume: 154 start-page: 431 year: 2003 ident: 10.1016/j.cam.2016.06.028_br000005 article-title: On asymptotic methods for Fredholm–Volterra integral equation of the second kind in contact problems publication-title: J. Comput. Appl. Math. doi: 10.1016/S0377-0427(02)00862-2 contributor: fullname: Abdou – volume: 195 start-page: 1 year: 2004 ident: 10.1016/j.cam.2016.06.028_br000020 article-title: Second kind integral equations for the classical potential theory on open surface II publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2003.10.001 contributor: fullname: Jiang – volume: 218 start-page: 5292 year: 2012 ident: 10.1016/j.cam.2016.06.028_br000085 article-title: Numerical solution of nonlinear Volterra–Fredholm–Hammerstein integral equations via collocation method based on radial basis functions publication-title: Appl. Math. Comput. contributor: fullname: Parand – volume: 11 start-page: 72 year: 1988 ident: 10.1016/j.cam.2016.06.028_br000095 article-title: Numerical solution of differential eigenvalue problems with variable coefficients with the Tau-Collocation method publication-title: Math. Comput. Modelling doi: 10.1016/0895-7177(88)90577-8 contributor: fullname: Liu – volume: 17 start-page: 52 year: 2012 ident: 10.1016/j.cam.2016.06.028_br000025 article-title: Computational method based on Bernstein operational matrices for nonlinear Volterra–Fredholm–Hammerstein integral equations publication-title: Commun. Nonlinear Sci. Numer. Simul. doi: 10.1016/j.cnsns.2011.04.023 contributor: fullname: Maleknejad – volume: 200 start-page: 12 year: 2007 ident: 10.1016/j.cam.2016.06.028_br000035 article-title: On an integral equation for axially symmetric problem in the case of an elastic body containing an inclusion publication-title: J. Comput. Appl. Math. contributor: fullname: Semetanian – year: 2006 ident: 10.1016/j.cam.2016.06.028_br000120 contributor: fullname: Canuto – year: 1977 ident: 10.1016/j.cam.2016.06.028_br000015 contributor: fullname: Jaswon – year: 2004 ident: 10.1016/j.cam.2016.06.028_br000100 contributor: fullname: Chi Ngai |
SSID | ssj0006914 |
Score | 2.3023856 |
Snippet | In this paper, we consider the nonlinear Volterra–Fredholm–Hammerstein integral equations. The approximate solution for the nonlinear... In this paper, we consider the nonlinear Volterra-Fredholm-Hammerstein integral equations. The approximate solution for the nonlinear... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Publisher |
StartPage | 435 |
SubjectTerms | Approximation Computation Convergence Integral equations Mathematical analysis Mathematical models Matrix representation Nonlinear Volterra–Fredholm–Hammerstein integral equations Nonlinearity Sobolev space Spectra Tau-collocation method |
Title | Numerical solution of nonlinear Volterra–Fredholm–Hammerstein integral equations via Tau-collocation method with convergence analysis |
URI | https://dx.doi.org/10.1016/j.cam.2016.06.028 https://search.proquest.com/docview/1835584112 |
Volume | 308 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZKWWBAPEV5VEZiQgolcZw4I1RUhUIXHupmOYkjFVVt6YMRsTLzD_kl3NlOJRBiYEuiOEp85_OXe3xHyDFnhfaFyjyleeyFooA1l4SJl0dC6IDniW_qK267UfshvO7xXoU0y1oYTKt0tt_adGOt3ZWGm83GuN9v3J2xOMZOEYAozpjhBF02QaIqWT6_6rS7C4McJZbiG-73cEAZ3DRpXpnCenQ_Miye2JP99-3ph6E2u09rnaw52EjP7ZttkIoebpLV2wXn6nSLvHfnNvoyoKU-0VFBh5YLQ03o4wgj4xP1-fbRmugc3aFw6FzX2PSSOu6IAdXPlgF8Sl_6it6ruYf6MrLuPWq7TlN04VKTtW4KODVVjuBkmzy0Lu-bbc81WvAyFrOZlwQgGK5SjKkVUcrDTGd-hMw5AJfSqFBBLkQaxIVIuU4CraNE-GGWBWC1AQLkbIdU4Wv0LqFMax8QWhEypuBPM1cgIixvzQQyjsZJjZyU8yvHlk9DlolmTxKEIVEYEpPtAlEjYSkB-U0pJNj7v4YdldKSsFgwAqKGejSfSrBfHBAXYMy9_z16n6zgGeaz-PyAVGeTuT4EVDJL62Tp9NWvg-5dPHZu6k4H4epV7-ILAkDn9A |
link.rule.ids | 315,783,787,3515,4511,24130,27583,27938,27939,45599,45677,45693,45888 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZQGYAB8RTlaSQmpKhNHCfOCIiqQNuFgrpZTuJIRVUDacPMysw_5JdwFzuVQIiBLUriKPGdL5_v8R0hZ5xl2hUqcZTmoeOLDNZc5EdOGgihPZ5GblVf0R8E3Qf_dsRHS-SqroXBtEpr-41Nr6y1PdOys9l6Ho9b920WhtgpAhBFm1WcoMuABkLYgS1fXD7e9RYGOYgMxTfc7-CAOrhZpXklCuvR3aBi8cSe7L__nn4Y6urv09kg6xY20gvzZptkSU-3yFp_wbk62ybvg9JEXya01ieaZ3RquDBUQR9zjIwX6vPto1PoFN2hcGhd19j0klruiAnVL4YBfEZfx4oOVemgvuTGvUdN12mKLlxaZa1XBZyaKktwskMeOtfDq65jGy04CQvZ3Ik8EAxXMcbUsiDmfqITN0DmHIBLcZApLxUi9sJMxFxHntZBJFw_STyw2gABUrZLGvA1eo9QprULCC3zGVOw00wViAjLWxOBjKNh1CTn9fzKZ8OnIetEsycJwpAoDInJdp5oEr-WgPymFBLs_V_DTmtpSVgsGAFRU52XMwn2iwPiAoy5_79Hn5CV7rDfk72bwd0BWcUrmNvi8kPSmBelPgKEMo-PrQZ-ARtK52Y |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Numerical+solution+of+nonlinear+Volterra%E2%80%93Fredholm%E2%80%93Hammerstein+integral+equations+via+Tau-collocation+method+with+convergence+analysis&rft.jtitle=Journal+of+computational+and+applied+mathematics&rft.au=Gouyandeh%2C+Z.&rft.au=Allahviranloo%2C+T.&rft.au=Armand%2C+A.&rft.date=2016-12-15&rft.pub=Elsevier+B.V&rft.issn=0377-0427&rft.eissn=1879-1778&rft.volume=308&rft.spage=435&rft.epage=446&rft_id=info:doi/10.1016%2Fj.cam.2016.06.028&rft.externalDocID=S0377042716303004 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0377-0427&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0377-0427&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0377-0427&client=summon |