Numerical solution of nonlinear Volterra–Fredholm–Hammerstein integral equations via Tau-collocation method with convergence analysis

In this paper, we consider the nonlinear Volterra–Fredholm–Hammerstein integral equations. The approximate solution for the nonlinear Volterra–Fredholm–Hammerstein integral equations is obtained by using the Tau-Collocation method. To do this, the nonlinear Volterra–Fredholm–Hammerstein integral equ...

Full description

Saved in:
Bibliographic Details
Published inJournal of computational and applied mathematics Vol. 308; pp. 435 - 446
Main Authors Gouyandeh, Z., Allahviranloo, T., Armand, A.
Format Journal Article
LanguageEnglish
Published Elsevier B.V 15.12.2016
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this paper, we consider the nonlinear Volterra–Fredholm–Hammerstein integral equations. The approximate solution for the nonlinear Volterra–Fredholm–Hammerstein integral equations is obtained by using the Tau-Collocation method. To do this, the nonlinear Volterra–Fredholm–Hammerstein integral equations is transformed into a system of nonlinear algebraic equations in matrix form. Thus by solving this system unknown coefficients are obtained. The spectral rate of convergence for the proposed method is established in the L2-norm. The numerical results obtained with minimum amount of computation are compared with the exact solutions to show the efficiency of the method. The results show that the Tau-collocation method is of high accuracy, more convenient and efficient for solving nonlinear Volterra–Fredholm–Hammerstein integral equations.
AbstractList In this paper, we consider the nonlinear Volterra–Fredholm–Hammerstein integral equations. The approximate solution for the nonlinear Volterra–Fredholm–Hammerstein integral equations is obtained by using the Tau-Collocation method. To do this, the nonlinear Volterra–Fredholm–Hammerstein integral equations is transformed into a system of nonlinear algebraic equations in matrix form. Thus by solving this system unknown coefficients are obtained. The spectral rate of convergence for the proposed method is established in the L2-norm. The numerical results obtained with minimum amount of computation are compared with the exact solutions to show the efficiency of the method. The results show that the Tau-collocation method is of high accuracy, more convenient and efficient for solving nonlinear Volterra–Fredholm–Hammerstein integral equations.
In this paper, we consider the nonlinear Volterra-Fredholm-Hammerstein integral equations. The approximate solution for the nonlinear Volterra-Fredholm-Hammerstein integral equations is obtained by using the Tau-Collocation method. To do this, the nonlinear Volterra-Fredholm-Hammerstein integral equations is transformed into a system of nonlinear algebraic equations in matrix form. Thus by solving this system unknown coefficients are obtained. The spectral rate of convergence for the proposed method is established in the L-norm. The numerical results obtained with minimum amount of computation are compared with the exact solutions to show the efficiency of the method. The results show that the Tau-collocation method is of high accuracy, more convenient and efficient for solving nonlinear Volterra-Fredholm-Hammerstein integral equations.
Author Allahviranloo, T.
Gouyandeh, Z.
Armand, A.
Author_xml – sequence: 1
  givenname: Z.
  orcidid: 0000-0002-8485-7436
  surname: Gouyandeh
  fullname: Gouyandeh, Z.
  email: Zgouyandeh@yahoo.com
  organization: Department of Mathematics, Najafabad Branch, Islamic Azad University, Najafabad, Isfahan, Iran
– sequence: 2
  givenname: T.
  surname: Allahviranloo
  fullname: Allahviranloo, T.
  email: Tofigh@allahviranloo.com
  organization: Department of Mathematics, Science and Research Branch, Islamic Azad University, Tehran, Iran
– sequence: 3
  givenname: A.
  surname: Armand
  fullname: Armand, A.
  email: Atefeh.armand@ymail.com
  organization: Young researchers and Elite Club, Yadegar-e-Imam Khomeini (RAH) Shahr-e-Rey Branch, Islamic Azad University, Tehran, Iran
BookMark eNp9UM1KAzEYDFLB-vMA3nL0sjXJ_mXxJGJVKHpRryGb_damZBNNspXevHr2DX0SU-tZGPiGj5mBmUM0sc4CQqeUzCih1flqpuQwY4nOSALje2hKed1ktK75BE1JXtcZKVh9gA5DWBFCqoYWU_R5Pw7gtZIGB2fGqJ3Frscp3WgL0uNnZyJ4L78_vuYeuqUzQ6K3cki2EEFbrG2EF58C4G2U24CA11riRzlmyhnj1O8TDxCXrsPvOi6xcnYN_gWsAiytNJugwzHa76UJcPJ3j9DT_Prx6jZbPNzcXV0uMpXXecwaxjmUsuW0KfuqLQsFilaENhWrirbqJes4b1nd87aEhgFUDaeFUgykYqzo8iN0tst99e5thBDFoIMCY6QFNwZBeV6WvKCUJSndSZV3IXjoxavXg_QbQYnYzi5WIs0utrMLksB48lzsPJA6rDV4EZTeFu20BxVF5_Q_7h9y7ZKY
CitedBy_id crossref_primary_10_1016_j_apnum_2018_09_014
crossref_primary_10_3390_fractalfract7100730
crossref_primary_10_1007_s40995_019_00783_5
crossref_primary_10_3934_math_20231406
crossref_primary_10_1016_j_cam_2018_05_035
crossref_primary_10_1016_j_cam_2019_112533
crossref_primary_10_3390_sym15071408
crossref_primary_10_1002_num_22496
crossref_primary_10_1002_mma_8154
crossref_primary_10_1016_j_matcom_2024_04_008
crossref_primary_10_3390_a15060203
Cites_doi 10.1016/S0377-0427(99)00297-6
10.1016/S0898-1221(01)00300-5
10.1016/0022-247X(80)90297-8
10.1016/j.matcom.2005.02.035
10.1016/j.cnsns.2010.06.013
10.1016/0168-9274(92)90018-9
10.2140/pjm.1988.135.157
10.1007/s11075-009-9297-9
10.1137/0706044
10.1016/S0377-0427(02)00862-2
10.1016/j.jcp.2003.10.001
10.1016/0895-7177(88)90577-8
10.1016/j.cnsns.2011.04.023
ContentType Journal Article
Copyright 2016 Elsevier B.V.
Copyright_xml – notice: 2016 Elsevier B.V.
DBID AAYXX
CITATION
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1016/j.cam.2016.06.028
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1879-1778
EndPage 446
ExternalDocumentID 10_1016_j_cam_2016_06_028
S0377042716303004
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAXUO
ABAOU
ABJNI
ABMAC
ABVKL
ABYKQ
ACAZW
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AEXQZ
AFKWA
AFTJW
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
IHE
IXB
J1W
KOM
LG9
M26
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSW
SSZ
T5K
TN5
UPT
XPP
YQT
ZMT
~02
~G-
0SF
29K
5VS
6I.
AAFWJ
AAQFI
AAQXK
AAXKI
AAYXX
ABEFU
ABFNM
ABTAH
ABXDB
ADMUD
ADVLN
AFJKZ
AGHFR
AKRWK
ASPBG
AVWKF
AZFZN
CITATION
D-I
FGOYB
G-2
G8K
HZ~
NCXOZ
NHB
R2-
SEW
WUQ
ZY4
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c373t-9288e5ab8195f6b54cec160196264b6fa2d88b27f8b5e92ee69814cc2eac224d3
IEDL.DBID AIKHN
ISSN 0377-0427
IngestDate Fri Oct 25 02:39:47 EDT 2024
Thu Sep 26 17:39:37 EDT 2024
Fri Feb 23 02:31:37 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Nonlinear Volterra–Fredholm–Hammerstein integral equations
Matrix representation
Tau-collocation method
Sobolev space
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c373t-9288e5ab8195f6b54cec160196264b6fa2d88b27f8b5e92ee69814cc2eac224d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-8485-7436
OpenAccessLink https://doi.org/10.1016/j.cam.2016.06.028
PQID 1835584112
PQPubID 23500
PageCount 12
ParticipantIDs proquest_miscellaneous_1835584112
crossref_primary_10_1016_j_cam_2016_06_028
elsevier_sciencedirect_doi_10_1016_j_cam_2016_06_028
PublicationCentury 2000
PublicationDate 2016-12-15
PublicationDateYYYYMMDD 2016-12-15
PublicationDate_xml – month: 12
  year: 2016
  text: 2016-12-15
  day: 15
PublicationDecade 2010
PublicationTitle Journal of computational and applied mathematics
PublicationYear 2016
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Lardy (br000050) 1981; 3
Brunner (br000055) 1992; 9
Marzban, Tabrizidooz, Razzaghi (br000060) 2011; 16
Ghoreishi, Hadizadeh (br000080) 2009; 52
Galperin, Kansa (br000070) 2002; 43
Marzban, Tabrizidooz, Razzaghi (br000130) 2011; 16
Wai Wai (br000105) 2004
Qu, Wong (br000125) 1988; 135
Chi Ngai (br000100) 2004
Ortiz (br000115) 1969; 6
Semetanian (br000035) 2007; 200
Voitovich, Reshnyak (br000040) 1999; 2
Canuto, Hussaini, Quarteroni, Zang (br000120) 2006
Liu (br000095) 1988; 11
Liu (br000090) 1986
Allahviranloo, Gouyandeh, Armand (br000110) 2015; 271
Schiavane, Constanda, Mioduchowski (br000030) 2002
Abdou (br000005) 2003; 154
Bloom (br000010) 1980; 73
Jaswon, Symm (br000015) 1977
Galperin, Kansa, Makroglou, Nelson (br000075) 2000; 115
Yousefia, Razzaghi (br000065) 2005; 70
Tricomi (br000045) 1982
Jiang, Rokhlin (br000020) 2004; 195
Parand, Rad (br000085) 2012; 218
Maleknejad, Hashemizadeh, Basirat (br000025) 2012; 17
Ghoreishi (10.1016/j.cam.2016.06.028_br000080) 2009; 52
Parand (10.1016/j.cam.2016.06.028_br000085) 2012; 218
Allahviranloo (10.1016/j.cam.2016.06.028_br000110) 2015; 271
Liu (10.1016/j.cam.2016.06.028_br000095) 1988; 11
Galperin (10.1016/j.cam.2016.06.028_br000070) 2002; 43
Chi Ngai (10.1016/j.cam.2016.06.028_br000100) 2004
Ortiz (10.1016/j.cam.2016.06.028_br000115) 1969; 6
Lardy (10.1016/j.cam.2016.06.028_br000050) 1981; 3
Maleknejad (10.1016/j.cam.2016.06.028_br000025) 2012; 17
Brunner (10.1016/j.cam.2016.06.028_br000055) 1992; 9
Wai Wai (10.1016/j.cam.2016.06.028_br000105) 2004
Galperin (10.1016/j.cam.2016.06.028_br000075) 2000; 115
Bloom (10.1016/j.cam.2016.06.028_br000010) 1980; 73
Jaswon (10.1016/j.cam.2016.06.028_br000015) 1977
Schiavane (10.1016/j.cam.2016.06.028_br000030) 2002
Marzban (10.1016/j.cam.2016.06.028_br000060) 2011; 16
Abdou (10.1016/j.cam.2016.06.028_br000005) 2003; 154
Qu (10.1016/j.cam.2016.06.028_br000125) 1988; 135
Jiang (10.1016/j.cam.2016.06.028_br000020) 2004; 195
Semetanian (10.1016/j.cam.2016.06.028_br000035) 2007; 200
Tricomi (10.1016/j.cam.2016.06.028_br000045) 1982
Marzban (10.1016/j.cam.2016.06.028_br000130) 2011; 16
Liu (10.1016/j.cam.2016.06.028_br000090) 1986
Voitovich (10.1016/j.cam.2016.06.028_br000040) 1999; 2
Canuto (10.1016/j.cam.2016.06.028_br000120) 2006
Yousefia (10.1016/j.cam.2016.06.028_br000065) 2005; 70
References_xml – volume: 11
  start-page: 72
  year: 1988
  end-page: 675
  ident: br000095
  article-title: Numerical solution of differential eigenvalue problems with variable coefficients with the Tau-Collocation method
  publication-title: Math. Comput. Modelling
  contributor:
    fullname: Liu
– volume: 16
  start-page: 1186
  year: 2011
  end-page: 1194
  ident: br000060
  article-title: A composite collocation method for the nonlinear mixed Volterra–Fredholm–Hammerstein integral equations
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
  contributor:
    fullname: Razzaghi
– volume: 195
  start-page: 1
  year: 2004
  end-page: 16
  ident: br000020
  article-title: Second kind integral equations for the classical potential theory on open surface II
  publication-title: J. Comput. Phys.
  contributor:
    fullname: Rokhlin
– volume: 6
  start-page: 480
  year: 1969
  end-page: 492
  ident: br000115
  article-title: The Tau method
  publication-title: SIAM J. Numer. Anal.
  contributor:
    fullname: Ortiz
– volume: 115
  start-page: 193
  year: 2000
  end-page: 211
  ident: br000075
  article-title: Variable transformations in the numerical solution of second kind Volterra integral equations with continuous and weakly singular kernels; extensions to Fredholm integral equations
  publication-title: J. Comput. Appl. Math.
  contributor:
    fullname: Nelson
– volume: 52
  start-page: 541
  year: 2009
  end-page: 559
  ident: br000080
  article-title: Numerical computation of the Tau approximation for the Volterra-Hammerstein integral equations
  publication-title: Numer. Algorithms
  contributor:
    fullname: Hadizadeh
– volume: 154
  start-page: 431
  year: 2003
  end-page: 446
  ident: br000005
  article-title: On asymptotic methods for Fredholm–Volterra integral equation of the second kind in contact problems
  publication-title: J. Comput. Appl. Math.
  contributor:
    fullname: Abdou
– year: 2006
  ident: br000120
  article-title: Spectral Methods Fundamentals in Single Domains
  contributor:
    fullname: Zang
– year: 2004
  ident: br000100
  article-title: Numerical Solution of Partial Differential Equations with the Tau-Collocation Method
  contributor:
    fullname: Chi Ngai
– volume: 9
  start-page: 235
  year: 1992
  end-page: 247
  ident: br000055
  article-title: Implicitly linear collocation method for nonlinear Volterra equations
  publication-title: J. Appl. Numer. Math.
  contributor:
    fullname: Brunner
– volume: 135
  start-page: 157
  year: 1988
  end-page: 188
  ident: br000125
  article-title: Szegos conjecture on Lebesgue constants for Legendre series
  publication-title: Pacific J. Math.
  contributor:
    fullname: Wong
– volume: 2
  start-page: 43
  year: 1999
  end-page: 52
  ident: br000040
  article-title: Solutions of nonlinear integral equation of synthesis of the linear antenna arrays
  publication-title: BSUAE J. Appl. Electron.
  contributor:
    fullname: Reshnyak
– year: 2004
  ident: br000105
  article-title: Numerical Solution of Linear and Nonlinear Ordinary Differential Equations with the Tau-Collocation Method
  contributor:
    fullname: Wai Wai
– volume: 17
  start-page: 52
  year: 2012
  end-page: 61
  ident: br000025
  article-title: Computational method based on Bernstein operational matrices for nonlinear Volterra–Fredholm–Hammerstein integral equations
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
  contributor:
    fullname: Basirat
– year: 1982
  ident: br000045
  article-title: Integral Equations
  contributor:
    fullname: Tricomi
– volume: 16
  start-page: 1186
  year: 2011
  end-page: 1194
  ident: br000130
  article-title: A composite collocation method for the nonlinear mixed Volterra–Fredholm–Hammerstein integral equations
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
  contributor:
    fullname: Razzaghi
– year: 1986
  ident: br000090
  article-title: A New Formulation of the Tau-Collocation Method for the Numerical Solution of Differential Equations. Res. Rep. 0286
  contributor:
    fullname: Liu
– year: 1977
  ident: br000015
  article-title: Integral Equation Methods in Potential Theory and Elastostatics
  contributor:
    fullname: Symm
– volume: 200
  start-page: 12
  year: 2007
  end-page: 20
  ident: br000035
  article-title: On an integral equation for axially symmetric problem in the case of an elastic body containing an inclusion
  publication-title: J. Comput. Appl. Math.
  contributor:
    fullname: Semetanian
– volume: 271
  start-page: 979
  year: 2015
  end-page: 990
  ident: br000110
  article-title: Numerical solutions for fractional differential equations by Tau-Collocation method
  publication-title: Appl. Math. Comput.
  contributor:
    fullname: Armand
– volume: 43
  start-page: 491
  year: 2002
  end-page: 499
  ident: br000070
  article-title: Application of global optimization and radial basis functions to numerical solutions of weakly singular Volterra integral equations
  publication-title: Comput. Math. Appl.
  contributor:
    fullname: Kansa
– volume: 70
  start-page: 1
  year: 2005
  end-page: 8
  ident: br000065
  article-title: Legendre wavelets method for the nonlinear Volterra–Fredholm integral equations
  publication-title: Math. Comput. Simulation
  contributor:
    fullname: Razzaghi
– volume: 218
  start-page: 5292
  year: 2012
  end-page: 5309
  ident: br000085
  article-title: Numerical solution of nonlinear Volterra–Fredholm–Hammerstein integral equations via collocation method based on radial basis functions
  publication-title: Appl. Math. Comput.
  contributor:
    fullname: Rad
– volume: 3
  start-page: 43
  year: 1981
  end-page: 60
  ident: br000050
  article-title: A variation of Nystrom’s method for Hammerstein equations
  publication-title: J. Integral Equations
  contributor:
    fullname: Lardy
– volume: 73
  start-page: 524
  year: 1980
  end-page: 542
  ident: br000010
  article-title: Asymptotic bounds for solutions to a system of damped integro-differential equations of electromagnetic theory
  publication-title: J. Math. Anal. Appl.
  contributor:
    fullname: Bloom
– year: 2002
  ident: br000030
  article-title: Integral Methods in Science and Engineering
  contributor:
    fullname: Mioduchowski
– volume: 271
  start-page: 979
  year: 2015
  ident: 10.1016/j.cam.2016.06.028_br000110
  article-title: Numerical solutions for fractional differential equations by Tau-Collocation method
  publication-title: Appl. Math. Comput.
  contributor:
    fullname: Allahviranloo
– volume: 115
  start-page: 193
  year: 2000
  ident: 10.1016/j.cam.2016.06.028_br000075
  article-title: Variable transformations in the numerical solution of second kind Volterra integral equations with continuous and weakly singular kernels; extensions to Fredholm integral equations
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/S0377-0427(99)00297-6
  contributor:
    fullname: Galperin
– year: 2004
  ident: 10.1016/j.cam.2016.06.028_br000105
  contributor:
    fullname: Wai Wai
– volume: 43
  start-page: 491
  year: 2002
  ident: 10.1016/j.cam.2016.06.028_br000070
  article-title: Application of global optimization and radial basis functions to numerical solutions of weakly singular Volterra integral equations
  publication-title: Comput. Math. Appl.
  doi: 10.1016/S0898-1221(01)00300-5
  contributor:
    fullname: Galperin
– volume: 73
  start-page: 524
  year: 1980
  ident: 10.1016/j.cam.2016.06.028_br000010
  article-title: Asymptotic bounds for solutions to a system of damped integro-differential equations of electromagnetic theory
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/0022-247X(80)90297-8
  contributor:
    fullname: Bloom
– year: 1982
  ident: 10.1016/j.cam.2016.06.028_br000045
  contributor:
    fullname: Tricomi
– volume: 70
  start-page: 1
  year: 2005
  ident: 10.1016/j.cam.2016.06.028_br000065
  article-title: Legendre wavelets method for the nonlinear Volterra–Fredholm integral equations
  publication-title: Math. Comput. Simulation
  doi: 10.1016/j.matcom.2005.02.035
  contributor:
    fullname: Yousefia
– volume: 16
  start-page: 1186
  year: 2011
  ident: 10.1016/j.cam.2016.06.028_br000130
  article-title: A composite collocation method for the nonlinear mixed Volterra–Fredholm–Hammerstein integral equations
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
  doi: 10.1016/j.cnsns.2010.06.013
  contributor:
    fullname: Marzban
– volume: 9
  start-page: 235
  year: 1992
  ident: 10.1016/j.cam.2016.06.028_br000055
  article-title: Implicitly linear collocation method for nonlinear Volterra equations
  publication-title: J. Appl. Numer. Math.
  doi: 10.1016/0168-9274(92)90018-9
  contributor:
    fullname: Brunner
– volume: 135
  start-page: 157
  year: 1988
  ident: 10.1016/j.cam.2016.06.028_br000125
  article-title: Szegos conjecture on Lebesgue constants for Legendre series
  publication-title: Pacific J. Math.
  doi: 10.2140/pjm.1988.135.157
  contributor:
    fullname: Qu
– volume: 2
  start-page: 43
  year: 1999
  ident: 10.1016/j.cam.2016.06.028_br000040
  article-title: Solutions of nonlinear integral equation of synthesis of the linear antenna arrays
  publication-title: BSUAE J. Appl. Electron.
  contributor:
    fullname: Voitovich
– volume: 16
  start-page: 1186
  year: 2011
  ident: 10.1016/j.cam.2016.06.028_br000060
  article-title: A composite collocation method for the nonlinear mixed Volterra–Fredholm–Hammerstein integral equations
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
  doi: 10.1016/j.cnsns.2010.06.013
  contributor:
    fullname: Marzban
– volume: 52
  start-page: 541
  year: 2009
  ident: 10.1016/j.cam.2016.06.028_br000080
  article-title: Numerical computation of the Tau approximation for the Volterra-Hammerstein integral equations
  publication-title: Numer. Algorithms
  doi: 10.1007/s11075-009-9297-9
  contributor:
    fullname: Ghoreishi
– year: 1986
  ident: 10.1016/j.cam.2016.06.028_br000090
  contributor:
    fullname: Liu
– year: 2002
  ident: 10.1016/j.cam.2016.06.028_br000030
  contributor:
    fullname: Schiavane
– volume: 6
  start-page: 480
  year: 1969
  ident: 10.1016/j.cam.2016.06.028_br000115
  article-title: The Tau method
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/0706044
  contributor:
    fullname: Ortiz
– volume: 3
  start-page: 43
  year: 1981
  ident: 10.1016/j.cam.2016.06.028_br000050
  article-title: A variation of Nystrom’s method for Hammerstein equations
  publication-title: J. Integral Equations
  contributor:
    fullname: Lardy
– volume: 154
  start-page: 431
  year: 2003
  ident: 10.1016/j.cam.2016.06.028_br000005
  article-title: On asymptotic methods for Fredholm–Volterra integral equation of the second kind in contact problems
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/S0377-0427(02)00862-2
  contributor:
    fullname: Abdou
– volume: 195
  start-page: 1
  year: 2004
  ident: 10.1016/j.cam.2016.06.028_br000020
  article-title: Second kind integral equations for the classical potential theory on open surface II
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2003.10.001
  contributor:
    fullname: Jiang
– volume: 218
  start-page: 5292
  year: 2012
  ident: 10.1016/j.cam.2016.06.028_br000085
  article-title: Numerical solution of nonlinear Volterra–Fredholm–Hammerstein integral equations via collocation method based on radial basis functions
  publication-title: Appl. Math. Comput.
  contributor:
    fullname: Parand
– volume: 11
  start-page: 72
  year: 1988
  ident: 10.1016/j.cam.2016.06.028_br000095
  article-title: Numerical solution of differential eigenvalue problems with variable coefficients with the Tau-Collocation method
  publication-title: Math. Comput. Modelling
  doi: 10.1016/0895-7177(88)90577-8
  contributor:
    fullname: Liu
– volume: 17
  start-page: 52
  year: 2012
  ident: 10.1016/j.cam.2016.06.028_br000025
  article-title: Computational method based on Bernstein operational matrices for nonlinear Volterra–Fredholm–Hammerstein integral equations
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
  doi: 10.1016/j.cnsns.2011.04.023
  contributor:
    fullname: Maleknejad
– volume: 200
  start-page: 12
  year: 2007
  ident: 10.1016/j.cam.2016.06.028_br000035
  article-title: On an integral equation for axially symmetric problem in the case of an elastic body containing an inclusion
  publication-title: J. Comput. Appl. Math.
  contributor:
    fullname: Semetanian
– year: 2006
  ident: 10.1016/j.cam.2016.06.028_br000120
  contributor:
    fullname: Canuto
– year: 1977
  ident: 10.1016/j.cam.2016.06.028_br000015
  contributor:
    fullname: Jaswon
– year: 2004
  ident: 10.1016/j.cam.2016.06.028_br000100
  contributor:
    fullname: Chi Ngai
SSID ssj0006914
Score 2.3023856
Snippet In this paper, we consider the nonlinear Volterra–Fredholm–Hammerstein integral equations. The approximate solution for the nonlinear...
In this paper, we consider the nonlinear Volterra-Fredholm-Hammerstein integral equations. The approximate solution for the nonlinear...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Publisher
StartPage 435
SubjectTerms Approximation
Computation
Convergence
Integral equations
Mathematical analysis
Mathematical models
Matrix representation
Nonlinear Volterra–Fredholm–Hammerstein integral equations
Nonlinearity
Sobolev space
Spectra
Tau-collocation method
Title Numerical solution of nonlinear Volterra–Fredholm–Hammerstein integral equations via Tau-collocation method with convergence analysis
URI https://dx.doi.org/10.1016/j.cam.2016.06.028
https://search.proquest.com/docview/1835584112
Volume 308
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZKWWBAPEV5VEZiQgolcZw4I1RUhUIXHupmOYkjFVVt6YMRsTLzD_kl3NlOJRBiYEuiOEp85_OXe3xHyDFnhfaFyjyleeyFooA1l4SJl0dC6IDniW_qK267UfshvO7xXoU0y1oYTKt0tt_adGOt3ZWGm83GuN9v3J2xOMZOEYAozpjhBF02QaIqWT6_6rS7C4McJZbiG-73cEAZ3DRpXpnCenQ_Miye2JP99-3ph6E2u09rnaw52EjP7ZttkIoebpLV2wXn6nSLvHfnNvoyoKU-0VFBh5YLQ03o4wgj4xP1-fbRmugc3aFw6FzX2PSSOu6IAdXPlgF8Sl_6it6ruYf6MrLuPWq7TlN04VKTtW4KODVVjuBkmzy0Lu-bbc81WvAyFrOZlwQgGK5SjKkVUcrDTGd-hMw5AJfSqFBBLkQaxIVIuU4CraNE-GGWBWC1AQLkbIdU4Wv0LqFMax8QWhEypuBPM1cgIixvzQQyjsZJjZyU8yvHlk9DlolmTxKEIVEYEpPtAlEjYSkB-U0pJNj7v4YdldKSsFgwAqKGejSfSrBfHBAXYMy9_z16n6zgGeaz-PyAVGeTuT4EVDJL62Tp9NWvg-5dPHZu6k4H4epV7-ILAkDn9A
link.rule.ids 315,783,787,3515,4511,24130,27583,27938,27939,45599,45677,45693,45888
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZQGYAB8RTlaSQmpKhNHCfOCIiqQNuFgrpZTuJIRVUDacPMysw_5JdwFzuVQIiBLUriKPGdL5_v8R0hZ5xl2hUqcZTmoeOLDNZc5EdOGgihPZ5GblVf0R8E3Qf_dsRHS-SqroXBtEpr-41Nr6y1PdOys9l6Ho9b920WhtgpAhBFm1WcoMuABkLYgS1fXD7e9RYGOYgMxTfc7-CAOrhZpXklCuvR3aBi8cSe7L__nn4Y6urv09kg6xY20gvzZptkSU-3yFp_wbk62ybvg9JEXya01ieaZ3RquDBUQR9zjIwX6vPto1PoFN2hcGhd19j0klruiAnVL4YBfEZfx4oOVemgvuTGvUdN12mKLlxaZa1XBZyaKktwskMeOtfDq65jGy04CQvZ3Ik8EAxXMcbUsiDmfqITN0DmHIBLcZApLxUi9sJMxFxHntZBJFw_STyw2gABUrZLGvA1eo9QprULCC3zGVOw00wViAjLWxOBjKNh1CTn9fzKZ8OnIetEsycJwpAoDInJdp5oEr-WgPymFBLs_V_DTmtpSVgsGAFRU52XMwn2iwPiAoy5_79Hn5CV7rDfk72bwd0BWcUrmNvi8kPSmBelPgKEMo-PrQZ-ARtK52Y
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Numerical+solution+of+nonlinear+Volterra%E2%80%93Fredholm%E2%80%93Hammerstein+integral+equations+via+Tau-collocation+method+with+convergence+analysis&rft.jtitle=Journal+of+computational+and+applied+mathematics&rft.au=Gouyandeh%2C+Z.&rft.au=Allahviranloo%2C+T.&rft.au=Armand%2C+A.&rft.date=2016-12-15&rft.pub=Elsevier+B.V&rft.issn=0377-0427&rft.eissn=1879-1778&rft.volume=308&rft.spage=435&rft.epage=446&rft_id=info:doi/10.1016%2Fj.cam.2016.06.028&rft.externalDocID=S0377042716303004
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0377-0427&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0377-0427&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0377-0427&client=summon