Population statistics for particle swarm optimization: Resampling methods in noisy optimization problems

Particle Swarm Optimization (PSO) is a metaheuristic whose performance deteriorates significantly when utilized on optimization problems subject to noise. On these problems, particles eventually fail to distinguish good from bad solutions because their objective values are corrupted by noise. Specif...

Full description

Saved in:
Bibliographic Details
Published inSwarm and evolutionary computation Vol. 17; pp. 37 - 59
Main Authors Rada-Vilela, Juan, Johnston, Mark, Zhang, Mengjie
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.08.2014
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Particle Swarm Optimization (PSO) is a metaheuristic whose performance deteriorates significantly when utilized on optimization problems subject to noise. On these problems, particles eventually fail to distinguish good from bad solutions because their objective values are corrupted by noise. Specifically, the effect of noise causes particles to suffer from deception when they do not select their true neighborhood best solutions, from blindness when they ignore better solutions, and from disorientation when they prefer worse solutions. Resampling methods reduce the presence of these conditions by re-evaluating the solutions multiple times and better estimating their true objective values with a sample mean over the evaluations. PSO with Equal Resampling (PSO-ER) finds better solutions than the regular PSO thanks mainly to the reduction of deception and blindness, as has been found by utilizing a set of population statistics that track the presence of these conditions throughout the search process. However, the solutions of PSO-ER have been reported to be worse than those of state-of-the-art resampling-based PSO algorithms, and the underlying reasons are not known because the population statistics for such algorithms have never been computed. In this article, we study the population statistics for a new extension to PSO-ER that further reduces the presence of blindness, and for state-of-the-art resampling-based PSO algorithms. Experiments on 20 large-scale benchmark functions subject to different levels of noise show that our new algorithm succeeds at reducing blindness and finding better solutions than PSO-ER. However, the population statistics for state-of-the-art resampling-based PSO algorithms show that their particles suffer even less from deception, blindness and disorientation, and therefore find much better solutions.
AbstractList Particle Swarm Optimization (PSO) is a metaheuristic whose performance deteriorates significantly when utilized on optimization problems subject to noise. On these problems, particles eventually fail to distinguish good from bad solutions because their objective values are corrupted by noise. Specifically, the effect of noise causes particles to suffer from deception when they do not select their true neighborhood best solutions, from blindness when they ignore better solutions, and from disorientation when they prefer worse solutions. Resampling methods reduce the presence of these conditions by re-evaluating the solutions multiple times and better estimating their true objective values with a sample mean over the evaluations. PSO with Equal Resampling (PSO-ER) finds better solutions than the regular PSO thanks mainly to the reduction of deception and blindness, as has been found by utilizing a set of population statistics that track the presence of these conditions throughout the search process. However, the solutions of PSO-ER have been reported to be worse than those of state-of-the-art resampling-based PSO algorithms, and the underlying reasons are not known because the population statistics for such algorithms have never been computed. In this article, we study the population statistics for a new extension to PSO-ER that further reduces the presence of blindness, and for state-of-the-art resampling-based PSO algorithms. Experiments on 20 large-scale benchmark functions subject to different levels of noise show that our new algorithm succeeds at reducing blindness and finding better solutions than PSO-ER. However, the population statistics for state-of-the-art resampling-based PSO algorithms show that their particles suffer even less from deception, blindness and disorientation, and therefore find much better solutions.
Author Zhang, Mengjie
Johnston, Mark
Rada-Vilela, Juan
Author_xml – sequence: 1
  givenname: Juan
  surname: Rada-Vilela
  fullname: Rada-Vilela, Juan
  email: juan.rada-vilela@ecs.vuw.ac.nz
  organization: Evolutionary Computation Research Group, Victoria University of Wellington, PO Box 600, Wellington 6140, New Zealand
– sequence: 2
  givenname: Mark
  surname: Johnston
  fullname: Johnston, Mark
  email: mark.johnston@msor.vuw.ac.nz
  organization: Evolutionary Computation Research Group, Victoria University of Wellington, PO Box 600, Wellington 6140, New Zealand
– sequence: 3
  givenname: Mengjie
  surname: Zhang
  fullname: Zhang, Mengjie
  email: mengjie.zhang@ecs.vuw.ac.nz
  organization: Evolutionary Computation Research Group, Victoria University of Wellington, PO Box 600, Wellington 6140, New Zealand
BookMark eNqFkM1OwzAQhH0oEqX0Cbj4BRL8mzRIHFDFn1QJhOBsuc6aukriyDatytOTtlzgAHuZPcy3mp0zNOp8BwhdUJJTQovLdR63sPE5I1TkhOWEiBEaM0ZJVkjCTtE0xjUZpiBMymqMVs--_2h0cr7DMQ0akzMRWx9wr8OwN4DjVocW-z651n0erFf4BaJu-8Z177iFtPJ1xK7DnXdx98OJ--CXDbTxHJ1Y3USYfusEvd3dvs4fssXT_eP8ZpEZXvKUlYxrYSmfgeUzAgWzxlAiyoqaohazCkpSSymqWgsDNTOWVYWkWiylXErLJZ-g6njXBB9jAKuMS4coKWjXKErUvim1Voem1L4pRZgamhpY_ovtg2t12P1DXR8pGN7aOAgqGgfdEM8FMEnV3v3JfwH_xItk
CitedBy_id crossref_primary_10_1016_j_cherd_2017_10_009
crossref_primary_10_1021_acs_jctc_3c00637
crossref_primary_10_1109_ACCESS_2020_3025559
crossref_primary_10_1016_j_camwa_2016_02_020
crossref_primary_10_3390_math7040357
crossref_primary_10_1016_j_asoc_2016_07_034
crossref_primary_10_1051_meca_2015041
crossref_primary_10_1016_j_swevo_2015_01_003
crossref_primary_10_3390_en13010058
crossref_primary_10_1016_j_swevo_2017_08_004
crossref_primary_10_1007_s00170_014_6181_0
crossref_primary_10_1109_ACCESS_2018_2809457
crossref_primary_10_1109_TEVC_2016_2592185
crossref_primary_10_1080_0952813X_2016_1260062
crossref_primary_10_1016_j_asoc_2020_107068
crossref_primary_10_1016_j_wse_2017_03_005
crossref_primary_10_1007_s11721_016_0125_2
crossref_primary_10_1016_j_asoc_2019_105874
Cites_doi 10.1145/2330163.2330173
10.1016/j.amc.2006.01.066
10.1109/PES.2007.385784
10.1109/CEC.2008.4631170
10.1109/ICNN.1995.488968
10.7551/mitpress/1090.001.0001
10.1109/WSC.2011.6148117
10.1016/j.epsr.2008.01.012
10.1109/4235.985692
10.1109/CEC.2013.6557669
10.1023/A:1008349927281
10.1007/978-3-642-03211-0_8
10.1145/1569901.1569905
10.1007/s00500-013-1015-9
10.1016/0165-0114(85)90012-0
10.1109/CEC.2005.1554761
10.1109/IPDPS.2007.370434
10.1109/ICEC.1997.592326
10.1007/978-0-387-71921-4_14
10.1109/CEC.2010.5586186
10.1109/MHS.1995.494215
10.1145/2463372.2463373
10.1109/ICIEA.2007.4318512
10.1109/SNPD-SAWN.2005.77
10.1016/j.ijepes.2007.08.002
10.1109/TEVC.2005.846356
10.1142/7437
10.1007/s11047-008-9098-4
10.1016/S0019-9958(65)90241-X
10.1109/ICICIC.2007.434
ContentType Journal Article
Copyright 2014 Elsevier B.V.
Copyright_xml – notice: 2014 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.swevo.2014.02.004
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EndPage 59
ExternalDocumentID 10_1016_j_swevo_2014_02_004
S2210650214000261
GroupedDBID --K
--M
.~1
0R~
1~.
1~5
4.4
457
4G.
5VS
7-5
8P~
AAAKF
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AATLK
AAXUO
AAYFN
ABAOU
ABBOA
ABGRD
ABMAC
ABUCO
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADMUD
ADQTV
ADTZH
AEBSH
AECPX
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
ARUGR
AXJTR
BJAXD
BKOJK
BLXMC
CBWCG
EBS
EFJIC
EFLBG
EJD
FDB
FEDTE
FIRID
FNPLU
FYGXN
GBLVA
GBOLZ
HAMUX
HVGLF
HZ~
J1W
JJJVA
KOM
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
P-8
P-9
PC.
Q38
RIG
ROL
SDF
SES
SPC
SPCBC
SSA
SSB
SSD
SST
SSV
SSW
SSZ
T5K
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c373t-723a4f138ef380e62fcc104791c6d489e70d5549da4ced2cf29651a4b55b5f353
IEDL.DBID .~1
ISSN 2210-6502
IngestDate Tue Jul 01 04:56:26 EDT 2025
Thu Apr 24 23:09:59 EDT 2025
Fri Feb 23 02:26:28 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Population statistics
Particle swarm optimization
Resampling methods
Noisy optimization problems
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c373t-723a4f138ef380e62fcc104791c6d489e70d5549da4ced2cf29651a4b55b5f353
PageCount 23
ParticipantIDs crossref_citationtrail_10_1016_j_swevo_2014_02_004
crossref_primary_10_1016_j_swevo_2014_02_004
elsevier_sciencedirect_doi_10_1016_j_swevo_2014_02_004
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-08-01
PublicationDateYYYYMMDD 2014-08-01
PublicationDate_xml – month: 08
  year: 2014
  text: 2014-08-01
  day: 01
PublicationDecade 2010
PublicationTitle Swarm and evolutionary computation
PublicationYear 2014
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References G.S. Piperagkas, G. Georgoulas, K.E. Parsopoulos, C.D. Stylios, A.C. Likas, Integrating particle swarm optimization with reinforcement learning in noisy problems, in: Proceedings of the Genetic and Evolutionary Computation Conference, 2012, pp. 65–72.
Pan, Wang, Liu (bib5) 2006; 181
S. Zhang, P. Chen, L.H. Lee, C.E. Peng, C.-H. Chen, Simulation optimization using the particle swarm optimization with optimal computing budget allocation, in: Proceedings of the Winter Simulation Conference, 2011, pp. 4298–4309.
Y. Shi, R. Eberhart, A modified particle swarm optimizer, in: Proceedings of the IEEE World Congress on Computational Intelligence, 1998, pp. 69–73.
Shao, Gao, Wang (bib24) 2009; vol. 54
J. Rada-Vilela, M. Johnston, M. Zhang, Population Statistics for Particle Swarm Optimization: Deception, Blindness and Disorientation in Noisy Problems, Technical Report 14-01, Victoria University of Wellington, URL
Engelbrecht (bib11) 2006
K. Tang, X. Li, P.N. Suganthan, Z. Yang, T. Weise, Benchmark Functions for the CEC׳2010 Special Session and Competition on Large-Scale Global Optimization, Technical Report, Nature Inspired Computation and Applications Laboratory, USTC, China, 2009.
F. van den Bergh, An Analysis of Particle Swarm Optimizers (Ph.D. thesis), University of Pretoria, South Africa, 2002.
X. Cui, T.E. Potok, Distributed adaptive particle swarm optimizer in dynamic environment, in: Proceedings of the IEEE International Parallel and Distributed Processing Symposium, 2007, pp. 1–7.
R. Eberhart, J. Kennedy, A new optimizer using particle swarm theory, in: Proceedings of the 6th International Symposium on Micro Machine and Human Science, 1995, pp. 39–43.
J. H. Holland, Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control and Artificial Intelligence, MIT Press, Cambridge, MA, USA, 1992.
Poli (bib3) 2008; 2008
J. Rada-Vilela, M. Zhang, M. Johnston, Resampling in particle swarm optimization, in: Proceedings of the IEEE Congress on Evolutionary Computation, 2013, pp. 947–954.
A.D. Pietro, Optimising Evolutionary Strategies for Problems with Varying Noise Strength (Ph.D. thesis), The University of Western Australia, 2007.
X. Cui, C.T. Hardin, R.K. Ragade, T.E. Potok, A.S. Elmaghraby, Tracking non-stationary optimal solution by particle swarm optimizer, in: Proceedings of the 6th International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing, 2005, pp. 133–138.
T. Bartz-Beielstein, C. Lasarczyk, M. Preuss, Sequential parameter optimization, in: Proceedings of the IEEE Congress on Evolutionary Computation, vol. 1, 2005, pp. 773–780.
J. Kennedy, R. Eberhart, Particle swarm optimization, in: Proceedings of the IEEE International Conference on Neural Networks, vol. 4, 1995, pp. 1942–1948.
Bortolan (bib33) 1985; 15
Levy (bib31) 2006
J. Kennedy, The particle swarm: social adaptation of knowledge, in: Proceedings of the IEEE International Conference on Evolutionary Computation, 1997, pp. 303–308.
P. Zhao, Improved particle swarm optimization algorithm for the stochastic loader problem, in: Proceedings of the IEEE Conference on Industrial Electronics and Applications, 2007, pp. 773–776.
V. Pappala, I. Erlich, Management of distributed generation units under stochastic load demands using particle swarm optimization, in: Proceedings of the Power Engineering Society General Meeting, 2007, pp. 1–7.
Jin, Branke (bib13) 2005; 9
R. Mendes, Population Topologies and their Influence in Particle Swarm Performance (Ph.D. thesis), Universidade do Minho, Portugal, 2004.
C.-H. Chen, L.H. Lee, Stochastic Simulation Optimization: An Optimal Computing Budget Allocation, System Engineering and Operations Research, vol. 1, World Scientific, Singapore, Singapore, 2011.
Chen, Lin, Chick (bib16) 2000; 10
Wang, Singh (bib25) 2008; 30
Zadeh (bib32) 1965; 8
Clerc, Kennedy (bib34) 2002; 6
O. Brodersen, M. Schumann, Optimizing a stochastic warehouse using particle swarm optimization, in: Proceedings of the Conference on Innovative Computing, Information and Control, 2007, pp. 449–449.
Bianchi, Dorigo, Gambardella, Gutjahr (bib28) 2009; 8
X. Cui, J.S. Charles, T.E. Potok, A simple distributed particle swarm optimization for dynamic and noisy environments, in: Nature Inspired Cooperative Strategies for Optimization, Studies in Computational Intelligence, vol. 236, Springer, Berlin, Heidelberg, 2009, pp. 89–102.
Lu, Wu, Zhang (bib22) 2006; vol. 3930
J. Rada-Vilela, M. Zhang, M. Johnston, Optimal computing budget allocation in particle swarm optimization, in: Proceedings of the Genetic and Evolutionary Computation Conference, 2013, pp. 81–88.
T. Bartz-Beielstein, D. Blum, J. Branke, Particle swarm optimization and sequential sampling in noisy environments, in: Metaheuristics, Operations Research/Computer Science Interfaces Series, vol. 39, Springer, 2007, pp. 261–273.
Rada-Vilela, Zhang, Seah (bib12) 2013; 17
Wang, Singh (bib26) 2008; 78
J.L. Fernandez-Marquez, J.L. Arcos, Adapting particle swarm optimization in dynamic and noisy environments, in: Proceedings of the IEEE Congress on Evolutionary Computation, 2010, pp. 1–8.
2014.
J.L. Fernandez-Marquez, J.L. Arcos, An evaporation mechanism for dynamic and noisy multimodal optimization, in: Proceedings of the Genetic and Evolutionary Computation Conference, 2009, pp. 17–24.
10.1016/j.swevo.2014.02.004_bib19
10.1016/j.swevo.2014.02.004_bib18
Levy (10.1016/j.swevo.2014.02.004_bib31) 2006
Bortolan (10.1016/j.swevo.2014.02.004_bib33) 1985; 15
10.1016/j.swevo.2014.02.004_bib15
10.1016/j.swevo.2014.02.004_bib37
10.1016/j.swevo.2014.02.004_bib14
10.1016/j.swevo.2014.02.004_bib36
10.1016/j.swevo.2014.02.004_bib17
10.1016/j.swevo.2014.02.004_bib39
10.1016/j.swevo.2014.02.004_bib38
Bianchi (10.1016/j.swevo.2014.02.004_bib28) 2009; 8
Wang (10.1016/j.swevo.2014.02.004_bib25) 2008; 30
Pan (10.1016/j.swevo.2014.02.004_bib5) 2006; 181
10.1016/j.swevo.2014.02.004_bib9
10.1016/j.swevo.2014.02.004_bib8
10.1016/j.swevo.2014.02.004_bib7
10.1016/j.swevo.2014.02.004_bib6
Lu (10.1016/j.swevo.2014.02.004_bib22) 2006; vol. 3930
10.1016/j.swevo.2014.02.004_bib4
10.1016/j.swevo.2014.02.004_bib21
10.1016/j.swevo.2014.02.004_bib2
Chen (10.1016/j.swevo.2014.02.004_bib16) 2000; 10
10.1016/j.swevo.2014.02.004_bib1
10.1016/j.swevo.2014.02.004_bib23
10.1016/j.swevo.2014.02.004_bib40
10.1016/j.swevo.2014.02.004_bib20
Jin (10.1016/j.swevo.2014.02.004_bib13) 2005; 9
Clerc (10.1016/j.swevo.2014.02.004_bib34) 2002; 6
10.1016/j.swevo.2014.02.004_bib29
Rada-Vilela (10.1016/j.swevo.2014.02.004_bib12) 2013; 17
Wang (10.1016/j.swevo.2014.02.004_bib26) 2008; 78
10.1016/j.swevo.2014.02.004_bib27
Zadeh (10.1016/j.swevo.2014.02.004_bib32) 1965; 8
Poli (10.1016/j.swevo.2014.02.004_bib3) 2008; 2008
Shao (10.1016/j.swevo.2014.02.004_bib24) 2009; vol. 54
10.1016/j.swevo.2014.02.004_bib10
10.1016/j.swevo.2014.02.004_bib35
Engelbrecht (10.1016/j.swevo.2014.02.004_bib11) 2006
10.1016/j.swevo.2014.02.004_bib30
References_xml – reference: ) , 2014.
– reference: X. Cui, C.T. Hardin, R.K. Ragade, T.E. Potok, A.S. Elmaghraby, Tracking non-stationary optimal solution by particle swarm optimizer, in: Proceedings of the 6th International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing, 2005, pp. 133–138.
– reference: O. Brodersen, M. Schumann, Optimizing a stochastic warehouse using particle swarm optimization, in: Proceedings of the Conference on Innovative Computing, Information and Control, 2007, pp. 449–449.
– reference: X. Cui, J.S. Charles, T.E. Potok, A simple distributed particle swarm optimization for dynamic and noisy environments, in: Nature Inspired Cooperative Strategies for Optimization, Studies in Computational Intelligence, vol. 236, Springer, Berlin, Heidelberg, 2009, pp. 89–102.
– reference: C.-H. Chen, L.H. Lee, Stochastic Simulation Optimization: An Optimal Computing Budget Allocation, System Engineering and Operations Research, vol. 1, World Scientific, Singapore, Singapore, 2011.
– reference: V. Pappala, I. Erlich, Management of distributed generation units under stochastic load demands using particle swarm optimization, in: Proceedings of the Power Engineering Society General Meeting, 2007, pp. 1–7.
– volume: 78
  start-page: 1466
  year: 2008
  end-page: 1476
  ident: bib26
  article-title: Stochastic economic emission load dispatch through a modified particle swarm optimization algorithm
  publication-title: Electr. Power Syst. Res.
– reference: F. van den Bergh, An Analysis of Particle Swarm Optimizers (Ph.D. thesis), University of Pretoria, South Africa, 2002.
– reference: J.L. Fernandez-Marquez, J.L. Arcos, Adapting particle swarm optimization in dynamic and noisy environments, in: Proceedings of the IEEE Congress on Evolutionary Computation, 2010, pp. 1–8.
– reference: P. Zhao, Improved particle swarm optimization algorithm for the stochastic loader problem, in: Proceedings of the IEEE Conference on Industrial Electronics and Applications, 2007, pp. 773–776.
– reference: X. Cui, T.E. Potok, Distributed adaptive particle swarm optimizer in dynamic environment, in: Proceedings of the IEEE International Parallel and Distributed Processing Symposium, 2007, pp. 1–7.
– reference: R. Mendes, Population Topologies and their Influence in Particle Swarm Performance (Ph.D. thesis), Universidade do Minho, Portugal, 2004.
– volume: 17
  start-page: 1019
  year: 2013
  end-page: 1030
  ident: bib12
  article-title: A performance study on synchronicity and neighborhood size in particle swarm optimization
  publication-title: Soft Comput.
– reference: S. Zhang, P. Chen, L.H. Lee, C.E. Peng, C.-H. Chen, Simulation optimization using the particle swarm optimization with optimal computing budget allocation, in: Proceedings of the Winter Simulation Conference, 2011, pp. 4298–4309.
– reference: T. Bartz-Beielstein, C. Lasarczyk, M. Preuss, Sequential parameter optimization, in: Proceedings of the IEEE Congress on Evolutionary Computation, vol. 1, 2005, pp. 773–780.
– volume: vol. 54
  start-page: 566
  year: 2009
  end-page: 574
  ident: bib24
  article-title: A hybrid particle swarm optimization algorithm for vehicle routing problem with stochastic travel time
  publication-title: Fuzzy Information and Engineering Advances in Soft Computing
– volume: 10
  start-page: 251
  year: 2000
  end-page: 270
  ident: bib16
  article-title: Simulation budget allocation for further enhancing the efficiency of ordinal optimization
  publication-title: J. Discret. Event Dyn. Syst.: Theory Appl.
– reference: Y. Shi, R. Eberhart, A modified particle swarm optimizer, in: Proceedings of the IEEE World Congress on Computational Intelligence, 1998, pp. 69–73.
– reference: K. Tang, X. Li, P.N. Suganthan, Z. Yang, T. Weise, Benchmark Functions for the CEC׳2010 Special Session and Competition on Large-Scale Global Optimization, Technical Report, Nature Inspired Computation and Applications Laboratory, USTC, China, 2009.
– reference: A.D. Pietro, Optimising Evolutionary Strategies for Problems with Varying Noise Strength (Ph.D. thesis), The University of Western Australia, 2007.
– volume: vol. 3930
  start-page: 528
  year: 2006
  end-page: 537
  ident: bib22
  article-title: A particle swarm optimization-based approach to tackling simulation optimization of stochastic, large-scale and complex systems
  publication-title: Advances in Machine Learning and Cybernetics, Lecture Notes in Computer Science
– reference: J. Kennedy, R. Eberhart, Particle swarm optimization, in: Proceedings of the IEEE International Conference on Neural Networks, vol. 4, 1995, pp. 1942–1948.
– volume: 8
  start-page: 338
  year: 1965
  end-page: 353
  ident: bib32
  article-title: Fuzzy sets
  publication-title: Inf. Control
– year: 2006
  ident: bib11
  article-title: Fundamentals of Computational Swarm Intelligence
– volume: 30
  start-page: 226
  year: 2008
  end-page: 234
  ident: bib25
  article-title: Stochastic combined heat and power dispatch based on multi-objective particle swarm optimization
  publication-title: Int. J. Electr. Power Energy Syst.
– reference: T. Bartz-Beielstein, D. Blum, J. Branke, Particle swarm optimization and sequential sampling in noisy environments, in: Metaheuristics, Operations Research/Computer Science Interfaces Series, vol. 39, Springer, 2007, pp. 261–273.
– reference: J.L. Fernandez-Marquez, J.L. Arcos, An evaporation mechanism for dynamic and noisy multimodal optimization, in: Proceedings of the Genetic and Evolutionary Computation Conference, 2009, pp. 17–24.
– volume: 8
  start-page: 239
  year: 2009
  end-page: 287
  ident: bib28
  article-title: A survey on metaheuristics for stochastic combinatorial optimization
  publication-title: Nat. Comput.
– reference: J. Rada-Vilela, M. Zhang, M. Johnston, Resampling in particle swarm optimization, in: Proceedings of the IEEE Congress on Evolutionary Computation, 2013, pp. 947–954.
– reference: J. H. Holland, Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control and Artificial Intelligence, MIT Press, Cambridge, MA, USA, 1992.
– volume: 9
  start-page: 303
  year: 2005
  end-page: 317
  ident: bib13
  article-title: Evolutionary optimization in uncertain environments—a survey
  publication-title: IEEE Trans. Evol. Comput.
– reference: R. Eberhart, J. Kennedy, A new optimizer using particle swarm theory, in: Proceedings of the 6th International Symposium on Micro Machine and Human Science, 1995, pp. 39–43.
– volume: 181
  start-page: 908
  year: 2006
  end-page: 919
  ident: bib5
  article-title: Particle swarm optimization for function optimization in noisy environment
  publication-title: Appl. Math. Comput.
– volume: 6
  start-page: 58
  year: 2002
  end-page: 73
  ident: bib34
  article-title: The particle swarm-explosion, stability, and convergence in a multidimensional complex space
  publication-title: IEEE Trans. Evol. Comput.
– volume: 2008
  start-page: 1
  year: 2008
  end-page: 10
  ident: bib3
  article-title: Analysis of the publications on the applications of particle swarm optimisation
  publication-title: J. Artif. Evol. Appl.
– reference: J. Rada-Vilela, M. Zhang, M. Johnston, Optimal computing budget allocation in particle swarm optimization, in: Proceedings of the Genetic and Evolutionary Computation Conference, 2013, pp. 81–88.
– year: 2006
  ident: bib31
  article-title: Stochastic Dominance: Investment Decision Making under Uncertainty
– reference: J. Kennedy, The particle swarm: social adaptation of knowledge, in: Proceedings of the IEEE International Conference on Evolutionary Computation, 1997, pp. 303–308.
– reference: J. Rada-Vilela, M. Johnston, M. Zhang, Population Statistics for Particle Swarm Optimization: Deception, Blindness and Disorientation in Noisy Problems, Technical Report 14-01, Victoria University of Wellington, URL: (
– reference: G.S. Piperagkas, G. Georgoulas, K.E. Parsopoulos, C.D. Stylios, A.C. Likas, Integrating particle swarm optimization with reinforcement learning in noisy problems, in: Proceedings of the Genetic and Evolutionary Computation Conference, 2012, pp. 65–72.
– volume: 15
  start-page: 1
  year: 1985
  end-page: 19
  ident: bib33
  article-title: A review of some methods for ranking fuzzy subsets
  publication-title: Fuzzy Sets Syst.
– ident: 10.1016/j.swevo.2014.02.004_bib15
– ident: 10.1016/j.swevo.2014.02.004_bib19
  doi: 10.1145/2330163.2330173
– volume: vol. 3930
  start-page: 528
  year: 2006
  ident: 10.1016/j.swevo.2014.02.004_bib22
  article-title: A particle swarm optimization-based approach to tackling simulation optimization of stochastic, large-scale and complex systems
– volume: 181
  start-page: 908
  issue: 2
  year: 2006
  ident: 10.1016/j.swevo.2014.02.004_bib5
  article-title: Particle swarm optimization for function optimization in noisy environment
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.amc.2006.01.066
– ident: 10.1016/j.swevo.2014.02.004_bib23
  doi: 10.1109/PES.2007.385784
– ident: 10.1016/j.swevo.2014.02.004_bib14
  doi: 10.1109/CEC.2008.4631170
– ident: 10.1016/j.swevo.2014.02.004_bib2
  doi: 10.1109/ICNN.1995.488968
– ident: 10.1016/j.swevo.2014.02.004_bib40
  doi: 10.7551/mitpress/1090.001.0001
– ident: 10.1016/j.swevo.2014.02.004_bib7
  doi: 10.1109/WSC.2011.6148117
– volume: 78
  start-page: 1466
  issue: 8
  year: 2008
  ident: 10.1016/j.swevo.2014.02.004_bib26
  article-title: Stochastic economic emission load dispatch through a modified particle swarm optimization algorithm
  publication-title: Electr. Power Syst. Res.
  doi: 10.1016/j.epsr.2008.01.012
– year: 2006
  ident: 10.1016/j.swevo.2014.02.004_bib11
– ident: 10.1016/j.swevo.2014.02.004_bib30
– volume: 6
  start-page: 58
  issue: 1
  year: 2002
  ident: 10.1016/j.swevo.2014.02.004_bib34
  article-title: The particle swarm-explosion, stability, and convergence in a multidimensional complex space
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/4235.985692
– ident: 10.1016/j.swevo.2014.02.004_bib8
  doi: 10.1109/CEC.2013.6557669
– year: 2006
  ident: 10.1016/j.swevo.2014.02.004_bib31
– volume: 10
  start-page: 251
  issue: 3
  year: 2000
  ident: 10.1016/j.swevo.2014.02.004_bib16
  article-title: Simulation budget allocation for further enhancing the efficiency of ordinal optimization
  publication-title: J. Discret. Event Dyn. Syst.: Theory Appl.
  doi: 10.1023/A:1008349927281
– ident: 10.1016/j.swevo.2014.02.004_bib37
  doi: 10.1007/978-3-642-03211-0_8
– volume: 2008
  start-page: 1
  issue: 4
  year: 2008
  ident: 10.1016/j.swevo.2014.02.004_bib3
  article-title: Analysis of the publications on the applications of particle swarm optimisation
  publication-title: J. Artif. Evol. Appl.
– ident: 10.1016/j.swevo.2014.02.004_bib38
  doi: 10.1145/1569901.1569905
– volume: 17
  start-page: 1019
  issue: 6
  year: 2013
  ident: 10.1016/j.swevo.2014.02.004_bib12
  article-title: A performance study on synchronicity and neighborhood size in particle swarm optimization
  publication-title: Soft Comput.
  doi: 10.1007/s00500-013-1015-9
– volume: 15
  start-page: 1
  issue: 1
  year: 1985
  ident: 10.1016/j.swevo.2014.02.004_bib33
  article-title: A review of some methods for ranking fuzzy subsets
  publication-title: Fuzzy Sets Syst.
  doi: 10.1016/0165-0114(85)90012-0
– ident: 10.1016/j.swevo.2014.02.004_bib17
  doi: 10.1109/CEC.2005.1554761
– ident: 10.1016/j.swevo.2014.02.004_bib36
  doi: 10.1109/IPDPS.2007.370434
– ident: 10.1016/j.swevo.2014.02.004_bib18
  doi: 10.1109/ICEC.1997.592326
– ident: 10.1016/j.swevo.2014.02.004_bib4
– ident: 10.1016/j.swevo.2014.02.004_bib10
– ident: 10.1016/j.swevo.2014.02.004_bib6
  doi: 10.1007/978-0-387-71921-4_14
– ident: 10.1016/j.swevo.2014.02.004_bib9
– ident: 10.1016/j.swevo.2014.02.004_bib39
  doi: 10.1109/CEC.2010.5586186
– ident: 10.1016/j.swevo.2014.02.004_bib1
  doi: 10.1109/MHS.1995.494215
– ident: 10.1016/j.swevo.2014.02.004_bib20
  doi: 10.1145/2463372.2463373
– ident: 10.1016/j.swevo.2014.02.004_bib27
  doi: 10.1109/ICIEA.2007.4318512
– ident: 10.1016/j.swevo.2014.02.004_bib35
  doi: 10.1109/SNPD-SAWN.2005.77
– volume: vol. 54
  start-page: 566
  year: 2009
  ident: 10.1016/j.swevo.2014.02.004_bib24
  article-title: A hybrid particle swarm optimization algorithm for vehicle routing problem with stochastic travel time
– volume: 30
  start-page: 226
  issue: 3
  year: 2008
  ident: 10.1016/j.swevo.2014.02.004_bib25
  article-title: Stochastic combined heat and power dispatch based on multi-objective particle swarm optimization
  publication-title: Int. J. Electr. Power Energy Syst.
  doi: 10.1016/j.ijepes.2007.08.002
– volume: 9
  start-page: 303
  issue: 3
  year: 2005
  ident: 10.1016/j.swevo.2014.02.004_bib13
  article-title: Evolutionary optimization in uncertain environments—a survey
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2005.846356
– ident: 10.1016/j.swevo.2014.02.004_bib29
  doi: 10.1142/7437
– volume: 8
  start-page: 239
  issue: 2
  year: 2009
  ident: 10.1016/j.swevo.2014.02.004_bib28
  article-title: A survey on metaheuristics for stochastic combinatorial optimization
  publication-title: Nat. Comput.
  doi: 10.1007/s11047-008-9098-4
– volume: 8
  start-page: 338
  issue: 3
  year: 1965
  ident: 10.1016/j.swevo.2014.02.004_bib32
  article-title: Fuzzy sets
  publication-title: Inf. Control
  doi: 10.1016/S0019-9958(65)90241-X
– ident: 10.1016/j.swevo.2014.02.004_bib21
  doi: 10.1109/ICICIC.2007.434
SSID ssj0000602559
Score 2.1237397
Snippet Particle Swarm Optimization (PSO) is a metaheuristic whose performance deteriorates significantly when utilized on optimization problems subject to noise. On...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 37
SubjectTerms Noisy optimization problems
Particle swarm optimization
Population statistics
Resampling methods
Title Population statistics for particle swarm optimization: Resampling methods in noisy optimization problems
URI https://dx.doi.org/10.1016/j.swevo.2014.02.004
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA9jXrz4Lc6PkYNH49okTRtvYzim4hB1sFtI01QnrhvrdHjxbzdp0-FAdvDY8h60L6_vo7z3-wFwbvFJqIo85PGUIspUgmIea2Syq9Q80djTtlG877PegN4Og2ENdKpdGDtW6WJ_GdOLaO3utJw1W9PRqPWETbdi6gtsWoSik7Ab7DS0Xn757S__s3isqJotx5yRR1ahAh8qxrzyhf60S4A-LbE76d8J6lfS6e6ALVctwnb5QLugprM9sF0xMUD3Ye6D14clDxe0K0Il-jI0BSmcureB-ULOxnBiQsTY7V5ewUedSztSnr3Akko6h6MMZpNR_rUiCR3vTH4ABt3r504POQ4FpEhI5ijERNLUJ5FOSeRphlOlLDoD9xVLaMR16CWmouCJpMbiWKWYs8CXNA6COEhJQA5BPZtk-ghAmWBfRSpmoZdSgnWc8CQ18UkGimElwwbAleGEcgDjlufiXVSTZG-isLaw1hYeFsbaDXCxVJqW-BrrxVl1ImLFTYTJAOsUj_-reAI27VU583cK6vPZhz4zdcg8bhaO1gQb7Zu7Xv8HSMHgNA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT8IwGG4QD3rx24ifPXh00nVdt3ozRIIKxCgk3Jqu6xQjgzCUePG3224dkcR48Lr1TbZn7fuxvO_zAHBu-EmIDJGDWEIcQmXsRCxSjo6uQrFYYaRModjp0laf3A38QQU0ylkY01ZpfX_h03Nvba_ULZr1yXBYf8K6WtH5BdYlQl5JrIBVoo-vkTG4_HIXP1oQzdNmIzKnDRxjUbIP5X1e2Vx9mClAlxTkneT3CPUj6jS3wIZNF-F18UTboKLSHbBZSjFAezJ3wcvDQogLmhmhgn4Z6owUTuzrwGwupiM41j5iZIcvr-CjyoTpKU-fYaElncFhCtPxMPtcWgmt8Ey2B_rNm16j5VgRBUd6gTdzAuwJkrheqBIvRIriREpDz8BcSWMSMhWgWKcULBZEQ45lghn1XUEi34_8xPO9fVBNx6k6AFDE2JWhjGiAEuJhFcUsTrSDEr6kWIqgBnAJHJeWYdwIXbzxspXsledoc4M2R5hrtGvgYmE0KQg2_l5Oyy_Cl_YJ1yHgL8PD_xqegbVWr9Pm7dvu_RFYN3eKBsBjUJ1N39WJTkpm0Wm-6b4Bf07hwg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Population+statistics+for+particle+swarm+optimization%3A+Resampling+methods+in+noisy+optimization+problems&rft.jtitle=Swarm+and+evolutionary+computation&rft.au=Rada-Vilela%2C+Juan&rft.au=Johnston%2C+Mark&rft.au=Zhang%2C+Mengjie&rft.date=2014-08-01&rft.pub=Elsevier+B.V&rft.issn=2210-6502&rft.volume=17&rft.spage=37&rft.epage=59&rft_id=info:doi/10.1016%2Fj.swevo.2014.02.004&rft.externalDocID=S2210650214000261
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2210-6502&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2210-6502&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2210-6502&client=summon