Reweighted nonnegative least-mean-square algorithm
Statistical inference subject to nonnegativity constraints is a frequently occurring problem in learning problems. The nonnegative least-mean-square (NNLMS) algorithm was derived to address such problems in an online way. This algorithm builds on a fixed-point iteration strategy driven by the Karush...
Saved in:
Published in | Signal processing Vol. 128; pp. 131 - 141 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.11.2016
Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 0165-1684 1872-7557 |
DOI | 10.1016/j.sigpro.2016.03.017 |
Cover
Abstract | Statistical inference subject to nonnegativity constraints is a frequently occurring problem in learning problems. The nonnegative least-mean-square (NNLMS) algorithm was derived to address such problems in an online way. This algorithm builds on a fixed-point iteration strategy driven by the Karush–Kuhn–Tucker conditions. It was shown to provide low variance estimates, but it however suffers from unbalanced convergence rates of these estimates. In this paper, we address this problem by introducing a variant of the NNLMS algorithm. We provide a theoretical analysis of its behavior in terms of transient learning curve, steady-state and tracking performance. We also introduce an extension of the algorithm for online sparse system identification. Monte-Carlo simulations are conducted to illustrate the performance of the algorithm and to validate the theoretical results.
•We proposed a variant of NN-LMS algorithm with balanced weight convergence rates.•Accurate performance analysis is performed for a general nonstationarity model.•The sparse system identification problem can be solved via the derived algorithm. |
---|---|
AbstractList | Statistical inference subject to nonnegativity constraints is a frequently occurring problem in learning problems. The nonnegative least-mean-square (NNLMS) algorithm was derived to address such problems in an online way. This algorithm builds on a fixed-point iteration strategy driven by the Karush-Kuhn-Tucker conditions. It was shown to provide low variance estimates, but it however suffers from unbalanced convergence rates of these estimates. In this paper, we address this problem by introducing a variant of the NNLMS algorithm. We provide a theoretical analysis of its behavior in terms of transient learning curve, steady-state and tracking performance. We also introduce an extension of the algorithm for online sparse system identification. Monte-Carlo simulations are conducted to illustrate the performance of the algorithm and to validate the theoretical results. Statistical inference subject to nonnegativity constraints is a frequently occurring problem in learning problems. The nonnegative least-mean-square (NNLMS) algorithm was derived to address such problems in an online way. This algorithm builds on a fixed-point iteration strategy driven by the Karush–Kuhn–Tucker conditions. It was shown to provide low variance estimates, but it however suffers from unbalanced convergence rates of these estimates. In this paper, we address this problem by introducing a variant of the NNLMS algorithm. We provide a theoretical analysis of its behavior in terms of transient learning curve, steady-state and tracking performance. We also introduce an extension of the algorithm for online sparse system identification. Monte-Carlo simulations are conducted to illustrate the performance of the algorithm and to validate the theoretical results. •We proposed a variant of NN-LMS algorithm with balanced weight convergence rates.•Accurate performance analysis is performed for a general nonstationarity model.•The sparse system identification problem can be solved via the derived algorithm. |
Author | Richard, Cédric Chen, Jie Bermudez, José Carlos M. |
Author_xml | – sequence: 1 givenname: Jie surname: Chen fullname: Chen, Jie email: dr.jie.chen@ieee.org organization: Center of Intelligent Acoustics and Immersive Communications (CIAIC), School of Marine Science and Technology, Northwestern Polytechnical University, Xi'an 710072, China – sequence: 2 givenname: Cédric surname: Richard fullname: Richard, Cédric email: cedric.richard@unice.fr organization: The Université de Nice Sophia-Antipolis, UMR CNRS 7293, Observatoire de la Côte d'azur, Laboratoire Lagrange, Parc Valrose, 06102 Nice, France – sequence: 3 givenname: José Carlos M. surname: Bermudez fullname: Bermudez, José Carlos M. email: j.bermudez@ieee.org organization: The Department of Electrical Engineering, Federal University of Santa Catarina, 88040-900 Florianópolis, SC, Brazil |
BackLink | https://hal.science/hal-03633762$$DView record in HAL |
BookMark | eNqFkD9PwzAQxS1UJNrCN2DoCEOCHcd2woBUVfyTKiGh7pbrXFJXSdzabhHfHleBhQGm053fe-f7TdCotz0gdE1wSjDhd9vUm2bnbJrFLsU0xUScoTEpRJYIxsQIjeMDSwgv8gs08X6LMSaU4zHK3uEDTLMJUM1iag-NCuYIsxaUD0kHqk_8_qAczFTbWGfCprtE57VqPVx91ylaPT2uFi_J8u35dTFfJpoKGpKCVlQxVjNOBcnKcg2U86LKKdcgcsYKxhlbA8NYMZ5zXqmS4wyrulJrUWo6RbdD7Ea1cudMp9yntMrIl_lSnmaYckoFz44kam8GbYSwP4APsjNeQ9uqHuzBS1JkjOW5EHmU3g9S7az3DmqpTYg32z44ZVpJsDwxlVs5MJUnpnGXjEyjOf9l_vnYP7aHwQYR19GAk14b6DVUxoEOsrLm74AvUf-TZg |
CitedBy_id | crossref_primary_10_1016_j_dsp_2024_104438 crossref_primary_10_1016_j_sigpro_2016_03_020 crossref_primary_10_1016_j_jss_2020_110872 crossref_primary_10_1109_TVT_2023_3276573 crossref_primary_10_1016_j_aeue_2018_08_003 crossref_primary_10_1016_j_sigpro_2017_10_006 crossref_primary_10_1016_j_amc_2019_124860 crossref_primary_10_1007_s12555_017_0380_z crossref_primary_10_1109_TCSII_2020_3048287 crossref_primary_10_1177_0954410020951022 crossref_primary_10_1007_s11760_017_1129_0 crossref_primary_10_1186_s13662_020_02654_5 crossref_primary_10_1049_iet_cta_2018_5457 crossref_primary_10_1049_iet_com_2017_0624 crossref_primary_10_1016_j_apacoust_2020_107689 |
Cites_doi | 10.4173/mic.1998.2.4 10.1109/TSP.2005.863030 10.1109/TNNLS.2014.2350026 10.1109/TSP.2002.1003058 10.1142/9789812836267_0008 10.1109/MSP.2010.938752 10.1109/TSP.2010.2082536 10.1109/TSP.2014.2332440 10.1109/TNNLS.2014.2310059 10.1016/S0165-1684(00)00275-9 10.1016/j.jcp.2013.07.010 10.1109/TNNLS.2012.2208476 10.1109/TNNLS.2012.2197827 10.1109/TSP.2002.1011194 10.1038/44565 10.1002/(SICI)1099-128X(199709/10)11:5<393::AID-CEM483>3.0.CO;2-L 10.1109/TNN.2007.895831 10.1109/42.232249 10.1007/s00041-008-9045-x 10.1007/BF02592073 10.1109/89.861368 10.1146/annurev.astro.43.112904.104850 10.1109/PIMRC.2006.254261 10.1109/79.974727 10.1109/LSP.2014.2320944 10.21437/Eurospeech.2003-343 10.1109/TSP.2011.2162508 10.1109/JSTSP.2007.910281 |
ContentType | Journal Article |
Copyright | 2016 Elsevier B.V. Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: 2016 Elsevier B.V. – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D 1XC |
DOI | 10.1016/j.sigpro.2016.03.017 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Hyper Article en Ligne (HAL) |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISSN | 1872-7557 |
EndPage | 141 |
ExternalDocumentID | oai_HAL_hal_03633762v1 10_1016_j_sigpro_2016_03_017 S016516841630010X |
GroupedDBID | --K --M -~X .DC .~1 0R~ 123 1B1 1~. 1~5 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABFRF ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F0J F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q G8K GBLVA GBOLZ HLZ HVGLF HZ~ IHE J1W JJJVA KOM LG9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBC SDF SDG SDP SES SEW SPC SPCBC SST SSV SSZ T5K TAE TN5 WUQ XPP ZMT ~02 ~G- AATTM AAXKI AAYWO AAYXX ABDPE ABJNI ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7SC 7SP 8FD EFKBS JQ2 L7M L~C L~D 1XC |
ID | FETCH-LOGICAL-c373t-83d3a55f56371299be3668d436ce745585655be500a56466da96020afdab79c3 |
IEDL.DBID | AIKHN |
ISSN | 0165-1684 |
IngestDate | Tue Jun 24 07:02:20 EDT 2025 Fri Sep 05 04:43:26 EDT 2025 Tue Jul 01 02:07:21 EDT 2025 Thu Apr 24 22:57:00 EDT 2025 Fri Feb 23 02:33:57 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Behavior analysis Sparse system identification Online system identification Nonnegativity constraints |
Language | English |
License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c373t-83d3a55f56371299be3668d436ce745585655be500a56466da96020afdab79c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-2890-141X |
PQID | 1825544774 |
PQPubID | 23500 |
PageCount | 11 |
ParticipantIDs | hal_primary_oai_HAL_hal_03633762v1 proquest_miscellaneous_1825544774 crossref_citationtrail_10_1016_j_sigpro_2016_03_017 crossref_primary_10_1016_j_sigpro_2016_03_017 elsevier_sciencedirect_doi_10_1016_j_sigpro_2016_03_017 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-11-01 |
PublicationDateYYYYMMDD | 2016-11-01 |
PublicationDate_xml | – month: 11 year: 2016 text: 2016-11-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Signal processing |
PublicationYear | 2016 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Kaufman (bib30) 1993; 12 Chorowski, Zurada (bib13) 2015; 26 Chen, Bermudez, Richard (bib28) 2014; 21 Guan, Tao, Luo, Yuan (bib11) 2012; 23 J. Chen, C. Richard, J.-C. M. Bermudez, P. Honeine, Identification en ligne avec régularisation L1. Algorithme et analyse de convergence en environnement non-stationnaire, in: Colloque Gretsi, Brest, France, 2013, pp. 1–4. Yousef, Sayed (bib34) 2002; 50 A. Yeredor, On the role of constraints in system identification, in: Proceedings of the International Workshop on Total Least Squares and Errors-in-Variables Modeling, Leuven, Belgium, 2006, pp. 46–48. Cands, Wakin, Boyd (bib32) 2008; 14 Nakshatralaa, Mudunurua, Valocchib (bib8) 2013; 253 Johansen (bib3) 1998; 79 Haykin (bib1) 2005 Duttweiler (bib31) 2000; 8 Costa, Bermudez, Bershad (bib33) 2002; 50 Khajehnejad, Dimakis, Xu, Hassibi (bib18) 2011; 59 Bro, Jong (bib22) 1997; 11 Yang, Xiang, Rong, Xie (bib20) 2015; 26 Lin, Lee (bib16) 2006; 54 Bardsley, Merikoski, Vio (bib7) 2008; 43 Lantéri, Roche, Cuevas, Aime (bib29) 2001; 81 Zass, Shashua (bib12) 2007; vol. 19 Figueiredo, Nowak, Wright (bib14) 2007; 1 Calamai, Moré (bib23) 1987; 39 Lin (bib25) 2007; 18 Puetter, Gosnell, Yahil (bib6) 2005; 43 Chen, Richard, Bermudez, Honeine (bib26) 2011; 59 Keshava, Mustard (bib9) 2002; 19 Chen, Richard, Bermudez, Honeine (bib27) 2014; 62 Y. Chen, Y. Gu, A.O. Hero, Sparse LMS for system identification, in: Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing, Taipei, China, 2009, pp. 1325–3128. Sayed (bib2) 2008 Yang, Xiang, Xie, Ding, Rong (bib19) 2012; 23 L.K. Saul, F. Sha, D.D. Lee, Statistical signal processing with nonnegative constraints, in: Proceedings of the European Conference on Speech Communication and Technology, Geneva, Switzerland, 2003, pp. 1001–1004. R. Zdunek, M.J. Nawrocki, Improved modeling of highly loaded UMTS network with nonnegativity constraints, in: Proceedings of the Annual IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), Helsinki, Finland, 2006, pp. 1–5. Lawson, Hanson (bib21) 1995 Theodoridis, Slavakis, Yamada (bib24) 2011; 28 D. Chen, R. Plemmons, Nonnegativity constraints in numerical analysis, in: Proceedings of the Symposium on the Birth of Numerical Analysis, Leuven Belgium, 2007, pp. 109–140. Lee, Seung (bib10) 1999; 401 Duttweiler (10.1016/j.sigpro.2016.03.017_bib31) 2000; 8 Johansen (10.1016/j.sigpro.2016.03.017_bib3) 1998; 79 Calamai (10.1016/j.sigpro.2016.03.017_bib23) 1987; 39 Lantéri (10.1016/j.sigpro.2016.03.017_bib29) 2001; 81 Lee (10.1016/j.sigpro.2016.03.017_bib10) 1999; 401 Bro (10.1016/j.sigpro.2016.03.017_bib22) 1997; 11 Chen (10.1016/j.sigpro.2016.03.017_bib26) 2011; 59 Nakshatralaa (10.1016/j.sigpro.2016.03.017_bib8) 2013; 253 Bardsley (10.1016/j.sigpro.2016.03.017_bib7) 2008; 43 Khajehnejad (10.1016/j.sigpro.2016.03.017_bib18) 2011; 59 Cands (10.1016/j.sigpro.2016.03.017_bib32) 2008; 14 Theodoridis (10.1016/j.sigpro.2016.03.017_bib24) 2011; 28 10.1016/j.sigpro.2016.03.017_bib35 Costa (10.1016/j.sigpro.2016.03.017_bib33) 2002; 50 10.1016/j.sigpro.2016.03.017_bib36 10.1016/j.sigpro.2016.03.017_bib15 Puetter (10.1016/j.sigpro.2016.03.017_bib6) 2005; 43 10.1016/j.sigpro.2016.03.017_bib17 10.1016/j.sigpro.2016.03.017_bib4 10.1016/j.sigpro.2016.03.017_bib5 Lawson (10.1016/j.sigpro.2016.03.017_bib21) 1995 Yang (10.1016/j.sigpro.2016.03.017_bib20) 2015; 26 Sayed (10.1016/j.sigpro.2016.03.017_bib2) 2008 Chen (10.1016/j.sigpro.2016.03.017_bib27) 2014; 62 Zass (10.1016/j.sigpro.2016.03.017_bib12) 2007; vol. 19 Chorowski (10.1016/j.sigpro.2016.03.017_bib13) 2015; 26 Guan (10.1016/j.sigpro.2016.03.017_bib11) 2012; 23 Figueiredo (10.1016/j.sigpro.2016.03.017_bib14) 2007; 1 Chen (10.1016/j.sigpro.2016.03.017_bib28) 2014; 21 Lin (10.1016/j.sigpro.2016.03.017_bib16) 2006; 54 Lin (10.1016/j.sigpro.2016.03.017_bib25) 2007; 18 Kaufman (10.1016/j.sigpro.2016.03.017_bib30) 1993; 12 Yang (10.1016/j.sigpro.2016.03.017_bib19) 2012; 23 Yousef (10.1016/j.sigpro.2016.03.017_bib34) 2002; 50 Haykin (10.1016/j.sigpro.2016.03.017_bib1) 2005 Keshava (10.1016/j.sigpro.2016.03.017_bib9) 2002; 19 |
References_xml | – volume: 401 start-page: 788 year: 1999 end-page: 791 ident: bib10 article-title: Learning the parts of objects by non-negative matrix factorization publication-title: Nature – volume: 62 start-page: 3990 year: 2014 end-page: 4005 ident: bib27 article-title: Variants of nonnegative least-mean-square algorithm and convergence analysis publication-title: IEEE Trans. Signal Process. – volume: 23 start-page: 1601 year: 2012 end-page: 1610 ident: bib19 article-title: Nonnegative blind source separation by sparse component analysis based on determinant measure publication-title: IEEE Trans. Neural Netw. Learn. Syst. – reference: D. Chen, R. Plemmons, Nonnegativity constraints in numerical analysis, in: Proceedings of the Symposium on the Birth of Numerical Analysis, Leuven Belgium, 2007, pp. 109–140. – reference: J. Chen, C. Richard, J.-C. M. Bermudez, P. Honeine, Identification en ligne avec régularisation L1. Algorithme et analyse de convergence en environnement non-stationnaire, in: Colloque Gretsi, Brest, France, 2013, pp. 1–4. – volume: vol. 19 start-page: 1561 year: 2007 end-page: 1568 ident: bib12 article-title: Nonnegative sparse PCA publication-title: Advances in Neural Information Processing Systems – year: 2005 ident: bib1 article-title: Adaptive Filter Theory – volume: 54 start-page: 839 year: 2006 end-page: 847 ident: bib16 article-title: Bayesian regularization and nonnegative deconvolution for room impulse response estimation publication-title: IEEE Trans. Signal Process. – volume: 19 start-page: 44 year: 2002 end-page: 57 ident: bib9 article-title: Spectral unmixing publication-title: IEEE Signal Process. Mag. – year: 2008 ident: bib2 article-title: Adaptive Filters – reference: L.K. Saul, F. Sha, D.D. Lee, Statistical signal processing with nonnegative constraints, in: Proceedings of the European Conference on Speech Communication and Technology, Geneva, Switzerland, 2003, pp. 1001–1004. – volume: 18 start-page: 1589 year: 2007 end-page: 1596 ident: bib25 article-title: On the convergence of multiplicative update algorithms for nonnegative matrix factorization publication-title: IEEE Trans. Neural Netw. – volume: 43 start-page: 95 year: 2008 end-page: 109 ident: bib7 article-title: The stabilizing properties of nonnegativity constraints in least squares image reconstruction publication-title: Int. J. Pure Appl. Math. – reference: A. Yeredor, On the role of constraints in system identification, in: Proceedings of the International Workshop on Total Least Squares and Errors-in-Variables Modeling, Leuven, Belgium, 2006, pp. 46–48. – volume: 14 start-page: 877 year: 2008 end-page: 905 ident: bib32 article-title: Enhancing sparsity by reweighted 1 minimization publication-title: J. Fourier Anal. Appl. – volume: 26 start-page: 62 year: 2015 end-page: 69 ident: bib13 article-title: Learning understandable neural networks with nonnegative weight constraints publication-title: IEEE Trans. Neural Netw. Learn. Syst. – volume: 59 start-page: 196 year: 2011 end-page: 208 ident: bib18 article-title: Sparse recovery of nonnegative signals with minimal expansion publication-title: IEEE Trans. Signal Process. – volume: 8 start-page: 508 year: 2000 end-page: 518 ident: bib31 article-title: Proportionate normalized least-mean-squares adaptation in echo cancelers publication-title: IEEE Trans. Speech Audio Process. – volume: 39 start-page: 93 year: 1987 end-page: 116 ident: bib23 article-title: Projected gradient methods for linearly constrained problems publication-title: Math. Program. – volume: 50 start-page: 1327 year: 2002 end-page: 1342 ident: bib33 article-title: Stochastic analysis of the Filtered-X LMS algorithm in systems with nonlinear secondary paths publication-title: IEEE Trans. Signal Process. – volume: 253 start-page: 278 year: 2013 end-page: 307 ident: bib8 article-title: A numerical framework for diffusion-controlled bimolecular-reactive systems to enforce maximum principles and the non-negative constraint publication-title: J. Comput. Phys. – year: 1995 ident: bib21 article-title: Solving Least Square Problems – volume: 50 start-page: 1533 year: 2002 end-page: 1544 ident: bib34 article-title: Ability of adaptive filters to track carrier offsets and random channel nonstationarities publication-title: IEEE Trans. Signal Process. – volume: 79 start-page: 109 year: 1998 end-page: 116 ident: bib3 article-title: Constrained and regularized system identification publication-title: Model. Identif. Control – volume: 28 start-page: 97 year: 2011 end-page: 123 ident: bib24 article-title: Adaptive learning in a world of projections publication-title: IEEE Signal Process. Mag. – volume: 59 start-page: 5225 year: 2011 end-page: 5235 ident: bib26 article-title: Nonnegative least-mean square algorithm publication-title: IEEE Trans. Signal Process. – volume: 1 start-page: 586 year: 2007 end-page: 597 ident: bib14 article-title: Gradient projection for sparse reconstruction publication-title: IEEE J. Select. Topics Signal Process. – reference: R. Zdunek, M.J. Nawrocki, Improved modeling of highly loaded UMTS network with nonnegativity constraints, in: Proceedings of the Annual IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC), Helsinki, Finland, 2006, pp. 1–5. – volume: 21 start-page: 928 year: 2014 end-page: 932 ident: bib28 article-title: Steady-state performance of non-negative least-mean-square algorithm and its variants publication-title: IEEE Signal Process. Lett. – volume: 12 start-page: 200 year: 1993 end-page: 214 ident: bib30 article-title: Maximum likelihood, least-squares, and penalized least squares for pet publication-title: IEEE Trans. Med. Imaging – volume: 26 start-page: 1635 year: 2015 end-page: 1644 ident: bib20 article-title: A convex geometry-based blind source separation method for separating nonnegative sources publication-title: IEEE Trans. Neural Netw. Learn. Syst. – volume: 43 start-page: 139 year: 2005 end-page: 194 ident: bib6 article-title: Digital image reconstruction publication-title: Annu. Rev. Astron. Astrophys. – volume: 23 start-page: 1087 year: 2012 end-page: 1099 ident: bib11 article-title: Online nonnegative matrix factorization with robust stochastic approximation publication-title: IEEE Trans. Neural Netw. Learn. Syst. – volume: 81 start-page: 945 year: 2001 end-page: 974 ident: bib29 article-title: A general method to devise maximum-likelihood signal restoration multiplicative algorithms with non-negativity constraints publication-title: Signal Process. – reference: Y. Chen, Y. Gu, A.O. Hero, Sparse LMS for system identification, in: Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing, Taipei, China, 2009, pp. 1325–3128. – volume: 11 start-page: 393 year: 1997 end-page: 401 ident: bib22 article-title: A fast non-negativity-constrained least squares algorithm publication-title: J. Chemomet. – volume: 79 start-page: 109 issue: 2 year: 1998 ident: 10.1016/j.sigpro.2016.03.017_bib3 article-title: Constrained and regularized system identification publication-title: Model. Identif. Control doi: 10.4173/mic.1998.2.4 – year: 2005 ident: 10.1016/j.sigpro.2016.03.017_bib1 – volume: 54 start-page: 839 issue: 3 year: 2006 ident: 10.1016/j.sigpro.2016.03.017_bib16 article-title: Bayesian regularization and nonnegative deconvolution for room impulse response estimation publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2005.863030 – volume: 26 start-page: 1635 issue: 8 year: 2015 ident: 10.1016/j.sigpro.2016.03.017_bib20 article-title: A convex geometry-based blind source separation method for separating nonnegative sources publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2014.2350026 – volume: 50 start-page: 1327 issue: 6 year: 2002 ident: 10.1016/j.sigpro.2016.03.017_bib33 article-title: Stochastic analysis of the Filtered-X LMS algorithm in systems with nonlinear secondary paths publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2002.1003058 – volume: vol. 19 start-page: 1561 year: 2007 ident: 10.1016/j.sigpro.2016.03.017_bib12 article-title: Nonnegative sparse PCA – ident: 10.1016/j.sigpro.2016.03.017_bib5 doi: 10.1142/9789812836267_0008 – volume: 28 start-page: 97 issue: 1 year: 2011 ident: 10.1016/j.sigpro.2016.03.017_bib24 article-title: Adaptive learning in a world of projections publication-title: IEEE Signal Process. Mag. doi: 10.1109/MSP.2010.938752 – volume: 59 start-page: 196 issue: 1 year: 2011 ident: 10.1016/j.sigpro.2016.03.017_bib18 article-title: Sparse recovery of nonnegative signals with minimal expansion publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2010.2082536 – volume: 62 start-page: 3990 issue: 15 year: 2014 ident: 10.1016/j.sigpro.2016.03.017_bib27 article-title: Variants of nonnegative least-mean-square algorithm and convergence analysis publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2014.2332440 – volume: 26 start-page: 62 issue: 1 year: 2015 ident: 10.1016/j.sigpro.2016.03.017_bib13 article-title: Learning understandable neural networks with nonnegative weight constraints publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2014.2310059 – volume: 81 start-page: 945 issue: 5 year: 2001 ident: 10.1016/j.sigpro.2016.03.017_bib29 article-title: A general method to devise maximum-likelihood signal restoration multiplicative algorithms with non-negativity constraints publication-title: Signal Process. doi: 10.1016/S0165-1684(00)00275-9 – volume: 253 start-page: 278 issue: 15 year: 2013 ident: 10.1016/j.sigpro.2016.03.017_bib8 article-title: A numerical framework for diffusion-controlled bimolecular-reactive systems to enforce maximum principles and the non-negative constraint publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2013.07.010 – year: 2008 ident: 10.1016/j.sigpro.2016.03.017_bib2 – ident: 10.1016/j.sigpro.2016.03.017_bib35 – volume: 23 start-page: 1601 issue: 10 year: 2012 ident: 10.1016/j.sigpro.2016.03.017_bib19 article-title: Nonnegative blind source separation by sparse component analysis based on determinant measure publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2012.2208476 – ident: 10.1016/j.sigpro.2016.03.017_bib4 – volume: 23 start-page: 1087 issue: 7 year: 2012 ident: 10.1016/j.sigpro.2016.03.017_bib11 article-title: Online nonnegative matrix factorization with robust stochastic approximation publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2012.2197827 – volume: 50 start-page: 1533 issue: 7 year: 2002 ident: 10.1016/j.sigpro.2016.03.017_bib34 article-title: Ability of adaptive filters to track carrier offsets and random channel nonstationarities publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2002.1011194 – volume: 401 start-page: 788 issue: 6755 year: 1999 ident: 10.1016/j.sigpro.2016.03.017_bib10 article-title: Learning the parts of objects by non-negative matrix factorization publication-title: Nature doi: 10.1038/44565 – volume: 43 start-page: 95 issue: 1 year: 2008 ident: 10.1016/j.sigpro.2016.03.017_bib7 article-title: The stabilizing properties of nonnegativity constraints in least squares image reconstruction publication-title: Int. J. Pure Appl. Math. – volume: 11 start-page: 393 issue: 5 year: 1997 ident: 10.1016/j.sigpro.2016.03.017_bib22 article-title: A fast non-negativity-constrained least squares algorithm publication-title: J. Chemomet. doi: 10.1002/(SICI)1099-128X(199709/10)11:5<393::AID-CEM483>3.0.CO;2-L – volume: 18 start-page: 1589 issue: 6 year: 2007 ident: 10.1016/j.sigpro.2016.03.017_bib25 article-title: On the convergence of multiplicative update algorithms for nonnegative matrix factorization publication-title: IEEE Trans. Neural Netw. doi: 10.1109/TNN.2007.895831 – volume: 12 start-page: 200 issue: 2 year: 1993 ident: 10.1016/j.sigpro.2016.03.017_bib30 article-title: Maximum likelihood, least-squares, and penalized least squares for pet publication-title: IEEE Trans. Med. Imaging doi: 10.1109/42.232249 – volume: 14 start-page: 877 issue: 5–6 year: 2008 ident: 10.1016/j.sigpro.2016.03.017_bib32 article-title: Enhancing sparsity by reweighted 1 minimization publication-title: J. Fourier Anal. Appl. doi: 10.1007/s00041-008-9045-x – volume: 39 start-page: 93 issue: 1 year: 1987 ident: 10.1016/j.sigpro.2016.03.017_bib23 article-title: Projected gradient methods for linearly constrained problems publication-title: Math. Program. doi: 10.1007/BF02592073 – volume: 8 start-page: 508 issue: 5 year: 2000 ident: 10.1016/j.sigpro.2016.03.017_bib31 article-title: Proportionate normalized least-mean-squares adaptation in echo cancelers publication-title: IEEE Trans. Speech Audio Process. doi: 10.1109/89.861368 – volume: 43 start-page: 139 year: 2005 ident: 10.1016/j.sigpro.2016.03.017_bib6 article-title: Digital image reconstruction publication-title: Annu. Rev. Astron. Astrophys. doi: 10.1146/annurev.astro.43.112904.104850 – ident: 10.1016/j.sigpro.2016.03.017_bib17 doi: 10.1109/PIMRC.2006.254261 – year: 1995 ident: 10.1016/j.sigpro.2016.03.017_bib21 – volume: 19 start-page: 44 issue: 1 year: 2002 ident: 10.1016/j.sigpro.2016.03.017_bib9 article-title: Spectral unmixing publication-title: IEEE Signal Process. Mag. doi: 10.1109/79.974727 – volume: 21 start-page: 928 issue: 8 year: 2014 ident: 10.1016/j.sigpro.2016.03.017_bib28 article-title: Steady-state performance of non-negative least-mean-square algorithm and its variants publication-title: IEEE Signal Process. Lett. doi: 10.1109/LSP.2014.2320944 – ident: 10.1016/j.sigpro.2016.03.017_bib15 doi: 10.21437/Eurospeech.2003-343 – ident: 10.1016/j.sigpro.2016.03.017_bib36 – volume: 59 start-page: 5225 issue: 11 year: 2011 ident: 10.1016/j.sigpro.2016.03.017_bib26 article-title: Nonnegative least-mean square algorithm publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2011.2162508 – volume: 1 start-page: 586 issue: 4 year: 2007 ident: 10.1016/j.sigpro.2016.03.017_bib14 article-title: Gradient projection for sparse reconstruction publication-title: IEEE J. Select. Topics Signal Process. doi: 10.1109/JSTSP.2007.910281 |
SSID | ssj0001360 |
Score | 2.257653 |
Snippet | Statistical inference subject to nonnegativity constraints is a frequently occurring problem in learning problems. The nonnegative least-mean-square (NNLMS)... |
SourceID | hal proquest crossref elsevier |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 131 |
SubjectTerms | Algorithms Behavior analysis Computer Science Computer simulation Construction Convergence Estimates Nonnegativity constraints On-line systems Online system identification Signal and Image Processing Sparse system identification Strategy Tracking |
Title | Reweighted nonnegative least-mean-square algorithm |
URI | https://dx.doi.org/10.1016/j.sigpro.2016.03.017 https://www.proquest.com/docview/1825544774 https://hal.science/hal-03633762 |
Volume | 128 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLbYuMAB8RTjMRXENaxtHu2OE2IazwMPabcobdMxNMZjA278duy0nQAhIXFslCiRnXxx6s82wAEaxTJB5GOCC5-JHM9cEoQRS7g0RubKTx15_OJS9W7FaV_25-CoioUhWmWJ_QWmO7QuW1qlNFtPw2HrmgJxAkVuM04vm34N5kPeVrIO852Ts97lDJAD7oKFqT-jAVUEnaN5TYYDhCrieCmX7dRVLvv1hqrdEVXyB2K7a6i7DEul_eh1iiWuwJwdr8Lil6yCaxBe2Xf3w9Nm3ph4LAOX3NsbUZke9mDNmE2ecWdYz4wGjy_D6d3DOtx0j2-OeqwsjcBSHvEpi3nGjZS5VDzCG7udWK5UnAmuUhsJiW8AJWVipe8bqYRSmUGlhL7JM5NE7ZRvQB0XYDfBi1WShynaKTyORWyDOJMilxme_NCinrIG8EoaOi3ThlP1ipGu-GH3upChJhlqn2uUYQPYbNRTkTbjj_5RJWj9Tf0akf2Pkfuol9kklC271znX1EY-asTP8C1owF6lNo3Hh3wiZmwfXycan1doUAk0grf-vYRtWKCvIkJxB-rTl1e7i6bKNGlC7fAjaJYb8hOVBOWB |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLZ4HIAD4inGsyCuYW3zaDlOE2jA4ABD2i1K23QMjfHYgBu_HTtteQkJiWuaKJGdfHHqzzbAPhrFMkHkY4ILn4kcz1wShBFLuDRG5spPHXn8_EK1rsVpV3YnoFnFwhCtssT-AtMdWpct9VKa9Yd-v35FgTiBIrcZp5dNdxKmheQR8foO3j55HgF3ocLUm1H3Kn7OkbxG_R4CFTG8lMt16uqW_Xo_Td4QUfIHXrtL6HgB5kvr0WsUC1yECTtcgrkvOQWXIby0r-53p828IbFYei61tzegIj3szpohGz3ivrCeGfTun_rjm7sV6BwfdZotVhZGYCmP-JjFPONGylwqHuF9fZhYrlScCa5SGwmJLwAlZWKl7xuphFKZQZWEvskzk0SHKV-FKVyAXQMvVkkepmil8DgWsQ3iTIpcZnjuQ4taymrAK2notEwaTrUrBrpih93qQoaaZKh9rlGGNWAfox6KpBl_9I8qQetvyteI63-M3EO9fExCubJbjbamNvJQI3qGL0ENdiu1aTw85BExQ3v_PNL4uEJzSqAJvP7vJezATKtz3tbtk4uzDZilL0Ws4iZMjZ-e7RYaLeNk223Kd4DU5kw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reweighted+nonnegative+least-mean-square+algorithm&rft.jtitle=Signal+processing&rft.au=Chen%2C+Jie&rft.au=Richard%2C+C%C3%A9dric&rft.au=Bermudez%2C+Jos%C3%A9+Carlos+M.&rft.date=2016-11-01&rft.issn=0165-1684&rft.volume=128&rft.spage=131&rft.epage=141&rft_id=info:doi/10.1016%2Fj.sigpro.2016.03.017&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_sigpro_2016_03_017 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0165-1684&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0165-1684&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0165-1684&client=summon |