A novel throttling strategy for adiabatic compressed air energy storage system based on an ejector

•A novel throttling strategy is proposed for adiabatic compressed air energy storage.•The throttling strategy is based on an ejector.•Proposed energy storage system is more efficient and economic than the conventional one.•The performance of ejector is stable and hardly affected by the ambient. Adia...

Full description

Saved in:
Bibliographic Details
Published inEnergy conversion and management Vol. 158; pp. 50 - 59
Main Authors Chen, Long Xiang, Hu, Peng, Zhao, Pan Pan, Xie, Mei Na, Wang, Dong Xiang, Wang, Feng Xiang
Format Journal Article
LanguageEnglish
Published Oxford Elsevier Ltd 15.02.2018
Elsevier Science Ltd
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •A novel throttling strategy is proposed for adiabatic compressed air energy storage.•The throttling strategy is based on an ejector.•Proposed energy storage system is more efficient and economic than the conventional one.•The performance of ejector is stable and hardly affected by the ambient. Adiabatic compressed air energy storage presents a valuable and environmentally friendly option for massive energy storage. Currently, efficiencies are approximately 70%, in part due to the issue of exergy losses during the air throttling. To enhance the performance of the system, a novel adiabatic compressed air energy storage is proposed using a new throttling strategy with an additional ejector. The compressed air in the storage vessels has been divided into three parts with different pressures. The part of compressed air with highest pressure is regarded as primary fluid of ejector to compress the part of air with lowest pressure in the other storage vessel to an intermediate pressure. Hence the inlet pressure of high pressure turbine enhanced, results in the system efficiency improves. The thermodynamic analysis including energy analysis, exergy analysis and the parametric analysis are evaluated by using steady-state mathematical model and thermodynamic laws. The calculations show that the round trip efficiency improves nearly 2% and the profit increases by more than 21% compared to the conventional adiabatic compressed air energy storage system. Meanwhile, a parametric analysis is also carried out to evaluate the effects of several key parameters on the system performance of the proposed adiabatic compressed air energy storage system.
AbstractList Adiabatic compressed air energy storage presents a valuable and environmentally friendly option for massive energy storage. Currently, efficiencies are approximately 70%, in part due to the issue of exergy losses during the air throttling. To enhance the performance of the system, a novel adiabatic compressed air energy storage is proposed using a new throttling strategy with an additional ejector. The compressed air in the storage vessels has been divided into three parts with different pressures. The part of compressed air with highest pressure is regarded as primary fluid of ejector to compress the part of air with lowest pressure in the other storage vessel to an intermediate pressure. Hence the inlet pressure of high pressure turbine enhanced, results in the system efficiency improves. The thermodynamic analysis including energy analysis, exergy analysis and the parametric analysis are evaluated by using steady-state mathematical model and thermodynamic laws. The calculations show that the round trip efficiency improves nearly 2% and the profit increases by more than 21% compared to the conventional adiabatic compressed air energy storage system. Meanwhile, a parametric analysis is also carried out to evaluate the effects of several key parameters on the system performance of the proposed adiabatic compressed air energy storage system.
•A novel throttling strategy is proposed for adiabatic compressed air energy storage.•The throttling strategy is based on an ejector.•Proposed energy storage system is more efficient and economic than the conventional one.•The performance of ejector is stable and hardly affected by the ambient. Adiabatic compressed air energy storage presents a valuable and environmentally friendly option for massive energy storage. Currently, efficiencies are approximately 70%, in part due to the issue of exergy losses during the air throttling. To enhance the performance of the system, a novel adiabatic compressed air energy storage is proposed using a new throttling strategy with an additional ejector. The compressed air in the storage vessels has been divided into three parts with different pressures. The part of compressed air with highest pressure is regarded as primary fluid of ejector to compress the part of air with lowest pressure in the other storage vessel to an intermediate pressure. Hence the inlet pressure of high pressure turbine enhanced, results in the system efficiency improves. The thermodynamic analysis including energy analysis, exergy analysis and the parametric analysis are evaluated by using steady-state mathematical model and thermodynamic laws. The calculations show that the round trip efficiency improves nearly 2% and the profit increases by more than 21% compared to the conventional adiabatic compressed air energy storage system. Meanwhile, a parametric analysis is also carried out to evaluate the effects of several key parameters on the system performance of the proposed adiabatic compressed air energy storage system.
Author Zhao, Pan Pan
Chen, Long Xiang
Wang, Dong Xiang
Hu, Peng
Wang, Feng Xiang
Xie, Mei Na
Author_xml – sequence: 1
  givenname: Long Xiang
  surname: Chen
  fullname: Chen, Long Xiang
  organization: Quanzhou Institute of Equipment Manufacturing, Haixi Institutes, Chinese Academy of Sciences, Jinjiang 362200, China
– sequence: 2
  givenname: Peng
  surname: Hu
  fullname: Hu, Peng
  organization: Department of Thermal Science and Energy Engineering, University of Science and Technology of China, Hefei 230027, China
– sequence: 3
  givenname: Pan Pan
  surname: Zhao
  fullname: Zhao, Pan Pan
  organization: Hefei General Machinery Research Institute, Hefei 230088, China
– sequence: 4
  givenname: Mei Na
  surname: Xie
  fullname: Xie, Mei Na
  organization: Quanzhou Institute of Equipment Manufacturing, Haixi Institutes, Chinese Academy of Sciences, Jinjiang 362200, China
– sequence: 5
  givenname: Dong Xiang
  surname: Wang
  fullname: Wang, Dong Xiang
  organization: Hefei Meiling Company Limited Co. Ltd, Hefei 230601, China
– sequence: 6
  givenname: Feng Xiang
  surname: Wang
  fullname: Wang, Feng Xiang
  email: fengxiang.wang@fjirsm.ac.cn
  organization: Quanzhou Institute of Equipment Manufacturing, Haixi Institutes, Chinese Academy of Sciences, Jinjiang 362200, China
BookMark eNqFkE1r3DAURUVJoZO0f6EIuunGjiRbkgVdNIR-BALdtGvxLD9PZWxpKmkC8--rYdpNNlm9xT338jjX5CrEgIS856zljKvbpcXgYtggtIJx3XLRMilfkR0ftGmEEPqK7Bg3qhkM69-Q65wXxlgnmdqR8Y6G-IQrLb9TLGX1YU9zSVBwf6JzTBQmDyMU76iL2yFhzjhR8IliwFSZXGKCPdJ8ygU3OsI5j4FCoLigq-lb8nqGNeO7f_eG_Pr65ef99-bxx7eH-7vHxnW6K43Woxk4gDRCTpPR3YgT1zDPozGMSdP1qDWTbtIz9EMnnQI1olEzYKccmO6GfLzsHlL8c8Rc7Oazw3WFgPGYrWC9HLgWHavoh2foEo8p1O_OVFVmlOwrpS6USzHnhLM9JL9BOlnO7Fm9Xex_9fas3nJhq_pa_PSs6HypDmOoZv36cv3zpY7V1pPHZLPzlcTJp2rUTtG_NPEX8Vanqg
CitedBy_id crossref_primary_10_1016_j_energy_2021_119978
crossref_primary_10_1016_j_est_2023_107408
crossref_primary_10_1016_j_enconman_2025_119540
crossref_primary_10_1016_j_est_2022_106351
crossref_primary_10_1016_j_enconman_2020_113516
crossref_primary_10_1016_j_apenergy_2019_01_222
crossref_primary_10_3390_thermo3010008
crossref_primary_10_1038_s41598_022_26666_1
crossref_primary_10_1016_j_enconman_2020_112670
crossref_primary_10_1007_s13198_021_01054_6
crossref_primary_10_1016_j_est_2021_103009
crossref_primary_10_1016_j_ijrefrig_2023_01_008
crossref_primary_10_1016_j_apenergy_2023_121858
crossref_primary_10_1016_j_enconman_2019_02_071
crossref_primary_10_1016_j_energy_2020_118050
crossref_primary_10_1093_ce_zkac017
crossref_primary_10_1016_j_applthermaleng_2023_120568
crossref_primary_10_1016_j_est_2021_103197
crossref_primary_10_1016_j_est_2022_106165
crossref_primary_10_1016_j_enconman_2021_114715
crossref_primary_10_1016_j_enconman_2021_114322
crossref_primary_10_1016_j_energy_2019_116405
crossref_primary_10_1016_j_apenergy_2023_121742
crossref_primary_10_1016_j_energy_2022_123442
crossref_primary_10_1016_j_energy_2022_123607
crossref_primary_10_1002_er_5366
crossref_primary_10_1016_j_applthermaleng_2018_09_117
crossref_primary_10_1016_j_applthermaleng_2025_125694
crossref_primary_10_1016_j_enconman_2018_04_050
crossref_primary_10_1016_j_renene_2022_09_133
crossref_primary_10_1016_j_energy_2021_120905
crossref_primary_10_1016_j_renene_2023_119150
crossref_primary_10_1016_j_apenergy_2024_124140
crossref_primary_10_1016_j_enconman_2018_04_109
crossref_primary_10_1016_j_enconman_2021_114358
crossref_primary_10_1016_j_energy_2022_123731
crossref_primary_10_3390_pr12122665
crossref_primary_10_1016_j_enconman_2019_02_016
crossref_primary_10_1016_j_est_2024_114675
crossref_primary_10_1007_s12206_022_0546_3
crossref_primary_10_1016_j_renene_2018_11_046
crossref_primary_10_1016_j_applthermaleng_2022_119071
crossref_primary_10_1016_j_enconman_2020_113141
crossref_primary_10_1016_j_est_2020_101487
crossref_primary_10_1016_j_energy_2018_08_087
crossref_primary_10_1016_j_apenergy_2021_117356
crossref_primary_10_1016_j_enconman_2018_11_055
crossref_primary_10_1016_j_enconman_2020_112811
crossref_primary_10_1063_5_0139196
crossref_primary_10_1016_j_egypro_2018_09_075
crossref_primary_10_1063_5_0226187
crossref_primary_10_1093_ijlct_ctad030
crossref_primary_10_1063_1_5095969
crossref_primary_10_1016_j_energy_2022_126336
crossref_primary_10_1016_j_enconman_2019_111807
crossref_primary_10_1016_j_est_2024_112146
crossref_primary_10_1016_j_energy_2023_128415
crossref_primary_10_1016_j_enconman_2018_09_049
crossref_primary_10_3390_su141811689
Cites_doi 10.1016/j.enpol.2009.04.002
10.1016/j.energy.2016.03.042
10.1016/j.enconman.2014.06.062
10.1016/j.rser.2015.08.059
10.1016/j.apenergy.2016.07.059
10.1016/j.energy.2017.04.089
10.1016/j.apenergy.2016.10.058
10.1016/j.enconman.2017.08.051
10.1016/j.energy.2016.02.125
10.1016/j.apenergy.2011.08.019
10.1016/j.rser.2016.08.019
10.1016/j.enconman.2015.03.094
10.1016/j.rser.2014.10.011
10.1016/j.apenergy.2016.08.014
10.1016/j.apenergy.2017.11.009
10.1016/j.energy.2014.09.030
10.1016/j.enconman.2016.12.089
10.1016/j.enconman.2015.11.049
10.1016/j.apenergy.2014.08.028
10.1016/j.apenergy.2014.03.013
10.1016/j.enconman.2016.01.001
10.1016/j.energy.2017.05.047
10.1016/j.energy.2013.12.010
10.1016/j.rser.2016.05.002
10.1016/j.apenergy.2014.09.081
10.1016/j.renene.2017.01.002
10.1109/JPROC.2011.2163049
10.1016/j.enconman.2016.04.082
10.1016/j.est.2017.03.006
10.1016/j.ijthermalsci.2015.12.022
ContentType Journal Article
Copyright 2017 Elsevier Ltd
Copyright Elsevier Science Ltd. Feb 15, 2018
Copyright_xml – notice: 2017 Elsevier Ltd
– notice: Copyright Elsevier Science Ltd. Feb 15, 2018
DBID AAYXX
CITATION
7ST
7TB
8FD
C1K
FR3
H8D
KR7
L7M
SOI
7S9
L.6
DOI 10.1016/j.enconman.2017.12.055
DatabaseName CrossRef
Environment Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Aerospace Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Engineering Research Database
Environment Abstracts
Advanced Technologies Database with Aerospace
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

Aerospace Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-2227
EndPage 59
ExternalDocumentID 10_1016_j_enconman_2017_12_055
S0196890417312074
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABYKQ
ACBEA
ACDAQ
ACGFO
ACGFS
ACIWK
ACNCT
ACRLP
ADBBV
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSR
SST
SSZ
T5K
TN5
XPP
ZMT
~02
~G-
29G
6TJ
8WZ
A6W
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
FEDTE
FGOYB
G-2
HVGLF
HZ~
H~9
R2-
SAC
SEW
WUQ
7ST
7TB
8FD
C1K
EFKBS
FR3
H8D
KR7
L7M
SOI
7S9
AFXIZ
L.6
ID FETCH-LOGICAL-c373t-77b981aa5925dd973bed17affb99005934e7705cd7fa4835c6a6be96fae36ca93
IEDL.DBID .~1
ISSN 0196-8904
IngestDate Mon Jul 21 09:33:35 EDT 2025
Wed Aug 13 06:31:43 EDT 2025
Tue Jul 01 01:17:25 EDT 2025
Thu Apr 24 23:10:12 EDT 2025
Fri Feb 23 02:33:02 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Energy analysis
Ejector
Adiabatic compressed air energy storage
Exergy analysis
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c373t-77b981aa5925dd973bed17affb99005934e7705cd7fa4835c6a6be96fae36ca93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 2042229654
PQPubID 2047472
PageCount 10
ParticipantIDs proquest_miscellaneous_2045817230
proquest_journals_2042229654
crossref_primary_10_1016_j_enconman_2017_12_055
crossref_citationtrail_10_1016_j_enconman_2017_12_055
elsevier_sciencedirect_doi_10_1016_j_enconman_2017_12_055
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-02-15
PublicationDateYYYYMMDD 2018-02-15
PublicationDate_xml – month: 02
  year: 2018
  text: 2018-02-15
  day: 15
PublicationDecade 2010
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Energy conversion and management
PublicationYear 2018
Publisher Elsevier Ltd
Elsevier Science Ltd
Publisher_xml – name: Elsevier Ltd
– name: Elsevier Science Ltd
References Liu, Wang (b0095) 2016; 108
Pimm, Garvey, de Jong (b0110) 2014; 66
Lv, He, Zhang, Li, Luo, Liu (b0065) 2017; 135
Sciacovelli, Li, Chen, Wu, Wang, Garvey (b0050) 2017; 185
Tola, Meloni, Spadaccini, Cau (b0060) 2017; 151
Chen, Xie, Zhao, Wang, Hu, Wang (b0115) 2018; 210
Grazzini, Milazzo (b0130) 2012; 100
Zhang, Yang, Li, Xu (b0045) 2014; 77
Denholm, Sioshansi (b0125) 2009; 37
Venkataramani, Parankusam, Ramalingam, Wang (b0020) 2016; 62
Odukomaiya, Abu-Heiba, Gluesenkamp, Abdelaziz, Jackson, Daniel (b0080) 2016; 179
Wolf, Budt (b0070) 2014; 125
Alami, Aokal, Abed, Alhemyari (b0135) 2017; 106
Yang, Zhang, Li, Xu (b0055) 2014; 86
Rashidi, Aghagoli, Raoo (b0150) 2017; 129
Besagni, Mereu, Inzoli (b0145) 2016; 53
Luo, Wang, Dooner, Clarke (b0035) 2015; 137
Chen, Hu, Sheng, Xie (b0085) 2017; 131
Nielsen, Leithner (b0105) 2009; 4
Lefebvre, Tezel (b0015) 2017; 67
Tessier, Floros, Bouzidi, Narine (b0090) 2016; 106
Wang, Yu (b0155) 2016; 111
Galanis, Sorin (b0140) 2016; 104
Zhao, Wang, Dai (b0025) 2015; 98
Wang, Xiong, Ting, Carriveau, Wang (b0100) 2016; 180
Mazloum, Sayah, Nemer (b0120) 2017; 11
Cheung, Carriveau, Ting (b0010) 2014; 134
NIST Standard Reference Database 23. NIST thermodynamic and transport properties of refrigerants and refrigerant mixture REFPROP, version 9.1; 2013.
Raju, Kumar (b0030) 2012; 89
Wang, Zhang, Yang, Zhou, Wang (b0075) 2016; 103
Ghalelou, Fakhri, Nojavan, Majidi, Hatami (b0005) 2016; 120
Zakeri, Syri (b0040) 2015; 42
Lefebvre (10.1016/j.enconman.2017.12.055_b0015) 2017; 67
Liu (10.1016/j.enconman.2017.12.055_b0095) 2016; 108
Tessier (10.1016/j.enconman.2017.12.055_b0090) 2016; 106
Luo (10.1016/j.enconman.2017.12.055_b0035) 2015; 137
Ghalelou (10.1016/j.enconman.2017.12.055_b0005) 2016; 120
Wang (10.1016/j.enconman.2017.12.055_b0075) 2016; 103
Tola (10.1016/j.enconman.2017.12.055_b0060) 2017; 151
Yang (10.1016/j.enconman.2017.12.055_b0055) 2014; 86
10.1016/j.enconman.2017.12.055_b0160
Chen (10.1016/j.enconman.2017.12.055_b0085) 2017; 131
Zhang (10.1016/j.enconman.2017.12.055_b0045) 2014; 77
Chen (10.1016/j.enconman.2017.12.055_b0115) 2018; 210
Wang (10.1016/j.enconman.2017.12.055_b0155) 2016; 111
Zakeri (10.1016/j.enconman.2017.12.055_b0040) 2015; 42
Galanis (10.1016/j.enconman.2017.12.055_b0140) 2016; 104
Wang (10.1016/j.enconman.2017.12.055_b0100) 2016; 180
Odukomaiya (10.1016/j.enconman.2017.12.055_b0080) 2016; 179
Grazzini (10.1016/j.enconman.2017.12.055_b0130) 2012; 100
Alami (10.1016/j.enconman.2017.12.055_b0135) 2017; 106
Nielsen (10.1016/j.enconman.2017.12.055_b0105) 2009; 4
Mazloum (10.1016/j.enconman.2017.12.055_b0120) 2017; 11
Sciacovelli (10.1016/j.enconman.2017.12.055_b0050) 2017; 185
Cheung (10.1016/j.enconman.2017.12.055_b0010) 2014; 134
Wolf (10.1016/j.enconman.2017.12.055_b0070) 2014; 125
Raju (10.1016/j.enconman.2017.12.055_b0030) 2012; 89
Lv (10.1016/j.enconman.2017.12.055_b0065) 2017; 135
Pimm (10.1016/j.enconman.2017.12.055_b0110) 2014; 66
Venkataramani (10.1016/j.enconman.2017.12.055_b0020) 2016; 62
Besagni (10.1016/j.enconman.2017.12.055_b0145) 2016; 53
Zhao (10.1016/j.enconman.2017.12.055_b0025) 2015; 98
Denholm (10.1016/j.enconman.2017.12.055_b0125) 2009; 37
Rashidi (10.1016/j.enconman.2017.12.055_b0150) 2017; 129
References_xml – volume: 210
  start-page: 198
  year: 2018
  end-page: 210
  ident: b0115
  article-title: A novel isobaric adiabatic compressed air energy storage (IA-CAES) system on the base of volatile fluid
  publication-title: Appl Energy
– volume: 106
  start-page: 528
  year: 2016
  end-page: 534
  ident: b0090
  article-title: Exergy analysis of an adiabatic compressed air energy storage system using a cascade of phase change materials
  publication-title: Energy
– volume: 11
  start-page: 178
  year: 2017
  end-page: 190
  ident: b0120
  article-title: Dynamic modeling and simulation of an Isobaric Adiabatic Compressed Air Energy Storage (IA-CAES) system
  publication-title: J Energy Storage
– volume: 4
  start-page: 253
  year: 2009
  end-page: 263
  ident: b0105
  article-title: Dynamic simulation of an innovative compressed air energy storage plant – detailed modelling of the storage cavern
  publication-title: WSEAS Trans Power Syst
– volume: 131
  start-page: 259
  year: 2017
  end-page: 266
  ident: b0085
  article-title: A novel compressed air energy storage (CAES) system combined with pre-cooler and using low grade waste heat as heat source
  publication-title: Energy
– reference: NIST Standard Reference Database 23. NIST thermodynamic and transport properties of refrigerants and refrigerant mixture REFPROP, version 9.1; 2013.
– volume: 179
  start-page: 948
  year: 2016
  end-page: 960
  ident: b0080
  article-title: Thermal analysis of near-isothermal compressed gas energy storage system
  publication-title: Appl Energy
– volume: 86
  start-page: 1031
  year: 2014
  end-page: 1044
  ident: b0055
  article-title: Theoretical evaluation on the impact of heat exchanger in advanced adiabatic compressed air energy storage system
  publication-title: Energy Convers Manag
– volume: 67
  start-page: 116
  year: 2017
  end-page: 125
  ident: b0015
  article-title: A review of energy storage technologies with a focus on adsorption thermal energy storage processes for heating applications
  publication-title: Renew Sustain Energy Rev
– volume: 66
  start-page: 496
  year: 2014
  end-page: 508
  ident: b0110
  article-title: Design and testing of energy bags for underwater compressed air energy storage
  publication-title: Energy
– volume: 103
  start-page: 182
  year: 2016
  end-page: 191
  ident: b0075
  article-title: Experimental study of compressed air energy storage system with thermal energy storage
  publication-title: Energy
– volume: 106
  start-page: 201
  year: 2017
  end-page: 211
  ident: b0135
  article-title: Low pressure, modular compressed air energy storage (CAES) system for wind energy storage applications
  publication-title: Renew Energy
– volume: 77
  start-page: 460
  year: 2014
  end-page: 477
  ident: b0045
  article-title: Thermodynamic analysis of energy conversion and transfer in hybrid system consisting of wind turbine and advanced adiabatic compressed air energy storage
  publication-title: Energy
– volume: 120
  start-page: 388
  year: 2016
  end-page: 396
  ident: b0005
  article-title: A stochastic self-scheduling program for compressed air energy storage (CAES) of renewable energy sources (RESs) based on a demand response mechanism
  publication-title: Energy Convers Manag
– volume: 134
  start-page: 239
  year: 2014
  end-page: 247
  ident: b0010
  article-title: Parameters affecting scalable underwater compressed air energy storage
  publication-title: Appl Energy
– volume: 62
  start-page: 895
  year: 2016
  end-page: 907
  ident: b0020
  article-title: A review on compressed air energy storage – a pathway for smart grid and polygeneration
  publication-title: Renew Sustain Energy Rev
– volume: 111
  start-page: 391
  year: 2016
  end-page: 400
  ident: b0155
  article-title: Experimental investigation on two-phase driven ejector performance in a novel ejector enhanced refrigeration system
  publication-title: Energy Convers Manag
– volume: 37
  start-page: 3149
  year: 2009
  end-page: 3158
  ident: b0125
  article-title: The value of compressed air energy storage with wind in transmission-constrained electric power systems
  publication-title: Energy Policy
– volume: 129
  start-page: 201
  year: 2017
  end-page: 215
  ident: b0150
  article-title: Thermodynamic analysis of the ejector refrigeration cycle using the artificial neural network
  publication-title: Energy
– volume: 137
  start-page: 511
  year: 2015
  end-page: 536
  ident: b0035
  article-title: Overview of current development in electrical energy storage technologies and the application potential in power system operation
  publication-title: Appl Energy
– volume: 180
  start-page: 810
  year: 2016
  end-page: 822
  ident: b0100
  article-title: Conventional and advanced exergy analyses of an underwater compressed air energy storage system
  publication-title: Appl Energy
– volume: 135
  start-page: 394
  year: 2017
  end-page: 401
  ident: b0065
  article-title: Modelling and analysis of a novel compressed air energy storage system for trigeneration based on electrical energy peak load shifting
  publication-title: Energy Convers Manag
– volume: 125
  start-page: 158
  year: 2014
  end-page: 164
  ident: b0070
  article-title: LTA-CAES – a low-temperature approach to adiabatic compressed air energy storage
  publication-title: Appl Energy
– volume: 104
  start-page: 315
  year: 2016
  end-page: 329
  ident: b0140
  article-title: Ejector design and performance prediction
  publication-title: Int J Therm Sci
– volume: 100
  start-page: 461
  year: 2012
  end-page: 472
  ident: b0130
  article-title: A thermodynamic analysis of multistage adiabatic CAES
  publication-title: Proc IEEE
– volume: 89
  start-page: 474
  year: 2012
  end-page: 481
  ident: b0030
  article-title: Modeling and simulation of compressed air storage in caverns: a case study of the Huntorf plant
  publication-title: Appl Energy
– volume: 98
  start-page: 161
  year: 2015
  end-page: 172
  ident: b0025
  article-title: Thermodynamic analysis of an integrated energy system based on compressed air energy storage (CAES) system and Kalina cycle
  publication-title: Energy Convers Manag
– volume: 108
  start-page: 566
  year: 2016
  end-page: 578
  ident: b0095
  article-title: A comparative research of two adiabatic compressed air energy storage systems
  publication-title: Energy Convers Manag
– volume: 53
  start-page: 373
  year: 2016
  end-page: 407
  ident: b0145
  article-title: Ejector refrigeration: a comprehensive review
  publication-title: Renew Sustain Energy Rev
– volume: 42
  start-page: 569
  year: 2015
  end-page: 596
  ident: b0040
  article-title: Electrical energy storage systems: a comparative life cycle cost analysis
  publication-title: Renew Sustain Energy Rev
– volume: 185
  start-page: 16
  year: 2017
  end-page: 28
  ident: b0050
  article-title: Dynamic simulation of Adiabatic Compressed Air Energy Storage (A-CAES) plant with integrated thermal storage – link between components performance and plant performance
  publication-title: Appl Energy
– volume: 151
  start-page: 343
  year: 2017
  end-page: 356
  ident: b0060
  article-title: Performance assessment of Adiabatic Compressed Air Energy Storage (A-CAES) power plants integrated with packed-bed thermocline storage systems
  publication-title: Energy Convers Manag
– volume: 37
  start-page: 3149
  issue: 8
  year: 2009
  ident: 10.1016/j.enconman.2017.12.055_b0125
  article-title: The value of compressed air energy storage with wind in transmission-constrained electric power systems
  publication-title: Energy Policy
  doi: 10.1016/j.enpol.2009.04.002
– volume: 106
  start-page: 528
  year: 2016
  ident: 10.1016/j.enconman.2017.12.055_b0090
  article-title: Exergy analysis of an adiabatic compressed air energy storage system using a cascade of phase change materials
  publication-title: Energy
  doi: 10.1016/j.energy.2016.03.042
– volume: 86
  start-page: 1031
  year: 2014
  ident: 10.1016/j.enconman.2017.12.055_b0055
  article-title: Theoretical evaluation on the impact of heat exchanger in advanced adiabatic compressed air energy storage system
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2014.06.062
– volume: 53
  start-page: 373
  year: 2016
  ident: 10.1016/j.enconman.2017.12.055_b0145
  article-title: Ejector refrigeration: a comprehensive review
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2015.08.059
– volume: 179
  start-page: 948
  year: 2016
  ident: 10.1016/j.enconman.2017.12.055_b0080
  article-title: Thermal analysis of near-isothermal compressed gas energy storage system
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2016.07.059
– volume: 129
  start-page: 201
  year: 2017
  ident: 10.1016/j.enconman.2017.12.055_b0150
  article-title: Thermodynamic analysis of the ejector refrigeration cycle using the artificial neural network
  publication-title: Energy
  doi: 10.1016/j.energy.2017.04.089
– volume: 185
  start-page: 16
  year: 2017
  ident: 10.1016/j.enconman.2017.12.055_b0050
  article-title: Dynamic simulation of Adiabatic Compressed Air Energy Storage (A-CAES) plant with integrated thermal storage – link between components performance and plant performance
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2016.10.058
– volume: 151
  start-page: 343
  year: 2017
  ident: 10.1016/j.enconman.2017.12.055_b0060
  article-title: Performance assessment of Adiabatic Compressed Air Energy Storage (A-CAES) power plants integrated with packed-bed thermocline storage systems
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2017.08.051
– volume: 103
  start-page: 182
  year: 2016
  ident: 10.1016/j.enconman.2017.12.055_b0075
  article-title: Experimental study of compressed air energy storage system with thermal energy storage
  publication-title: Energy
  doi: 10.1016/j.energy.2016.02.125
– ident: 10.1016/j.enconman.2017.12.055_b0160
– volume: 89
  start-page: 474
  year: 2012
  ident: 10.1016/j.enconman.2017.12.055_b0030
  article-title: Modeling and simulation of compressed air storage in caverns: a case study of the Huntorf plant
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2011.08.019
– volume: 67
  start-page: 116
  year: 2017
  ident: 10.1016/j.enconman.2017.12.055_b0015
  article-title: A review of energy storage technologies with a focus on adsorption thermal energy storage processes for heating applications
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2016.08.019
– volume: 4
  start-page: 253
  year: 2009
  ident: 10.1016/j.enconman.2017.12.055_b0105
  article-title: Dynamic simulation of an innovative compressed air energy storage plant – detailed modelling of the storage cavern
  publication-title: WSEAS Trans Power Syst
– volume: 98
  start-page: 161
  year: 2015
  ident: 10.1016/j.enconman.2017.12.055_b0025
  article-title: Thermodynamic analysis of an integrated energy system based on compressed air energy storage (CAES) system and Kalina cycle
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2015.03.094
– volume: 42
  start-page: 569
  year: 2015
  ident: 10.1016/j.enconman.2017.12.055_b0040
  article-title: Electrical energy storage systems: a comparative life cycle cost analysis
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2014.10.011
– volume: 180
  start-page: 810
  year: 2016
  ident: 10.1016/j.enconman.2017.12.055_b0100
  article-title: Conventional and advanced exergy analyses of an underwater compressed air energy storage system
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2016.08.014
– volume: 210
  start-page: 198
  year: 2018
  ident: 10.1016/j.enconman.2017.12.055_b0115
  article-title: A novel isobaric adiabatic compressed air energy storage (IA-CAES) system on the base of volatile fluid
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2017.11.009
– volume: 77
  start-page: 460
  year: 2014
  ident: 10.1016/j.enconman.2017.12.055_b0045
  article-title: Thermodynamic analysis of energy conversion and transfer in hybrid system consisting of wind turbine and advanced adiabatic compressed air energy storage
  publication-title: Energy
  doi: 10.1016/j.energy.2014.09.030
– volume: 135
  start-page: 394
  year: 2017
  ident: 10.1016/j.enconman.2017.12.055_b0065
  article-title: Modelling and analysis of a novel compressed air energy storage system for trigeneration based on electrical energy peak load shifting
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2016.12.089
– volume: 108
  start-page: 566
  year: 2016
  ident: 10.1016/j.enconman.2017.12.055_b0095
  article-title: A comparative research of two adiabatic compressed air energy storage systems
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2015.11.049
– volume: 134
  start-page: 239
  year: 2014
  ident: 10.1016/j.enconman.2017.12.055_b0010
  article-title: Parameters affecting scalable underwater compressed air energy storage
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2014.08.028
– volume: 125
  start-page: 158
  year: 2014
  ident: 10.1016/j.enconman.2017.12.055_b0070
  article-title: LTA-CAES – a low-temperature approach to adiabatic compressed air energy storage
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2014.03.013
– volume: 111
  start-page: 391
  year: 2016
  ident: 10.1016/j.enconman.2017.12.055_b0155
  article-title: Experimental investigation on two-phase driven ejector performance in a novel ejector enhanced refrigeration system
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2016.01.001
– volume: 131
  start-page: 259
  year: 2017
  ident: 10.1016/j.enconman.2017.12.055_b0085
  article-title: A novel compressed air energy storage (CAES) system combined with pre-cooler and using low grade waste heat as heat source
  publication-title: Energy
  doi: 10.1016/j.energy.2017.05.047
– volume: 66
  start-page: 496
  year: 2014
  ident: 10.1016/j.enconman.2017.12.055_b0110
  article-title: Design and testing of energy bags for underwater compressed air energy storage
  publication-title: Energy
  doi: 10.1016/j.energy.2013.12.010
– volume: 62
  start-page: 895
  year: 2016
  ident: 10.1016/j.enconman.2017.12.055_b0020
  article-title: A review on compressed air energy storage – a pathway for smart grid and polygeneration
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2016.05.002
– volume: 137
  start-page: 511
  year: 2015
  ident: 10.1016/j.enconman.2017.12.055_b0035
  article-title: Overview of current development in electrical energy storage technologies and the application potential in power system operation
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2014.09.081
– volume: 106
  start-page: 201
  year: 2017
  ident: 10.1016/j.enconman.2017.12.055_b0135
  article-title: Low pressure, modular compressed air energy storage (CAES) system for wind energy storage applications
  publication-title: Renew Energy
  doi: 10.1016/j.renene.2017.01.002
– volume: 100
  start-page: 461
  year: 2012
  ident: 10.1016/j.enconman.2017.12.055_b0130
  article-title: A thermodynamic analysis of multistage adiabatic CAES
  publication-title: Proc IEEE
  doi: 10.1109/JPROC.2011.2163049
– volume: 120
  start-page: 388
  year: 2016
  ident: 10.1016/j.enconman.2017.12.055_b0005
  article-title: A stochastic self-scheduling program for compressed air energy storage (CAES) of renewable energy sources (RESs) based on a demand response mechanism
  publication-title: Energy Convers Manag
  doi: 10.1016/j.enconman.2016.04.082
– volume: 11
  start-page: 178
  year: 2017
  ident: 10.1016/j.enconman.2017.12.055_b0120
  article-title: Dynamic modeling and simulation of an Isobaric Adiabatic Compressed Air Energy Storage (IA-CAES) system
  publication-title: J Energy Storage
  doi: 10.1016/j.est.2017.03.006
– volume: 104
  start-page: 315
  year: 2016
  ident: 10.1016/j.enconman.2017.12.055_b0140
  article-title: Ejector design and performance prediction
  publication-title: Int J Therm Sci
  doi: 10.1016/j.ijthermalsci.2015.12.022
SSID ssj0003506
Score 2.4941778
Snippet •A novel throttling strategy is proposed for adiabatic compressed air energy storage.•The throttling strategy is based on an ejector.•Proposed energy storage...
Adiabatic compressed air energy storage presents a valuable and environmentally friendly option for massive energy storage. Currently, efficiencies are...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 50
SubjectTerms Adiabatic
Adiabatic compressed air energy storage
Adiabatic flow
air
Batteries
Compressed air
Ejection
Ejector
Energy analysis
Energy consumption
Energy storage
Exergy
Exergy analysis
High pressure
Inlet pressure
Mathematical models
Parametric analysis
Pressure
Statistical energy analysis
Steady state models
Storage vessels
Studies
Thermodynamics
Throttling
Turbines
Title A novel throttling strategy for adiabatic compressed air energy storage system based on an ejector
URI https://dx.doi.org/10.1016/j.enconman.2017.12.055
https://www.proquest.com/docview/2042229654
https://www.proquest.com/docview/2045817230
Volume 158
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFA9DL3oQP3F-EcFrXdMkTXMc4piKu-jAW0jSFDa0G7MKXvzbzUtbnSJ48Ngkj5aXvI--vPd7CJ0VGTOcpEnkZSeNWGZ4pBOhI0NlIWK4zw29CG5H6XDMrh_4QwddtLUwkFbZ6P5apwdt3Yz0Gm725pNJ7w6QXTIZMyIoSbwlhAp2JuCUn79_pXlQHvprwuIIVi9VCU_PASuyfNKAg0pECAtCyd_vBuqHqg72Z7CJNhrHEffrb9tCHVduo_UlOMEdZPq4nL26Rwy9D6oKCs3xc40--4a9c4oBh8AARCuGTPIAG55jPVlgFyoAMWRKev2Ca3hnDBYux7MS6xK7aQjv76Lx4PL-Yhg1PRQiSwWtvPNsZEa05jLheS4FNS4nQheF8WYI2vkxJ0TMbS4Kzbw3ZlOdGifTQjuaWi3pHlopZ6XbR9hxGmthcuJ_a1lME2NtkmeaCGuN1Ix2EW8Zp2wDMA59Lh5Vm0k2VS3DFTBckUR5hndR75NuXkNs_Ekh231R3w6L8nbgT9qjdiNVI67Pfh4iYTLlrItOP6e9oMHtiS7d7CWs4Zl392h88I_XH6I1_5RB3jfhR2ilWry4Y-_WVOYknNsTtNq_uhmOPgDVyflI
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwELYQHNoeUJ_qFkqN1B7Dxq84PvSAStHyvBQkbq7tONKuaBaxoRWX_in-YGechNKqEoeKaxwr1tj-ZhzPfB8h7-tSesUKnsHeKTJZepU5rl3mhal1jve5SYvg6LiYnMr9M3W2RG6GWhhMq-yxv8P0hNb9k3FvzfHFdDr-gswupckl04Jx8IR9ZuVBvP4B57bFx70dmOQPnO9-Pvk0yXppgSwILVqIKb0pmXPKcFVVRgsfK6ZdXXtAZ1S5k1HrXIVK105CkBIKV_hoitpFUQSHDEyA-ysS4AJlE7Z-_s4rESoJeuLoMhzenbLk2RaSUzbfHBKvMp3-Q2KN4b894l--ITm83adktY9U6XZnjGdkKTbPyZM7_IUviN-mzfx7PKcottC2WNlOFx3d7TWFaJgi8YFHTliKqeuJp7yibnpJYyo5pJiaCYBGOz5pii61ovOGuobGWbpPeElOH8Syr8hyM2_ia0KjErnTvmJwjpa54D4EXpWO6RC8cVKMiBoMZ0PPaI7CGud2SF2b2cHgFg1uGbdg8BEZ3_a76Dg97u1hhnmxf6xOC47n3r7rw0TaHh8W0I6_3kyh5Ihs3jbDzsbrGtfE-VV6R5UQX4r8zX98_h15NDk5OrSHe8cHa-QxtJSYdM7UOlluL6_iW4ipWr-R1jAlXx960_wCxfo1wQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+throttling+strategy+for+adiabatic+compressed+air+energy+storage+system+based+on+an+ejector&rft.jtitle=Energy+conversion+and+management&rft.au=Chen%2C+Long+Xiang&rft.au=Hu%2C+Peng&rft.au=Zhao%2C+Pan+Zhao&rft.au=Xie%2C+Mei+Na&rft.date=2018-02-15&rft.pub=Elsevier+Science+Ltd&rft.issn=0196-8904&rft.eissn=1879-2227&rft.volume=158&rft.spage=50&rft_id=info:doi/10.1016%2Fj.enconman.2017.12.055&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-8904&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-8904&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-8904&client=summon