Suppression of age-related salivary gland autoimmunity by glycosylation-dependent galectin-1-driven immune inhibitory circuits
Aging elicits quantitative and qualitative changes in different immune components, leading to disruption of tolerogenic circuits and development of autoimmune disorders. Galectin-1 (Gal1), an endogenous glycan-binding protein, has emerged as a regulator of immune cell homeostasis by shaping the fate...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 117; no. 12; pp. 6630 - 6639 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
24.03.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Aging elicits quantitative and qualitative changes in different immune components, leading to disruption of tolerogenic circuits and development of autoimmune disorders. Galectin-1 (Gal1), an endogenous glycan-binding protein, has emerged as a regulator of immune cell homeostasis by shaping the fate of myeloid and lymphoid cells. Here, we demonstrate that aged Gal1-null mutant (Lgals1−/−) mice develop a spontaneous inflammatory process in salivary glands that resembles Sjögren’s syndrome. This spontaneous autoimmune phenotype was recapitulated in mice lacking β1,6N-acetylglucosaminyltransferase V (Mgat5), an enzyme responsible for generating β1,6-branched complex N-glycans, which serve as a major ligand for this lectin. Lack of Gal1 resulted in CD11c⁺ dendritic cells (DCs) with higher immunogenic potential, lower frequency of Foxp3⁺ regulatory T cells (Tregs), and increased number of CD8⁺ T cells with greater effector capacity. Supporting its tolerogenic activity, Gal1 expression decreased with age in autoimmunity-prone nonobese diabetic (NOD) mice. Treatment with recombinant Gal1 restored tolerogenic mechanisms and reduced salivary gland inflammation. Accordingly, labial biopsies from primary Sjögren’s syndrome patients showed reduced Gal1 expression concomitant with higher number of infiltrating CD8⁺ T cells. Thus, endogenous Gal1 serves as a homeostatic rheostat that safeguards immune tolerance and prevents age-dependent development of spontaneous autoimmunity. |
---|---|
AbstractList | Significance
Different immune inhibitory circuits act in concert to prevent and limit the extent of deleterious autoimmune reactions occurring during the aging process. An in-depth understanding of these pathways is critical for implementation of more selective and powerful immunomodulatory modalities capable of attenuating autoimmune inflammation. Here we show that lack of galectin-1 (an endogenous β-galactoside-binding protein) or specific N-glycosylated ligands leads to a gradual breakdown of tolerogenic programs and to the establishment of age-related salivary gland autoimmunity. This study emphasizes the role of lectin–glycan interactions in the maintenance and restoration of immune tolerance and highlights their clinical relevance and therapeutic potential in chronic inflammatory disorders.
Aging elicits quantitative and qualitative changes in different immune components, leading to disruption of tolerogenic circuits and development of autoimmune disorders. Galectin-1 (Gal1), an endogenous glycan-binding protein, has emerged as a regulator of immune cell homeostasis by shaping the fate of myeloid and lymphoid cells. Here, we demonstrate that aged Gal1-null mutant (
Lgals1
−
/
−
) mice develop a spontaneous inflammatory process in salivary glands that resembles Sjögren’s syndrome. This spontaneous autoimmune phenotype was recapitulated in mice lacking β1,6N-acetylglucosaminyltransferase V (Mgat5), an enzyme responsible for generating β1,6-branched complex N-glycans, which serve as a major ligand for this lectin. Lack of Gal1 resulted in CD11c
+
dendritic cells (DCs) with higher immunogenic potential, lower frequency of Foxp3
+
regulatory T cells (Tregs), and increased number of CD8
+
T cells with greater effector capacity. Supporting its tolerogenic activity, Gal1 expression decreased with age in autoimmunity-prone nonobese diabetic (NOD) mice. Treatment with recombinant Gal1 restored tolerogenic mechanisms and reduced salivary gland inflammation. Accordingly, labial biopsies from primary Sjögren’s syndrome patients showed reduced Gal1 expression concomitant with higher number of infiltrating CD8
+
T cells. Thus, endogenous Gal1 serves as a homeostatic rheostat that safeguards immune tolerance and prevents age-dependent development of spontaneous autoimmunity. Aging elicits quantitative and qualitative changes in different immune components, leading to disruption of tolerogenic circuits and development of autoimmune disorders. Galectin-1 (Gal1), an endogenous glycan-binding protein, has emerged as a regulator of immune cell homeostasis by shaping the fate of myeloid and lymphoid cells. Here, we demonstrate that aged Gal1-null mutant (Lgals1−/−) mice develop a spontaneous inflammatory process in salivary glands that resembles Sjögren’s syndrome. This spontaneous autoimmune phenotype was recapitulated in mice lacking β1,6N-acetylglucosaminyltransferase V (Mgat5), an enzyme responsible for generating β1,6-branched complex N-glycans, which serve as a major ligand for this lectin. Lack of Gal1 resulted in CD11c⁺ dendritic cells (DCs) with higher immunogenic potential, lower frequency of Foxp3⁺ regulatory T cells (Tregs), and increased number of CD8⁺ T cells with greater effector capacity. Supporting its tolerogenic activity, Gal1 expression decreased with age in autoimmunity-prone nonobese diabetic (NOD) mice. Treatment with recombinant Gal1 restored tolerogenic mechanisms and reduced salivary gland inflammation. Accordingly, labial biopsies from primary Sjögren’s syndrome patients showed reduced Gal1 expression concomitant with higher number of infiltrating CD8⁺ T cells. Thus, endogenous Gal1 serves as a homeostatic rheostat that safeguards immune tolerance and prevents age-dependent development of spontaneous autoimmunity. Different immune inhibitory circuits act in concert to prevent and limit the extent of deleterious autoimmune reactions occurring during the aging process. An in-depth understanding of these pathways is critical for implementation of more selective and powerful immunomodulatory modalities capable of attenuating autoimmune inflammation. Here we show that lack of galectin-1 (an endogenous β-galactoside-binding protein) or specific N-glycosylated ligands leads to a gradual breakdown of tolerogenic programs and to the establishment of age-related salivary gland autoimmunity. This study emphasizes the role of lectin–glycan interactions in the maintenance and restoration of immune tolerance and highlights their clinical relevance and therapeutic potential in chronic inflammatory disorders. Aging elicits quantitative and qualitative changes in different immune components, leading to disruption of tolerogenic circuits and development of autoimmune disorders. Galectin-1 (Gal1), an endogenous glycan-binding protein, has emerged as a regulator of immune cell homeostasis by shaping the fate of myeloid and lymphoid cells. Here, we demonstrate that aged Gal1-null mutant ( Lgals1 − / − ) mice develop a spontaneous inflammatory process in salivary glands that resembles Sjögren’s syndrome. This spontaneous autoimmune phenotype was recapitulated in mice lacking β1,6N-acetylglucosaminyltransferase V (Mgat5), an enzyme responsible for generating β1,6-branched complex N-glycans, which serve as a major ligand for this lectin. Lack of Gal1 resulted in CD11c + dendritic cells (DCs) with higher immunogenic potential, lower frequency of Foxp3 + regulatory T cells (Tregs), and increased number of CD8 + T cells with greater effector capacity. Supporting its tolerogenic activity, Gal1 expression decreased with age in autoimmunity-prone nonobese diabetic (NOD) mice. Treatment with recombinant Gal1 restored tolerogenic mechanisms and reduced salivary gland inflammation. Accordingly, labial biopsies from primary Sjögren’s syndrome patients showed reduced Gal1 expression concomitant with higher number of infiltrating CD8 + T cells. Thus, endogenous Gal1 serves as a homeostatic rheostat that safeguards immune tolerance and prevents age-dependent development of spontaneous autoimmunity. Aging elicits quantitative and qualitative changes in different immune components, leading to disruption of tolerogenic circuits and development of autoimmune disorders. Galectin-1 (Gal1), an endogenous glycan-binding protein, has emerged as a regulator of immune cell homeostasis by shaping the fate of myeloid and lymphoid cells. Here, we demonstrate that aged Gal1-null mutant (Lgals1−/−) mice develop a spontaneous inflammatory process in salivary glands that resembles Sjögren's syndrome. This spontaneous autoimmune phenotype was recapitulated in mice lacking β1,6N-acetylglucosaminyltransferase V (Mgat5), an enzyme responsible for generating β1,6-branched complex N-glycans, which serve as a major ligand for this lectin. Lack of Gal1 resulted in CD11c+ dendritic cells (DCs) with higher immunogenic potential, lower frequency of Foxp3+ regulatory T cells (Tregs), and increased number of CD8+ T cells with greater effector capacity. Supporting its tolerogenic activity, Gal1 expression decreased with age in autoimmunity-prone nonobese diabetic (NOD) mice. Treatment with recombinant Gal1 restored tolerogenic mechanisms and reduced salivary gland inflammation. Accordingly, labial biopsies from primary Sjögren's syndrome patients showed reduced Gal1 expression concomitant with higher number of infiltrating CD8+ T cells. Thus, endogenous Gal1 serves as a homeostatic rheostat that safeguards immune tolerance and prevents age-dependent development of spontaneous autoimmunity. Aging elicits quantitative and qualitative changes in different immune components, leading to disruption of tolerogenic circuits and development of autoimmune disorders. Galectin-1 (Gal1), an endogenous glycan-binding protein, has emerged as a regulator of immune cell homeostasis by shaping the fate of myeloid and lymphoid cells. Here, we demonstrate that aged Gal1-null mutant ( ) mice develop a spontaneous inflammatory process in salivary glands that resembles Sjögren's syndrome. This spontaneous autoimmune phenotype was recapitulated in mice lacking β1,6N-acetylglucosaminyltransferase V (Mgat5), an enzyme responsible for generating β1,6-branched complex N-glycans, which serve as a major ligand for this lectin. Lack of Gal1 resulted in CD11c dendritic cells (DCs) with higher immunogenic potential, lower frequency of Foxp3 regulatory T cells (Tregs), and increased number of CD8 T cells with greater effector capacity. Supporting its tolerogenic activity, Gal1 expression decreased with age in autoimmunity-prone nonobese diabetic (NOD) mice. Treatment with recombinant Gal1 restored tolerogenic mechanisms and reduced salivary gland inflammation. Accordingly, labial biopsies from primary Sjögren's syndrome patients showed reduced Gal1 expression concomitant with higher number of infiltrating CD8 T cells. Thus, endogenous Gal1 serves as a homeostatic rheostat that safeguards immune tolerance and prevents age-dependent development of spontaneous autoimmunity. |
Author | Pinto, Nicolás A. Deladoey, Ángel Pellet, Antonio Catalán Maronna, Esteban Sarbia, Nicolas Marcaida, Priscila Gatto, Sabrina G. Durigan, Virginia Dalotto-Moreno, Tomás Rabinovich, Gabriel A. Morales, Rosa M. Mamani, Marta Cocco, Montana N. Manselle Croci, Diego O. Secco, Anastasia Stupirski, Juan C. Hauk, Vanesa Toscano, Marta A. Leiros, Claudia Pérez Allo, Verónica C. Martínez Dos Santos, Alicia |
Author_xml | – sequence: 1 givenname: Verónica C. Martínez surname: Allo fullname: Allo, Verónica C. Martínez – sequence: 2 givenname: Vanesa surname: Hauk fullname: Hauk, Vanesa – sequence: 3 givenname: Nicolas surname: Sarbia fullname: Sarbia, Nicolas – sequence: 4 givenname: Nicolás A. surname: Pinto fullname: Pinto, Nicolás A. – sequence: 5 givenname: Diego O. surname: Croci fullname: Croci, Diego O. – sequence: 6 givenname: Tomás surname: Dalotto-Moreno fullname: Dalotto-Moreno, Tomás – sequence: 7 givenname: Rosa M. surname: Morales fullname: Morales, Rosa M. – sequence: 8 givenname: Sabrina G. surname: Gatto fullname: Gatto, Sabrina G. – sequence: 9 givenname: Montana N. Manselle surname: Cocco fullname: Cocco, Montana N. Manselle – sequence: 10 givenname: Juan C. surname: Stupirski fullname: Stupirski, Juan C. – sequence: 11 givenname: Ángel surname: Deladoey fullname: Deladoey, Ángel – sequence: 12 givenname: Esteban surname: Maronna fullname: Maronna, Esteban – sequence: 13 givenname: Priscila surname: Marcaida fullname: Marcaida, Priscila – sequence: 14 givenname: Virginia surname: Durigan fullname: Durigan, Virginia – sequence: 15 givenname: Anastasia surname: Secco fullname: Secco, Anastasia – sequence: 16 givenname: Marta surname: Mamani fullname: Mamani, Marta – sequence: 17 givenname: Alicia surname: Dos Santos fullname: Dos Santos, Alicia – sequence: 18 givenname: Antonio Catalán surname: Pellet fullname: Pellet, Antonio Catalán – sequence: 19 givenname: Claudia Pérez surname: Leiros fullname: Leiros, Claudia Pérez – sequence: 20 givenname: Gabriel A. surname: Rabinovich fullname: Rabinovich, Gabriel A. – sequence: 21 givenname: Marta A. surname: Toscano fullname: Toscano, Marta A. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32161138$$D View this record in MEDLINE/PubMed |
BookMark | eNpdkUtr3DAUhUVJaCZp1121GLLJxoletqRNoYSmLQSyaLsWsnQ90WBLrmQPzKa_PZpOOn2sBLrfOdxzzzk6CTEAQm8IviZYsJspmHxNFKVCSELEC7QiWJG65QqfoBXGVNSSU36GznPeYIxVI_FLdMYoaQlhcoV-fl2mKUHOPoYq9pVZQ51gMDO4KpvBb03aVevBBFeZZY5-HJfg513V7X93NuZdYYu2djBBcBDmam0GsLMPNald8lsI1S8VVD48-s7PsThan-zi5_wKnfZmyPD6-b1A3-8-frv9XN8_fPpy--G-tkywuZYKXNdJ1mEmMLFg2kZ2jWJ90wIG2nDLuOPKEOeYc8Cpa51tm4abxqgeOnaB3h98p6UbwdmyZzKDnpIfS0Adjdf_ToJ_1Ou41YJgTpUqBlfPBin-WCDPevTZwlAuA3HJmjLRCsYlpgW9_A_dxCWFEq9QkjWUSCkKdXOgbIo5J-iPyxCs993qfbf6T7dF8e7vDEf-d5kFeHsANrkc-TinraL73tkTmzGwUQ |
CitedBy_id | crossref_primary_10_3390_ijms24076501 crossref_primary_10_1002_jcp_30641 crossref_primary_10_3390_biomedicines11102778 crossref_primary_10_1021_acsami_1c14861 crossref_primary_10_1096_fj_202200884R crossref_primary_10_1016_j_cub_2022_03_065 crossref_primary_10_3389_fimmu_2021_687443 crossref_primary_10_1038_s41423_023_01084_z crossref_primary_10_3390_cancers13184529 crossref_primary_10_3390_pharmaceutics16010035 crossref_primary_10_1038_s41423_023_01074_1 crossref_primary_10_1093_glycob_cwab007 crossref_primary_10_3390_jcm11216313 crossref_primary_10_1038_s41580_020_00294_x crossref_primary_10_1038_s41590_020_00844_7 crossref_primary_10_1002_chem_202003212 crossref_primary_10_1126_scitranslmed_aaz5380 crossref_primary_10_1073_pnas_2102950118 crossref_primary_10_1128_mbio_00611_22 crossref_primary_10_3390_cancers13205203 crossref_primary_10_1016_j_dci_2020_103721 crossref_primary_10_1089_nat_2020_0901 crossref_primary_10_1126_sciadv_abf8630 crossref_primary_10_1038_s41577_022_00829_7 crossref_primary_10_1016_j_biopha_2022_113347 crossref_primary_10_1158_1078_0432_CCR_18_3870 crossref_primary_10_1016_j_biomaterials_2022_121585 crossref_primary_10_1093_cei_uxad131 crossref_primary_10_3390_biom12091286 crossref_primary_10_3389_fimmu_2022_892254 crossref_primary_10_1016_j_autrev_2021_102847 crossref_primary_10_1152_physrev_00015_2021 crossref_primary_10_3389_fimmu_2020_602823 crossref_primary_10_1038_s41573_023_00636_2 |
Cites_doi | 10.1016/j.immuni.2012.05.023 10.1073/pnas.1608873113 10.1126/science.291.5502.319 10.1017/S1462399408000719 10.4049/jimmunol.0800839 10.1136/annrheumdis-2019-216114 10.1002/hep.510310220 10.4049/jimmunol.160.10.4831 10.4049/jimmunol.1403019 10.1038/ncomms12632 10.1038/srep12259 10.1074/jbc.M704839200 10.4049/jimmunol.1403139 10.1371/journal.pone.0130772 10.1038/nrrheum.2010.118 10.4049/jimmunol.178.1.436 10.1182/blood-2006-04-016451 10.1016/j.prostaglandins.2013.08.001 10.1016/0165-5728(90)90032-I 10.1016/S0016-5085(03)00267-1 10.1016/j.jaut.2014.02.006 10.1042/CS20160273 10.1177/0961203310388444 10.1158/0008-5472.CAN-12-2418 10.1016/j.molmed.2018.02.008 10.1016/S1074-7613(00)80406-9 10.1016/j.tibs.2016.11.003 10.1136/annrheumdis-2016-210448 10.1093/glycob/cwz096 10.1038/s41573-019-0041-4 10.1038/ni.2588 10.1172/JCI78089 10.1016/j.cell.2007.01.049 10.1016/S1074-7613(00)80089-8 10.1016/j.imlet.2011.06.007 10.1073/pnas.1720409115 10.1002/art.23674 10.1073/pnas.90.2.770 10.1038/35055582 10.1073/pnas.0503280102 10.1111/j.1600-065X.2012.01136.x 10.1016/j.autrev.2009.11.004 10.1111/j.1523-1755.2000.00366.x 10.4049/jimmunol.165.5.2331 10.1091/mbc.e08-07-0786 10.1016/j.immuni.2012.03.004 10.1172/JCI64096 10.1084/jem.20161462 10.1146/annurev-immunol-041015-055402 10.1084/jem.190.3.385 10.1136/jcp.21.5.656 10.4049/jimmunol.1203291 10.4049/jimmunol.176.10.6323 10.1038/ni.1772 10.1084/jem.20111665 10.1038/ni1482 10.1038/378736a0 10.1038/s41467-018-04063-5 10.1038/nature13954 |
ContentType | Journal Article |
Copyright | Copyright National Academy of Sciences Mar 24, 2020 2020 |
Copyright_xml | – notice: Copyright National Academy of Sciences Mar 24, 2020 – notice: 2020 |
DBID | NPM AAYXX CITATION 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
DOI | 10.1073/pnas.1922778117 |
DatabaseName | PubMed CrossRef Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | PubMed CrossRef Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic |
DatabaseTitleList | CrossRef Virology and AIDS Abstracts PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 1091-6490 |
EndPage | 6639 |
ExternalDocumentID | 10_1073_pnas_1922778117 32161138 26929580 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Agencia Nacional de Promoción Científica y Tecnológica, Ministerio de Ciencia, Tecnología e Innovación Productiva, Argentina grantid: 2013-0919 – fundername: Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) grantid: PIP 0672/12 – fundername: Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) grantid: PIP 041/13 – fundername: Agencia Nacional de Promoción Científica y Tecnológica, Ministerio de Ciencia, Tecnología e Innovación Productiva grantid: 2010-870 – fundername: Agenica Nacional de Promoción Científica y Técnica grantid: 2014-3687 |
GroupedDBID | --- -DZ -~X .55 0R~ 123 29P 2AX 2FS 2WC 4.4 53G 5RE 5VS 79B 85S AACGO AAFWJ AANCE ABBHK ABOCM ABPLY ABPPZ ABTLG ABXSQ ABZEH ACGOD ACIWK ACNCT ACPRK ADZLD AENEX AEUPB AEXZC AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS AQVQM ASUFR BKOMP CS3 D0L DCCCD DIK DNJUQ DOOOF DU5 DWIUU E3Z EBS F5P FRP GX1 HH5 HYE JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST KQ8 L7B LU7 N9A N~3 O9- OK1 PNE PQQKQ R.V RHF RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR VQA W8F WH7 WOQ WOW X7M XSW Y6R YBH YKV YSK ZA5 ZCA ~02 ~KM ADACV H13 IPSME NPM AAYXX CITATION 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM |
ID | FETCH-LOGICAL-c373t-89edbb83b03701cea658b593f56e0e254c34d49a1dd3dde42d6dc6554a5a9feb3 |
IEDL.DBID | RPM |
ISSN | 0027-8424 |
IngestDate | Tue Sep 17 20:41:41 EDT 2024 Sat Oct 05 06:10:01 EDT 2024 Thu Oct 10 20:02:30 EDT 2024 Fri Aug 23 01:31:39 EDT 2024 Sat Sep 28 08:28:15 EDT 2024 Fri Feb 02 07:18:27 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Keywords | Sjögren’s syndrome N-glycans autoimmunity inflammation galectin-1 |
Language | English |
License | Published under the PNAS license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c373t-89edbb83b03701cea658b593f56e0e254c34d49a1dd3dde42d6dc6554a5a9feb3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Contributed by Gabriel A. Rabinovich, February 7, 2020 (sent for review December 30, 2019; reviewed by Brian A. Cobb and Naoyuki Taniguchi) 1V.H. and N.S. contributed equally to this work. 2G.A.R. and M.A.T. contributed equally to this work. Author contributions: V.C.M.A., A.C.P., C.P.L., G.A.R., and M.A.T. designed research; V.C.M.A., V.H., N.S., N.A.P., D.O.C., T.D.-M., R.M.M., S.G.G., M.N.M.C., J.C.S., Á.D., E.M., P.M., V.D., A.S., and M.A.T. performed research; M.M., A.D.S., A.C.P., C.P.L., G.A.R., and M.A.T. contributed new reagents/analytic tools; V.C.M.A., V.H., N.S., N.A.P., D.O.C., T.D.-M., Á.D., E.M., P.M., V.D., A.S., A.C.P., C.P.L., G.A.R., and M.A.T. analyzed data; and V.C.M.A., G.A.R., and M.A.T. wrote the paper. Reviewers: B.A.C., Case Western Reserve University School of Medicine; and N.T., Osaka International Cancer Institute. |
ORCID | 0000-0001-9992-5692 0000-0003-3958-5803 0000-0002-8901-1907 0000-0002-4910-6258 |
OpenAccessLink | https://www.pnas.org/content/pnas/117/12/6630.full.pdf |
PMID | 32161138 |
PQID | 2383521887 |
PQPubID | 42026 |
PageCount | 10 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7104299 proquest_miscellaneous_2376734802 proquest_journals_2383521887 crossref_primary_10_1073_pnas_1922778117 pubmed_primary_32161138 jstor_primary_26929580 |
PublicationCentury | 2000 |
PublicationDate | 2020-03-24 |
PublicationDateYYYYMMDD | 2020-03-24 |
PublicationDate_xml | – month: 03 year: 2020 text: 2020-03-24 day: 24 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2020 |
Publisher | National Academy of Sciences |
Publisher_xml | – name: National Academy of Sciences |
References | e_1_3_3_50_2 Stanley P. (e_1_3_3_48_2) 2015 e_1_3_3_16_2 e_1_3_3_18_2 e_1_3_3_39_2 e_1_3_3_12_2 e_1_3_3_37_2 e_1_3_3_14_2 e_1_3_3_56_2 e_1_3_3_33_2 e_1_3_3_54_2 e_1_3_3_10_2 e_1_3_3_31_2 e_1_3_3_52_2 e_1_3_3_40_2 e_1_3_3_61_2 Cummings R. D. (e_1_3_3_47_2) 2015 Ferro F. (e_1_3_3_35_2) 2017; 35 e_1_3_3_5_2 e_1_3_3_7_2 e_1_3_3_9_2 e_1_3_3_27_2 e_1_3_3_29_2 e_1_3_3_23_2 e_1_3_3_25_2 e_1_3_3_46_2 e_1_3_3_1_2 e_1_3_3_44_2 e_1_3_3_3_2 e_1_3_3_21_2 e_1_3_3_42_2 Kobayashi M. (e_1_3_3_58_2) 2005; 32 e_1_3_3_51_2 e_1_3_3_17_2 e_1_3_3_19_2 e_1_3_3_38_2 Rabinovich G. A. (e_1_3_3_24_2) 1998; 160 e_1_3_3_13_2 e_1_3_3_36_2 e_1_3_3_59_2 e_1_3_3_15_2 e_1_3_3_34_2 e_1_3_3_57_2 e_1_3_3_32_2 e_1_3_3_55_2 e_1_3_3_11_2 e_1_3_3_30_2 e_1_3_3_53_2 e_1_3_3_62_2 e_1_3_3_60_2 e_1_3_3_6_2 e_1_3_3_8_2 e_1_3_3_28_2 e_1_3_3_49_2 Mavragani C. P. (e_1_3_3_63_2) 2019; 9 e_1_3_3_26_2 e_1_3_3_45_2 e_1_3_3_2_2 e_1_3_3_20_2 e_1_3_3_43_2 e_1_3_3_4_2 e_1_3_3_22_2 e_1_3_3_41_2 e_1_3_3_64_2 |
References_xml | – ident: e_1_3_3_29_2 doi: 10.1016/j.immuni.2012.05.023 – start-page: 99 volume-title: Essentials of Glycobiology year: 2015 ident: e_1_3_3_48_2 contributor: fullname: Stanley P. – ident: e_1_3_3_4_2 doi: 10.1073/pnas.1608873113 – ident: e_1_3_3_7_2 doi: 10.1126/science.291.5502.319 – ident: e_1_3_3_9_2 doi: 10.1017/S1462399408000719 – ident: e_1_3_3_21_2 doi: 10.4049/jimmunol.0800839 – ident: e_1_3_3_62_2 doi: 10.1136/annrheumdis-2019-216114 – ident: e_1_3_3_17_2 doi: 10.1002/hep.510310220 – volume: 160 start-page: 4831 year: 1998 ident: e_1_3_3_24_2 article-title: Activated rat macrophages produce a galectin-1-like protein that induces apoptosis of T cells: Biochemical and functional characterization publication-title: J. Immunol. doi: 10.4049/jimmunol.160.10.4831 contributor: fullname: Rabinovich G. A. – ident: e_1_3_3_40_2 doi: 10.4049/jimmunol.1403019 – ident: e_1_3_3_59_2 doi: 10.1038/ncomms12632 – ident: e_1_3_3_22_2 doi: 10.1038/srep12259 – volume: 32 start-page: 2156 year: 2005 ident: e_1_3_3_58_2 article-title: Enhanced expression of programmed death-1 (PD-1)/PD-L1 in salivary glands of patients with Sjögren’s syndrome publication-title: J. Rheumatol. contributor: fullname: Kobayashi M. – volume: 35 start-page: 179 year: 2017 ident: e_1_3_3_35_2 article-title: One year in review 2017: Primary Sjögren’s syndrome publication-title: Clin. Exp. Rheumatol. contributor: fullname: Ferro F. – ident: e_1_3_3_51_2 doi: 10.1074/jbc.M704839200 – ident: e_1_3_3_53_2 doi: 10.4049/jimmunol.1403139 – ident: e_1_3_3_52_2 doi: 10.1371/journal.pone.0130772 – ident: e_1_3_3_37_2 doi: 10.1038/nrrheum.2010.118 – ident: e_1_3_3_28_2 doi: 10.4049/jimmunol.178.1.436 – ident: e_1_3_3_43_2 doi: 10.1182/blood-2006-04-016451 – ident: e_1_3_3_41_2 doi: 10.1016/j.prostaglandins.2013.08.001 – start-page: 469 volume-title: Essentials of Glycobiology year: 2015 ident: e_1_3_3_47_2 contributor: fullname: Cummings R. D. – ident: e_1_3_3_15_2 doi: 10.1016/0165-5728(90)90032-I – ident: e_1_3_3_18_2 doi: 10.1016/S0016-5085(03)00267-1 – ident: e_1_3_3_33_2 doi: 10.1016/j.jaut.2014.02.006 – ident: e_1_3_3_61_2 doi: 10.1042/CS20160273 – ident: e_1_3_3_31_2 doi: 10.1177/0961203310388444 – ident: e_1_3_3_42_2 doi: 10.1158/0008-5472.CAN-12-2418 – ident: e_1_3_3_11_2 doi: 10.1016/j.molmed.2018.02.008 – ident: e_1_3_3_3_2 doi: 10.1016/S1074-7613(00)80406-9 – ident: e_1_3_3_10_2 doi: 10.1016/j.tibs.2016.11.003 – ident: e_1_3_3_34_2 doi: 10.1136/annrheumdis-2016-210448 – ident: e_1_3_3_55_2 doi: 10.1093/glycob/cwz096 – ident: e_1_3_3_39_2 doi: 10.1038/s41573-019-0041-4 – ident: e_1_3_3_44_2 doi: 10.1038/ni.2588 – ident: e_1_3_3_1_2 doi: 10.1172/JCI78089 – ident: e_1_3_3_60_2 doi: 10.1016/j.cell.2007.01.049 – ident: e_1_3_3_6_2 doi: 10.1016/S1074-7613(00)80089-8 – ident: e_1_3_3_36_2 doi: 10.1016/j.imlet.2011.06.007 – ident: e_1_3_3_50_2 doi: 10.1073/pnas.1720409115 – ident: e_1_3_3_8_2 doi: 10.1002/art.23674 – ident: e_1_3_3_5_2 doi: 10.1073/pnas.90.2.770 – ident: e_1_3_3_49_2 doi: 10.1038/35055582 – ident: e_1_3_3_46_2 doi: 10.1073/pnas.0503280102 – ident: e_1_3_3_2_2 doi: 10.1111/j.1600-065X.2012.01136.x – ident: e_1_3_3_32_2 doi: 10.1016/j.autrev.2009.11.004 – ident: e_1_3_3_19_2 doi: 10.1111/j.1523-1755.2000.00366.x – ident: e_1_3_3_25_2 doi: 10.4049/jimmunol.165.5.2331 – ident: e_1_3_3_27_2 doi: 10.1091/mbc.e08-07-0786 – ident: e_1_3_3_12_2 doi: 10.1016/j.immuni.2012.03.004 – ident: e_1_3_3_45_2 doi: 10.1172/JCI64096 – volume: 9 start-page: 102364 year: 2019 ident: e_1_3_3_63_2 article-title: Sjögren’s syndrome: Old and new therapeutic targets publication-title: J. Autoimmun. contributor: fullname: Mavragani C. P. – ident: e_1_3_3_56_2 doi: 10.1084/jem.20161462 – ident: e_1_3_3_13_2 doi: 10.1146/annurev-immunol-041015-055402 – ident: e_1_3_3_16_2 doi: 10.1084/jem.190.3.385 – ident: e_1_3_3_38_2 doi: 10.1136/jcp.21.5.656 – ident: e_1_3_3_30_2 doi: 10.4049/jimmunol.1203291 – ident: e_1_3_3_20_2 doi: 10.4049/jimmunol.176.10.6323 – ident: e_1_3_3_26_2 doi: 10.1038/ni.1772 – ident: e_1_3_3_64_2 doi: 10.1084/jem.20111665 – ident: e_1_3_3_14_2 doi: 10.1038/ni1482 – ident: e_1_3_3_23_2 doi: 10.1038/378736a0 – ident: e_1_3_3_54_2 doi: 10.1038/s41467-018-04063-5 – ident: e_1_3_3_57_2 doi: 10.1038/nature13954 |
SSID | ssj0009580 |
Score | 2.5206025 |
Snippet | Aging elicits quantitative and qualitative changes in different immune components, leading to disruption of tolerogenic circuits and development of autoimmune... Significance Different immune inhibitory circuits act in concert to prevent and limit the extent of deleterious autoimmune reactions occurring during the aging... Different immune inhibitory circuits act in concert to prevent and limit the extent of deleterious autoimmune reactions occurring during the aging process. An... |
SourceID | pubmedcentral proquest crossref pubmed jstor |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 6630 |
SubjectTerms | Age Aging Autoimmune diseases Autoimmunity Biological Sciences CD11c antigen CD8 antigen Circuits Dendritic cells Diabetes mellitus Disruption Effector cells Foxp3 protein Galectin-1 Glycan Glycosylation Homeostasis Immune system Immunogenicity Immunological tolerance Immunoregulation Inflammation Lymphocytes Lymphocytes T Lymphoid cells Mutants N-glycans Phenotypes Polysaccharides Salivary gland Salivary glands Sjogren's syndrome |
Title | Suppression of age-related salivary gland autoimmunity by glycosylation-dependent galectin-1-driven immune inhibitory circuits |
URI | https://www.jstor.org/stable/26929580 https://www.ncbi.nlm.nih.gov/pubmed/32161138 https://www.proquest.com/docview/2383521887 https://search.proquest.com/docview/2376734802 https://pubmed.ncbi.nlm.nih.gov/PMC7104299 |
Volume | 117 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB61PaBeEAUKoaUyEody8G4SO3F8rCqqAgJxoFJvkV-rRqLOapM97IXfzth50CJOXGM7ijLjmW80M98AvJcl1wwtH3VSWspVtaJaipQ6ljmF8EEaHdk-v5XXN_zzbXG7B8XUCxOL9o1uFv7n_cI3d7G2cn1vllOd2PL710v0isGMLvdhHxV0CtFnpt1q6DvJ0fzynE98PoIt1151C4Q0uYj9lYfwhOWIeLLQnPLAKw2Fif-CnH9XTj5wRVfP4OmIIcnF8K1HsOf8czgab2lHzkcq6Q8v4FcY2jlUunrSrggaDxq7V5wlnQpZoM2OxCkeRG37tonNIv2O6PB0Z9puN5TK0WlWbk-CR0Eb6TEotJtgKkk85Ujj7xrdhJw9Mc3GbJu-ewk3Vx9_XF7TceICNUywnlbSWa0rplMm0sw4hfhEF5KtitKlDmNJw7jlUmXWMrSLPLelNSUiElUoucK4_BgOfOvdayAYZ6V6pZmoCssV11qkqZXGMgR4XJgsgfPpj9frgVijjglxweogp_qPnBI4jhKZ9-UlgjoUcwKnk4jq8ep1NWIQBJUZGs8E3s3LeGlCJkR5127DHlEGWp80T-DVINH55ZNKJCAeyXreEAi5H6-gnkZi7lEv3_z3yRM4zEM8nzKa81M46Ddb9xZBT6_PEO5_-nIWVf03TXMFIQ |
link.rule.ids | 230,315,730,783,787,888,27936,27937,53804,53806 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB2VIkEvQIFCoICROJRDsknsxMkRVVQLtBWHFvUW-StqBE1Wm-SwHPjtjJ0P2ooLXGM7UuTx85v4zTPAuzxlkiLy-SbPtc9EVvoy56FvaGQE0odcSef2eZouz9nni-RiC5KpFsaJ9pWsgvrHVVBXl05bubpSi0kntvh6coi7ooXRxR24i-s1ZFOSPnvtZkPlSYwAzGI2OfpwuljVog2Q1MTcVVjuwD0aI-eJbHnKtX1pkCb-jXTe1k5e24yOHsK36TMGDcr3oO9koH7ecnj85-98BA9Geko-DM27sGXqx7A7AkBLDkaX6vdP4Je9D3QQ0dakKQniku8KY4wmrbAHTOsNcReEENF3TeXqULoNkfbpRjXtZlDh-dM1vB2xmxXCb435pl5bFCZulCFVfVnJysoBiKrWqq-69imcH308O1z642UOvqKcdn6WGy1lRmVIeRgpI5D6yCSnZZKa0GCaqijTLBeR1hQhl8U61SpFsiMSkZeY8u_Bdt3U5jkQTOFCWUrKs0QzwaTkYahzpSlyR8ZV5MHBNJXFavDsKNxZO6eFDYDiTwB4sOemeu4Xp8gXMX482J_mvhhXdVsgvUG-GiEue_B2bsb1aA9ZRG2a3vbhqXUMCmMPng2hMr98ijUP-I0gmjtYr--bLRgazvN7DIUX_z3yDdxfnp0cF8efTr-8hJ3Y_jYIqR-zfdju1r15hdyqk6_dSvoN95gmHg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5BkapegAKFQAEjcSiHbB524uSICqvyqnqgUsUl8itqBE1Wm-SwHPjtjJ0H24pTr4kTKfL48zfxN98AvM1TJikin2_yXPtMZKUvcx76hkZGIH3IlXRun6fpyTn7fJFcbLX6cqJ9JatF_etqUVeXTlu5ulLBpBMLzr4d465oYTRY6TK4C_dwzYbplKjPfrvZUH0SIwizmE2uPpwGq1q0CyQ2MXdVlnuwS2PkPZEtUdnamwZ54v-I50395NaGtHwAP6ZPGXQoPxd9Jxfq9w2Xx1t960O4P9JU8n4Ysg93TP0I9kcgaMnR6Fb97jH8sX1BBzFtTZqSID75rkDGaNIKe9C03hDXKISIvmsqV4_SbYi0VzeqaTeDGs-f2vF2xG5aCMM15p16bdGYuKcMqerLSlZWFkBUtVZ91bVP4Hz58fvxiT82dfAV5bTzs9xoKTMqQ8rDSBmBFEgmOS2T1IQG01VFmWa5iLSmCL0s1qlWKZIekYi8xNT_AHbqpjbPgGAqF8pSUp4lmgkmJQ9DnStNkUMyriIPjqbpLFaDd0fhztw5LWwQFP-CwIMDN93zuDhF3ogx5MHhNP_FuLrbAmkO8tYI8dmDN_NtXJf2sEXUpuntGJ5a56Aw9uDpEC7zy6d484BfC6R5gPX8vn4Hw8N5f4_h8PzWT76G3bMPy-Lrp9MvL2Avtn8PQurH7BB2unVvXiLF6uQrt5j-Ag2MKJ4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Suppression+of+age-related+salivary+gland+autoimmunity+by+glycosylation-dependent+galectin-1-driven+immune+inhibitory+circuits&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Allo%2C+Ver%C3%B3nica+C+Mart%C3%ADnez&rft.au=Hauk%2C+Vanesa&rft.au=Sarbia%2C+Nicolas&rft.au=Pinto%2C+Nicol%C3%A1s+A&rft.date=2020-03-24&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=117&rft.issue=12&rft.spage=6630&rft_id=info:doi/10.1073%2Fpnas.1922778117&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon |