Population statistics for particle swarm optimization: Resampling methods in noisy optimization problems
Particle Swarm Optimization (PSO) is a metaheuristic whose performance deteriorates significantly when utilized on optimization problems subject to noise. On these problems, particles eventually fail to distinguish good from bad solutions because their objective values are corrupted by noise. Specif...
Saved in:
Published in | Swarm and evolutionary computation Vol. 17; pp. 37 - 59 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.08.2014
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Particle Swarm Optimization (PSO) is a metaheuristic whose performance deteriorates significantly when utilized on optimization problems subject to noise. On these problems, particles eventually fail to distinguish good from bad solutions because their objective values are corrupted by noise. Specifically, the effect of noise causes particles to suffer from deception when they do not select their true neighborhood best solutions, from blindness when they ignore better solutions, and from disorientation when they prefer worse solutions. Resampling methods reduce the presence of these conditions by re-evaluating the solutions multiple times and better estimating their true objective values with a sample mean over the evaluations. PSO with Equal Resampling (PSO-ER) finds better solutions than the regular PSO thanks mainly to the reduction of deception and blindness, as has been found by utilizing a set of population statistics that track the presence of these conditions throughout the search process. However, the solutions of PSO-ER have been reported to be worse than those of state-of-the-art resampling-based PSO algorithms, and the underlying reasons are not known because the population statistics for such algorithms have never been computed. In this article, we study the population statistics for a new extension to PSO-ER that further reduces the presence of blindness, and for state-of-the-art resampling-based PSO algorithms. Experiments on 20 large-scale benchmark functions subject to different levels of noise show that our new algorithm succeeds at reducing blindness and finding better solutions than PSO-ER. However, the population statistics for state-of-the-art resampling-based PSO algorithms show that their particles suffer even less from deception, blindness and disorientation, and therefore find much better solutions. |
---|---|
AbstractList | Particle Swarm Optimization (PSO) is a metaheuristic whose performance deteriorates significantly when utilized on optimization problems subject to noise. On these problems, particles eventually fail to distinguish good from bad solutions because their objective values are corrupted by noise. Specifically, the effect of noise causes particles to suffer from deception when they do not select their true neighborhood best solutions, from blindness when they ignore better solutions, and from disorientation when they prefer worse solutions. Resampling methods reduce the presence of these conditions by re-evaluating the solutions multiple times and better estimating their true objective values with a sample mean over the evaluations. PSO with Equal Resampling (PSO-ER) finds better solutions than the regular PSO thanks mainly to the reduction of deception and blindness, as has been found by utilizing a set of population statistics that track the presence of these conditions throughout the search process. However, the solutions of PSO-ER have been reported to be worse than those of state-of-the-art resampling-based PSO algorithms, and the underlying reasons are not known because the population statistics for such algorithms have never been computed. In this article, we study the population statistics for a new extension to PSO-ER that further reduces the presence of blindness, and for state-of-the-art resampling-based PSO algorithms. Experiments on 20 large-scale benchmark functions subject to different levels of noise show that our new algorithm succeeds at reducing blindness and finding better solutions than PSO-ER. However, the population statistics for state-of-the-art resampling-based PSO algorithms show that their particles suffer even less from deception, blindness and disorientation, and therefore find much better solutions. |
Author | Zhang, Mengjie Johnston, Mark Rada-Vilela, Juan |
Author_xml | – sequence: 1 givenname: Juan surname: Rada-Vilela fullname: Rada-Vilela, Juan email: juan.rada-vilela@ecs.vuw.ac.nz organization: Evolutionary Computation Research Group, Victoria University of Wellington, PO Box 600, Wellington 6140, New Zealand – sequence: 2 givenname: Mark surname: Johnston fullname: Johnston, Mark email: mark.johnston@msor.vuw.ac.nz organization: Evolutionary Computation Research Group, Victoria University of Wellington, PO Box 600, Wellington 6140, New Zealand – sequence: 3 givenname: Mengjie surname: Zhang fullname: Zhang, Mengjie email: mengjie.zhang@ecs.vuw.ac.nz organization: Evolutionary Computation Research Group, Victoria University of Wellington, PO Box 600, Wellington 6140, New Zealand |
BookMark | eNqFkM1OwzAQhH0oEqX0Cbj4BRL8mzRIHFDFn1QJhOBsuc6aukriyDatytOTtlzgAHuZPcy3mp0zNOp8BwhdUJJTQovLdR63sPE5I1TkhOWEiBEaM0ZJVkjCTtE0xjUZpiBMymqMVs--_2h0cr7DMQ0akzMRWx9wr8OwN4DjVocW-z651n0erFf4BaJu-8Z177iFtPJ1xK7DnXdx98OJ--CXDbTxHJ1Y3USYfusEvd3dvs4fssXT_eP8ZpEZXvKUlYxrYSmfgeUzAgWzxlAiyoqaohazCkpSSymqWgsDNTOWVYWkWiylXErLJZ-g6njXBB9jAKuMS4coKWjXKErUvim1Voem1L4pRZgamhpY_ovtg2t12P1DXR8pGN7aOAgqGgfdEM8FMEnV3v3JfwH_xItk |
CitedBy_id | crossref_primary_10_1016_j_cherd_2017_10_009 crossref_primary_10_1021_acs_jctc_3c00637 crossref_primary_10_1109_ACCESS_2020_3025559 crossref_primary_10_1016_j_camwa_2016_02_020 crossref_primary_10_3390_math7040357 crossref_primary_10_1016_j_asoc_2016_07_034 crossref_primary_10_1051_meca_2015041 crossref_primary_10_1016_j_swevo_2015_01_003 crossref_primary_10_3390_en13010058 crossref_primary_10_1016_j_swevo_2017_08_004 crossref_primary_10_1007_s00170_014_6181_0 crossref_primary_10_1109_ACCESS_2018_2809457 crossref_primary_10_1109_TEVC_2016_2592185 crossref_primary_10_1080_0952813X_2016_1260062 crossref_primary_10_1016_j_asoc_2020_107068 crossref_primary_10_1016_j_wse_2017_03_005 crossref_primary_10_1007_s11721_016_0125_2 crossref_primary_10_1016_j_asoc_2019_105874 |
Cites_doi | 10.1145/2330163.2330173 10.1016/j.amc.2006.01.066 10.1109/PES.2007.385784 10.1109/CEC.2008.4631170 10.1109/ICNN.1995.488968 10.7551/mitpress/1090.001.0001 10.1109/WSC.2011.6148117 10.1016/j.epsr.2008.01.012 10.1109/4235.985692 10.1109/CEC.2013.6557669 10.1023/A:1008349927281 10.1007/978-3-642-03211-0_8 10.1145/1569901.1569905 10.1007/s00500-013-1015-9 10.1016/0165-0114(85)90012-0 10.1109/CEC.2005.1554761 10.1109/IPDPS.2007.370434 10.1109/ICEC.1997.592326 10.1007/978-0-387-71921-4_14 10.1109/CEC.2010.5586186 10.1109/MHS.1995.494215 10.1145/2463372.2463373 10.1109/ICIEA.2007.4318512 10.1109/SNPD-SAWN.2005.77 10.1016/j.ijepes.2007.08.002 10.1109/TEVC.2005.846356 10.1142/7437 10.1007/s11047-008-9098-4 10.1016/S0019-9958(65)90241-X 10.1109/ICICIC.2007.434 |
ContentType | Journal Article |
Copyright | 2014 Elsevier B.V. |
Copyright_xml | – notice: 2014 Elsevier B.V. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.swevo.2014.02.004 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EndPage | 59 |
ExternalDocumentID | 10_1016_j_swevo_2014_02_004 S2210650214000261 |
GroupedDBID | --K --M .~1 0R~ 1~. 1~5 4.4 457 4G. 5VS 7-5 8P~ AAAKF AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARIN AATLK AAXUO AAYFN ABAOU ABBOA ABGRD ABMAC ABUCO ABXDB ABYKQ ACAZW ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADMUD ADQTV ADTZH AEBSH AECPX AEKER AENEX AEQOU AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM ARUGR AXJTR BJAXD BKOJK BLXMC CBWCG EBS EFJIC EFLBG EJD FDB FEDTE FIRID FNPLU FYGXN GBLVA GBOLZ HAMUX HVGLF HZ~ J1W JJJVA KOM M41 MHUIS MO0 N9A O-L O9- OAUVE P-8 P-9 PC. Q38 RIG ROL SDF SES SPC SPCBC SSA SSB SSD SST SSV SSW SSZ T5K ~G- AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c373t-723a4f138ef380e62fcc104791c6d489e70d5549da4ced2cf29651a4b55b5f353 |
IEDL.DBID | .~1 |
ISSN | 2210-6502 |
IngestDate | Tue Jul 01 04:56:26 EDT 2025 Thu Apr 24 23:09:59 EDT 2025 Fri Feb 23 02:26:28 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Population statistics Particle swarm optimization Resampling methods Noisy optimization problems |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c373t-723a4f138ef380e62fcc104791c6d489e70d5549da4ced2cf29651a4b55b5f353 |
PageCount | 23 |
ParticipantIDs | crossref_citationtrail_10_1016_j_swevo_2014_02_004 crossref_primary_10_1016_j_swevo_2014_02_004 elsevier_sciencedirect_doi_10_1016_j_swevo_2014_02_004 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-08-01 |
PublicationDateYYYYMMDD | 2014-08-01 |
PublicationDate_xml | – month: 08 year: 2014 text: 2014-08-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Swarm and evolutionary computation |
PublicationYear | 2014 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | G.S. Piperagkas, G. Georgoulas, K.E. Parsopoulos, C.D. Stylios, A.C. Likas, Integrating particle swarm optimization with reinforcement learning in noisy problems, in: Proceedings of the Genetic and Evolutionary Computation Conference, 2012, pp. 65–72. Pan, Wang, Liu (bib5) 2006; 181 S. Zhang, P. Chen, L.H. Lee, C.E. Peng, C.-H. Chen, Simulation optimization using the particle swarm optimization with optimal computing budget allocation, in: Proceedings of the Winter Simulation Conference, 2011, pp. 4298–4309. Y. Shi, R. Eberhart, A modified particle swarm optimizer, in: Proceedings of the IEEE World Congress on Computational Intelligence, 1998, pp. 69–73. Shao, Gao, Wang (bib24) 2009; vol. 54 J. Rada-Vilela, M. Johnston, M. Zhang, Population Statistics for Particle Swarm Optimization: Deception, Blindness and Disorientation in Noisy Problems, Technical Report 14-01, Victoria University of Wellington, URL Engelbrecht (bib11) 2006 K. Tang, X. Li, P.N. Suganthan, Z. Yang, T. Weise, Benchmark Functions for the CEC׳2010 Special Session and Competition on Large-Scale Global Optimization, Technical Report, Nature Inspired Computation and Applications Laboratory, USTC, China, 2009. F. van den Bergh, An Analysis of Particle Swarm Optimizers (Ph.D. thesis), University of Pretoria, South Africa, 2002. X. Cui, T.E. Potok, Distributed adaptive particle swarm optimizer in dynamic environment, in: Proceedings of the IEEE International Parallel and Distributed Processing Symposium, 2007, pp. 1–7. R. Eberhart, J. Kennedy, A new optimizer using particle swarm theory, in: Proceedings of the 6th International Symposium on Micro Machine and Human Science, 1995, pp. 39–43. J. H. Holland, Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control and Artificial Intelligence, MIT Press, Cambridge, MA, USA, 1992. Poli (bib3) 2008; 2008 J. Rada-Vilela, M. Zhang, M. Johnston, Resampling in particle swarm optimization, in: Proceedings of the IEEE Congress on Evolutionary Computation, 2013, pp. 947–954. A.D. Pietro, Optimising Evolutionary Strategies for Problems with Varying Noise Strength (Ph.D. thesis), The University of Western Australia, 2007. X. Cui, C.T. Hardin, R.K. Ragade, T.E. Potok, A.S. Elmaghraby, Tracking non-stationary optimal solution by particle swarm optimizer, in: Proceedings of the 6th International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing, 2005, pp. 133–138. T. Bartz-Beielstein, C. Lasarczyk, M. Preuss, Sequential parameter optimization, in: Proceedings of the IEEE Congress on Evolutionary Computation, vol. 1, 2005, pp. 773–780. J. Kennedy, R. Eberhart, Particle swarm optimization, in: Proceedings of the IEEE International Conference on Neural Networks, vol. 4, 1995, pp. 1942–1948. Bortolan (bib33) 1985; 15 Levy (bib31) 2006 J. Kennedy, The particle swarm: social adaptation of knowledge, in: Proceedings of the IEEE International Conference on Evolutionary Computation, 1997, pp. 303–308. P. Zhao, Improved particle swarm optimization algorithm for the stochastic loader problem, in: Proceedings of the IEEE Conference on Industrial Electronics and Applications, 2007, pp. 773–776. V. Pappala, I. Erlich, Management of distributed generation units under stochastic load demands using particle swarm optimization, in: Proceedings of the Power Engineering Society General Meeting, 2007, pp. 1–7. Jin, Branke (bib13) 2005; 9 R. Mendes, Population Topologies and their Influence in Particle Swarm Performance (Ph.D. thesis), Universidade do Minho, Portugal, 2004. C.-H. Chen, L.H. Lee, Stochastic Simulation Optimization: An Optimal Computing Budget Allocation, System Engineering and Operations Research, vol. 1, World Scientific, Singapore, Singapore, 2011. Chen, Lin, Chick (bib16) 2000; 10 Wang, Singh (bib25) 2008; 30 Zadeh (bib32) 1965; 8 Clerc, Kennedy (bib34) 2002; 6 O. Brodersen, M. Schumann, Optimizing a stochastic warehouse using particle swarm optimization, in: Proceedings of the Conference on Innovative Computing, Information and Control, 2007, pp. 449–449. Bianchi, Dorigo, Gambardella, Gutjahr (bib28) 2009; 8 X. Cui, J.S. Charles, T.E. Potok, A simple distributed particle swarm optimization for dynamic and noisy environments, in: Nature Inspired Cooperative Strategies for Optimization, Studies in Computational Intelligence, vol. 236, Springer, Berlin, Heidelberg, 2009, pp. 89–102. Lu, Wu, Zhang (bib22) 2006; vol. 3930 J. Rada-Vilela, M. Zhang, M. Johnston, Optimal computing budget allocation in particle swarm optimization, in: Proceedings of the Genetic and Evolutionary Computation Conference, 2013, pp. 81–88. T. Bartz-Beielstein, D. Blum, J. Branke, Particle swarm optimization and sequential sampling in noisy environments, in: Metaheuristics, Operations Research/Computer Science Interfaces Series, vol. 39, Springer, 2007, pp. 261–273. Rada-Vilela, Zhang, Seah (bib12) 2013; 17 Wang, Singh (bib26) 2008; 78 J.L. Fernandez-Marquez, J.L. Arcos, Adapting particle swarm optimization in dynamic and noisy environments, in: Proceedings of the IEEE Congress on Evolutionary Computation, 2010, pp. 1–8. 2014. J.L. Fernandez-Marquez, J.L. Arcos, An evaporation mechanism for dynamic and noisy multimodal optimization, in: Proceedings of the Genetic and Evolutionary Computation Conference, 2009, pp. 17–24. 10.1016/j.swevo.2014.02.004_bib19 10.1016/j.swevo.2014.02.004_bib18 Levy (10.1016/j.swevo.2014.02.004_bib31) 2006 Bortolan (10.1016/j.swevo.2014.02.004_bib33) 1985; 15 10.1016/j.swevo.2014.02.004_bib15 10.1016/j.swevo.2014.02.004_bib37 10.1016/j.swevo.2014.02.004_bib14 10.1016/j.swevo.2014.02.004_bib36 10.1016/j.swevo.2014.02.004_bib17 10.1016/j.swevo.2014.02.004_bib39 10.1016/j.swevo.2014.02.004_bib38 Bianchi (10.1016/j.swevo.2014.02.004_bib28) 2009; 8 Wang (10.1016/j.swevo.2014.02.004_bib25) 2008; 30 Pan (10.1016/j.swevo.2014.02.004_bib5) 2006; 181 10.1016/j.swevo.2014.02.004_bib9 10.1016/j.swevo.2014.02.004_bib8 10.1016/j.swevo.2014.02.004_bib7 10.1016/j.swevo.2014.02.004_bib6 Lu (10.1016/j.swevo.2014.02.004_bib22) 2006; vol. 3930 10.1016/j.swevo.2014.02.004_bib4 10.1016/j.swevo.2014.02.004_bib21 10.1016/j.swevo.2014.02.004_bib2 Chen (10.1016/j.swevo.2014.02.004_bib16) 2000; 10 10.1016/j.swevo.2014.02.004_bib1 10.1016/j.swevo.2014.02.004_bib23 10.1016/j.swevo.2014.02.004_bib40 10.1016/j.swevo.2014.02.004_bib20 Jin (10.1016/j.swevo.2014.02.004_bib13) 2005; 9 Clerc (10.1016/j.swevo.2014.02.004_bib34) 2002; 6 10.1016/j.swevo.2014.02.004_bib29 Rada-Vilela (10.1016/j.swevo.2014.02.004_bib12) 2013; 17 Wang (10.1016/j.swevo.2014.02.004_bib26) 2008; 78 10.1016/j.swevo.2014.02.004_bib27 Zadeh (10.1016/j.swevo.2014.02.004_bib32) 1965; 8 Poli (10.1016/j.swevo.2014.02.004_bib3) 2008; 2008 Shao (10.1016/j.swevo.2014.02.004_bib24) 2009; vol. 54 10.1016/j.swevo.2014.02.004_bib10 10.1016/j.swevo.2014.02.004_bib35 Engelbrecht (10.1016/j.swevo.2014.02.004_bib11) 2006 10.1016/j.swevo.2014.02.004_bib30 |
References_xml | – reference: ) , 2014. – reference: X. Cui, C.T. Hardin, R.K. Ragade, T.E. Potok, A.S. Elmaghraby, Tracking non-stationary optimal solution by particle swarm optimizer, in: Proceedings of the 6th International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing, 2005, pp. 133–138. – reference: O. Brodersen, M. Schumann, Optimizing a stochastic warehouse using particle swarm optimization, in: Proceedings of the Conference on Innovative Computing, Information and Control, 2007, pp. 449–449. – reference: X. Cui, J.S. Charles, T.E. Potok, A simple distributed particle swarm optimization for dynamic and noisy environments, in: Nature Inspired Cooperative Strategies for Optimization, Studies in Computational Intelligence, vol. 236, Springer, Berlin, Heidelberg, 2009, pp. 89–102. – reference: C.-H. Chen, L.H. Lee, Stochastic Simulation Optimization: An Optimal Computing Budget Allocation, System Engineering and Operations Research, vol. 1, World Scientific, Singapore, Singapore, 2011. – reference: V. Pappala, I. Erlich, Management of distributed generation units under stochastic load demands using particle swarm optimization, in: Proceedings of the Power Engineering Society General Meeting, 2007, pp. 1–7. – volume: 78 start-page: 1466 year: 2008 end-page: 1476 ident: bib26 article-title: Stochastic economic emission load dispatch through a modified particle swarm optimization algorithm publication-title: Electr. Power Syst. Res. – reference: F. van den Bergh, An Analysis of Particle Swarm Optimizers (Ph.D. thesis), University of Pretoria, South Africa, 2002. – reference: J.L. Fernandez-Marquez, J.L. Arcos, Adapting particle swarm optimization in dynamic and noisy environments, in: Proceedings of the IEEE Congress on Evolutionary Computation, 2010, pp. 1–8. – reference: P. Zhao, Improved particle swarm optimization algorithm for the stochastic loader problem, in: Proceedings of the IEEE Conference on Industrial Electronics and Applications, 2007, pp. 773–776. – reference: X. Cui, T.E. Potok, Distributed adaptive particle swarm optimizer in dynamic environment, in: Proceedings of the IEEE International Parallel and Distributed Processing Symposium, 2007, pp. 1–7. – reference: R. Mendes, Population Topologies and their Influence in Particle Swarm Performance (Ph.D. thesis), Universidade do Minho, Portugal, 2004. – volume: 17 start-page: 1019 year: 2013 end-page: 1030 ident: bib12 article-title: A performance study on synchronicity and neighborhood size in particle swarm optimization publication-title: Soft Comput. – reference: S. Zhang, P. Chen, L.H. Lee, C.E. Peng, C.-H. Chen, Simulation optimization using the particle swarm optimization with optimal computing budget allocation, in: Proceedings of the Winter Simulation Conference, 2011, pp. 4298–4309. – reference: T. Bartz-Beielstein, C. Lasarczyk, M. Preuss, Sequential parameter optimization, in: Proceedings of the IEEE Congress on Evolutionary Computation, vol. 1, 2005, pp. 773–780. – volume: vol. 54 start-page: 566 year: 2009 end-page: 574 ident: bib24 article-title: A hybrid particle swarm optimization algorithm for vehicle routing problem with stochastic travel time publication-title: Fuzzy Information and Engineering Advances in Soft Computing – volume: 10 start-page: 251 year: 2000 end-page: 270 ident: bib16 article-title: Simulation budget allocation for further enhancing the efficiency of ordinal optimization publication-title: J. Discret. Event Dyn. Syst.: Theory Appl. – reference: Y. Shi, R. Eberhart, A modified particle swarm optimizer, in: Proceedings of the IEEE World Congress on Computational Intelligence, 1998, pp. 69–73. – reference: K. Tang, X. Li, P.N. Suganthan, Z. Yang, T. Weise, Benchmark Functions for the CEC׳2010 Special Session and Competition on Large-Scale Global Optimization, Technical Report, Nature Inspired Computation and Applications Laboratory, USTC, China, 2009. – reference: A.D. Pietro, Optimising Evolutionary Strategies for Problems with Varying Noise Strength (Ph.D. thesis), The University of Western Australia, 2007. – volume: vol. 3930 start-page: 528 year: 2006 end-page: 537 ident: bib22 article-title: A particle swarm optimization-based approach to tackling simulation optimization of stochastic, large-scale and complex systems publication-title: Advances in Machine Learning and Cybernetics, Lecture Notes in Computer Science – reference: J. Kennedy, R. Eberhart, Particle swarm optimization, in: Proceedings of the IEEE International Conference on Neural Networks, vol. 4, 1995, pp. 1942–1948. – volume: 8 start-page: 338 year: 1965 end-page: 353 ident: bib32 article-title: Fuzzy sets publication-title: Inf. Control – year: 2006 ident: bib11 article-title: Fundamentals of Computational Swarm Intelligence – volume: 30 start-page: 226 year: 2008 end-page: 234 ident: bib25 article-title: Stochastic combined heat and power dispatch based on multi-objective particle swarm optimization publication-title: Int. J. Electr. Power Energy Syst. – reference: T. Bartz-Beielstein, D. Blum, J. Branke, Particle swarm optimization and sequential sampling in noisy environments, in: Metaheuristics, Operations Research/Computer Science Interfaces Series, vol. 39, Springer, 2007, pp. 261–273. – reference: J.L. Fernandez-Marquez, J.L. Arcos, An evaporation mechanism for dynamic and noisy multimodal optimization, in: Proceedings of the Genetic and Evolutionary Computation Conference, 2009, pp. 17–24. – volume: 8 start-page: 239 year: 2009 end-page: 287 ident: bib28 article-title: A survey on metaheuristics for stochastic combinatorial optimization publication-title: Nat. Comput. – reference: J. Rada-Vilela, M. Zhang, M. Johnston, Resampling in particle swarm optimization, in: Proceedings of the IEEE Congress on Evolutionary Computation, 2013, pp. 947–954. – reference: J. H. Holland, Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control and Artificial Intelligence, MIT Press, Cambridge, MA, USA, 1992. – volume: 9 start-page: 303 year: 2005 end-page: 317 ident: bib13 article-title: Evolutionary optimization in uncertain environments—a survey publication-title: IEEE Trans. Evol. Comput. – reference: R. Eberhart, J. Kennedy, A new optimizer using particle swarm theory, in: Proceedings of the 6th International Symposium on Micro Machine and Human Science, 1995, pp. 39–43. – volume: 181 start-page: 908 year: 2006 end-page: 919 ident: bib5 article-title: Particle swarm optimization for function optimization in noisy environment publication-title: Appl. Math. Comput. – volume: 6 start-page: 58 year: 2002 end-page: 73 ident: bib34 article-title: The particle swarm-explosion, stability, and convergence in a multidimensional complex space publication-title: IEEE Trans. Evol. Comput. – volume: 2008 start-page: 1 year: 2008 end-page: 10 ident: bib3 article-title: Analysis of the publications on the applications of particle swarm optimisation publication-title: J. Artif. Evol. Appl. – reference: J. Rada-Vilela, M. Zhang, M. Johnston, Optimal computing budget allocation in particle swarm optimization, in: Proceedings of the Genetic and Evolutionary Computation Conference, 2013, pp. 81–88. – year: 2006 ident: bib31 article-title: Stochastic Dominance: Investment Decision Making under Uncertainty – reference: J. Kennedy, The particle swarm: social adaptation of knowledge, in: Proceedings of the IEEE International Conference on Evolutionary Computation, 1997, pp. 303–308. – reference: J. Rada-Vilela, M. Johnston, M. Zhang, Population Statistics for Particle Swarm Optimization: Deception, Blindness and Disorientation in Noisy Problems, Technical Report 14-01, Victoria University of Wellington, URL: ( – reference: G.S. Piperagkas, G. Georgoulas, K.E. Parsopoulos, C.D. Stylios, A.C. Likas, Integrating particle swarm optimization with reinforcement learning in noisy problems, in: Proceedings of the Genetic and Evolutionary Computation Conference, 2012, pp. 65–72. – volume: 15 start-page: 1 year: 1985 end-page: 19 ident: bib33 article-title: A review of some methods for ranking fuzzy subsets publication-title: Fuzzy Sets Syst. – ident: 10.1016/j.swevo.2014.02.004_bib15 – ident: 10.1016/j.swevo.2014.02.004_bib19 doi: 10.1145/2330163.2330173 – volume: vol. 3930 start-page: 528 year: 2006 ident: 10.1016/j.swevo.2014.02.004_bib22 article-title: A particle swarm optimization-based approach to tackling simulation optimization of stochastic, large-scale and complex systems – volume: 181 start-page: 908 issue: 2 year: 2006 ident: 10.1016/j.swevo.2014.02.004_bib5 article-title: Particle swarm optimization for function optimization in noisy environment publication-title: Appl. Math. Comput. doi: 10.1016/j.amc.2006.01.066 – ident: 10.1016/j.swevo.2014.02.004_bib23 doi: 10.1109/PES.2007.385784 – ident: 10.1016/j.swevo.2014.02.004_bib14 doi: 10.1109/CEC.2008.4631170 – ident: 10.1016/j.swevo.2014.02.004_bib2 doi: 10.1109/ICNN.1995.488968 – ident: 10.1016/j.swevo.2014.02.004_bib40 doi: 10.7551/mitpress/1090.001.0001 – ident: 10.1016/j.swevo.2014.02.004_bib7 doi: 10.1109/WSC.2011.6148117 – volume: 78 start-page: 1466 issue: 8 year: 2008 ident: 10.1016/j.swevo.2014.02.004_bib26 article-title: Stochastic economic emission load dispatch through a modified particle swarm optimization algorithm publication-title: Electr. Power Syst. Res. doi: 10.1016/j.epsr.2008.01.012 – year: 2006 ident: 10.1016/j.swevo.2014.02.004_bib11 – ident: 10.1016/j.swevo.2014.02.004_bib30 – volume: 6 start-page: 58 issue: 1 year: 2002 ident: 10.1016/j.swevo.2014.02.004_bib34 article-title: The particle swarm-explosion, stability, and convergence in a multidimensional complex space publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/4235.985692 – ident: 10.1016/j.swevo.2014.02.004_bib8 doi: 10.1109/CEC.2013.6557669 – year: 2006 ident: 10.1016/j.swevo.2014.02.004_bib31 – volume: 10 start-page: 251 issue: 3 year: 2000 ident: 10.1016/j.swevo.2014.02.004_bib16 article-title: Simulation budget allocation for further enhancing the efficiency of ordinal optimization publication-title: J. Discret. Event Dyn. Syst.: Theory Appl. doi: 10.1023/A:1008349927281 – ident: 10.1016/j.swevo.2014.02.004_bib37 doi: 10.1007/978-3-642-03211-0_8 – volume: 2008 start-page: 1 issue: 4 year: 2008 ident: 10.1016/j.swevo.2014.02.004_bib3 article-title: Analysis of the publications on the applications of particle swarm optimisation publication-title: J. Artif. Evol. Appl. – ident: 10.1016/j.swevo.2014.02.004_bib38 doi: 10.1145/1569901.1569905 – volume: 17 start-page: 1019 issue: 6 year: 2013 ident: 10.1016/j.swevo.2014.02.004_bib12 article-title: A performance study on synchronicity and neighborhood size in particle swarm optimization publication-title: Soft Comput. doi: 10.1007/s00500-013-1015-9 – volume: 15 start-page: 1 issue: 1 year: 1985 ident: 10.1016/j.swevo.2014.02.004_bib33 article-title: A review of some methods for ranking fuzzy subsets publication-title: Fuzzy Sets Syst. doi: 10.1016/0165-0114(85)90012-0 – ident: 10.1016/j.swevo.2014.02.004_bib17 doi: 10.1109/CEC.2005.1554761 – ident: 10.1016/j.swevo.2014.02.004_bib36 doi: 10.1109/IPDPS.2007.370434 – ident: 10.1016/j.swevo.2014.02.004_bib18 doi: 10.1109/ICEC.1997.592326 – ident: 10.1016/j.swevo.2014.02.004_bib4 – ident: 10.1016/j.swevo.2014.02.004_bib10 – ident: 10.1016/j.swevo.2014.02.004_bib6 doi: 10.1007/978-0-387-71921-4_14 – ident: 10.1016/j.swevo.2014.02.004_bib9 – ident: 10.1016/j.swevo.2014.02.004_bib39 doi: 10.1109/CEC.2010.5586186 – ident: 10.1016/j.swevo.2014.02.004_bib1 doi: 10.1109/MHS.1995.494215 – ident: 10.1016/j.swevo.2014.02.004_bib20 doi: 10.1145/2463372.2463373 – ident: 10.1016/j.swevo.2014.02.004_bib27 doi: 10.1109/ICIEA.2007.4318512 – ident: 10.1016/j.swevo.2014.02.004_bib35 doi: 10.1109/SNPD-SAWN.2005.77 – volume: vol. 54 start-page: 566 year: 2009 ident: 10.1016/j.swevo.2014.02.004_bib24 article-title: A hybrid particle swarm optimization algorithm for vehicle routing problem with stochastic travel time – volume: 30 start-page: 226 issue: 3 year: 2008 ident: 10.1016/j.swevo.2014.02.004_bib25 article-title: Stochastic combined heat and power dispatch based on multi-objective particle swarm optimization publication-title: Int. J. Electr. Power Energy Syst. doi: 10.1016/j.ijepes.2007.08.002 – volume: 9 start-page: 303 issue: 3 year: 2005 ident: 10.1016/j.swevo.2014.02.004_bib13 article-title: Evolutionary optimization in uncertain environments—a survey publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2005.846356 – ident: 10.1016/j.swevo.2014.02.004_bib29 doi: 10.1142/7437 – volume: 8 start-page: 239 issue: 2 year: 2009 ident: 10.1016/j.swevo.2014.02.004_bib28 article-title: A survey on metaheuristics for stochastic combinatorial optimization publication-title: Nat. Comput. doi: 10.1007/s11047-008-9098-4 – volume: 8 start-page: 338 issue: 3 year: 1965 ident: 10.1016/j.swevo.2014.02.004_bib32 article-title: Fuzzy sets publication-title: Inf. Control doi: 10.1016/S0019-9958(65)90241-X – ident: 10.1016/j.swevo.2014.02.004_bib21 doi: 10.1109/ICICIC.2007.434 |
SSID | ssj0000602559 |
Score | 2.1237397 |
Snippet | Particle Swarm Optimization (PSO) is a metaheuristic whose performance deteriorates significantly when utilized on optimization problems subject to noise. On... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 37 |
SubjectTerms | Noisy optimization problems Particle swarm optimization Population statistics Resampling methods |
Title | Population statistics for particle swarm optimization: Resampling methods in noisy optimization problems |
URI | https://dx.doi.org/10.1016/j.swevo.2014.02.004 |
Volume | 17 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA9jXrz4Lc6PkYNH49okTRtvYzim4hB1sFtI01QnrhvrdHjxbzdp0-FAdvDY8h60L6_vo7z3-wFwbvFJqIo85PGUIspUgmIea2Syq9Q80djTtlG877PegN4Og2ENdKpdGDtW6WJ_GdOLaO3utJw1W9PRqPWETbdi6gtsWoSik7Ab7DS0Xn757S__s3isqJotx5yRR1ahAh8qxrzyhf60S4A-LbE76d8J6lfS6e6ALVctwnb5QLugprM9sF0xMUD3Ye6D14clDxe0K0Il-jI0BSmcureB-ULOxnBiQsTY7V5ewUedSztSnr3Akko6h6MMZpNR_rUiCR3vTH4ABt3r504POQ4FpEhI5ijERNLUJ5FOSeRphlOlLDoD9xVLaMR16CWmouCJpMbiWKWYs8CXNA6COEhJQA5BPZtk-ghAmWBfRSpmoZdSgnWc8CQ18UkGimElwwbAleGEcgDjlufiXVSTZG-isLaw1hYeFsbaDXCxVJqW-BrrxVl1ImLFTYTJAOsUj_-reAI27VU583cK6vPZhz4zdcg8bhaO1gQb7Zu7Xv8HSMHgNA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT8IwGG4QD3rx24ifPXh00nVdt3ozRIIKxCgk3Jqu6xQjgzCUePG3224dkcR48Lr1TbZn7fuxvO_zAHBu-EmIDJGDWEIcQmXsRCxSjo6uQrFYYaRModjp0laf3A38QQU0ylkY01ZpfX_h03Nvba_ULZr1yXBYf8K6WtH5BdYlQl5JrIBVoo-vkTG4_HIXP1oQzdNmIzKnDRxjUbIP5X1e2Vx9mClAlxTkneT3CPUj6jS3wIZNF-F18UTboKLSHbBZSjFAezJ3wcvDQogLmhmhgn4Z6owUTuzrwGwupiM41j5iZIcvr-CjyoTpKU-fYaElncFhCtPxMPtcWgmt8Ey2B_rNm16j5VgRBUd6gTdzAuwJkrheqBIvRIriREpDz8BcSWMSMhWgWKcULBZEQ45lghn1XUEi34_8xPO9fVBNx6k6AFDE2JWhjGiAEuJhFcUsTrSDEr6kWIqgBnAJHJeWYdwIXbzxspXsledoc4M2R5hrtGvgYmE0KQg2_l5Oyy_Cl_YJ1yHgL8PD_xqegbVWr9Pm7dvu_RFYN3eKBsBjUJ1N39WJTkpm0Wm-6b4Bf07hwg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Population+statistics+for+particle+swarm+optimization%3A+Resampling+methods+in+noisy+optimization+problems&rft.jtitle=Swarm+and+evolutionary+computation&rft.au=Rada-Vilela%2C+Juan&rft.au=Johnston%2C+Mark&rft.au=Zhang%2C+Mengjie&rft.date=2014-08-01&rft.pub=Elsevier+B.V&rft.issn=2210-6502&rft.volume=17&rft.spage=37&rft.epage=59&rft_id=info:doi/10.1016%2Fj.swevo.2014.02.004&rft.externalDocID=S2210650214000261 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2210-6502&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2210-6502&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2210-6502&client=summon |