A novel throttling strategy for adiabatic compressed air energy storage system based on an ejector
•A novel throttling strategy is proposed for adiabatic compressed air energy storage.•The throttling strategy is based on an ejector.•Proposed energy storage system is more efficient and economic than the conventional one.•The performance of ejector is stable and hardly affected by the ambient. Adia...
Saved in:
Published in | Energy conversion and management Vol. 158; pp. 50 - 59 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Oxford
Elsevier Ltd
15.02.2018
Elsevier Science Ltd |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •A novel throttling strategy is proposed for adiabatic compressed air energy storage.•The throttling strategy is based on an ejector.•Proposed energy storage system is more efficient and economic than the conventional one.•The performance of ejector is stable and hardly affected by the ambient.
Adiabatic compressed air energy storage presents a valuable and environmentally friendly option for massive energy storage. Currently, efficiencies are approximately 70%, in part due to the issue of exergy losses during the air throttling. To enhance the performance of the system, a novel adiabatic compressed air energy storage is proposed using a new throttling strategy with an additional ejector. The compressed air in the storage vessels has been divided into three parts with different pressures. The part of compressed air with highest pressure is regarded as primary fluid of ejector to compress the part of air with lowest pressure in the other storage vessel to an intermediate pressure. Hence the inlet pressure of high pressure turbine enhanced, results in the system efficiency improves. The thermodynamic analysis including energy analysis, exergy analysis and the parametric analysis are evaluated by using steady-state mathematical model and thermodynamic laws. The calculations show that the round trip efficiency improves nearly 2% and the profit increases by more than 21% compared to the conventional adiabatic compressed air energy storage system. Meanwhile, a parametric analysis is also carried out to evaluate the effects of several key parameters on the system performance of the proposed adiabatic compressed air energy storage system. |
---|---|
AbstractList | Adiabatic compressed air energy storage presents a valuable and environmentally friendly option for massive energy storage. Currently, efficiencies are approximately 70%, in part due to the issue of exergy losses during the air throttling. To enhance the performance of the system, a novel adiabatic compressed air energy storage is proposed using a new throttling strategy with an additional ejector. The compressed air in the storage vessels has been divided into three parts with different pressures. The part of compressed air with highest pressure is regarded as primary fluid of ejector to compress the part of air with lowest pressure in the other storage vessel to an intermediate pressure. Hence the inlet pressure of high pressure turbine enhanced, results in the system efficiency improves. The thermodynamic analysis including energy analysis, exergy analysis and the parametric analysis are evaluated by using steady-state mathematical model and thermodynamic laws. The calculations show that the round trip efficiency improves nearly 2% and the profit increases by more than 21% compared to the conventional adiabatic compressed air energy storage system. Meanwhile, a parametric analysis is also carried out to evaluate the effects of several key parameters on the system performance of the proposed adiabatic compressed air energy storage system. •A novel throttling strategy is proposed for adiabatic compressed air energy storage.•The throttling strategy is based on an ejector.•Proposed energy storage system is more efficient and economic than the conventional one.•The performance of ejector is stable and hardly affected by the ambient. Adiabatic compressed air energy storage presents a valuable and environmentally friendly option for massive energy storage. Currently, efficiencies are approximately 70%, in part due to the issue of exergy losses during the air throttling. To enhance the performance of the system, a novel adiabatic compressed air energy storage is proposed using a new throttling strategy with an additional ejector. The compressed air in the storage vessels has been divided into three parts with different pressures. The part of compressed air with highest pressure is regarded as primary fluid of ejector to compress the part of air with lowest pressure in the other storage vessel to an intermediate pressure. Hence the inlet pressure of high pressure turbine enhanced, results in the system efficiency improves. The thermodynamic analysis including energy analysis, exergy analysis and the parametric analysis are evaluated by using steady-state mathematical model and thermodynamic laws. The calculations show that the round trip efficiency improves nearly 2% and the profit increases by more than 21% compared to the conventional adiabatic compressed air energy storage system. Meanwhile, a parametric analysis is also carried out to evaluate the effects of several key parameters on the system performance of the proposed adiabatic compressed air energy storage system. |
Author | Zhao, Pan Pan Chen, Long Xiang Wang, Dong Xiang Hu, Peng Wang, Feng Xiang Xie, Mei Na |
Author_xml | – sequence: 1 givenname: Long Xiang surname: Chen fullname: Chen, Long Xiang organization: Quanzhou Institute of Equipment Manufacturing, Haixi Institutes, Chinese Academy of Sciences, Jinjiang 362200, China – sequence: 2 givenname: Peng surname: Hu fullname: Hu, Peng organization: Department of Thermal Science and Energy Engineering, University of Science and Technology of China, Hefei 230027, China – sequence: 3 givenname: Pan Pan surname: Zhao fullname: Zhao, Pan Pan organization: Hefei General Machinery Research Institute, Hefei 230088, China – sequence: 4 givenname: Mei Na surname: Xie fullname: Xie, Mei Na organization: Quanzhou Institute of Equipment Manufacturing, Haixi Institutes, Chinese Academy of Sciences, Jinjiang 362200, China – sequence: 5 givenname: Dong Xiang surname: Wang fullname: Wang, Dong Xiang organization: Hefei Meiling Company Limited Co. Ltd, Hefei 230601, China – sequence: 6 givenname: Feng Xiang surname: Wang fullname: Wang, Feng Xiang email: fengxiang.wang@fjirsm.ac.cn organization: Quanzhou Institute of Equipment Manufacturing, Haixi Institutes, Chinese Academy of Sciences, Jinjiang 362200, China |
BookMark | eNqFkE1r3DAURUVJoZO0f6EIuunGjiRbkgVdNIR-BALdtGvxLD9PZWxpKmkC8--rYdpNNlm9xT338jjX5CrEgIS856zljKvbpcXgYtggtIJx3XLRMilfkR0ftGmEEPqK7Bg3qhkM69-Q65wXxlgnmdqR8Y6G-IQrLb9TLGX1YU9zSVBwf6JzTBQmDyMU76iL2yFhzjhR8IliwFSZXGKCPdJ8ygU3OsI5j4FCoLigq-lb8nqGNeO7f_eG_Pr65ef99-bxx7eH-7vHxnW6K43Woxk4gDRCTpPR3YgT1zDPozGMSdP1qDWTbtIz9EMnnQI1olEzYKccmO6GfLzsHlL8c8Rc7Oazw3WFgPGYrWC9HLgWHavoh2foEo8p1O_OVFVmlOwrpS6USzHnhLM9JL9BOlnO7Fm9Xex_9fas3nJhq_pa_PSs6HypDmOoZv36cv3zpY7V1pPHZLPzlcTJp2rUTtG_NPEX8Vanqg |
CitedBy_id | crossref_primary_10_1016_j_energy_2021_119978 crossref_primary_10_1016_j_est_2023_107408 crossref_primary_10_1016_j_enconman_2025_119540 crossref_primary_10_1016_j_est_2022_106351 crossref_primary_10_1016_j_enconman_2020_113516 crossref_primary_10_1016_j_apenergy_2019_01_222 crossref_primary_10_3390_thermo3010008 crossref_primary_10_1038_s41598_022_26666_1 crossref_primary_10_1016_j_enconman_2020_112670 crossref_primary_10_1007_s13198_021_01054_6 crossref_primary_10_1016_j_est_2021_103009 crossref_primary_10_1016_j_ijrefrig_2023_01_008 crossref_primary_10_1016_j_apenergy_2023_121858 crossref_primary_10_1016_j_enconman_2019_02_071 crossref_primary_10_1016_j_energy_2020_118050 crossref_primary_10_1093_ce_zkac017 crossref_primary_10_1016_j_applthermaleng_2023_120568 crossref_primary_10_1016_j_est_2021_103197 crossref_primary_10_1016_j_est_2022_106165 crossref_primary_10_1016_j_enconman_2021_114715 crossref_primary_10_1016_j_enconman_2021_114322 crossref_primary_10_1016_j_energy_2019_116405 crossref_primary_10_1016_j_apenergy_2023_121742 crossref_primary_10_1016_j_energy_2022_123442 crossref_primary_10_1016_j_energy_2022_123607 crossref_primary_10_1002_er_5366 crossref_primary_10_1016_j_applthermaleng_2018_09_117 crossref_primary_10_1016_j_applthermaleng_2025_125694 crossref_primary_10_1016_j_enconman_2018_04_050 crossref_primary_10_1016_j_renene_2022_09_133 crossref_primary_10_1016_j_energy_2021_120905 crossref_primary_10_1016_j_renene_2023_119150 crossref_primary_10_1016_j_apenergy_2024_124140 crossref_primary_10_1016_j_enconman_2018_04_109 crossref_primary_10_1016_j_enconman_2021_114358 crossref_primary_10_1016_j_energy_2022_123731 crossref_primary_10_3390_pr12122665 crossref_primary_10_1016_j_enconman_2019_02_016 crossref_primary_10_1016_j_est_2024_114675 crossref_primary_10_1007_s12206_022_0546_3 crossref_primary_10_1016_j_renene_2018_11_046 crossref_primary_10_1016_j_applthermaleng_2022_119071 crossref_primary_10_1016_j_enconman_2020_113141 crossref_primary_10_1016_j_est_2020_101487 crossref_primary_10_1016_j_energy_2018_08_087 crossref_primary_10_1016_j_apenergy_2021_117356 crossref_primary_10_1016_j_enconman_2018_11_055 crossref_primary_10_1016_j_enconman_2020_112811 crossref_primary_10_1063_5_0139196 crossref_primary_10_1016_j_egypro_2018_09_075 crossref_primary_10_1063_5_0226187 crossref_primary_10_1093_ijlct_ctad030 crossref_primary_10_1063_1_5095969 crossref_primary_10_1016_j_energy_2022_126336 crossref_primary_10_1016_j_enconman_2019_111807 crossref_primary_10_1016_j_est_2024_112146 crossref_primary_10_1016_j_energy_2023_128415 crossref_primary_10_1016_j_enconman_2018_09_049 crossref_primary_10_3390_su141811689 |
Cites_doi | 10.1016/j.enpol.2009.04.002 10.1016/j.energy.2016.03.042 10.1016/j.enconman.2014.06.062 10.1016/j.rser.2015.08.059 10.1016/j.apenergy.2016.07.059 10.1016/j.energy.2017.04.089 10.1016/j.apenergy.2016.10.058 10.1016/j.enconman.2017.08.051 10.1016/j.energy.2016.02.125 10.1016/j.apenergy.2011.08.019 10.1016/j.rser.2016.08.019 10.1016/j.enconman.2015.03.094 10.1016/j.rser.2014.10.011 10.1016/j.apenergy.2016.08.014 10.1016/j.apenergy.2017.11.009 10.1016/j.energy.2014.09.030 10.1016/j.enconman.2016.12.089 10.1016/j.enconman.2015.11.049 10.1016/j.apenergy.2014.08.028 10.1016/j.apenergy.2014.03.013 10.1016/j.enconman.2016.01.001 10.1016/j.energy.2017.05.047 10.1016/j.energy.2013.12.010 10.1016/j.rser.2016.05.002 10.1016/j.apenergy.2014.09.081 10.1016/j.renene.2017.01.002 10.1109/JPROC.2011.2163049 10.1016/j.enconman.2016.04.082 10.1016/j.est.2017.03.006 10.1016/j.ijthermalsci.2015.12.022 |
ContentType | Journal Article |
Copyright | 2017 Elsevier Ltd Copyright Elsevier Science Ltd. Feb 15, 2018 |
Copyright_xml | – notice: 2017 Elsevier Ltd – notice: Copyright Elsevier Science Ltd. Feb 15, 2018 |
DBID | AAYXX CITATION 7ST 7TB 8FD C1K FR3 H8D KR7 L7M SOI 7S9 L.6 |
DOI | 10.1016/j.enconman.2017.12.055 |
DatabaseName | CrossRef Environment Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Aerospace Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace Environment Abstracts AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Technology Research Database Mechanical & Transportation Engineering Abstracts Engineering Research Database Environment Abstracts Advanced Technologies Database with Aerospace Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA Aerospace Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1879-2227 |
EndPage | 59 |
ExternalDocumentID | 10_1016_j_enconman_2017_12_055 S0196890417312074 |
GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AAXUO ABFNM ABFRF ABJNI ABMAC ABYKQ ACBEA ACDAQ ACGFO ACGFS ACIWK ACNCT ACRLP ADBBV ADEZE AEBSH AEFWE AEKER AENEX AFKWA AFRAH AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JARJE KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SDP SES SPC SPCBC SSR SST SSZ T5K TN5 XPP ZMT ~02 ~G- 29G 6TJ 8WZ A6W AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFFNX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION FEDTE FGOYB G-2 HVGLF HZ~ H~9 R2- SAC SEW WUQ 7ST 7TB 8FD C1K EFKBS FR3 H8D KR7 L7M SOI 7S9 AFXIZ L.6 |
ID | FETCH-LOGICAL-c373t-77b981aa5925dd973bed17affb99005934e7705cd7fa4835c6a6be96fae36ca93 |
IEDL.DBID | .~1 |
ISSN | 0196-8904 |
IngestDate | Mon Jul 21 09:33:35 EDT 2025 Wed Aug 13 06:31:43 EDT 2025 Tue Jul 01 01:17:25 EDT 2025 Thu Apr 24 23:10:12 EDT 2025 Fri Feb 23 02:33:02 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Energy analysis Ejector Adiabatic compressed air energy storage Exergy analysis |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c373t-77b981aa5925dd973bed17affb99005934e7705cd7fa4835c6a6be96fae36ca93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PQID | 2042229654 |
PQPubID | 2047472 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_2045817230 proquest_journals_2042229654 crossref_primary_10_1016_j_enconman_2017_12_055 crossref_citationtrail_10_1016_j_enconman_2017_12_055 elsevier_sciencedirect_doi_10_1016_j_enconman_2017_12_055 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-02-15 |
PublicationDateYYYYMMDD | 2018-02-15 |
PublicationDate_xml | – month: 02 year: 2018 text: 2018-02-15 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford |
PublicationTitle | Energy conversion and management |
PublicationYear | 2018 |
Publisher | Elsevier Ltd Elsevier Science Ltd |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier Science Ltd |
References | Liu, Wang (b0095) 2016; 108 Pimm, Garvey, de Jong (b0110) 2014; 66 Lv, He, Zhang, Li, Luo, Liu (b0065) 2017; 135 Sciacovelli, Li, Chen, Wu, Wang, Garvey (b0050) 2017; 185 Tola, Meloni, Spadaccini, Cau (b0060) 2017; 151 Chen, Xie, Zhao, Wang, Hu, Wang (b0115) 2018; 210 Grazzini, Milazzo (b0130) 2012; 100 Zhang, Yang, Li, Xu (b0045) 2014; 77 Denholm, Sioshansi (b0125) 2009; 37 Venkataramani, Parankusam, Ramalingam, Wang (b0020) 2016; 62 Odukomaiya, Abu-Heiba, Gluesenkamp, Abdelaziz, Jackson, Daniel (b0080) 2016; 179 Wolf, Budt (b0070) 2014; 125 Alami, Aokal, Abed, Alhemyari (b0135) 2017; 106 Yang, Zhang, Li, Xu (b0055) 2014; 86 Rashidi, Aghagoli, Raoo (b0150) 2017; 129 Besagni, Mereu, Inzoli (b0145) 2016; 53 Luo, Wang, Dooner, Clarke (b0035) 2015; 137 Chen, Hu, Sheng, Xie (b0085) 2017; 131 Nielsen, Leithner (b0105) 2009; 4 Lefebvre, Tezel (b0015) 2017; 67 Tessier, Floros, Bouzidi, Narine (b0090) 2016; 106 Wang, Yu (b0155) 2016; 111 Galanis, Sorin (b0140) 2016; 104 Zhao, Wang, Dai (b0025) 2015; 98 Wang, Xiong, Ting, Carriveau, Wang (b0100) 2016; 180 Mazloum, Sayah, Nemer (b0120) 2017; 11 Cheung, Carriveau, Ting (b0010) 2014; 134 NIST Standard Reference Database 23. NIST thermodynamic and transport properties of refrigerants and refrigerant mixture REFPROP, version 9.1; 2013. Raju, Kumar (b0030) 2012; 89 Wang, Zhang, Yang, Zhou, Wang (b0075) 2016; 103 Ghalelou, Fakhri, Nojavan, Majidi, Hatami (b0005) 2016; 120 Zakeri, Syri (b0040) 2015; 42 Lefebvre (10.1016/j.enconman.2017.12.055_b0015) 2017; 67 Liu (10.1016/j.enconman.2017.12.055_b0095) 2016; 108 Tessier (10.1016/j.enconman.2017.12.055_b0090) 2016; 106 Luo (10.1016/j.enconman.2017.12.055_b0035) 2015; 137 Ghalelou (10.1016/j.enconman.2017.12.055_b0005) 2016; 120 Wang (10.1016/j.enconman.2017.12.055_b0075) 2016; 103 Tola (10.1016/j.enconman.2017.12.055_b0060) 2017; 151 Yang (10.1016/j.enconman.2017.12.055_b0055) 2014; 86 10.1016/j.enconman.2017.12.055_b0160 Chen (10.1016/j.enconman.2017.12.055_b0085) 2017; 131 Zhang (10.1016/j.enconman.2017.12.055_b0045) 2014; 77 Chen (10.1016/j.enconman.2017.12.055_b0115) 2018; 210 Wang (10.1016/j.enconman.2017.12.055_b0155) 2016; 111 Zakeri (10.1016/j.enconman.2017.12.055_b0040) 2015; 42 Galanis (10.1016/j.enconman.2017.12.055_b0140) 2016; 104 Wang (10.1016/j.enconman.2017.12.055_b0100) 2016; 180 Odukomaiya (10.1016/j.enconman.2017.12.055_b0080) 2016; 179 Grazzini (10.1016/j.enconman.2017.12.055_b0130) 2012; 100 Alami (10.1016/j.enconman.2017.12.055_b0135) 2017; 106 Nielsen (10.1016/j.enconman.2017.12.055_b0105) 2009; 4 Mazloum (10.1016/j.enconman.2017.12.055_b0120) 2017; 11 Sciacovelli (10.1016/j.enconman.2017.12.055_b0050) 2017; 185 Cheung (10.1016/j.enconman.2017.12.055_b0010) 2014; 134 Wolf (10.1016/j.enconman.2017.12.055_b0070) 2014; 125 Raju (10.1016/j.enconman.2017.12.055_b0030) 2012; 89 Lv (10.1016/j.enconman.2017.12.055_b0065) 2017; 135 Pimm (10.1016/j.enconman.2017.12.055_b0110) 2014; 66 Venkataramani (10.1016/j.enconman.2017.12.055_b0020) 2016; 62 Besagni (10.1016/j.enconman.2017.12.055_b0145) 2016; 53 Zhao (10.1016/j.enconman.2017.12.055_b0025) 2015; 98 Denholm (10.1016/j.enconman.2017.12.055_b0125) 2009; 37 Rashidi (10.1016/j.enconman.2017.12.055_b0150) 2017; 129 |
References_xml | – volume: 210 start-page: 198 year: 2018 end-page: 210 ident: b0115 article-title: A novel isobaric adiabatic compressed air energy storage (IA-CAES) system on the base of volatile fluid publication-title: Appl Energy – volume: 106 start-page: 528 year: 2016 end-page: 534 ident: b0090 article-title: Exergy analysis of an adiabatic compressed air energy storage system using a cascade of phase change materials publication-title: Energy – volume: 11 start-page: 178 year: 2017 end-page: 190 ident: b0120 article-title: Dynamic modeling and simulation of an Isobaric Adiabatic Compressed Air Energy Storage (IA-CAES) system publication-title: J Energy Storage – volume: 4 start-page: 253 year: 2009 end-page: 263 ident: b0105 article-title: Dynamic simulation of an innovative compressed air energy storage plant – detailed modelling of the storage cavern publication-title: WSEAS Trans Power Syst – volume: 131 start-page: 259 year: 2017 end-page: 266 ident: b0085 article-title: A novel compressed air energy storage (CAES) system combined with pre-cooler and using low grade waste heat as heat source publication-title: Energy – reference: NIST Standard Reference Database 23. NIST thermodynamic and transport properties of refrigerants and refrigerant mixture REFPROP, version 9.1; 2013. – volume: 179 start-page: 948 year: 2016 end-page: 960 ident: b0080 article-title: Thermal analysis of near-isothermal compressed gas energy storage system publication-title: Appl Energy – volume: 86 start-page: 1031 year: 2014 end-page: 1044 ident: b0055 article-title: Theoretical evaluation on the impact of heat exchanger in advanced adiabatic compressed air energy storage system publication-title: Energy Convers Manag – volume: 67 start-page: 116 year: 2017 end-page: 125 ident: b0015 article-title: A review of energy storage technologies with a focus on adsorption thermal energy storage processes for heating applications publication-title: Renew Sustain Energy Rev – volume: 66 start-page: 496 year: 2014 end-page: 508 ident: b0110 article-title: Design and testing of energy bags for underwater compressed air energy storage publication-title: Energy – volume: 103 start-page: 182 year: 2016 end-page: 191 ident: b0075 article-title: Experimental study of compressed air energy storage system with thermal energy storage publication-title: Energy – volume: 106 start-page: 201 year: 2017 end-page: 211 ident: b0135 article-title: Low pressure, modular compressed air energy storage (CAES) system for wind energy storage applications publication-title: Renew Energy – volume: 77 start-page: 460 year: 2014 end-page: 477 ident: b0045 article-title: Thermodynamic analysis of energy conversion and transfer in hybrid system consisting of wind turbine and advanced adiabatic compressed air energy storage publication-title: Energy – volume: 120 start-page: 388 year: 2016 end-page: 396 ident: b0005 article-title: A stochastic self-scheduling program for compressed air energy storage (CAES) of renewable energy sources (RESs) based on a demand response mechanism publication-title: Energy Convers Manag – volume: 134 start-page: 239 year: 2014 end-page: 247 ident: b0010 article-title: Parameters affecting scalable underwater compressed air energy storage publication-title: Appl Energy – volume: 62 start-page: 895 year: 2016 end-page: 907 ident: b0020 article-title: A review on compressed air energy storage – a pathway for smart grid and polygeneration publication-title: Renew Sustain Energy Rev – volume: 111 start-page: 391 year: 2016 end-page: 400 ident: b0155 article-title: Experimental investigation on two-phase driven ejector performance in a novel ejector enhanced refrigeration system publication-title: Energy Convers Manag – volume: 37 start-page: 3149 year: 2009 end-page: 3158 ident: b0125 article-title: The value of compressed air energy storage with wind in transmission-constrained electric power systems publication-title: Energy Policy – volume: 129 start-page: 201 year: 2017 end-page: 215 ident: b0150 article-title: Thermodynamic analysis of the ejector refrigeration cycle using the artificial neural network publication-title: Energy – volume: 137 start-page: 511 year: 2015 end-page: 536 ident: b0035 article-title: Overview of current development in electrical energy storage technologies and the application potential in power system operation publication-title: Appl Energy – volume: 180 start-page: 810 year: 2016 end-page: 822 ident: b0100 article-title: Conventional and advanced exergy analyses of an underwater compressed air energy storage system publication-title: Appl Energy – volume: 135 start-page: 394 year: 2017 end-page: 401 ident: b0065 article-title: Modelling and analysis of a novel compressed air energy storage system for trigeneration based on electrical energy peak load shifting publication-title: Energy Convers Manag – volume: 125 start-page: 158 year: 2014 end-page: 164 ident: b0070 article-title: LTA-CAES – a low-temperature approach to adiabatic compressed air energy storage publication-title: Appl Energy – volume: 104 start-page: 315 year: 2016 end-page: 329 ident: b0140 article-title: Ejector design and performance prediction publication-title: Int J Therm Sci – volume: 100 start-page: 461 year: 2012 end-page: 472 ident: b0130 article-title: A thermodynamic analysis of multistage adiabatic CAES publication-title: Proc IEEE – volume: 89 start-page: 474 year: 2012 end-page: 481 ident: b0030 article-title: Modeling and simulation of compressed air storage in caverns: a case study of the Huntorf plant publication-title: Appl Energy – volume: 98 start-page: 161 year: 2015 end-page: 172 ident: b0025 article-title: Thermodynamic analysis of an integrated energy system based on compressed air energy storage (CAES) system and Kalina cycle publication-title: Energy Convers Manag – volume: 108 start-page: 566 year: 2016 end-page: 578 ident: b0095 article-title: A comparative research of two adiabatic compressed air energy storage systems publication-title: Energy Convers Manag – volume: 53 start-page: 373 year: 2016 end-page: 407 ident: b0145 article-title: Ejector refrigeration: a comprehensive review publication-title: Renew Sustain Energy Rev – volume: 42 start-page: 569 year: 2015 end-page: 596 ident: b0040 article-title: Electrical energy storage systems: a comparative life cycle cost analysis publication-title: Renew Sustain Energy Rev – volume: 185 start-page: 16 year: 2017 end-page: 28 ident: b0050 article-title: Dynamic simulation of Adiabatic Compressed Air Energy Storage (A-CAES) plant with integrated thermal storage – link between components performance and plant performance publication-title: Appl Energy – volume: 151 start-page: 343 year: 2017 end-page: 356 ident: b0060 article-title: Performance assessment of Adiabatic Compressed Air Energy Storage (A-CAES) power plants integrated with packed-bed thermocline storage systems publication-title: Energy Convers Manag – volume: 37 start-page: 3149 issue: 8 year: 2009 ident: 10.1016/j.enconman.2017.12.055_b0125 article-title: The value of compressed air energy storage with wind in transmission-constrained electric power systems publication-title: Energy Policy doi: 10.1016/j.enpol.2009.04.002 – volume: 106 start-page: 528 year: 2016 ident: 10.1016/j.enconman.2017.12.055_b0090 article-title: Exergy analysis of an adiabatic compressed air energy storage system using a cascade of phase change materials publication-title: Energy doi: 10.1016/j.energy.2016.03.042 – volume: 86 start-page: 1031 year: 2014 ident: 10.1016/j.enconman.2017.12.055_b0055 article-title: Theoretical evaluation on the impact of heat exchanger in advanced adiabatic compressed air energy storage system publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2014.06.062 – volume: 53 start-page: 373 year: 2016 ident: 10.1016/j.enconman.2017.12.055_b0145 article-title: Ejector refrigeration: a comprehensive review publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2015.08.059 – volume: 179 start-page: 948 year: 2016 ident: 10.1016/j.enconman.2017.12.055_b0080 article-title: Thermal analysis of near-isothermal compressed gas energy storage system publication-title: Appl Energy doi: 10.1016/j.apenergy.2016.07.059 – volume: 129 start-page: 201 year: 2017 ident: 10.1016/j.enconman.2017.12.055_b0150 article-title: Thermodynamic analysis of the ejector refrigeration cycle using the artificial neural network publication-title: Energy doi: 10.1016/j.energy.2017.04.089 – volume: 185 start-page: 16 year: 2017 ident: 10.1016/j.enconman.2017.12.055_b0050 article-title: Dynamic simulation of Adiabatic Compressed Air Energy Storage (A-CAES) plant with integrated thermal storage – link between components performance and plant performance publication-title: Appl Energy doi: 10.1016/j.apenergy.2016.10.058 – volume: 151 start-page: 343 year: 2017 ident: 10.1016/j.enconman.2017.12.055_b0060 article-title: Performance assessment of Adiabatic Compressed Air Energy Storage (A-CAES) power plants integrated with packed-bed thermocline storage systems publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2017.08.051 – volume: 103 start-page: 182 year: 2016 ident: 10.1016/j.enconman.2017.12.055_b0075 article-title: Experimental study of compressed air energy storage system with thermal energy storage publication-title: Energy doi: 10.1016/j.energy.2016.02.125 – ident: 10.1016/j.enconman.2017.12.055_b0160 – volume: 89 start-page: 474 year: 2012 ident: 10.1016/j.enconman.2017.12.055_b0030 article-title: Modeling and simulation of compressed air storage in caverns: a case study of the Huntorf plant publication-title: Appl Energy doi: 10.1016/j.apenergy.2011.08.019 – volume: 67 start-page: 116 year: 2017 ident: 10.1016/j.enconman.2017.12.055_b0015 article-title: A review of energy storage technologies with a focus on adsorption thermal energy storage processes for heating applications publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2016.08.019 – volume: 4 start-page: 253 year: 2009 ident: 10.1016/j.enconman.2017.12.055_b0105 article-title: Dynamic simulation of an innovative compressed air energy storage plant – detailed modelling of the storage cavern publication-title: WSEAS Trans Power Syst – volume: 98 start-page: 161 year: 2015 ident: 10.1016/j.enconman.2017.12.055_b0025 article-title: Thermodynamic analysis of an integrated energy system based on compressed air energy storage (CAES) system and Kalina cycle publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2015.03.094 – volume: 42 start-page: 569 year: 2015 ident: 10.1016/j.enconman.2017.12.055_b0040 article-title: Electrical energy storage systems: a comparative life cycle cost analysis publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2014.10.011 – volume: 180 start-page: 810 year: 2016 ident: 10.1016/j.enconman.2017.12.055_b0100 article-title: Conventional and advanced exergy analyses of an underwater compressed air energy storage system publication-title: Appl Energy doi: 10.1016/j.apenergy.2016.08.014 – volume: 210 start-page: 198 year: 2018 ident: 10.1016/j.enconman.2017.12.055_b0115 article-title: A novel isobaric adiabatic compressed air energy storage (IA-CAES) system on the base of volatile fluid publication-title: Appl Energy doi: 10.1016/j.apenergy.2017.11.009 – volume: 77 start-page: 460 year: 2014 ident: 10.1016/j.enconman.2017.12.055_b0045 article-title: Thermodynamic analysis of energy conversion and transfer in hybrid system consisting of wind turbine and advanced adiabatic compressed air energy storage publication-title: Energy doi: 10.1016/j.energy.2014.09.030 – volume: 135 start-page: 394 year: 2017 ident: 10.1016/j.enconman.2017.12.055_b0065 article-title: Modelling and analysis of a novel compressed air energy storage system for trigeneration based on electrical energy peak load shifting publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2016.12.089 – volume: 108 start-page: 566 year: 2016 ident: 10.1016/j.enconman.2017.12.055_b0095 article-title: A comparative research of two adiabatic compressed air energy storage systems publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2015.11.049 – volume: 134 start-page: 239 year: 2014 ident: 10.1016/j.enconman.2017.12.055_b0010 article-title: Parameters affecting scalable underwater compressed air energy storage publication-title: Appl Energy doi: 10.1016/j.apenergy.2014.08.028 – volume: 125 start-page: 158 year: 2014 ident: 10.1016/j.enconman.2017.12.055_b0070 article-title: LTA-CAES – a low-temperature approach to adiabatic compressed air energy storage publication-title: Appl Energy doi: 10.1016/j.apenergy.2014.03.013 – volume: 111 start-page: 391 year: 2016 ident: 10.1016/j.enconman.2017.12.055_b0155 article-title: Experimental investigation on two-phase driven ejector performance in a novel ejector enhanced refrigeration system publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2016.01.001 – volume: 131 start-page: 259 year: 2017 ident: 10.1016/j.enconman.2017.12.055_b0085 article-title: A novel compressed air energy storage (CAES) system combined with pre-cooler and using low grade waste heat as heat source publication-title: Energy doi: 10.1016/j.energy.2017.05.047 – volume: 66 start-page: 496 year: 2014 ident: 10.1016/j.enconman.2017.12.055_b0110 article-title: Design and testing of energy bags for underwater compressed air energy storage publication-title: Energy doi: 10.1016/j.energy.2013.12.010 – volume: 62 start-page: 895 year: 2016 ident: 10.1016/j.enconman.2017.12.055_b0020 article-title: A review on compressed air energy storage – a pathway for smart grid and polygeneration publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2016.05.002 – volume: 137 start-page: 511 year: 2015 ident: 10.1016/j.enconman.2017.12.055_b0035 article-title: Overview of current development in electrical energy storage technologies and the application potential in power system operation publication-title: Appl Energy doi: 10.1016/j.apenergy.2014.09.081 – volume: 106 start-page: 201 year: 2017 ident: 10.1016/j.enconman.2017.12.055_b0135 article-title: Low pressure, modular compressed air energy storage (CAES) system for wind energy storage applications publication-title: Renew Energy doi: 10.1016/j.renene.2017.01.002 – volume: 100 start-page: 461 year: 2012 ident: 10.1016/j.enconman.2017.12.055_b0130 article-title: A thermodynamic analysis of multistage adiabatic CAES publication-title: Proc IEEE doi: 10.1109/JPROC.2011.2163049 – volume: 120 start-page: 388 year: 2016 ident: 10.1016/j.enconman.2017.12.055_b0005 article-title: A stochastic self-scheduling program for compressed air energy storage (CAES) of renewable energy sources (RESs) based on a demand response mechanism publication-title: Energy Convers Manag doi: 10.1016/j.enconman.2016.04.082 – volume: 11 start-page: 178 year: 2017 ident: 10.1016/j.enconman.2017.12.055_b0120 article-title: Dynamic modeling and simulation of an Isobaric Adiabatic Compressed Air Energy Storage (IA-CAES) system publication-title: J Energy Storage doi: 10.1016/j.est.2017.03.006 – volume: 104 start-page: 315 year: 2016 ident: 10.1016/j.enconman.2017.12.055_b0140 article-title: Ejector design and performance prediction publication-title: Int J Therm Sci doi: 10.1016/j.ijthermalsci.2015.12.022 |
SSID | ssj0003506 |
Score | 2.4941778 |
Snippet | •A novel throttling strategy is proposed for adiabatic compressed air energy storage.•The throttling strategy is based on an ejector.•Proposed energy storage... Adiabatic compressed air energy storage presents a valuable and environmentally friendly option for massive energy storage. Currently, efficiencies are... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 50 |
SubjectTerms | Adiabatic Adiabatic compressed air energy storage Adiabatic flow air Batteries Compressed air Ejection Ejector Energy analysis Energy consumption Energy storage Exergy Exergy analysis High pressure Inlet pressure Mathematical models Parametric analysis Pressure Statistical energy analysis Steady state models Storage vessels Studies Thermodynamics Throttling Turbines |
Title | A novel throttling strategy for adiabatic compressed air energy storage system based on an ejector |
URI | https://dx.doi.org/10.1016/j.enconman.2017.12.055 https://www.proquest.com/docview/2042229654 https://www.proquest.com/docview/2045817230 |
Volume | 158 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFA9DL3oQP3F-EcFrXdMkTXMc4piKu-jAW0jSFDa0G7MKXvzbzUtbnSJ48Ngkj5aXvI--vPd7CJ0VGTOcpEnkZSeNWGZ4pBOhI0NlIWK4zw29CG5H6XDMrh_4QwddtLUwkFbZ6P5apwdt3Yz0Gm725pNJ7w6QXTIZMyIoSbwlhAp2JuCUn79_pXlQHvprwuIIVi9VCU_PASuyfNKAg0pECAtCyd_vBuqHqg72Z7CJNhrHEffrb9tCHVduo_UlOMEdZPq4nL26Rwy9D6oKCs3xc40--4a9c4oBh8AARCuGTPIAG55jPVlgFyoAMWRKev2Ca3hnDBYux7MS6xK7aQjv76Lx4PL-Yhg1PRQiSwWtvPNsZEa05jLheS4FNS4nQheF8WYI2vkxJ0TMbS4Kzbw3ZlOdGifTQjuaWi3pHlopZ6XbR9hxGmthcuJ_a1lME2NtkmeaCGuN1Ix2EW8Zp2wDMA59Lh5Vm0k2VS3DFTBckUR5hndR75NuXkNs_Ekh231R3w6L8nbgT9qjdiNVI67Pfh4iYTLlrItOP6e9oMHtiS7d7CWs4Zl392h88I_XH6I1_5RB3jfhR2ilWry4Y-_WVOYknNsTtNq_uhmOPgDVyflI |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwELYQHNoeUJ_qFkqN1B7Dxq84PvSAStHyvBQkbq7tONKuaBaxoRWX_in-YGechNKqEoeKaxwr1tj-ZhzPfB8h7-tSesUKnsHeKTJZepU5rl3mhal1jve5SYvg6LiYnMr9M3W2RG6GWhhMq-yxv8P0hNb9k3FvzfHFdDr-gswupckl04Jx8IR9ZuVBvP4B57bFx70dmOQPnO9-Pvk0yXppgSwILVqIKb0pmXPKcFVVRgsfK6ZdXXtAZ1S5k1HrXIVK105CkBIKV_hoitpFUQSHDEyA-ysS4AJlE7Z-_s4rESoJeuLoMhzenbLk2RaSUzbfHBKvMp3-Q2KN4b894l--ITm83adktY9U6XZnjGdkKTbPyZM7_IUviN-mzfx7PKcottC2WNlOFx3d7TWFaJgi8YFHTliKqeuJp7yibnpJYyo5pJiaCYBGOz5pii61ovOGuobGWbpPeElOH8Syr8hyM2_ia0KjErnTvmJwjpa54D4EXpWO6RC8cVKMiBoMZ0PPaI7CGud2SF2b2cHgFg1uGbdg8BEZ3_a76Dg97u1hhnmxf6xOC47n3r7rw0TaHh8W0I6_3kyh5Ihs3jbDzsbrGtfE-VV6R5UQX4r8zX98_h15NDk5OrSHe8cHa-QxtJSYdM7UOlluL6_iW4ipWr-R1jAlXx960_wCxfo1wQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+throttling+strategy+for+adiabatic+compressed+air+energy+storage+system+based+on+an+ejector&rft.jtitle=Energy+conversion+and+management&rft.au=Chen%2C+Long+Xiang&rft.au=Hu%2C+Peng&rft.au=Zhao%2C+Pan+Zhao&rft.au=Xie%2C+Mei+Na&rft.date=2018-02-15&rft.pub=Elsevier+Science+Ltd&rft.issn=0196-8904&rft.eissn=1879-2227&rft.volume=158&rft.spage=50&rft_id=info:doi/10.1016%2Fj.enconman.2017.12.055&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-8904&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-8904&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-8904&client=summon |