Reweighted nonnegative least-mean-square algorithm

Statistical inference subject to nonnegativity constraints is a frequently occurring problem in learning problems. The nonnegative least-mean-square (NNLMS) algorithm was derived to address such problems in an online way. This algorithm builds on a fixed-point iteration strategy driven by the Karush...

Full description

Saved in:
Bibliographic Details
Published inSignal processing Vol. 128; pp. 131 - 141
Main Authors Chen, Jie, Richard, Cédric, Bermudez, José Carlos M.
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.11.2016
Elsevier
Subjects
Online AccessGet full text
ISSN0165-1684
1872-7557
DOI10.1016/j.sigpro.2016.03.017

Cover

Abstract Statistical inference subject to nonnegativity constraints is a frequently occurring problem in learning problems. The nonnegative least-mean-square (NNLMS) algorithm was derived to address such problems in an online way. This algorithm builds on a fixed-point iteration strategy driven by the Karush–Kuhn–Tucker conditions. It was shown to provide low variance estimates, but it however suffers from unbalanced convergence rates of these estimates. In this paper, we address this problem by introducing a variant of the NNLMS algorithm. We provide a theoretical analysis of its behavior in terms of transient learning curve, steady-state and tracking performance. We also introduce an extension of the algorithm for online sparse system identification. Monte-Carlo simulations are conducted to illustrate the performance of the algorithm and to validate the theoretical results. •We proposed a variant of NN-LMS algorithm with balanced weight convergence rates.•Accurate performance analysis is performed for a general nonstationarity model.•The sparse system identification problem can be solved via the derived algorithm.
AbstractList Statistical inference subject to nonnegativity constraints is a frequently occurring problem in learning problems. The nonnegative least-mean-square (NNLMS) algorithm was derived to address such problems in an online way. This algorithm builds on a fixed-point iteration strategy driven by the Karush-Kuhn-Tucker conditions. It was shown to provide low variance estimates, but it however suffers from unbalanced convergence rates of these estimates. In this paper, we address this problem by introducing a variant of the NNLMS algorithm. We provide a theoretical analysis of its behavior in terms of transient learning curve, steady-state and tracking performance. We also introduce an extension of the algorithm for online sparse system identification. Monte-Carlo simulations are conducted to illustrate the performance of the algorithm and to validate the theoretical results.
Statistical inference subject to nonnegativity constraints is a frequently occurring problem in learning problems. The nonnegative least-mean-square (NNLMS) algorithm was derived to address such problems in an online way. This algorithm builds on a fixed-point iteration strategy driven by the Karush–Kuhn–Tucker conditions. It was shown to provide low variance estimates, but it however suffers from unbalanced convergence rates of these estimates. In this paper, we address this problem by introducing a variant of the NNLMS algorithm. We provide a theoretical analysis of its behavior in terms of transient learning curve, steady-state and tracking performance. We also introduce an extension of the algorithm for online sparse system identification. Monte-Carlo simulations are conducted to illustrate the performance of the algorithm and to validate the theoretical results. •We proposed a variant of NN-LMS algorithm with balanced weight convergence rates.•Accurate performance analysis is performed for a general nonstationarity model.•The sparse system identification problem can be solved via the derived algorithm.
Author Richard, Cédric
Chen, Jie
Bermudez, José Carlos M.
Author_xml – sequence: 1
  givenname: Jie
  surname: Chen
  fullname: Chen, Jie
  email: dr.jie.chen@ieee.org
  organization: Center of Intelligent Acoustics and Immersive Communications (CIAIC), School of Marine Science and Technology, Northwestern Polytechnical University, Xi'an 710072, China
– sequence: 2
  givenname: Cédric
  surname: Richard
  fullname: Richard, Cédric
  email: cedric.richard@unice.fr
  organization: The Université de Nice Sophia-Antipolis, UMR CNRS 7293, Observatoire de la Côte d'azur, Laboratoire Lagrange, Parc Valrose, 06102 Nice, France
– sequence: 3
  givenname: José Carlos M.
  surname: Bermudez
  fullname: Bermudez, José Carlos M.
  email: j.bermudez@ieee.org
  organization: The Department of Electrical Engineering, Federal University of Santa Catarina, 88040-900 Florianópolis, SC, Brazil
BackLink https://hal.science/hal-03633762$$DView record in HAL
BookMark eNqFkD9PwzAQxS1UJNrCN2DoCEOCHcd2woBUVfyTKiGh7pbrXFJXSdzabhHfHleBhQGm053fe-f7TdCotz0gdE1wSjDhd9vUm2bnbJrFLsU0xUScoTEpRJYIxsQIjeMDSwgv8gs08X6LMSaU4zHK3uEDTLMJUM1iag-NCuYIsxaUD0kHqk_8_qAczFTbWGfCprtE57VqPVx91ylaPT2uFi_J8u35dTFfJpoKGpKCVlQxVjNOBcnKcg2U86LKKdcgcsYKxhlbA8NYMZ5zXqmS4wyrulJrUWo6RbdD7Ea1cudMp9yntMrIl_lSnmaYckoFz44kam8GbYSwP4APsjNeQ9uqHuzBS1JkjOW5EHmU3g9S7az3DmqpTYg32z44ZVpJsDwxlVs5MJUnpnGXjEyjOf9l_vnYP7aHwQYR19GAk14b6DVUxoEOsrLm74AvUf-TZg
CitedBy_id crossref_primary_10_1016_j_dsp_2024_104438
crossref_primary_10_1016_j_sigpro_2016_03_020
crossref_primary_10_1016_j_jss_2020_110872
crossref_primary_10_1109_TVT_2023_3276573
crossref_primary_10_1016_j_aeue_2018_08_003
crossref_primary_10_1016_j_sigpro_2017_10_006
crossref_primary_10_1016_j_amc_2019_124860
crossref_primary_10_1007_s12555_017_0380_z
crossref_primary_10_1109_TCSII_2020_3048287
crossref_primary_10_1177_0954410020951022
crossref_primary_10_1007_s11760_017_1129_0
crossref_primary_10_1186_s13662_020_02654_5
crossref_primary_10_1049_iet_cta_2018_5457
crossref_primary_10_1049_iet_com_2017_0624
crossref_primary_10_1016_j_apacoust_2020_107689
Cites_doi 10.4173/mic.1998.2.4
10.1109/TSP.2005.863030
10.1109/TNNLS.2014.2350026
10.1109/TSP.2002.1003058
10.1142/9789812836267_0008
10.1109/MSP.2010.938752
10.1109/TSP.2010.2082536
10.1109/TSP.2014.2332440
10.1109/TNNLS.2014.2310059
10.1016/S0165-1684(00)00275-9
10.1016/j.jcp.2013.07.010
10.1109/TNNLS.2012.2208476
10.1109/TNNLS.2012.2197827
10.1109/TSP.2002.1011194
10.1038/44565
10.1002/(SICI)1099-128X(199709/10)11:5<393::AID-CEM483>3.0.CO;2-L
10.1109/TNN.2007.895831
10.1109/42.232249
10.1007/s00041-008-9045-x
10.1007/BF02592073
10.1109/89.861368
10.1146/annurev.astro.43.112904.104850
10.1109/PIMRC.2006.254261
10.1109/79.974727
10.1109/LSP.2014.2320944
10.21437/Eurospeech.2003-343
10.1109/TSP.2011.2162508
10.1109/JSTSP.2007.910281
ContentType Journal Article
Copyright 2016 Elsevier B.V.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2016 Elsevier B.V.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
1XC
DOI 10.1016/j.sigpro.2016.03.017
DatabaseName CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Hyper Article en Ligne (HAL)
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database


DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1872-7557
EndPage 141
ExternalDocumentID oai_HAL_hal_03633762v1
10_1016_j_sigpro_2016_03_017
S016516841630010X
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F0J
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
G8K
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TAE
TN5
WUQ
XPP
ZMT
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABJNI
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7SC
7SP
8FD
EFKBS
JQ2
L7M
L~C
L~D
1XC
ID FETCH-LOGICAL-c373t-83d3a55f56371299be3668d436ce745585655be500a56466da96020afdab79c3
IEDL.DBID AIKHN
ISSN 0165-1684
IngestDate Tue Jun 24 07:02:20 EDT 2025
Fri Sep 05 04:43:26 EDT 2025
Tue Jul 01 02:07:21 EDT 2025
Thu Apr 24 22:57:00 EDT 2025
Fri Feb 23 02:33:57 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Behavior analysis
Sparse system identification
Online system identification
Nonnegativity constraints
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c373t-83d3a55f56371299be3668d436ce745585655be500a56466da96020afdab79c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-2890-141X
PQID 1825544774
PQPubID 23500
PageCount 11
ParticipantIDs hal_primary_oai_HAL_hal_03633762v1
proquest_miscellaneous_1825544774
crossref_citationtrail_10_1016_j_sigpro_2016_03_017
crossref_primary_10_1016_j_sigpro_2016_03_017
elsevier_sciencedirect_doi_10_1016_j_sigpro_2016_03_017
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-11-01
PublicationDateYYYYMMDD 2016-11-01
PublicationDate_xml – month: 11
  year: 2016
  text: 2016-11-01
  day: 01
PublicationDecade 2010
PublicationTitle Signal processing
PublicationYear 2016
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Kaufman (bib30) 1993; 12
Chorowski, Zurada (bib13) 2015; 26
Chen, Bermudez, Richard (bib28) 2014; 21
Guan, Tao, Luo, Yuan (bib11) 2012; 23
J. Chen, C. Richard, J.-C. M. Bermudez, P. Honeine, Identification en ligne avec régularisation L1. Algorithme et analyse de convergence en environnement non-stationnaire, in: Colloque Gretsi, Brest, France, 2013, pp. 1–4.
Yousef, Sayed (bib34) 2002; 50
A. Yeredor, On the role of constraints in system identification, in: Proceedings of the International Workshop on Total Least Squares and Errors-in-Variables Modeling, Leuven, Belgium, 2006, pp. 46–48.
Cands, Wakin, Boyd (bib32) 2008; 14
Nakshatralaa, Mudunurua, Valocchib (bib8) 2013; 253
Johansen (bib3) 1998; 79
Haykin (bib1) 2005
Duttweiler (bib31) 2000; 8
Costa, Bermudez, Bershad (bib33) 2002; 50
Khajehnejad, Dimakis, Xu, Hassibi (bib18) 2011; 59
Bro, Jong (bib22) 1997; 11
Yang, Xiang, Rong, Xie (bib20) 2015; 26
Lin, Lee (bib16) 2006; 54
Bardsley, Merikoski, Vio (bib7) 2008; 43
Lantéri, Roche, Cuevas, Aime (bib29) 2001; 81
Zass, Shashua (bib12) 2007; vol. 19
Figueiredo, Nowak, Wright (bib14) 2007; 1
Calamai, Moré (bib23) 1987; 39
Lin (bib25) 2007; 18
Puetter, Gosnell, Yahil (bib6) 2005; 43
Chen, Richard, Bermudez, Honeine (bib26) 2011; 59
Keshava, Mustard (bib9) 2002; 19
Chen, Richard, Bermudez, Honeine (bib27) 2014; 62
Y. Chen, Y. Gu, A.O. Hero, Sparse LMS for system identification, in: Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing, Taipei, China, 2009, pp. 1325–3128.
Sayed (bib2) 2008
Yang, Xiang, Xie, Ding, Rong (bib19) 2012; 23
L.K. Saul, F. Sha, D.D. Lee, Statistical signal processing with nonnegative constraints, in: Proceedings of the European Conference on Speech Communication and Technology, Geneva, Switzerland, 2003, pp. 1001–1004.
R. Zdunek, M.J. Nawrocki, Improved modeling of highly loaded UMTS network with nonnegativity constraints, in: Proceedings of the Annual IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), Helsinki, Finland, 2006, pp. 1–5.
Lawson, Hanson (bib21) 1995
Theodoridis, Slavakis, Yamada (bib24) 2011; 28
D. Chen, R. Plemmons, Nonnegativity constraints in numerical analysis, in: Proceedings of the Symposium on the Birth of Numerical Analysis, Leuven Belgium, 2007, pp. 109–140.
Lee, Seung (bib10) 1999; 401
Duttweiler (10.1016/j.sigpro.2016.03.017_bib31) 2000; 8
Johansen (10.1016/j.sigpro.2016.03.017_bib3) 1998; 79
Calamai (10.1016/j.sigpro.2016.03.017_bib23) 1987; 39
Lantéri (10.1016/j.sigpro.2016.03.017_bib29) 2001; 81
Lee (10.1016/j.sigpro.2016.03.017_bib10) 1999; 401
Bro (10.1016/j.sigpro.2016.03.017_bib22) 1997; 11
Chen (10.1016/j.sigpro.2016.03.017_bib26) 2011; 59
Nakshatralaa (10.1016/j.sigpro.2016.03.017_bib8) 2013; 253
Bardsley (10.1016/j.sigpro.2016.03.017_bib7) 2008; 43
Khajehnejad (10.1016/j.sigpro.2016.03.017_bib18) 2011; 59
Cands (10.1016/j.sigpro.2016.03.017_bib32) 2008; 14
Theodoridis (10.1016/j.sigpro.2016.03.017_bib24) 2011; 28
10.1016/j.sigpro.2016.03.017_bib35
Costa (10.1016/j.sigpro.2016.03.017_bib33) 2002; 50
10.1016/j.sigpro.2016.03.017_bib36
10.1016/j.sigpro.2016.03.017_bib15
Puetter (10.1016/j.sigpro.2016.03.017_bib6) 2005; 43
10.1016/j.sigpro.2016.03.017_bib17
10.1016/j.sigpro.2016.03.017_bib4
10.1016/j.sigpro.2016.03.017_bib5
Lawson (10.1016/j.sigpro.2016.03.017_bib21) 1995
Yang (10.1016/j.sigpro.2016.03.017_bib20) 2015; 26
Sayed (10.1016/j.sigpro.2016.03.017_bib2) 2008
Chen (10.1016/j.sigpro.2016.03.017_bib27) 2014; 62
Zass (10.1016/j.sigpro.2016.03.017_bib12) 2007; vol. 19
Chorowski (10.1016/j.sigpro.2016.03.017_bib13) 2015; 26
Guan (10.1016/j.sigpro.2016.03.017_bib11) 2012; 23
Figueiredo (10.1016/j.sigpro.2016.03.017_bib14) 2007; 1
Chen (10.1016/j.sigpro.2016.03.017_bib28) 2014; 21
Lin (10.1016/j.sigpro.2016.03.017_bib16) 2006; 54
Lin (10.1016/j.sigpro.2016.03.017_bib25) 2007; 18
Kaufman (10.1016/j.sigpro.2016.03.017_bib30) 1993; 12
Yang (10.1016/j.sigpro.2016.03.017_bib19) 2012; 23
Yousef (10.1016/j.sigpro.2016.03.017_bib34) 2002; 50
Haykin (10.1016/j.sigpro.2016.03.017_bib1) 2005
Keshava (10.1016/j.sigpro.2016.03.017_bib9) 2002; 19
References_xml – volume: 401
  start-page: 788
  year: 1999
  end-page: 791
  ident: bib10
  article-title: Learning the parts of objects by non-negative matrix factorization
  publication-title: Nature
– volume: 62
  start-page: 3990
  year: 2014
  end-page: 4005
  ident: bib27
  article-title: Variants of nonnegative least-mean-square algorithm and convergence analysis
  publication-title: IEEE Trans. Signal Process.
– volume: 23
  start-page: 1601
  year: 2012
  end-page: 1610
  ident: bib19
  article-title: Nonnegative blind source separation by sparse component analysis based on determinant measure
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– reference: D. Chen, R. Plemmons, Nonnegativity constraints in numerical analysis, in: Proceedings of the Symposium on the Birth of Numerical Analysis, Leuven Belgium, 2007, pp. 109–140.
– reference: J. Chen, C. Richard, J.-C. M. Bermudez, P. Honeine, Identification en ligne avec régularisation L1. Algorithme et analyse de convergence en environnement non-stationnaire, in: Colloque Gretsi, Brest, France, 2013, pp. 1–4.
– volume: vol. 19
  start-page: 1561
  year: 2007
  end-page: 1568
  ident: bib12
  article-title: Nonnegative sparse PCA
  publication-title: Advances in Neural Information Processing Systems
– year: 2005
  ident: bib1
  article-title: Adaptive Filter Theory
– volume: 54
  start-page: 839
  year: 2006
  end-page: 847
  ident: bib16
  article-title: Bayesian regularization and nonnegative deconvolution for room impulse response estimation
  publication-title: IEEE Trans. Signal Process.
– volume: 19
  start-page: 44
  year: 2002
  end-page: 57
  ident: bib9
  article-title: Spectral unmixing
  publication-title: IEEE Signal Process. Mag.
– year: 2008
  ident: bib2
  article-title: Adaptive Filters
– reference: L.K. Saul, F. Sha, D.D. Lee, Statistical signal processing with nonnegative constraints, in: Proceedings of the European Conference on Speech Communication and Technology, Geneva, Switzerland, 2003, pp. 1001–1004.
– volume: 18
  start-page: 1589
  year: 2007
  end-page: 1596
  ident: bib25
  article-title: On the convergence of multiplicative update algorithms for nonnegative matrix factorization
  publication-title: IEEE Trans. Neural Netw.
– volume: 43
  start-page: 95
  year: 2008
  end-page: 109
  ident: bib7
  article-title: The stabilizing properties of nonnegativity constraints in least squares image reconstruction
  publication-title: Int. J. Pure Appl. Math.
– reference: A. Yeredor, On the role of constraints in system identification, in: Proceedings of the International Workshop on Total Least Squares and Errors-in-Variables Modeling, Leuven, Belgium, 2006, pp. 46–48.
– volume: 14
  start-page: 877
  year: 2008
  end-page: 905
  ident: bib32
  article-title: Enhancing sparsity by reweighted 1 minimization
  publication-title: J. Fourier Anal. Appl.
– volume: 26
  start-page: 62
  year: 2015
  end-page: 69
  ident: bib13
  article-title: Learning understandable neural networks with nonnegative weight constraints
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– volume: 59
  start-page: 196
  year: 2011
  end-page: 208
  ident: bib18
  article-title: Sparse recovery of nonnegative signals with minimal expansion
  publication-title: IEEE Trans. Signal Process.
– volume: 8
  start-page: 508
  year: 2000
  end-page: 518
  ident: bib31
  article-title: Proportionate normalized least-mean-squares adaptation in echo cancelers
  publication-title: IEEE Trans. Speech Audio Process.
– volume: 39
  start-page: 93
  year: 1987
  end-page: 116
  ident: bib23
  article-title: Projected gradient methods for linearly constrained problems
  publication-title: Math. Program.
– volume: 50
  start-page: 1327
  year: 2002
  end-page: 1342
  ident: bib33
  article-title: Stochastic analysis of the Filtered-X LMS algorithm in systems with nonlinear secondary paths
  publication-title: IEEE Trans. Signal Process.
– volume: 253
  start-page: 278
  year: 2013
  end-page: 307
  ident: bib8
  article-title: A numerical framework for diffusion-controlled bimolecular-reactive systems to enforce maximum principles and the non-negative constraint
  publication-title: J. Comput. Phys.
– year: 1995
  ident: bib21
  article-title: Solving Least Square Problems
– volume: 50
  start-page: 1533
  year: 2002
  end-page: 1544
  ident: bib34
  article-title: Ability of adaptive filters to track carrier offsets and random channel nonstationarities
  publication-title: IEEE Trans. Signal Process.
– volume: 79
  start-page: 109
  year: 1998
  end-page: 116
  ident: bib3
  article-title: Constrained and regularized system identification
  publication-title: Model. Identif. Control
– volume: 28
  start-page: 97
  year: 2011
  end-page: 123
  ident: bib24
  article-title: Adaptive learning in a world of projections
  publication-title: IEEE Signal Process. Mag.
– volume: 59
  start-page: 5225
  year: 2011
  end-page: 5235
  ident: bib26
  article-title: Nonnegative least-mean square algorithm
  publication-title: IEEE Trans. Signal Process.
– volume: 1
  start-page: 586
  year: 2007
  end-page: 597
  ident: bib14
  article-title: Gradient projection for sparse reconstruction
  publication-title: IEEE J. Select. Topics Signal Process.
– reference: R. Zdunek, M.J. Nawrocki, Improved modeling of highly loaded UMTS network with nonnegativity constraints, in: Proceedings of the Annual IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), Helsinki, Finland, 2006, pp. 1–5.
– volume: 21
  start-page: 928
  year: 2014
  end-page: 932
  ident: bib28
  article-title: Steady-state performance of non-negative least-mean-square algorithm and its variants
  publication-title: IEEE Signal Process. Lett.
– volume: 12
  start-page: 200
  year: 1993
  end-page: 214
  ident: bib30
  article-title: Maximum likelihood, least-squares, and penalized least squares for pet
  publication-title: IEEE Trans. Med. Imaging
– volume: 26
  start-page: 1635
  year: 2015
  end-page: 1644
  ident: bib20
  article-title: A convex geometry-based blind source separation method for separating nonnegative sources
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– volume: 43
  start-page: 139
  year: 2005
  end-page: 194
  ident: bib6
  article-title: Digital image reconstruction
  publication-title: Annu. Rev. Astron. Astrophys.
– volume: 23
  start-page: 1087
  year: 2012
  end-page: 1099
  ident: bib11
  article-title: Online nonnegative matrix factorization with robust stochastic approximation
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– volume: 81
  start-page: 945
  year: 2001
  end-page: 974
  ident: bib29
  article-title: A general method to devise maximum-likelihood signal restoration multiplicative algorithms with non-negativity constraints
  publication-title: Signal Process.
– reference: Y. Chen, Y. Gu, A.O. Hero, Sparse LMS for system identification, in: Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing, Taipei, China, 2009, pp. 1325–3128.
– volume: 11
  start-page: 393
  year: 1997
  end-page: 401
  ident: bib22
  article-title: A fast non-negativity-constrained least squares algorithm
  publication-title: J. Chemomet.
– volume: 79
  start-page: 109
  issue: 2
  year: 1998
  ident: 10.1016/j.sigpro.2016.03.017_bib3
  article-title: Constrained and regularized system identification
  publication-title: Model. Identif. Control
  doi: 10.4173/mic.1998.2.4
– year: 2005
  ident: 10.1016/j.sigpro.2016.03.017_bib1
– volume: 54
  start-page: 839
  issue: 3
  year: 2006
  ident: 10.1016/j.sigpro.2016.03.017_bib16
  article-title: Bayesian regularization and nonnegative deconvolution for room impulse response estimation
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2005.863030
– volume: 26
  start-page: 1635
  issue: 8
  year: 2015
  ident: 10.1016/j.sigpro.2016.03.017_bib20
  article-title: A convex geometry-based blind source separation method for separating nonnegative sources
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2014.2350026
– volume: 50
  start-page: 1327
  issue: 6
  year: 2002
  ident: 10.1016/j.sigpro.2016.03.017_bib33
  article-title: Stochastic analysis of the Filtered-X LMS algorithm in systems with nonlinear secondary paths
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2002.1003058
– volume: vol. 19
  start-page: 1561
  year: 2007
  ident: 10.1016/j.sigpro.2016.03.017_bib12
  article-title: Nonnegative sparse PCA
– ident: 10.1016/j.sigpro.2016.03.017_bib5
  doi: 10.1142/9789812836267_0008
– volume: 28
  start-page: 97
  issue: 1
  year: 2011
  ident: 10.1016/j.sigpro.2016.03.017_bib24
  article-title: Adaptive learning in a world of projections
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/MSP.2010.938752
– volume: 59
  start-page: 196
  issue: 1
  year: 2011
  ident: 10.1016/j.sigpro.2016.03.017_bib18
  article-title: Sparse recovery of nonnegative signals with minimal expansion
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2010.2082536
– volume: 62
  start-page: 3990
  issue: 15
  year: 2014
  ident: 10.1016/j.sigpro.2016.03.017_bib27
  article-title: Variants of nonnegative least-mean-square algorithm and convergence analysis
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2014.2332440
– volume: 26
  start-page: 62
  issue: 1
  year: 2015
  ident: 10.1016/j.sigpro.2016.03.017_bib13
  article-title: Learning understandable neural networks with nonnegative weight constraints
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2014.2310059
– volume: 81
  start-page: 945
  issue: 5
  year: 2001
  ident: 10.1016/j.sigpro.2016.03.017_bib29
  article-title: A general method to devise maximum-likelihood signal restoration multiplicative algorithms with non-negativity constraints
  publication-title: Signal Process.
  doi: 10.1016/S0165-1684(00)00275-9
– volume: 253
  start-page: 278
  issue: 15
  year: 2013
  ident: 10.1016/j.sigpro.2016.03.017_bib8
  article-title: A numerical framework for diffusion-controlled bimolecular-reactive systems to enforce maximum principles and the non-negative constraint
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2013.07.010
– year: 2008
  ident: 10.1016/j.sigpro.2016.03.017_bib2
– ident: 10.1016/j.sigpro.2016.03.017_bib35
– volume: 23
  start-page: 1601
  issue: 10
  year: 2012
  ident: 10.1016/j.sigpro.2016.03.017_bib19
  article-title: Nonnegative blind source separation by sparse component analysis based on determinant measure
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2012.2208476
– ident: 10.1016/j.sigpro.2016.03.017_bib4
– volume: 23
  start-page: 1087
  issue: 7
  year: 2012
  ident: 10.1016/j.sigpro.2016.03.017_bib11
  article-title: Online nonnegative matrix factorization with robust stochastic approximation
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2012.2197827
– volume: 50
  start-page: 1533
  issue: 7
  year: 2002
  ident: 10.1016/j.sigpro.2016.03.017_bib34
  article-title: Ability of adaptive filters to track carrier offsets and random channel nonstationarities
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2002.1011194
– volume: 401
  start-page: 788
  issue: 6755
  year: 1999
  ident: 10.1016/j.sigpro.2016.03.017_bib10
  article-title: Learning the parts of objects by non-negative matrix factorization
  publication-title: Nature
  doi: 10.1038/44565
– volume: 43
  start-page: 95
  issue: 1
  year: 2008
  ident: 10.1016/j.sigpro.2016.03.017_bib7
  article-title: The stabilizing properties of nonnegativity constraints in least squares image reconstruction
  publication-title: Int. J. Pure Appl. Math.
– volume: 11
  start-page: 393
  issue: 5
  year: 1997
  ident: 10.1016/j.sigpro.2016.03.017_bib22
  article-title: A fast non-negativity-constrained least squares algorithm
  publication-title: J. Chemomet.
  doi: 10.1002/(SICI)1099-128X(199709/10)11:5<393::AID-CEM483>3.0.CO;2-L
– volume: 18
  start-page: 1589
  issue: 6
  year: 2007
  ident: 10.1016/j.sigpro.2016.03.017_bib25
  article-title: On the convergence of multiplicative update algorithms for nonnegative matrix factorization
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/TNN.2007.895831
– volume: 12
  start-page: 200
  issue: 2
  year: 1993
  ident: 10.1016/j.sigpro.2016.03.017_bib30
  article-title: Maximum likelihood, least-squares, and penalized least squares for pet
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/42.232249
– volume: 14
  start-page: 877
  issue: 5–6
  year: 2008
  ident: 10.1016/j.sigpro.2016.03.017_bib32
  article-title: Enhancing sparsity by reweighted 1 minimization
  publication-title: J. Fourier Anal. Appl.
  doi: 10.1007/s00041-008-9045-x
– volume: 39
  start-page: 93
  issue: 1
  year: 1987
  ident: 10.1016/j.sigpro.2016.03.017_bib23
  article-title: Projected gradient methods for linearly constrained problems
  publication-title: Math. Program.
  doi: 10.1007/BF02592073
– volume: 8
  start-page: 508
  issue: 5
  year: 2000
  ident: 10.1016/j.sigpro.2016.03.017_bib31
  article-title: Proportionate normalized least-mean-squares adaptation in echo cancelers
  publication-title: IEEE Trans. Speech Audio Process.
  doi: 10.1109/89.861368
– volume: 43
  start-page: 139
  year: 2005
  ident: 10.1016/j.sigpro.2016.03.017_bib6
  article-title: Digital image reconstruction
  publication-title: Annu. Rev. Astron. Astrophys.
  doi: 10.1146/annurev.astro.43.112904.104850
– ident: 10.1016/j.sigpro.2016.03.017_bib17
  doi: 10.1109/PIMRC.2006.254261
– year: 1995
  ident: 10.1016/j.sigpro.2016.03.017_bib21
– volume: 19
  start-page: 44
  issue: 1
  year: 2002
  ident: 10.1016/j.sigpro.2016.03.017_bib9
  article-title: Spectral unmixing
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/79.974727
– volume: 21
  start-page: 928
  issue: 8
  year: 2014
  ident: 10.1016/j.sigpro.2016.03.017_bib28
  article-title: Steady-state performance of non-negative least-mean-square algorithm and its variants
  publication-title: IEEE Signal Process. Lett.
  doi: 10.1109/LSP.2014.2320944
– ident: 10.1016/j.sigpro.2016.03.017_bib15
  doi: 10.21437/Eurospeech.2003-343
– ident: 10.1016/j.sigpro.2016.03.017_bib36
– volume: 59
  start-page: 5225
  issue: 11
  year: 2011
  ident: 10.1016/j.sigpro.2016.03.017_bib26
  article-title: Nonnegative least-mean square algorithm
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2011.2162508
– volume: 1
  start-page: 586
  issue: 4
  year: 2007
  ident: 10.1016/j.sigpro.2016.03.017_bib14
  article-title: Gradient projection for sparse reconstruction
  publication-title: IEEE J. Select. Topics Signal Process.
  doi: 10.1109/JSTSP.2007.910281
SSID ssj0001360
Score 2.257653
Snippet Statistical inference subject to nonnegativity constraints is a frequently occurring problem in learning problems. The nonnegative least-mean-square (NNLMS)...
SourceID hal
proquest
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 131
SubjectTerms Algorithms
Behavior analysis
Computer Science
Computer simulation
Construction
Convergence
Estimates
Nonnegativity constraints
On-line systems
Online system identification
Signal and Image Processing
Sparse system identification
Strategy
Tracking
Title Reweighted nonnegative least-mean-square algorithm
URI https://dx.doi.org/10.1016/j.sigpro.2016.03.017
https://www.proquest.com/docview/1825544774
https://hal.science/hal-03633762
Volume 128
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLbYuMAB8RTjMRXENaxtHu2OE2IazwMPabcobdMxNMZjA278duy0nQAhIXFslCiRnXxx6s82wAEaxTJB5GOCC5-JHM9cEoQRS7g0RubKTx15_OJS9W7FaV_25-CoioUhWmWJ_QWmO7QuW1qlNFtPw2HrmgJxAkVuM04vm34N5kPeVrIO852Ts97lDJAD7oKFqT-jAVUEnaN5TYYDhCrieCmX7dRVLvv1hqrdEVXyB2K7a6i7DEul_eh1iiWuwJwdr8Lil6yCaxBe2Xf3w9Nm3ph4LAOX3NsbUZke9mDNmE2ecWdYz4wGjy_D6d3DOtx0j2-OeqwsjcBSHvEpi3nGjZS5VDzCG7udWK5UnAmuUhsJiW8AJWVipe8bqYRSmUGlhL7JM5NE7ZRvQB0XYDfBi1WShynaKTyORWyDOJMilxme_NCinrIG8EoaOi3ThlP1ipGu-GH3upChJhlqn2uUYQPYbNRTkTbjj_5RJWj9Tf0akf2Pkfuol9kklC271znX1EY-asTP8C1owF6lNo3Hh3wiZmwfXycan1doUAk0grf-vYRtWKCvIkJxB-rTl1e7i6bKNGlC7fAjaJYb8hOVBOWB
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLZ4HIAD4inGsyCuYW3zaDlOE2jA4ABD2i1K23QMjfHYgBu_HTtteQkJiWuaKJGdfHHqzzbAPhrFMkHkY4ILn4kcz1wShBFLuDRG5spPHXn8_EK1rsVpV3YnoFnFwhCtssT-AtMdWpct9VKa9Yd-v35FgTiBIrcZp5dNdxKmheQR8foO3j55HgF3ocLUm1H3Kn7OkbxG_R4CFTG8lMt16uqW_Xo_Td4QUfIHXrtL6HgB5kvr0WsUC1yECTtcgrkvOQWXIby0r-53p828IbFYei61tzegIj3szpohGz3ivrCeGfTun_rjm7sV6BwfdZotVhZGYCmP-JjFPONGylwqHuF9fZhYrlScCa5SGwmJLwAlZWKl7xuphFKZQZWEvskzk0SHKV-FKVyAXQMvVkkepmil8DgWsQ3iTIpcZnjuQ4taymrAK2notEwaTrUrBrpih93qQoaaZKh9rlGGNWAfox6KpBl_9I8qQetvyteI63-M3EO9fExCubJbjbamNvJQI3qGL0ENdiu1aTw85BExQ3v_PNL4uEJzSqAJvP7vJezATKtz3tbtk4uzDZilL0Ws4iZMjZ-e7RYaLeNk223Kd4DU5kw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reweighted+nonnegative+least-mean-square+algorithm&rft.jtitle=Signal+processing&rft.au=Chen%2C+Jie&rft.au=Richard%2C+C%C3%A9dric&rft.au=Bermudez%2C+Jos%C3%A9+Carlos+M.&rft.date=2016-11-01&rft.issn=0165-1684&rft.volume=128&rft.spage=131&rft.epage=141&rft_id=info:doi/10.1016%2Fj.sigpro.2016.03.017&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_sigpro_2016_03_017
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0165-1684&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0165-1684&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0165-1684&client=summon