Termination of term rewriting using dependency pairs

We present techniques to prove termination and innermost termination of term rewriting systems automatically. In contrast to previous approaches, we do not compare left- and right-hand sides of rewrite rules, but introduce the notion of dependency pairs to compare left-hand sides with special subter...

Full description

Saved in:
Bibliographic Details
Published inTheoretical computer science Vol. 236; no. 1; pp. 133 - 178
Main Authors Arts, Thomas, Giesl, Jürgen
Format Journal Article
LanguageEnglish
Published Elsevier B.V 06.04.2000
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We present techniques to prove termination and innermost termination of term rewriting systems automatically. In contrast to previous approaches, we do not compare left- and right-hand sides of rewrite rules, but introduce the notion of dependency pairs to compare left-hand sides with special subterms of the right-hand sides. This results in a technique which allows to apply existing methods for automated termination proofs to term rewriting systems where they failed up to now. In particular, there are numerous term rewriting systems where a direct termination proof with simplification orderings is not possible, but in combination with our technique, well-known simplification orderings (such as the recursive path ordering, polynomial orderings, or the Knuth–Bendix ordering) can now be used to prove termination automatically. Unlike previous methods, our technique for proving innermost termination automatically can also be applied to prove innermost termination of term rewriting systems that are not terminating. Moreover, as innermost termination implies termination for certain classes of term rewriting systems, this technique can also be used for termination proofs of such systems.
AbstractList We present techniques to prove termination and innermost termination of term rewriting systems automatically. In contrast to previous approaches, we do not compare left- and right-hand sides of rewrite rules, but introduce the notion of dependency pairs to compare left-hand sides with special subterms of the right-hand sides. This results in a technique which allows to apply existing methods for automated termination proofs to term rewriting systems where they failed up to now. In particular, there are numerous term rewriting systems where a direct termination proof with simplification orderings is not possible, but in combination with our technique, well-known simplification orderings (such as the recursive path ordering, polynomial orderings, or the Knuth–Bendix ordering) can now be used to prove termination automatically. Unlike previous methods, our technique for proving innermost termination automatically can also be applied to prove innermost termination of term rewriting systems that are not terminating. Moreover, as innermost termination implies termination for certain classes of term rewriting systems, this technique can also be used for termination proofs of such systems.
Author Giesl, Jürgen
Arts, Thomas
Author_xml – sequence: 1
  givenname: Thomas
  surname: Arts
  fullname: Arts, Thomas
  email: thomas@cs.ruu.nl
  organization: Department of Computer Science, Utrecht University, P.O. Box 80.089, 3508 TB Utrecht, Netherlands
– sequence: 2
  givenname: Jürgen
  surname: Giesl
  fullname: Giesl, Jürgen
  email: giesl@informatik.tu-darmstadt.de
  organization: Department of Computer Science, Darmstadt University of Technology, Alexanderstraße 10, 64283 Darmstadt, Germany
BookMark eNqFj09LAzEQxYNUsK1-BGGPeljNv91JTiLFqlDwYD2HmEwkYrMlWZV-e3db8eocZngw7_F-MzJJXUJCzhm9YpS1189UUFkLDc2F1peUcgq1OiJTpkDXnGs5IdO_lxMyK-WdDtNAOyVyjXkTk-1jl6ouVP0gq4zfOfYxvVWfZdwet5g8JrertjbmckqOg_0oePZ75-RlebdePNSrp_vHxe2qdgJEXysAZVtuhQzotYRWOuGc5f7VhQYbxmxowWpQwBEpR2k9OMUAW9BBuiDmpDnkutyVkjGYbY4bm3eGUTOimz26GbmM1maPbtTguzn4cCj3FTGb4uJQH33M6Hrju_hPwg-1j2MX
CitedBy_id crossref_primary_10_2200_S00648ED1V01Y201505DTM041
crossref_primary_10_1016_S0304_3975_00_00167_5
crossref_primary_10_1093_jigpal_jzq009
crossref_primary_10_1587_transinf_2017FOP0004
crossref_primary_10_1016_j_tcs_2012_09_005
crossref_primary_10_1007_s13218_010_0001_y
crossref_primary_10_4204_EPTCS_167_8
crossref_primary_10_1007_s10817_016_9373_5
crossref_primary_10_1093_logcom_exs027
crossref_primary_10_1587_transinf_E92_D_235
crossref_primary_10_1007_s10817_021_09615_x
crossref_primary_10_1017_S1471068410000025
crossref_primary_10_1016_j_entcs_2009_07_023
crossref_primary_10_1016_j_ipl_2004_11_002
crossref_primary_10_2168_LMCS_8_2_10_2012
crossref_primary_10_1016_S1571_0661_04_80353_0
crossref_primary_10_1006_jsco_2002_0541
crossref_primary_10_1016_j_jlap_2009_08_001
crossref_primary_10_1016_S1571_0661_05_82535_6
crossref_primary_10_1007_s10817_010_9215_9
crossref_primary_10_1007_s00200_005_0179_7
crossref_primary_10_1016_j_tcs_2010_07_009
crossref_primary_10_1007_s10009_021_00620_4
crossref_primary_10_1587_transinf_E92_D_220
crossref_primary_10_1016_j_scico_2015_01_007
crossref_primary_10_1007_s10817_010_9211_0
crossref_primary_10_4204_EPTCS_265_7
crossref_primary_10_1007_s00200_010_0122_4
crossref_primary_10_1016_j_entcs_2007_01_010
crossref_primary_10_1016_j_jss_2023_111928
crossref_primary_10_1007_s10817_012_9248_3
crossref_primary_10_1051_ita_2005029
crossref_primary_10_1145_1614431_1614433
crossref_primary_10_1017_S147106841300046X
crossref_primary_10_1587_transinf_E92_D_2007
crossref_primary_10_1587_transinf_2017EDP7368
crossref_primary_10_1587_transinf_E93_D_942
crossref_primary_10_1007_s10817_020_09542_3
crossref_primary_10_1007_BF03177743
crossref_primary_10_1016_S1571_0661_04_80598_X
crossref_primary_10_1016_j_tcs_2008_02_027
crossref_primary_10_1016_S1571_0661_05_80124_0
crossref_primary_10_1016_j_tcs_2015_07_045
crossref_primary_10_1007_s10817_022_09658_8
crossref_primary_10_1016_j_ic_2009_02_010
crossref_primary_10_1016_j_jcss_2018_04_002
crossref_primary_10_1007_s00200_009_0094_4
crossref_primary_10_1016_j_jsc_2004_02_003
crossref_primary_10_1016_j_ic_2010_03_003
crossref_primary_10_1016_j_jpaa_2005_10_011
crossref_primary_10_1587_transinf_E93_D_953
crossref_primary_10_1587_transinf_E96_D_472
crossref_primary_10_1016_S1571_0661_05_82615_5
crossref_primary_10_1017_S1471068414000623
crossref_primary_10_1016_j_ipl_2018_04_002
crossref_primary_10_1016_j_entcs_2008_04_072
crossref_primary_10_1007_s10817_005_9022_x
crossref_primary_10_1007_s10817_021_09603_1
crossref_primary_10_1016_j_scico_2019_102306
crossref_primary_10_1016_j_entcs_2009_12_004
crossref_primary_10_1007_s10817_019_09514_2
crossref_primary_10_1016_j_ic_2010_09_003
crossref_primary_10_1016_j_scico_2020_102474
crossref_primary_10_1007_s10817_011_9244_z
crossref_primary_10_1017_S1471068415000083
crossref_primary_10_1007_s00200_008_0060_6
crossref_primary_10_1007_s10817_006_9053_y
crossref_primary_10_1016_j_tcs_2008_05_013
crossref_primary_10_4204_EPTCS_311_4
crossref_primary_10_1016_j_ic_2008_10_002
crossref_primary_10_1016_j_entcs_2009_02_072
crossref_primary_10_2168_LMCS_7_3_1_2011
crossref_primary_10_1016_j_scico_2017_10_012
crossref_primary_10_1007_s10472_009_9144_7
crossref_primary_10_1007_s10817_009_9131_z
crossref_primary_10_1016_S0020_0190_02_00272_7
crossref_primary_10_1007_s00165_016_0403_1
crossref_primary_10_1016_j_entcs_2008_03_050
crossref_primary_10_1016_j_ic_2006_08_010
crossref_primary_10_1016_j_entcs_2008_03_051
crossref_primary_10_1016_j_tcs_2012_11_003
crossref_primary_10_1016_j_ipl_2004_10_005
crossref_primary_10_1016_j_jlamp_2021_100680
crossref_primary_10_1007_s10817_009_9157_2
crossref_primary_10_1002_wcs_1269
crossref_primary_10_1016_j_entcs_2009_07_055
crossref_primary_10_1016_j_tcs_2015_03_004
crossref_primary_10_1145_1555746_1555751
crossref_primary_10_1007_s10817_007_9087_9
crossref_primary_10_2168_LMCS_6_3_20_2010
crossref_primary_10_1007_s00200_007_0046_9
crossref_primary_10_1007_s10817_013_9277_6
crossref_primary_10_1145_1462179_1462182
crossref_primary_10_2168_LMCS_6_2_5_2010
crossref_primary_10_1006_inco_2002_3176
crossref_primary_10_1016_j_scico_2014_07_009
crossref_primary_10_1016_j_ic_2015_12_007
crossref_primary_10_1016_j_jlamp_2015_06_001
crossref_primary_10_1051_ita_2004015
crossref_primary_10_1145_1890028_1890030
crossref_primary_10_1016_j_tcs_2009_07_037
crossref_primary_10_1145_2858949_2784753
crossref_primary_10_1017_S0956796818000072
crossref_primary_10_2168_LMCS_6_3_21_2010
crossref_primary_10_1016_j_bica_2018_07_004
crossref_primary_10_1007_s10817_005_6534_3
crossref_primary_10_1007_s10817_006_9057_7
crossref_primary_10_1017_S1471068416000077
crossref_primary_10_4204_EPTCS_15_1
crossref_primary_10_1145_1232420_1232422
crossref_primary_10_1016_j_ic_2004_10_004
crossref_primary_10_1016_j_entcs_2008_03_076
crossref_primary_10_1016_j_tcs_2012_09_013
crossref_primary_10_1016_j_entcs_2007_05_040
crossref_primary_10_1016_j_jlamp_2016_03_003
crossref_primary_10_1007_s10817_005_6545_0
crossref_primary_10_1016_j_entcs_2007_05_041
crossref_primary_10_1016_S0304_3975_03_00239_1
crossref_primary_10_1016_S1571_0661_04_80693_5
crossref_primary_10_1007_s10817_022_09640_4
crossref_primary_10_1017_S0960129511000120
crossref_primary_10_1016_j_ic_2006_07_001
Cites_doi 10.1016/0304-3975(94)00275-4
10.1016/0020-0190(94)90032-9
10.1016/S0304-3975(96)00172-7
10.3233/FI-1995-24124
10.1016/S0747-7171(87)80022-6
10.1016/0304-3975(82)90026-3
10.3233/FI-1995-24121
10.1007/BFb0030602
10.1007/BFb0052374
10.1007/3-540-61511-3_101
10.1007/BF01209624
10.1007/3-540-59200-8_44
10.1007/3-540-60249-6_56
10.3233/FI-1995-24123
10.1016/0167-6423(87)90030-X
10.1007/3-540-61464-8_43
10.1007/3-540-59200-8_77
10.1007/3-540-60360-3_38
10.1016/0020-0190(87)90122-0
10.1016/0304-3975(95)00075-8
10.1007/BF01237233
10.1023/A:1005797629953
10.1007/3-540-62950-5_68
10.1007/3-540-16780-3_76
10.1007/3-540-58431-5_15
10.1006/jsco.1994.1003
10.1007/BF01810293
10.1007/3-540-10843-2_36
10.1007/3-540-61464-8_45
10.21236/ADA087640
ContentType Journal Article
Copyright 2000 Elsevier Science B.V.
Copyright_xml – notice: 2000 Elsevier Science B.V.
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/S0304-3975(99)00207-8
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
Computer Science
EISSN 1879-2294
EndPage 178
ExternalDocumentID 10_1016_S0304_3975_99_00207_8
S0304397599002078
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
29Q
4.4
457
4G.
5VS
6I.
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABAOU
ABBOA
ABEFU
ABFNM
ABJNI
ABMAC
ABTAH
ABVKL
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AEXQZ
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
GBOLZ
HVGLF
HZ~
IHE
IXB
J1W
KOM
LG9
M26
M41
MHUIS
MO0
N9A
NCXOZ
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SCC
SDF
SDG
SES
SEW
SPC
SPCBC
SSV
SSW
SSZ
T5K
TAE
TN5
WH7
WUQ
XJT
YNT
ZMT
ZY4
~G-
0SF
AAXKI
AAYXX
ADVLN
AFJKZ
AKRWK
CITATION
ID FETCH-LOGICAL-c373t-8778a62a34fed94764c3cca2dbcf5e511af67a97872ee02e4ad7c817e679f4cf3
IEDL.DBID AIKHN
ISSN 0304-3975
IngestDate Thu Sep 26 18:26:17 EDT 2024
Fri Feb 23 02:23:12 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Term rewriting
Termination
Verification
Dependency pairs
Automated theorem proving
Language English
License http://www.elsevier.com/open-access/userlicense/1.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c373t-8778a62a34fed94764c3cca2dbcf5e511af67a97872ee02e4ad7c817e679f4cf3
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0304397599002078
PageCount 46
ParticipantIDs crossref_primary_10_1016_S0304_3975_99_00207_8
elsevier_sciencedirect_doi_10_1016_S0304_3975_99_00207_8
PublicationCentury 2000
PublicationDate 2000-04-06
PublicationDateYYYYMMDD 2000-04-06
PublicationDate_xml – month: 04
  year: 2000
  text: 2000-04-06
  day: 06
PublicationDecade 2000
PublicationTitle Theoretical computer science
PublicationYear 2000
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Toyama (BIB46) 1987; 25
Zantema (BIB47) 1994; 17
J. Giesl, E. Ohlebusch, Pushing the frontiers of combining rewrite systems farther outwards, in: Proc. 2nd Internat. Workshop on Frontiers of Combining Systems, FroCoS ’98, Logic and Communication Series Amsterdam, The Netherlands, October, Research Studies Press, John Wiley & Sons, 1999.
Dershowitz (BIB16) 1987; 3
D.S. Lankford, On proving term rewriting systems are Noetherian, Tech. Report Memo MTP-3, Louisiana Technical University, Ruston, LA, 1979.
J. Giesl, Generating polynomial orderings for termination proofs, in: J. Hsiang (Ed.), Proc. 6th Internat. Conf. on Rewriting Techniques and Applications, RTA-95, Lecture Notes in Computer Science, vol. 914, Kaiserslautern, Germany, April, Springer, Berlin, 1995, pp. 426–431.
Gramlich (BIB27) 1995; 24
M.R.K. Krishna Rao, Some characteristics of strong innermost normalization, in: M. Wirsing, M. Nivat (Eds.), Proc. 5th Internat. Conf. on Algebraic Methodology and Software Technology, AMAST ’96, Lecture Notes in Computer Science, vol. 1101, Munich, Germany, July, Springer, Berlin, 1996, pp. 406–420.
C. Marché, X. Urbain, Termination of associative-commutative rewriting by dependency pairs, in: T. Nipkow (Ed.), Proc. 9th Internat. Conf. on Rewriting Techniques and Applications, RTA-98, Lecture Notes in Computer Science, vol. 1397, Tsukuba, Japan, March/April, Springer, Berlin, 1998, pp. 241–255.
Ben Cherifa, Lescanne (BIB11) 1987; 9
Dershowitz, Jouannaud (BIB18) 1990; vol. B
T. Arts, J. Giesl, Modularity of termination using dependency pairs, in: T. Nipkow (Ed.), Proc. 9th Internat. Conf. Rewriting Techniques and Applications, RTA-98, Lecture Notes in Computer Science, vol. 1379, Tsukuba, Japan, March/April, Springer, Berlin, 1988, pp. 226–240.
B. Gramlich, On proving termination by innermost termination, in: H. Ganzinger (Ed.), Proc. 7th Internat. Conf. on Rewriting Techniques and Applications, RTA-96, Lecture Notes in Computer Science, vol. 1103, New Brunswick, NJ, USA, July, Springer, Berlin, 1996, pp. 93–107.
A. Middeldorp, H. Ohsaki, H. Zantema, Transforming termination by self-labelling, in: M.A. McRobbie, J.K. Slaney (Eds.), Proc. 13th Internat. Conf. on Automated Deduction, CADE-13, Lecture Notes in Artificial Intelligence, vol. 1104, New Brunswick, NJ, USA, July/August, Springer, Berlin, 1996, pp. 373–387.
J.M. Hullot, Canonical forms and unification, in: W. Bibel, R. Kowalski (Eds.), Proc. 5th Internat. Conf. on Automated Deduction, CADE-5, Lecture Notes in Computer Science, vol. 87, Les Arcs, France, July, Springer, Berlin, 1980, pp. 318–334.
Zantema (BIB48) 1995; 24
T. Arts, H. Zantema, Termination of logic programs using semantic unification, in: M. Proietti (Ed.), Proc. 5th Internat. Workshop on Logic Program Synthesis and Transformation, LoPSTr ’95, Lecture Notes in Computer Science, vol. 1048, Utrecht, The Netherlands, September, Springer, Berlin, 1995, pp. 219–233.
G. Huet, D. Lankford, On the uniform halting problem for term rewriting systems, Tech. Report 283, INRIA, Le Chesnay, France, 1978.
D.A. Plaisted, A recursively defined ordering for proving termination of term rewriting systems, Tech. Report R-78-943, Department of Computer Science, University of Illinois, Urbana-Champaign, IL, 1978.
Dershowitz (BIB15) 1982; 17
Dick, Kalmus, Martin (BIB19) 1990; 28
M. Ferreira, H. Zantema, Dummy Elimination: making termination easier, in: H. Reichel (Ed.), Proc. 10th Internat. Conf. on Fundamentals of Computation Theory, FCT ’95, Lecture Notes in Computer Science, Dresden, Germany, August, Springer, Berlin, 1995, pp. 243–252.
Steinbach (BIB45) 1995; 24
Giesl (BIB25) 1997; 19
S. Kamin, J.-J. Lévy, Two generalizations of the recursive path ordering, Department of Computer Science, University of Illinois, IL, 1980.
Knuth, Bendix (BIB33) 1970
D.S. Lankford, D.R. Musser, A finite termination criterion, 1978.
T. Arts, J. Giesl, Termination of constructor systems, in: H. Ganzinger (Ed.), Proc. 7th Internat. Conf. on Rewriting Techniques and Applications, RTA-96, Lecture Notes in Computer Science, vol. 1103, New Brunswick, NJ, USA, July, Springer, Berlin, 1996, pp. 63–77.
T. Arts, J. Giesl, Automatically proving termination where simplification orderings fail, in: M. Dauchet (Ed.), Proc. 7th Internat. Joint Conf. on the Theory and Practice of Software Development, TAPSOFT ’97, Lecture Notes in Computer Science, vol. 1214, Lille, France, April, Springer, Berlin, 1997, pp. 261–272.
T. Arts, J. Giesl, Termination of term rewriting using dependency pairs, Tech. Report IBN 97/46, Darmstadt University of Technology, Germany, September, 1997. http://www.inferenzsysteme. informatik.tu-darmstadt.de.
J. Giesl, Termination analysis for functional programs using term orderings, in: A. Mycroft (Ed.), Proc. 2nd Internat. Static Analysis Symp., SAS ’95, Lecture Notes in Computer Science, vol. 983, Glasgow, UK, September, Springer, Berlin, 1995, pp. 154–171.
N. Dershowitz, Termination of linear rewriting systems, in: S. Even, O. Kariv (Eds.), Proc. 8th Internat. Coll. on Automata, Languages and Programming, ICALP ’81, Lecture Notes in Computer Science, vol. 115, Acre, Israel, July, Springer, Berlin, 1981, pp. 448–458.
Courcelle (BIB13) 1990; vol. B
Middeldorp, Zantema (BIB41) 1997; 175
T. Arts, Automatically proving termination and innermost normalisation of term rewriting systems, Ph.D. Thesis, Utrecht University, The Netherlands, May 1997.
Klop (BIB32) 1992; vol. 2
Bevers, Lewi (BIB12) 1993; 30
Krishna Rao (BIB35) 1995; 151
Steinbach (BIB43) 1994; 49
J. Steinbach, Automatic termination proofs with transformation orderings, in: J. Hsiang (Ed.), Proc. 6th Internat. Conf. on Rewriting Techniques and Applications, RTA-95, Lectures Notes in Computer Science, vol. 914, Kaiserslautern, Germany, April, Springer, Berlin, 1995, pp. 11–25. Full Version appeared as Tech. Report SR-92-23, Universität Kaiserslautern, Germany, 1992.
Dershowitz, Hoot (BIB17) 1995; 142
T. Arts, J. Giesl, Proving innermost normalisation automatically, in: H. Comon (Ed.), Proc. 8th Internat. Conf. on Rewriting Techniques and Applications, RTA-97, Lecture Notes in Computer Science, vol. 1232, Sitges, Spain, June, Springer, Berlin, 1997, pp. 157–171.
O. Geupel, Overlap closures and termination of term rewriting systems, Tech. Report MIP-8922 283, Universität Passau, Passau, Germany, 1989.
T. Kolbe, Challenge problems for automated termination proofs of term rewriting systems, Tech. Report IBN 96/42, Darmstadt University of Technology, Germany, 1996.
T. Arts, Termination by absence of infinite chains of dependency pairs, in: H. Kirchner (Ed.), Proc. 21st Internat. Colloquium on Trees in Algebra and Programming, CAAP ’96, Lecture Notes in Computer Science, vol. 1059, Linköping, Sweden, April, Springer, Berlin, 1986, pp. 196–210.
L. Bachmair, N. Dershowitz, Commutation, transformation and termination, in: J.H. Siekmann (Ed.), Proc. 8th Internat. Conf. on Automated Deduction, CADE-8, Lecture Notes in Computer Science, vol. 230, Oxford, England, July, Springer, Berlin, 1986, pp. 5–20.
Bellegarde, Lescanne (BIB10) 1990; 1
M. Ferreira, H. Zantema, Syntactical analysis of total termination, in: G. Levi, M. Rodrı́guez-Artalejo (Eds.), Proc. 4th Internat. Conf. on Algebraic and Logic Programming, ALP ’94, Lecture Notes in Computer Science, vol. 850, Madrid, Spain, September, Springer, Berlin, 1994, pp. 204–222.
Toyama (10.1016/S0304-3975(99)00207-8_BIB46) 1987; 25
10.1016/S0304-3975(99)00207-8_BIB26
10.1016/S0304-3975(99)00207-8_BIB29
Steinbach (10.1016/S0304-3975(99)00207-8_BIB45) 1995; 24
10.1016/S0304-3975(99)00207-8_BIB28
Bevers (10.1016/S0304-3975(99)00207-8_BIB12) 1993; 30
Knuth (10.1016/S0304-3975(99)00207-8_BIB33) 1970
Middeldorp (10.1016/S0304-3975(99)00207-8_BIB41) 1997; 175
Courcelle (10.1016/S0304-3975(99)00207-8_BIB13) 1990; vol. B
Zantema (10.1016/S0304-3975(99)00207-8_BIB48) 1995; 24
Gramlich (10.1016/S0304-3975(99)00207-8_BIB27) 1995; 24
Bellegarde (10.1016/S0304-3975(99)00207-8_BIB10) 1990; 1
Dershowitz (10.1016/S0304-3975(99)00207-8_BIB17) 1995; 142
Dershowitz (10.1016/S0304-3975(99)00207-8_BIB15) 1982; 17
10.1016/S0304-3975(99)00207-8_BIB40
10.1016/S0304-3975(99)00207-8_BIB21
10.1016/S0304-3975(99)00207-8_BIB20
10.1016/S0304-3975(99)00207-8_BIB42
Steinbach (10.1016/S0304-3975(99)00207-8_BIB43) 1994; 49
10.1016/S0304-3975(99)00207-8_BIB23
Dick (10.1016/S0304-3975(99)00207-8_BIB19) 1990; 28
10.1016/S0304-3975(99)00207-8_BIB22
Krishna Rao (10.1016/S0304-3975(99)00207-8_BIB35) 1995; 151
10.1016/S0304-3975(99)00207-8_BIB44
10.1016/S0304-3975(99)00207-8_BIB24
10.1016/S0304-3975(99)00207-8_BIB2
10.1016/S0304-3975(99)00207-8_BIB38
Zantema (10.1016/S0304-3975(99)00207-8_BIB47) 1994; 17
10.1016/S0304-3975(99)00207-8_BIB3
10.1016/S0304-3975(99)00207-8_BIB37
10.1016/S0304-3975(99)00207-8_BIB1
10.1016/S0304-3975(99)00207-8_BIB39
Klop (10.1016/S0304-3975(99)00207-8_BIB32) 1992; vol. 2
10.1016/S0304-3975(99)00207-8_BIB8
Dershowitz (10.1016/S0304-3975(99)00207-8_BIB16) 1987; 3
10.1016/S0304-3975(99)00207-8_BIB9
10.1016/S0304-3975(99)00207-8_BIB6
Ben Cherifa (10.1016/S0304-3975(99)00207-8_BIB11) 1987; 9
10.1016/S0304-3975(99)00207-8_BIB7
10.1016/S0304-3975(99)00207-8_BIB4
10.1016/S0304-3975(99)00207-8_BIB5
Dershowitz (10.1016/S0304-3975(99)00207-8_BIB18) 1990; vol. B
10.1016/S0304-3975(99)00207-8_BIB30
10.1016/S0304-3975(99)00207-8_BIB31
10.1016/S0304-3975(99)00207-8_BIB34
10.1016/S0304-3975(99)00207-8_BIB14
Giesl (10.1016/S0304-3975(99)00207-8_BIB25) 1997; 19
10.1016/S0304-3975(99)00207-8_BIB36
References_xml – volume: vol. 2
  start-page: 1
  year: 1992
  end-page: 116
  ident: BIB32
  article-title: Term rewriting systems
  publication-title: Background
  contributor:
    fullname: Klop
– volume: 151
  start-page: 487
  year: 1995
  end-page: 512
  ident: BIB35
  article-title: Modular proofs for completeness of hierarchical term rewriting systems
  publication-title: Theoret. Comput. Sci.
  contributor:
    fullname: Krishna Rao
– volume: 175
  start-page: 127
  year: 1997
  end-page: 158
  ident: BIB41
  article-title: Simple termination of rewrite systems
  publication-title: Theoret. Comput. Sci.
  contributor:
    fullname: Zantema
– volume: vol. B
  start-page: 459
  year: 1990
  end-page: 492
  ident: BIB13
  article-title: Recursive applicative program schemes
  publication-title: Formal Models and Semantics, Handbook of Theoretical Computer Science
  contributor:
    fullname: Courcelle
– volume: vol. B
  start-page: 243
  year: 1990
  end-page: 320
  ident: BIB18
  article-title: Rewrite systems
  publication-title: Formal Models and Semantics, Handbook of Theoretical Computer Science
  contributor:
    fullname: Jouannaud
– volume: 28
  start-page: 95
  year: 1990
  end-page: 119
  ident: BIB19
  article-title: Automating the Knuth Bendix ordering
  publication-title: Acta Inform.
  contributor:
    fullname: Martin
– volume: 9
  start-page: 137
  year: 1987
  end-page: 159
  ident: BIB11
  article-title: Termination of rewriting systems by polynomial interpretations and its implementation
  publication-title: Sci. Comput. Programm.
  contributor:
    fullname: Lescanne
– volume: 3
  start-page: 69
  year: 1987
  end-page: 116
  ident: BIB16
  article-title: Termination of rewriting
  publication-title: J. Symbolic Comput.
  contributor:
    fullname: Dershowitz
– volume: 17
  start-page: 279
  year: 1982
  end-page: 301
  ident: BIB15
  article-title: Orderings for term-rewriting systems
  publication-title: Theoret. Comput. Sci.
  contributor:
    fullname: Dershowitz
– volume: 19
  start-page: 1
  year: 1997
  end-page: 29
  ident: BIB25
  article-title: Termination of nested and mutually recursive algorithms
  publication-title: J. Automat. Reason.
  contributor:
    fullname: Giesl
– volume: 142
  start-page: 179
  year: 1995
  end-page: 207
  ident: BIB17
  article-title: Natural termination
  publication-title: Theoret. Comput. Sci.
  contributor:
    fullname: Hoot
– volume: 24
  start-page: 3
  year: 1995
  end-page: 23
  ident: BIB27
  article-title: Abstract relations between restricted termination and confluence properties of rewrite systems
  publication-title: Fund. Inform.
  contributor:
    fullname: Gramlich
– volume: 24
  start-page: 47
  year: 1995
  end-page: 87
  ident: BIB45
  article-title: Simplification orderings: history of results
  publication-title: Fund. Inform.
  contributor:
    fullname: Steinbach
– volume: 25
  start-page: 141
  year: 1987
  end-page: 143
  ident: BIB46
  article-title: Counterexamples to the termination for the direct sum of term rewriting systems
  publication-title: Inform. Process. Lett.
  contributor:
    fullname: Toyama
– volume: 1
  start-page: 79
  year: 1990
  end-page: 96
  ident: BIB10
  article-title: Termination by completion
  publication-title: Appl. Algebra Eng. Comm. Comput.
  contributor:
    fullname: Lescanne
– volume: 49
  start-page: 85
  year: 1994
  end-page: 93
  ident: BIB43
  article-title: Generating polynomial orderings
  publication-title: Inform. Process. Lett.
  contributor:
    fullname: Steinbach
– volume: 24
  start-page: 89
  year: 1995
  end-page: 105
  ident: BIB48
  article-title: Termination of term rewriting by semantic labelling
  publication-title: Fund. Inform.
  contributor:
    fullname: Zantema
– volume: 30
  start-page: 537
  year: 1993
  end-page: 568
  ident: BIB12
  article-title: Proving termination of (conditional) rewrite systems
  publication-title: Acta Inform.
  contributor:
    fullname: Lewi
– volume: 17
  start-page: 23
  year: 1994
  end-page: 50
  ident: BIB47
  article-title: Termination of term rewriting: interpretation and type elimination
  publication-title: J. Symbolic Comput.
  contributor:
    fullname: Zantema
– start-page: 263
  year: 1970
  end-page: 297
  ident: BIB33
  article-title: Simple word problems in universal algebras
  publication-title: Computational Problems in Abstract Algebra
  contributor:
    fullname: Bendix
– volume: vol. 2
  start-page: 1
  year: 1992
  ident: 10.1016/S0304-3975(99)00207-8_BIB32
  article-title: Term rewriting systems
  contributor:
    fullname: Klop
– ident: 10.1016/S0304-3975(99)00207-8_BIB1
– volume: 142
  start-page: 179
  issue: 2
  year: 1995
  ident: 10.1016/S0304-3975(99)00207-8_BIB17
  article-title: Natural termination
  publication-title: Theoret. Comput. Sci.
  doi: 10.1016/0304-3975(94)00275-4
  contributor:
    fullname: Dershowitz
– ident: 10.1016/S0304-3975(99)00207-8_BIB42
– volume: 49
  start-page: 85
  year: 1994
  ident: 10.1016/S0304-3975(99)00207-8_BIB43
  article-title: Generating polynomial orderings
  publication-title: Inform. Process. Lett.
  doi: 10.1016/0020-0190(94)90032-9
  contributor:
    fullname: Steinbach
– ident: 10.1016/S0304-3975(99)00207-8_BIB7
– volume: 175
  start-page: 127
  year: 1997
  ident: 10.1016/S0304-3975(99)00207-8_BIB41
  article-title: Simple termination of rewrite systems
  publication-title: Theoret. Comput. Sci.
  doi: 10.1016/S0304-3975(96)00172-7
  contributor:
    fullname: Middeldorp
– volume: 24
  start-page: 89
  year: 1995
  ident: 10.1016/S0304-3975(99)00207-8_BIB48
  article-title: Termination of term rewriting by semantic labelling
  publication-title: Fund. Inform.
  doi: 10.3233/FI-1995-24124
  contributor:
    fullname: Zantema
– volume: 3
  start-page: 69
  issue: 1 and 2
  year: 1987
  ident: 10.1016/S0304-3975(99)00207-8_BIB16
  article-title: Termination of rewriting
  publication-title: J. Symbolic Comput.
  doi: 10.1016/S0747-7171(87)80022-6
  contributor:
    fullname: Dershowitz
– ident: 10.1016/S0304-3975(99)00207-8_BIB31
– volume: 17
  start-page: 279
  year: 1982
  ident: 10.1016/S0304-3975(99)00207-8_BIB15
  article-title: Orderings for term-rewriting systems
  publication-title: Theoret. Comput. Sci.
  doi: 10.1016/0304-3975(82)90026-3
  contributor:
    fullname: Dershowitz
– ident: 10.1016/S0304-3975(99)00207-8_BIB29
– volume: 24
  start-page: 3
  year: 1995
  ident: 10.1016/S0304-3975(99)00207-8_BIB27
  article-title: Abstract relations between restricted termination and confluence properties of rewrite systems
  publication-title: Fund. Inform.
  doi: 10.3233/FI-1995-24121
  contributor:
    fullname: Gramlich
– ident: 10.1016/S0304-3975(99)00207-8_BIB4
  doi: 10.1007/BFb0030602
– ident: 10.1016/S0304-3975(99)00207-8_BIB39
  doi: 10.1007/BFb0052374
– ident: 10.1016/S0304-3975(99)00207-8_BIB40
  doi: 10.1007/3-540-61511-3_101
– ident: 10.1016/S0304-3975(99)00207-8_BIB37
– volume: 30
  start-page: 537
  year: 1993
  ident: 10.1016/S0304-3975(99)00207-8_BIB12
  article-title: Proving termination of (conditional) rewrite systems
  publication-title: Acta Inform.
  doi: 10.1007/BF01209624
  contributor:
    fullname: Bevers
– ident: 10.1016/S0304-3975(99)00207-8_BIB44
  doi: 10.1007/3-540-59200-8_44
– ident: 10.1016/S0304-3975(99)00207-8_BIB21
  doi: 10.1007/3-540-60249-6_56
– volume: 24
  start-page: 47
  year: 1995
  ident: 10.1016/S0304-3975(99)00207-8_BIB45
  article-title: Simplification orderings: history of results
  publication-title: Fund. Inform.
  doi: 10.3233/FI-1995-24123
  contributor:
    fullname: Steinbach
– volume: 9
  start-page: 137
  year: 1987
  ident: 10.1016/S0304-3975(99)00207-8_BIB11
  article-title: Termination of rewriting systems by polynomial interpretations and its implementation
  publication-title: Sci. Comput. Programm.
  doi: 10.1016/0167-6423(87)90030-X
  contributor:
    fullname: Ben Cherifa
– ident: 10.1016/S0304-3975(99)00207-8_BIB3
  doi: 10.1007/3-540-61464-8_43
– ident: 10.1016/S0304-3975(99)00207-8_BIB22
– ident: 10.1016/S0304-3975(99)00207-8_BIB23
  doi: 10.1007/3-540-59200-8_77
– ident: 10.1016/S0304-3975(99)00207-8_BIB24
  doi: 10.1007/3-540-60360-3_38
– ident: 10.1016/S0304-3975(99)00207-8_BIB6
– ident: 10.1016/S0304-3975(99)00207-8_BIB26
– volume: 25
  start-page: 141
  year: 1987
  ident: 10.1016/S0304-3975(99)00207-8_BIB46
  article-title: Counterexamples to the termination for the direct sum of term rewriting systems
  publication-title: Inform. Process. Lett.
  doi: 10.1016/0020-0190(87)90122-0
  contributor:
    fullname: Toyama
– volume: 151
  start-page: 487
  year: 1995
  ident: 10.1016/S0304-3975(99)00207-8_BIB35
  article-title: Modular proofs for completeness of hierarchical term rewriting systems
  publication-title: Theoret. Comput. Sci.
  doi: 10.1016/0304-3975(95)00075-8
  contributor:
    fullname: Krishna Rao
– ident: 10.1016/S0304-3975(99)00207-8_BIB8
– volume: 28
  start-page: 95
  year: 1990
  ident: 10.1016/S0304-3975(99)00207-8_BIB19
  article-title: Automating the Knuth Bendix ordering
  publication-title: Acta Inform.
  doi: 10.1007/BF01237233
  contributor:
    fullname: Dick
– volume: vol. B
  start-page: 459
  year: 1990
  ident: 10.1016/S0304-3975(99)00207-8_BIB13
  article-title: Recursive applicative program schemes
  contributor:
    fullname: Courcelle
– volume: 19
  start-page: 1
  year: 1997
  ident: 10.1016/S0304-3975(99)00207-8_BIB25
  article-title: Termination of nested and mutually recursive algorithms
  publication-title: J. Automat. Reason.
  doi: 10.1023/A:1005797629953
  contributor:
    fullname: Giesl
– ident: 10.1016/S0304-3975(99)00207-8_BIB5
  doi: 10.1007/3-540-62950-5_68
– ident: 10.1016/S0304-3975(99)00207-8_BIB34
– ident: 10.1016/S0304-3975(99)00207-8_BIB2
  doi: 10.1007/3-540-62950-5_68
– ident: 10.1016/S0304-3975(99)00207-8_BIB9
  doi: 10.1007/3-540-16780-3_76
– ident: 10.1016/S0304-3975(99)00207-8_BIB20
  doi: 10.1007/3-540-58431-5_15
– volume: 17
  start-page: 23
  year: 1994
  ident: 10.1016/S0304-3975(99)00207-8_BIB47
  article-title: Termination of term rewriting: interpretation and type elimination
  publication-title: J. Symbolic Comput.
  doi: 10.1006/jsco.1994.1003
  contributor:
    fullname: Zantema
– volume: 1
  start-page: 79
  year: 1990
  ident: 10.1016/S0304-3975(99)00207-8_BIB10
  article-title: Termination by completion
  publication-title: Appl. Algebra Eng. Comm. Comput.
  doi: 10.1007/BF01810293
  contributor:
    fullname: Bellegarde
– ident: 10.1016/S0304-3975(99)00207-8_BIB14
  doi: 10.1007/3-540-10843-2_36
– start-page: 263
  year: 1970
  ident: 10.1016/S0304-3975(99)00207-8_BIB33
  article-title: Simple word problems in universal algebras
  contributor:
    fullname: Knuth
– ident: 10.1016/S0304-3975(99)00207-8_BIB28
  doi: 10.1007/3-540-61464-8_45
– ident: 10.1016/S0304-3975(99)00207-8_BIB38
– ident: 10.1016/S0304-3975(99)00207-8_BIB36
– volume: vol. B
  start-page: 243
  year: 1990
  ident: 10.1016/S0304-3975(99)00207-8_BIB18
  article-title: Rewrite systems
  contributor:
    fullname: Dershowitz
– ident: 10.1016/S0304-3975(99)00207-8_BIB30
  doi: 10.21236/ADA087640
SSID ssj0000576
Score 2.1936326
Snippet We present techniques to prove termination and innermost termination of term rewriting systems automatically. In contrast to previous approaches, we do not...
SourceID crossref
elsevier
SourceType Aggregation Database
Publisher
StartPage 133
SubjectTerms Automated theorem proving
Dependency pairs
Term rewriting
Termination
Verification
Title Termination of term rewriting using dependency pairs
URI https://dx.doi.org/10.1016/S0304-3975(99)00207-8
Volume 236
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED71scDAo4Aoj8oDAwxp08TxYywVVUuhCy3qFjmJXXVJq1KEWPjtnJuEgoQYWE86y_p8_u6sO98BXNEoUZHAmxa4iXAoehRHeb5xlEg0F0lgc4i22mLE-hN6Pw2mJegWf2FsWWXO_Rmnb9g6l7RyNFvL-bz1ZJN66E0D5FOMebgoQxXdkScqUO0Mhv3RlpADnqUsbRIAFbYfebJFNsJrKW826zjidxf1ze30DmAvjxdJJ9vSIZR0WoP9YhYDya9mDXYfv_qvvhwBHWc1LhZ1sjDE8i9Z6TfbwSidEVvsPiPF_Nv4nSxtVucYJr27cbfv5PMRnNjn_hqJjAvFPOVToxNJOaOxjwfiJVFsAo2RlDKMK3wmck9r19NUJTwWba4Zl4bGxj-BSrpI9SkQxYykWjK0K3wwtl3lyUC1E8pdw6RPozo0C0jCZdYGI9zWhyGGocUwlDLcYBiKOogCuPDHeYZI1X-rnv1f9Rx2sq_y1HHZBVTWq1d9iUHDOmpAufnRbqBp3D4PHxq5iaB0ML39BAtuvhM
link.rule.ids 315,783,787,3513,4509,24128,27581,27936,27937,45597,45675,45691,45886
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JTwIxFH5ROKgHF9SIaw8e9DAyzHQ9IpGgLBfBcGs6My3hMhDEGP-97SyiifHgtclrmq9933vN2wCucZSoiFtNI37CPWwtiqeC0HiKJ5rxhLgYosu2GNLuGD9NyGQD2mUtjEurLLg_5_SMrYuVRoFmYzGbNZ5dUM9aU2L51Po8jG9C1XoDjFSg2rp_6fXXhExYHrJ0QQArsC7kyTfJFm-EuM328fjvJuqb2ensw27hL6JWfqQD2NBpDfbKWQyoUM0a7Ay--q--HgIe5TkuDnU0N8jxL1rqd9fBKJ0il-w-ReX82_gDLVxU5wjGnYdRu-sV8xG8OGThyhIZ44oGKsRGJwIziuPQXkiQRLEh2npSylCm7DeRBVr7gcYqYTFvMk2ZMDg24TFU0nmqTwApagTWgtp3ZT-MTV8FgqhmgplvqAhxVIe7EhK5yNtgyHV-mMVQOgylEDLDUPI68BI4-eM-paXqv0VP_y96BVvd0aAv-4_D3hls52Xz2PPpOVRWyzd9YR2IVXRZPJBPV0a9fA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Termination+of+term+rewriting+using+dependency+pairs&rft.jtitle=Theoretical+computer+science&rft.au=Arts%2C+Thomas&rft.au=Giesl%2C+J%C3%BCrgen&rft.date=2000-04-06&rft.pub=Elsevier+B.V&rft.issn=0304-3975&rft.eissn=1879-2294&rft.volume=236&rft.issue=1&rft.spage=133&rft.epage=178&rft_id=info:doi/10.1016%2FS0304-3975%2899%2900207-8&rft.externalDocID=S0304397599002078
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-3975&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-3975&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-3975&client=summon