Suppression of age-related salivary gland autoimmunity by glycosylation-dependent galectin-1-driven immune inhibitory circuits

Aging elicits quantitative and qualitative changes in different immune components, leading to disruption of tolerogenic circuits and development of autoimmune disorders. Galectin-1 (Gal1), an endogenous glycan-binding protein, has emerged as a regulator of immune cell homeostasis by shaping the fate...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 117; no. 12; pp. 6630 - 6639
Main Authors Allo, Verónica C. Martínez, Hauk, Vanesa, Sarbia, Nicolas, Pinto, Nicolás A., Croci, Diego O., Dalotto-Moreno, Tomás, Morales, Rosa M., Gatto, Sabrina G., Cocco, Montana N. Manselle, Stupirski, Juan C., Deladoey, Ángel, Maronna, Esteban, Marcaida, Priscila, Durigan, Virginia, Secco, Anastasia, Mamani, Marta, Dos Santos, Alicia, Pellet, Antonio Catalán, Leiros, Claudia Pérez, Rabinovich, Gabriel A., Toscano, Marta A.
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 24.03.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Aging elicits quantitative and qualitative changes in different immune components, leading to disruption of tolerogenic circuits and development of autoimmune disorders. Galectin-1 (Gal1), an endogenous glycan-binding protein, has emerged as a regulator of immune cell homeostasis by shaping the fate of myeloid and lymphoid cells. Here, we demonstrate that aged Gal1-null mutant (Lgals1−/−) mice develop a spontaneous inflammatory process in salivary glands that resembles Sjögren’s syndrome. This spontaneous autoimmune phenotype was recapitulated in mice lacking β1,6N-acetylglucosaminyltransferase V (Mgat5), an enzyme responsible for generating β1,6-branched complex N-glycans, which serve as a major ligand for this lectin. Lack of Gal1 resulted in CD11c⁺ dendritic cells (DCs) with higher immunogenic potential, lower frequency of Foxp3⁺ regulatory T cells (Tregs), and increased number of CD8⁺ T cells with greater effector capacity. Supporting its tolerogenic activity, Gal1 expression decreased with age in autoimmunity-prone nonobese diabetic (NOD) mice. Treatment with recombinant Gal1 restored tolerogenic mechanisms and reduced salivary gland inflammation. Accordingly, labial biopsies from primary Sjögren’s syndrome patients showed reduced Gal1 expression concomitant with higher number of infiltrating CD8⁺ T cells. Thus, endogenous Gal1 serves as a homeostatic rheostat that safeguards immune tolerance and prevents age-dependent development of spontaneous autoimmunity.
AbstractList Significance Different immune inhibitory circuits act in concert to prevent and limit the extent of deleterious autoimmune reactions occurring during the aging process. An in-depth understanding of these pathways is critical for implementation of more selective and powerful immunomodulatory modalities capable of attenuating autoimmune inflammation. Here we show that lack of galectin-1 (an endogenous β-galactoside-binding protein) or specific N-glycosylated ligands leads to a gradual breakdown of tolerogenic programs and to the establishment of age-related salivary gland autoimmunity. This study emphasizes the role of lectin–glycan interactions in the maintenance and restoration of immune tolerance and highlights their clinical relevance and therapeutic potential in chronic inflammatory disorders. Aging elicits quantitative and qualitative changes in different immune components, leading to disruption of tolerogenic circuits and development of autoimmune disorders. Galectin-1 (Gal1), an endogenous glycan-binding protein, has emerged as a regulator of immune cell homeostasis by shaping the fate of myeloid and lymphoid cells. Here, we demonstrate that aged Gal1-null mutant ( Lgals1 − / − ) mice develop a spontaneous inflammatory process in salivary glands that resembles Sjögren’s syndrome. This spontaneous autoimmune phenotype was recapitulated in mice lacking β1,6N-acetylglucosaminyltransferase V (Mgat5), an enzyme responsible for generating β1,6-branched complex N-glycans, which serve as a major ligand for this lectin. Lack of Gal1 resulted in CD11c + dendritic cells (DCs) with higher immunogenic potential, lower frequency of Foxp3 + regulatory T cells (Tregs), and increased number of CD8 + T cells with greater effector capacity. Supporting its tolerogenic activity, Gal1 expression decreased with age in autoimmunity-prone nonobese diabetic (NOD) mice. Treatment with recombinant Gal1 restored tolerogenic mechanisms and reduced salivary gland inflammation. Accordingly, labial biopsies from primary Sjögren’s syndrome patients showed reduced Gal1 expression concomitant with higher number of infiltrating CD8 + T cells. Thus, endogenous Gal1 serves as a homeostatic rheostat that safeguards immune tolerance and prevents age-dependent development of spontaneous autoimmunity.
Aging elicits quantitative and qualitative changes in different immune components, leading to disruption of tolerogenic circuits and development of autoimmune disorders. Galectin-1 (Gal1), an endogenous glycan-binding protein, has emerged as a regulator of immune cell homeostasis by shaping the fate of myeloid and lymphoid cells. Here, we demonstrate that aged Gal1-null mutant (Lgals1−/−) mice develop a spontaneous inflammatory process in salivary glands that resembles Sjögren’s syndrome. This spontaneous autoimmune phenotype was recapitulated in mice lacking β1,6N-acetylglucosaminyltransferase V (Mgat5), an enzyme responsible for generating β1,6-branched complex N-glycans, which serve as a major ligand for this lectin. Lack of Gal1 resulted in CD11c⁺ dendritic cells (DCs) with higher immunogenic potential, lower frequency of Foxp3⁺ regulatory T cells (Tregs), and increased number of CD8⁺ T cells with greater effector capacity. Supporting its tolerogenic activity, Gal1 expression decreased with age in autoimmunity-prone nonobese diabetic (NOD) mice. Treatment with recombinant Gal1 restored tolerogenic mechanisms and reduced salivary gland inflammation. Accordingly, labial biopsies from primary Sjögren’s syndrome patients showed reduced Gal1 expression concomitant with higher number of infiltrating CD8⁺ T cells. Thus, endogenous Gal1 serves as a homeostatic rheostat that safeguards immune tolerance and prevents age-dependent development of spontaneous autoimmunity.
Different immune inhibitory circuits act in concert to prevent and limit the extent of deleterious autoimmune reactions occurring during the aging process. An in-depth understanding of these pathways is critical for implementation of more selective and powerful immunomodulatory modalities capable of attenuating autoimmune inflammation. Here we show that lack of galectin-1 (an endogenous β-galactoside-binding protein) or specific N-glycosylated ligands leads to a gradual breakdown of tolerogenic programs and to the establishment of age-related salivary gland autoimmunity. This study emphasizes the role of lectin–glycan interactions in the maintenance and restoration of immune tolerance and highlights their clinical relevance and therapeutic potential in chronic inflammatory disorders. Aging elicits quantitative and qualitative changes in different immune components, leading to disruption of tolerogenic circuits and development of autoimmune disorders. Galectin-1 (Gal1), an endogenous glycan-binding protein, has emerged as a regulator of immune cell homeostasis by shaping the fate of myeloid and lymphoid cells. Here, we demonstrate that aged Gal1-null mutant ( Lgals1 − / − ) mice develop a spontaneous inflammatory process in salivary glands that resembles Sjögren’s syndrome. This spontaneous autoimmune phenotype was recapitulated in mice lacking β1,6N-acetylglucosaminyltransferase V (Mgat5), an enzyme responsible for generating β1,6-branched complex N-glycans, which serve as a major ligand for this lectin. Lack of Gal1 resulted in CD11c + dendritic cells (DCs) with higher immunogenic potential, lower frequency of Foxp3 + regulatory T cells (Tregs), and increased number of CD8 + T cells with greater effector capacity. Supporting its tolerogenic activity, Gal1 expression decreased with age in autoimmunity-prone nonobese diabetic (NOD) mice. Treatment with recombinant Gal1 restored tolerogenic mechanisms and reduced salivary gland inflammation. Accordingly, labial biopsies from primary Sjögren’s syndrome patients showed reduced Gal1 expression concomitant with higher number of infiltrating CD8 + T cells. Thus, endogenous Gal1 serves as a homeostatic rheostat that safeguards immune tolerance and prevents age-dependent development of spontaneous autoimmunity.
Aging elicits quantitative and qualitative changes in different immune components, leading to disruption of tolerogenic circuits and development of autoimmune disorders. Galectin-1 (Gal1), an endogenous glycan-binding protein, has emerged as a regulator of immune cell homeostasis by shaping the fate of myeloid and lymphoid cells. Here, we demonstrate that aged Gal1-null mutant (Lgals1−/−) mice develop a spontaneous inflammatory process in salivary glands that resembles Sjögren's syndrome. This spontaneous autoimmune phenotype was recapitulated in mice lacking β1,6N-acetylglucosaminyltransferase V (Mgat5), an enzyme responsible for generating β1,6-branched complex N-glycans, which serve as a major ligand for this lectin. Lack of Gal1 resulted in CD11c+ dendritic cells (DCs) with higher immunogenic potential, lower frequency of Foxp3+ regulatory T cells (Tregs), and increased number of CD8+ T cells with greater effector capacity. Supporting its tolerogenic activity, Gal1 expression decreased with age in autoimmunity-prone nonobese diabetic (NOD) mice. Treatment with recombinant Gal1 restored tolerogenic mechanisms and reduced salivary gland inflammation. Accordingly, labial biopsies from primary Sjögren's syndrome patients showed reduced Gal1 expression concomitant with higher number of infiltrating CD8+ T cells. Thus, endogenous Gal1 serves as a homeostatic rheostat that safeguards immune tolerance and prevents age-dependent development of spontaneous autoimmunity.
Aging elicits quantitative and qualitative changes in different immune components, leading to disruption of tolerogenic circuits and development of autoimmune disorders. Galectin-1 (Gal1), an endogenous glycan-binding protein, has emerged as a regulator of immune cell homeostasis by shaping the fate of myeloid and lymphoid cells. Here, we demonstrate that aged Gal1-null mutant ( ) mice develop a spontaneous inflammatory process in salivary glands that resembles Sjögren's syndrome. This spontaneous autoimmune phenotype was recapitulated in mice lacking β1,6N-acetylglucosaminyltransferase V (Mgat5), an enzyme responsible for generating β1,6-branched complex N-glycans, which serve as a major ligand for this lectin. Lack of Gal1 resulted in CD11c dendritic cells (DCs) with higher immunogenic potential, lower frequency of Foxp3 regulatory T cells (Tregs), and increased number of CD8 T cells with greater effector capacity. Supporting its tolerogenic activity, Gal1 expression decreased with age in autoimmunity-prone nonobese diabetic (NOD) mice. Treatment with recombinant Gal1 restored tolerogenic mechanisms and reduced salivary gland inflammation. Accordingly, labial biopsies from primary Sjögren's syndrome patients showed reduced Gal1 expression concomitant with higher number of infiltrating CD8 T cells. Thus, endogenous Gal1 serves as a homeostatic rheostat that safeguards immune tolerance and prevents age-dependent development of spontaneous autoimmunity.
Author Pinto, Nicolás A.
Deladoey, Ángel
Pellet, Antonio Catalán
Maronna, Esteban
Sarbia, Nicolas
Marcaida, Priscila
Gatto, Sabrina G.
Durigan, Virginia
Dalotto-Moreno, Tomás
Rabinovich, Gabriel A.
Morales, Rosa M.
Mamani, Marta
Cocco, Montana N. Manselle
Croci, Diego O.
Secco, Anastasia
Stupirski, Juan C.
Hauk, Vanesa
Toscano, Marta A.
Leiros, Claudia Pérez
Allo, Verónica C. Martínez
Dos Santos, Alicia
Author_xml – sequence: 1
  givenname: Verónica C. Martínez
  surname: Allo
  fullname: Allo, Verónica C. Martínez
– sequence: 2
  givenname: Vanesa
  surname: Hauk
  fullname: Hauk, Vanesa
– sequence: 3
  givenname: Nicolas
  surname: Sarbia
  fullname: Sarbia, Nicolas
– sequence: 4
  givenname: Nicolás A.
  surname: Pinto
  fullname: Pinto, Nicolás A.
– sequence: 5
  givenname: Diego O.
  surname: Croci
  fullname: Croci, Diego O.
– sequence: 6
  givenname: Tomás
  surname: Dalotto-Moreno
  fullname: Dalotto-Moreno, Tomás
– sequence: 7
  givenname: Rosa M.
  surname: Morales
  fullname: Morales, Rosa M.
– sequence: 8
  givenname: Sabrina G.
  surname: Gatto
  fullname: Gatto, Sabrina G.
– sequence: 9
  givenname: Montana N. Manselle
  surname: Cocco
  fullname: Cocco, Montana N. Manselle
– sequence: 10
  givenname: Juan C.
  surname: Stupirski
  fullname: Stupirski, Juan C.
– sequence: 11
  givenname: Ángel
  surname: Deladoey
  fullname: Deladoey, Ángel
– sequence: 12
  givenname: Esteban
  surname: Maronna
  fullname: Maronna, Esteban
– sequence: 13
  givenname: Priscila
  surname: Marcaida
  fullname: Marcaida, Priscila
– sequence: 14
  givenname: Virginia
  surname: Durigan
  fullname: Durigan, Virginia
– sequence: 15
  givenname: Anastasia
  surname: Secco
  fullname: Secco, Anastasia
– sequence: 16
  givenname: Marta
  surname: Mamani
  fullname: Mamani, Marta
– sequence: 17
  givenname: Alicia
  surname: Dos Santos
  fullname: Dos Santos, Alicia
– sequence: 18
  givenname: Antonio Catalán
  surname: Pellet
  fullname: Pellet, Antonio Catalán
– sequence: 19
  givenname: Claudia Pérez
  surname: Leiros
  fullname: Leiros, Claudia Pérez
– sequence: 20
  givenname: Gabriel A.
  surname: Rabinovich
  fullname: Rabinovich, Gabriel A.
– sequence: 21
  givenname: Marta A.
  surname: Toscano
  fullname: Toscano, Marta A.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32161138$$D View this record in MEDLINE/PubMed
BookMark eNpdkUtr3DAUhUVJaCZp1121GLLJxoletqRNoYSmLQSyaLsWsnQ90WBLrmQPzKa_PZpOOn2sBLrfOdxzzzk6CTEAQm8IviZYsJspmHxNFKVCSELEC7QiWJG65QqfoBXGVNSSU36GznPeYIxVI_FLdMYoaQlhcoV-fl2mKUHOPoYq9pVZQ51gMDO4KpvBb03aVevBBFeZZY5-HJfg513V7X93NuZdYYu2djBBcBDmam0GsLMPNald8lsI1S8VVD48-s7PsThan-zi5_wKnfZmyPD6-b1A3-8-frv9XN8_fPpy--G-tkywuZYKXNdJ1mEmMLFg2kZ2jWJ90wIG2nDLuOPKEOeYc8Cpa51tm4abxqgeOnaB3h98p6UbwdmyZzKDnpIfS0Adjdf_ToJ_1Ou41YJgTpUqBlfPBin-WCDPevTZwlAuA3HJmjLRCsYlpgW9_A_dxCWFEq9QkjWUSCkKdXOgbIo5J-iPyxCs993qfbf6T7dF8e7vDEf-d5kFeHsANrkc-TinraL73tkTmzGwUQ
CitedBy_id crossref_primary_10_3390_ijms24076501
crossref_primary_10_1002_jcp_30641
crossref_primary_10_3390_biomedicines11102778
crossref_primary_10_1021_acsami_1c14861
crossref_primary_10_1096_fj_202200884R
crossref_primary_10_1016_j_cub_2022_03_065
crossref_primary_10_3389_fimmu_2021_687443
crossref_primary_10_1038_s41423_023_01084_z
crossref_primary_10_3390_cancers13184529
crossref_primary_10_3390_pharmaceutics16010035
crossref_primary_10_1038_s41423_023_01074_1
crossref_primary_10_1093_glycob_cwab007
crossref_primary_10_3390_jcm11216313
crossref_primary_10_1038_s41580_020_00294_x
crossref_primary_10_1038_s41590_020_00844_7
crossref_primary_10_1002_chem_202003212
crossref_primary_10_1126_scitranslmed_aaz5380
crossref_primary_10_1073_pnas_2102950118
crossref_primary_10_1128_mbio_00611_22
crossref_primary_10_3390_cancers13205203
crossref_primary_10_1016_j_dci_2020_103721
crossref_primary_10_1089_nat_2020_0901
crossref_primary_10_1126_sciadv_abf8630
crossref_primary_10_1038_s41577_022_00829_7
crossref_primary_10_1016_j_biopha_2022_113347
crossref_primary_10_1158_1078_0432_CCR_18_3870
crossref_primary_10_1016_j_biomaterials_2022_121585
crossref_primary_10_1093_cei_uxad131
crossref_primary_10_3390_biom12091286
crossref_primary_10_3389_fimmu_2022_892254
crossref_primary_10_1016_j_autrev_2021_102847
crossref_primary_10_1152_physrev_00015_2021
crossref_primary_10_3389_fimmu_2020_602823
crossref_primary_10_1038_s41573_023_00636_2
Cites_doi 10.1016/j.immuni.2012.05.023
10.1073/pnas.1608873113
10.1126/science.291.5502.319
10.1017/S1462399408000719
10.4049/jimmunol.0800839
10.1136/annrheumdis-2019-216114
10.1002/hep.510310220
10.4049/jimmunol.160.10.4831
10.4049/jimmunol.1403019
10.1038/ncomms12632
10.1038/srep12259
10.1074/jbc.M704839200
10.4049/jimmunol.1403139
10.1371/journal.pone.0130772
10.1038/nrrheum.2010.118
10.4049/jimmunol.178.1.436
10.1182/blood-2006-04-016451
10.1016/j.prostaglandins.2013.08.001
10.1016/0165-5728(90)90032-I
10.1016/S0016-5085(03)00267-1
10.1016/j.jaut.2014.02.006
10.1042/CS20160273
10.1177/0961203310388444
10.1158/0008-5472.CAN-12-2418
10.1016/j.molmed.2018.02.008
10.1016/S1074-7613(00)80406-9
10.1016/j.tibs.2016.11.003
10.1136/annrheumdis-2016-210448
10.1093/glycob/cwz096
10.1038/s41573-019-0041-4
10.1038/ni.2588
10.1172/JCI78089
10.1016/j.cell.2007.01.049
10.1016/S1074-7613(00)80089-8
10.1016/j.imlet.2011.06.007
10.1073/pnas.1720409115
10.1002/art.23674
10.1073/pnas.90.2.770
10.1038/35055582
10.1073/pnas.0503280102
10.1111/j.1600-065X.2012.01136.x
10.1016/j.autrev.2009.11.004
10.1111/j.1523-1755.2000.00366.x
10.4049/jimmunol.165.5.2331
10.1091/mbc.e08-07-0786
10.1016/j.immuni.2012.03.004
10.1172/JCI64096
10.1084/jem.20161462
10.1146/annurev-immunol-041015-055402
10.1084/jem.190.3.385
10.1136/jcp.21.5.656
10.4049/jimmunol.1203291
10.4049/jimmunol.176.10.6323
10.1038/ni.1772
10.1084/jem.20111665
10.1038/ni1482
10.1038/378736a0
10.1038/s41467-018-04063-5
10.1038/nature13954
ContentType Journal Article
Copyright Copyright National Academy of Sciences Mar 24, 2020
2020
Copyright_xml – notice: Copyright National Academy of Sciences Mar 24, 2020
– notice: 2020
DBID NPM
AAYXX
CITATION
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
DOI 10.1073/pnas.1922778117
DatabaseName PubMed
CrossRef
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle PubMed
CrossRef
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList CrossRef


Virology and AIDS Abstracts
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1091-6490
EndPage 6639
ExternalDocumentID 10_1073_pnas_1922778117
32161138
26929580
Genre Journal Article
GrantInformation_xml – fundername: Agencia Nacional de Promoción Científica y Tecnológica, Ministerio de Ciencia, Tecnología e Innovación Productiva, Argentina
  grantid: 2013-0919
– fundername: Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)
  grantid: PIP 0672/12
– fundername: Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)
  grantid: PIP 041/13
– fundername: Agencia Nacional de Promoción Científica y Tecnológica, Ministerio de Ciencia, Tecnología e Innovación Productiva
  grantid: 2010-870
– fundername: Agenica Nacional de Promoción Científica y Técnica
  grantid: 2014-3687
GroupedDBID ---
-DZ
-~X
.55
0R~
123
29P
2AX
2FS
2WC
4.4
53G
5RE
5VS
79B
85S
AACGO
AAFWJ
AANCE
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACIWK
ACNCT
ACPRK
ADZLD
AENEX
AEUPB
AEXZC
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQVQM
ASUFR
BKOMP
CS3
D0L
DCCCD
DIK
DNJUQ
DOOOF
DU5
DWIUU
E3Z
EBS
F5P
FRP
GX1
HH5
HYE
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
KQ8
L7B
LU7
N9A
N~3
O9-
OK1
PNE
PQQKQ
R.V
RHF
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
VQA
W8F
WH7
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZA5
ZCA
~02
~KM
ADACV
H13
IPSME
NPM
AAYXX
CITATION
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c373t-89edbb83b03701cea658b593f56e0e254c34d49a1dd3dde42d6dc6554a5a9feb3
IEDL.DBID RPM
ISSN 0027-8424
IngestDate Tue Sep 17 20:41:41 EDT 2024
Sat Oct 05 06:10:01 EDT 2024
Thu Oct 10 20:02:30 EDT 2024
Fri Aug 23 01:31:39 EDT 2024
Sat Sep 28 08:28:15 EDT 2024
Fri Feb 02 07:18:27 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords Sjögren’s syndrome
N-glycans
autoimmunity
inflammation
galectin-1
Language English
License Published under the PNAS license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c373t-89edbb83b03701cea658b593f56e0e254c34d49a1dd3dde42d6dc6554a5a9feb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Contributed by Gabriel A. Rabinovich, February 7, 2020 (sent for review December 30, 2019; reviewed by Brian A. Cobb and Naoyuki Taniguchi)
1V.H. and N.S. contributed equally to this work.
2G.A.R. and M.A.T. contributed equally to this work.
Author contributions: V.C.M.A., A.C.P., C.P.L., G.A.R., and M.A.T. designed research; V.C.M.A., V.H., N.S., N.A.P., D.O.C., T.D.-M., R.M.M., S.G.G., M.N.M.C., J.C.S., Á.D., E.M., P.M., V.D., A.S., and M.A.T. performed research; M.M., A.D.S., A.C.P., C.P.L., G.A.R., and M.A.T. contributed new reagents/analytic tools; V.C.M.A., V.H., N.S., N.A.P., D.O.C., T.D.-M., Á.D., E.M., P.M., V.D., A.S., A.C.P., C.P.L., G.A.R., and M.A.T. analyzed data; and V.C.M.A., G.A.R., and M.A.T. wrote the paper.
Reviewers: B.A.C., Case Western Reserve University School of Medicine; and N.T., Osaka International Cancer Institute.
ORCID 0000-0001-9992-5692
0000-0003-3958-5803
0000-0002-8901-1907
0000-0002-4910-6258
OpenAccessLink https://www.pnas.org/content/pnas/117/12/6630.full.pdf
PMID 32161138
PQID 2383521887
PQPubID 42026
PageCount 10
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7104299
proquest_miscellaneous_2376734802
proquest_journals_2383521887
crossref_primary_10_1073_pnas_1922778117
pubmed_primary_32161138
jstor_primary_26929580
PublicationCentury 2000
PublicationDate 2020-03-24
PublicationDateYYYYMMDD 2020-03-24
PublicationDate_xml – month: 03
  year: 2020
  text: 2020-03-24
  day: 24
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2020
Publisher National Academy of Sciences
Publisher_xml – name: National Academy of Sciences
References e_1_3_3_50_2
Stanley P. (e_1_3_3_48_2) 2015
e_1_3_3_16_2
e_1_3_3_18_2
e_1_3_3_39_2
e_1_3_3_12_2
e_1_3_3_37_2
e_1_3_3_14_2
e_1_3_3_56_2
e_1_3_3_33_2
e_1_3_3_54_2
e_1_3_3_10_2
e_1_3_3_31_2
e_1_3_3_52_2
e_1_3_3_40_2
e_1_3_3_61_2
Cummings R. D. (e_1_3_3_47_2) 2015
Ferro F. (e_1_3_3_35_2) 2017; 35
e_1_3_3_5_2
e_1_3_3_7_2
e_1_3_3_9_2
e_1_3_3_27_2
e_1_3_3_29_2
e_1_3_3_23_2
e_1_3_3_25_2
e_1_3_3_46_2
e_1_3_3_1_2
e_1_3_3_44_2
e_1_3_3_3_2
e_1_3_3_21_2
e_1_3_3_42_2
Kobayashi M. (e_1_3_3_58_2) 2005; 32
e_1_3_3_51_2
e_1_3_3_17_2
e_1_3_3_19_2
e_1_3_3_38_2
Rabinovich G. A. (e_1_3_3_24_2) 1998; 160
e_1_3_3_13_2
e_1_3_3_36_2
e_1_3_3_59_2
e_1_3_3_15_2
e_1_3_3_34_2
e_1_3_3_57_2
e_1_3_3_32_2
e_1_3_3_55_2
e_1_3_3_11_2
e_1_3_3_30_2
e_1_3_3_53_2
e_1_3_3_62_2
e_1_3_3_60_2
e_1_3_3_6_2
e_1_3_3_8_2
e_1_3_3_28_2
e_1_3_3_49_2
Mavragani C. P. (e_1_3_3_63_2) 2019; 9
e_1_3_3_26_2
e_1_3_3_45_2
e_1_3_3_2_2
e_1_3_3_20_2
e_1_3_3_43_2
e_1_3_3_4_2
e_1_3_3_22_2
e_1_3_3_41_2
e_1_3_3_64_2
References_xml – ident: e_1_3_3_29_2
  doi: 10.1016/j.immuni.2012.05.023
– start-page: 99
  volume-title: Essentials of Glycobiology
  year: 2015
  ident: e_1_3_3_48_2
  contributor:
    fullname: Stanley P.
– ident: e_1_3_3_4_2
  doi: 10.1073/pnas.1608873113
– ident: e_1_3_3_7_2
  doi: 10.1126/science.291.5502.319
– ident: e_1_3_3_9_2
  doi: 10.1017/S1462399408000719
– ident: e_1_3_3_21_2
  doi: 10.4049/jimmunol.0800839
– ident: e_1_3_3_62_2
  doi: 10.1136/annrheumdis-2019-216114
– ident: e_1_3_3_17_2
  doi: 10.1002/hep.510310220
– volume: 160
  start-page: 4831
  year: 1998
  ident: e_1_3_3_24_2
  article-title: Activated rat macrophages produce a galectin-1-like protein that induces apoptosis of T cells: Biochemical and functional characterization
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.160.10.4831
  contributor:
    fullname: Rabinovich G. A.
– ident: e_1_3_3_40_2
  doi: 10.4049/jimmunol.1403019
– ident: e_1_3_3_59_2
  doi: 10.1038/ncomms12632
– ident: e_1_3_3_22_2
  doi: 10.1038/srep12259
– volume: 32
  start-page: 2156
  year: 2005
  ident: e_1_3_3_58_2
  article-title: Enhanced expression of programmed death-1 (PD-1)/PD-L1 in salivary glands of patients with Sjögren’s syndrome
  publication-title: J. Rheumatol.
  contributor:
    fullname: Kobayashi M.
– volume: 35
  start-page: 179
  year: 2017
  ident: e_1_3_3_35_2
  article-title: One year in review 2017: Primary Sjögren’s syndrome
  publication-title: Clin. Exp. Rheumatol.
  contributor:
    fullname: Ferro F.
– ident: e_1_3_3_51_2
  doi: 10.1074/jbc.M704839200
– ident: e_1_3_3_53_2
  doi: 10.4049/jimmunol.1403139
– ident: e_1_3_3_52_2
  doi: 10.1371/journal.pone.0130772
– ident: e_1_3_3_37_2
  doi: 10.1038/nrrheum.2010.118
– ident: e_1_3_3_28_2
  doi: 10.4049/jimmunol.178.1.436
– ident: e_1_3_3_43_2
  doi: 10.1182/blood-2006-04-016451
– ident: e_1_3_3_41_2
  doi: 10.1016/j.prostaglandins.2013.08.001
– start-page: 469
  volume-title: Essentials of Glycobiology
  year: 2015
  ident: e_1_3_3_47_2
  contributor:
    fullname: Cummings R. D.
– ident: e_1_3_3_15_2
  doi: 10.1016/0165-5728(90)90032-I
– ident: e_1_3_3_18_2
  doi: 10.1016/S0016-5085(03)00267-1
– ident: e_1_3_3_33_2
  doi: 10.1016/j.jaut.2014.02.006
– ident: e_1_3_3_61_2
  doi: 10.1042/CS20160273
– ident: e_1_3_3_31_2
  doi: 10.1177/0961203310388444
– ident: e_1_3_3_42_2
  doi: 10.1158/0008-5472.CAN-12-2418
– ident: e_1_3_3_11_2
  doi: 10.1016/j.molmed.2018.02.008
– ident: e_1_3_3_3_2
  doi: 10.1016/S1074-7613(00)80406-9
– ident: e_1_3_3_10_2
  doi: 10.1016/j.tibs.2016.11.003
– ident: e_1_3_3_34_2
  doi: 10.1136/annrheumdis-2016-210448
– ident: e_1_3_3_55_2
  doi: 10.1093/glycob/cwz096
– ident: e_1_3_3_39_2
  doi: 10.1038/s41573-019-0041-4
– ident: e_1_3_3_44_2
  doi: 10.1038/ni.2588
– ident: e_1_3_3_1_2
  doi: 10.1172/JCI78089
– ident: e_1_3_3_60_2
  doi: 10.1016/j.cell.2007.01.049
– ident: e_1_3_3_6_2
  doi: 10.1016/S1074-7613(00)80089-8
– ident: e_1_3_3_36_2
  doi: 10.1016/j.imlet.2011.06.007
– ident: e_1_3_3_50_2
  doi: 10.1073/pnas.1720409115
– ident: e_1_3_3_8_2
  doi: 10.1002/art.23674
– ident: e_1_3_3_5_2
  doi: 10.1073/pnas.90.2.770
– ident: e_1_3_3_49_2
  doi: 10.1038/35055582
– ident: e_1_3_3_46_2
  doi: 10.1073/pnas.0503280102
– ident: e_1_3_3_2_2
  doi: 10.1111/j.1600-065X.2012.01136.x
– ident: e_1_3_3_32_2
  doi: 10.1016/j.autrev.2009.11.004
– ident: e_1_3_3_19_2
  doi: 10.1111/j.1523-1755.2000.00366.x
– ident: e_1_3_3_25_2
  doi: 10.4049/jimmunol.165.5.2331
– ident: e_1_3_3_27_2
  doi: 10.1091/mbc.e08-07-0786
– ident: e_1_3_3_12_2
  doi: 10.1016/j.immuni.2012.03.004
– ident: e_1_3_3_45_2
  doi: 10.1172/JCI64096
– volume: 9
  start-page: 102364
  year: 2019
  ident: e_1_3_3_63_2
  article-title: Sjögren’s syndrome: Old and new therapeutic targets
  publication-title: J. Autoimmun.
  contributor:
    fullname: Mavragani C. P.
– ident: e_1_3_3_56_2
  doi: 10.1084/jem.20161462
– ident: e_1_3_3_13_2
  doi: 10.1146/annurev-immunol-041015-055402
– ident: e_1_3_3_16_2
  doi: 10.1084/jem.190.3.385
– ident: e_1_3_3_38_2
  doi: 10.1136/jcp.21.5.656
– ident: e_1_3_3_30_2
  doi: 10.4049/jimmunol.1203291
– ident: e_1_3_3_20_2
  doi: 10.4049/jimmunol.176.10.6323
– ident: e_1_3_3_26_2
  doi: 10.1038/ni.1772
– ident: e_1_3_3_64_2
  doi: 10.1084/jem.20111665
– ident: e_1_3_3_14_2
  doi: 10.1038/ni1482
– ident: e_1_3_3_23_2
  doi: 10.1038/378736a0
– ident: e_1_3_3_54_2
  doi: 10.1038/s41467-018-04063-5
– ident: e_1_3_3_57_2
  doi: 10.1038/nature13954
SSID ssj0009580
Score 2.5206025
Snippet Aging elicits quantitative and qualitative changes in different immune components, leading to disruption of tolerogenic circuits and development of autoimmune...
Significance Different immune inhibitory circuits act in concert to prevent and limit the extent of deleterious autoimmune reactions occurring during the aging...
Different immune inhibitory circuits act in concert to prevent and limit the extent of deleterious autoimmune reactions occurring during the aging process. An...
SourceID pubmedcentral
proquest
crossref
pubmed
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 6630
SubjectTerms Age
Aging
Autoimmune diseases
Autoimmunity
Biological Sciences
CD11c antigen
CD8 antigen
Circuits
Dendritic cells
Diabetes mellitus
Disruption
Effector cells
Foxp3 protein
Galectin-1
Glycan
Glycosylation
Homeostasis
Immune system
Immunogenicity
Immunological tolerance
Immunoregulation
Inflammation
Lymphocytes
Lymphocytes T
Lymphoid cells
Mutants
N-glycans
Phenotypes
Polysaccharides
Salivary gland
Salivary glands
Sjogren's syndrome
Title Suppression of age-related salivary gland autoimmunity by glycosylation-dependent galectin-1-driven immune inhibitory circuits
URI https://www.jstor.org/stable/26929580
https://www.ncbi.nlm.nih.gov/pubmed/32161138
https://www.proquest.com/docview/2383521887
https://search.proquest.com/docview/2376734802
https://pubmed.ncbi.nlm.nih.gov/PMC7104299
Volume 117
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB61PaBeEAUKoaUyEody8G4SO3F8rCqqAgJxoFJvkV-rRqLOapM97IXfzth50CJOXGM7ijLjmW80M98AvJcl1wwtH3VSWspVtaJaipQ6ljmF8EEaHdk-v5XXN_zzbXG7B8XUCxOL9o1uFv7n_cI3d7G2cn1vllOd2PL710v0isGMLvdhHxV0CtFnpt1q6DvJ0fzynE98PoIt1151C4Q0uYj9lYfwhOWIeLLQnPLAKw2Fif-CnH9XTj5wRVfP4OmIIcnF8K1HsOf8czgab2lHzkcq6Q8v4FcY2jlUunrSrggaDxq7V5wlnQpZoM2OxCkeRG37tonNIv2O6PB0Z9puN5TK0WlWbk-CR0Eb6TEotJtgKkk85Ujj7xrdhJw9Mc3GbJu-ewk3Vx9_XF7TceICNUywnlbSWa0rplMm0sw4hfhEF5KtitKlDmNJw7jlUmXWMrSLPLelNSUiElUoucK4_BgOfOvdayAYZ6V6pZmoCssV11qkqZXGMgR4XJgsgfPpj9frgVijjglxweogp_qPnBI4jhKZ9-UlgjoUcwKnk4jq8ep1NWIQBJUZGs8E3s3LeGlCJkR5127DHlEGWp80T-DVINH55ZNKJCAeyXreEAi5H6-gnkZi7lEv3_z3yRM4zEM8nzKa81M46Ddb9xZBT6_PEO5_-nIWVf03TXMFIQ
link.rule.ids 230,315,730,783,787,888,27936,27937,53804,53806
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB2VIkEvQIFCoICROJRDsknsxMkRVVQLtBWHFvUW-StqBE1Wm-SwHPjtjJ0P2ooLXGM7UuTx85v4zTPAuzxlkiLy-SbPtc9EVvoy56FvaGQE0odcSef2eZouz9nni-RiC5KpFsaJ9pWsgvrHVVBXl05bubpSi0kntvh6coi7ooXRxR24i-s1ZFOSPnvtZkPlSYwAzGI2OfpwuljVog2Q1MTcVVjuwD0aI-eJbHnKtX1pkCb-jXTe1k5e24yOHsK36TMGDcr3oO9koH7ecnj85-98BA9Geko-DM27sGXqx7A7AkBLDkaX6vdP4Je9D3QQ0dakKQniku8KY4wmrbAHTOsNcReEENF3TeXqULoNkfbpRjXtZlDh-dM1vB2xmxXCb435pl5bFCZulCFVfVnJysoBiKrWqq-69imcH308O1z642UOvqKcdn6WGy1lRmVIeRgpI5D6yCSnZZKa0GCaqijTLBeR1hQhl8U61SpFsiMSkZeY8u_Bdt3U5jkQTOFCWUrKs0QzwaTkYahzpSlyR8ZV5MHBNJXFavDsKNxZO6eFDYDiTwB4sOemeu4Xp8gXMX482J_mvhhXdVsgvUG-GiEue_B2bsb1aA9ZRG2a3vbhqXUMCmMPng2hMr98ijUP-I0gmjtYr--bLRgazvN7DIUX_z3yDdxfnp0cF8efTr-8hJ3Y_jYIqR-zfdju1r15hdyqk6_dSvoN95gmHg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5BkapegAKFQAEjcSiHbB524uSICqvyqnqgUsUl8itqBE1Wm-SwHPjtjJ0H24pTr4kTKfL48zfxN98AvM1TJikin2_yXPtMZKUvcx76hkZGIH3IlXRun6fpyTn7fJFcbLX6cqJ9JatF_etqUVeXTlu5ulLBpBMLzr4d465oYTRY6TK4C_dwzYbplKjPfrvZUH0SIwizmE2uPpwGq1q0CyQ2MXdVlnuwS2PkPZEtUdnamwZ54v-I50395NaGtHwAP6ZPGXQoPxd9Jxfq9w2Xx1t960O4P9JU8n4Ysg93TP0I9kcgaMnR6Fb97jH8sX1BBzFtTZqSID75rkDGaNIKe9C03hDXKISIvmsqV4_SbYi0VzeqaTeDGs-f2vF2xG5aCMM15p16bdGYuKcMqerLSlZWFkBUtVZ91bVP4Hz58fvxiT82dfAV5bTzs9xoKTMqQ8rDSBmBFEgmOS2T1IQG01VFmWa5iLSmCL0s1qlWKZIekYi8xNT_AHbqpjbPgGAqF8pSUp4lmgkmJQ9DnStNkUMyriIPjqbpLFaDd0fhztw5LWwQFP-CwIMDN93zuDhF3ogx5MHhNP_FuLrbAmkO8tYI8dmDN_NtXJf2sEXUpuntGJ5a56Aw9uDpEC7zy6d484BfC6R5gPX8vn4Hw8N5f4_h8PzWT76G3bMPy-Lrp9MvL2Avtn8PQurH7BB2unVvXiLF6uQrt5j-Ag2MKJ4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Suppression+of+age-related+salivary+gland+autoimmunity+by+glycosylation-dependent+galectin-1-driven+immune+inhibitory+circuits&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Allo%2C+Ver%C3%B3nica+C+Mart%C3%ADnez&rft.au=Hauk%2C+Vanesa&rft.au=Sarbia%2C+Nicolas&rft.au=Pinto%2C+Nicol%C3%A1s+A&rft.date=2020-03-24&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=117&rft.issue=12&rft.spage=6630&rft_id=info:doi/10.1073%2Fpnas.1922778117&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon