Speed optimized influence matrix processing in inverse treatment planning tools
An optimal plan in modern treatment planning tools is found through the use of an iterative optimization algorithm, which deals with a high amount of patient-related data and number of treatment parameters to be optimized. Thus, calculating a good plan is a very time-consuming process which limits t...
Saved in:
Published in | Physics in medicine & biology Vol. 53; no. 9; pp. N157 - N164 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
England
IOP Publishing
07.05.2008
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | An optimal plan in modern treatment planning tools is found through the use of an iterative optimization algorithm, which deals with a high amount of patient-related data and number of treatment parameters to be optimized. Thus, calculating a good plan is a very time-consuming process which limits the application for patients in clinics and for research activities aiming for more accuracy. A common technique to handle the vast amount of radiation dose data is the concept of the influence matrix (DIJ), which stores the dose contribution of each bixel to the patient in the main memory of the computer. This study revealed that a bottleneck for the optimization time arises from the data transfer of the dose data between the memory and the CPU. In this note, we introduce a new method which speeds up the data transportation from stored dose data to the CPU. As an example we used the DIJ approach as is implemented in our treatment planning tool KonRad, developed at the German Cancer Research Center (DKFZ) in Heidelberg. A data cycle reordering method is proposed to take the advantage of modern memory hardware. This induces a minimal eviction policy which results in a memory behaviour exhibiting a 2.6 times faster algorithm compared to the naive implementation. Although our method is described for the DIJ approach implemented in KonRad, we believe that any other planning tool which uses a similar approach to store the dose data will also benefit from the described methods. |
---|---|
AbstractList | An optimal plan in modern treatment planning tools is found through the use of an iterative optimization algorithm, which deals with a high amount of patient-related data and number of treatment parameters to be optimized. Thus, calculating a good plan is a very time-consuming process which limits the application for patients in clinics and for research activities aiming for more accuracy. A common technique to handle the vast amount of radiation dose data is the concept of the influence matrix (DIJ), which stores the dose contribution of each bixel to the patient in the main memory of the computer. This study revealed that a bottleneck for the optimization time arises from the data transfer of the dose data between the memory and the CPU. In this note, we introduce a new method which speeds up the data transportation from stored dose data to the CPU. As an example we used the DIJ approach as is implemented in our treatment planning tool KonRad, developed at the German Cancer Research Center (DKFZ) in Heidelberg. A data cycle reordering method is proposed to take the advantage of modern memory hardware. This induces a minimal eviction policy which results in a memory behaviour exhibiting a 2.6 times faster algorithm compared to the naive implementation. Although our method is described for the DIJ approach implemented in KonRad, we believe that any other planning tool which uses a similar approach to store the dose data will also benefit from the described methods. |
Author | Nill, Simeon Ziegenhein, Peter Oelfke, Uwe Ludwig, Thomas Wilkens, Jan J |
Author_xml | – sequence: 1 fullname: Ziegenhein, Peter – sequence: 2 fullname: Wilkens, Jan J – sequence: 3 fullname: Nill, Simeon – sequence: 4 fullname: Ludwig, Thomas – sequence: 5 fullname: Oelfke, Uwe |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/18401066$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kMtKxDAUhoOMOBd9ARfSleCiNqe5tF3K4A0GZ6GuQ26VSpvWphX16c0ww7gYEAIJ_N_5c_jmaOJaZxE6B3wNOM8TjAnEBTCWMJIUyRNOj9AMCIeYM44naLYHpmju_TvGAHlKT9AUcooBcz5D6-fOWhO13VA11U94Va6sR-u0jRo59NVX1PWttt5X7i1k4Xza3tto6K0cGuuGqKulc5t0aNvan6LjUtbenu3uBXq9u31ZPsSr9f3j8mYVa5KRIc5whjmoFCglVFEjJQOdFYwZAgWVGS1ZqZVShAArcm40wyZLlTIk1WnKOFmgy21vWO9jtH4QTeW1rcMyth294AVABpQFMN2Cum-9720pur5qZP8tAIuNRrGxJDaWBCOiEEFjGLrYtY-qseZvZOctAFdboGq7fXpYJDpTBjY-ZP_5_BelSYoo |
CitedBy_id | crossref_primary_10_1088_0031_9155_57_20_6707 crossref_primary_10_1002_mp_16813 crossref_primary_10_1120_jacmp_v17i4_6117 crossref_primary_10_1088_0031_9155_60_10_4137 crossref_primary_10_1088_0031_9155_58_11_3705 crossref_primary_10_1177_153303461000900611 crossref_primary_10_1016_j_ejmp_2011_10_004 crossref_primary_10_1088_1742_6596_489_1_012044 crossref_primary_10_1088_0031_9155_61_4_1546 crossref_primary_10_1002_mp_12688 |
Cites_doi | 10.1145/359576.359579 10.1088/0031-9155/51/13/R21 |
ContentType | Journal Article |
DBID | CGR CUY CVF ECM EIF NPM AAYXX CITATION 7X8 |
DOI | 10.1088/0031-9155/53/9/N02 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef MEDLINE - Academic |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Biology Physics |
EISSN | 1361-6560 |
EndPage | N164 |
ExternalDocumentID | 10_1088_0031_9155_53_9_N02 18401066 |
Genre | Journal Article |
GroupedDBID | - 02O 123 1JI 1PV 1WK 29O 4.4 5B3 5RE 5VS 5ZH 7.M 7.Q 8RP 9BW AAGCD AAJIO AALHV AAPBV ABFLS ABHWH ABPTK ABQJV ABUFD ACGFS ADCOW AEFHF AENEX AFYNE AHSEE ALMA_UNASSIGNED_HOLDINGS ASPBG ATQHT AVWKF AZFZN BBWZM CJUJL CS3 DU5 DZ EBS EDWGO EJD EMSAF EPQRW EQZZN F5P FEDTE HAK HVGLF IHE IOP IZVLO KNG KOT LAP M45 MGA N5L N9A NT- NT. P2P Q02 R4D RIN RNS RO9 ROL RPA RW3 S3P SY9 TN5 UCJ UNR W28 X XPP ZA5 --- -DZ -~X AAJKP AATNI ABJNI ABLJU ABVAM ACAFW ACHIP AERVB AKPSB AOAED CGR CRLBU CUY CVF ECM EIF IJHAN NPM PJBAE AAYXX CITATION 7X8 |
ID | FETCH-LOGICAL-c373t-707061b214434b4daa51c7955d3194a74f5fcbbb3315986dc50d72bbd32c22563 |
IEDL.DBID | IOP |
ISSN | 0031-9155 |
IngestDate | Fri Oct 25 04:25:08 EDT 2024 Thu Sep 26 16:01:26 EDT 2024 Sat Sep 28 07:56:58 EDT 2024 Tue Nov 10 14:22:02 EST 2020 Mon May 13 15:54:30 EDT 2019 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c373t-707061b214434b4daa51c7955d3194a74f5fcbbb3315986dc50d72bbd32c22563 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PMID | 18401066 |
PQID | 69117145 |
PQPubID | 23479 |
ParticipantIDs | pubmed_primary_18401066 proquest_miscellaneous_69117145 crossref_primary_10_1088_0031_9155_53_9_N02 iop_primary_10_1088_0031_9155_53_9_N02 |
PublicationCentury | 2000 |
PublicationDate | 20080507 2008-May-07 2008-05-07 |
PublicationDateYYYYMMDD | 2008-05-07 |
PublicationDate_xml | – month: 05 year: 2008 text: 20080507 day: 07 |
PublicationDecade | 2000 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Physics in medicine & biology |
PublicationTitleAlternate | Phys Med Biol |
PublicationYear | 2008 |
Publisher | IOP Publishing |
Publisher_xml | – name: IOP Publishing |
References | Ziegenhein P (6) 2007 Patterson D (4) 1998 Backus J (1) 1978; 21 Bortfeld T (2) 2006; 51 Vahalia U (5) 1996 Nill S (3) 2001 |
References_xml | – start-page: 285 year: 1996 ident: 5 publication-title: Unix Internals: The New Frontiers contributor: fullname: Vahalia U – volume: 21 start-page: 8 issn: 0001-0782 year: 1978 ident: 1 publication-title: Commun. ACM doi: 10.1145/359576.359579 contributor: fullname: Backus J – start-page: 43 year: 2007 ident: 6 contributor: fullname: Ziegenhein P – year: 2001 ident: 3 contributor: fullname: Nill S – start-page: 540 year: 1998 ident: 4 publication-title: Computer Organization and Design: The Hardware/Software Interface contributor: fullname: Patterson D – volume: 51 start-page: R363 issn: 0031-9155 year: 2006 ident: 2 publication-title: Phys. Med. Biol. doi: 10.1088/0031-9155/51/13/R21 contributor: fullname: Bortfeld T |
SSID | ssj0011824 |
Score | 1.993463 |
Snippet | An optimal plan in modern treatment planning tools is found through the use of an iterative optimization algorithm, which deals with a high amount of... |
SourceID | proquest crossref pubmed iop |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | N157 |
SubjectTerms | Algorithms Computers Equipment Design Humans Models, Statistical Radiation Oncology - instrumentation Radiation Oncology - methods Radiometry - instrumentation Radiometry - methods Radiotherapy Planning, Computer-Assisted - instrumentation Radiotherapy Planning, Computer-Assisted - methods Radiotherapy, Computer-Assisted - instrumentation Radiotherapy, Computer-Assisted - methods Radiotherapy, Intensity-Modulated - methods Software Time Factors |
Title | Speed optimized influence matrix processing in inverse treatment planning tools |
URI | http://iopscience.iop.org/0031-9155/53/9/N02 https://www.ncbi.nlm.nih.gov/pubmed/18401066 https://search.proquest.com/docview/69117145 |
Volume | 53 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1ZS8NAEB5qQfHFo171DCK-SNqmeyWPIkoRWgUVfFuy2Q0UbRNsCtpf72yOqngg5GFJJrtkMzsHM_MNwIlvqGJBhNKPkNhF_4u7fpeErs9jTcNQqzi2hcL9Ae890OtH9liDqpXcMElLyd_CYR7Jt2znWhTzNiPtoD3IkSNt_a-t1ru5nYcM0FAuIJdL8rJCBk_RD1N80UILuNTvBmauaK5WoV-V6xT5JU-taaZa0ew7euO_vmENVkqL0zkvWGQdambcgMWiB-VbA5b6ZXQdb-bpoNFkA27uUtRqToLyZDSc4WhY9TJxRhbT_9VJiwIDVHz4DC-b3WGcedq6k5bNkJwsSZ4nm_BwdXl_0XPL1gtuRATJXIGSgHvK4qkRqqgOQ-ZFImBM45GloaAxiyOlFCGeBXjXEeto0VVKk26EEoKTLaiPk7HZAUdwYztgdQIR-OgdUTR4PBNwpkN8zwSqCWfVr5BpgbAh88i47-fApdLum2REBhL3rQnHuKlzwu8EMtVxE04_E_0121H11yUeKxsrCccmmU4kRyUgPMqasF0ww8ds6BKjH813_7vIHiwXSSbM7Yh9qGcvU3OAlkymDnMOfgdVy-Wk |
link.rule.ids | 315,783,787,1560,27938,27939,53920 |
linkProvider | IOP Publishing |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9RAEB9si8UXW09bY20bRHyRXC7Zr-Sx1B49tXcHWvBtyWY3cLR3CV4O2v71zmaT81sKQh6WZD-Sye58MDO_AXidGKpYmiP3I6QI0P7iQRKTLEh4oWmWaVUUNlH4YszPL-n7L6yLJmxyYcqqZf19bDqgYEfCNiAuseXHosDCmoeMhGk4HsRhpYsN2GIo6231htFkunYkoPrsgJjbMW3ezJ_n-Uk2beD6f1c7G_Ez3AHVvbiLOrnqr2rVz-9-wXT8ry_bhcetcuqfuAFP4IFZ9OChK1d524Pti9YRjzebyNF8-RQmnyoUgH6JrGc-u8PWrCt74s8t_P-NX7lcBJSR-AwvGwhi_HWEu1-1dZP8uiyvl8_gcnj2-fQ8aKs0BDkRpA4EMg0eKQu9RqiiOstYlIuUMY2nm2aCFqzIlVKERBYLXudsoEWslCZxjsyEkz3YXJQL8xx8wY0tljVIRZqgIUVRN4pMypnOcJxJlQdvu_8jKwfGIRsnepI0GKfS0k4yIlOJtPPgFRJ63fH3DhKJ68GbHzv9a7bjbitIPIHWrZItTLlaSo7yQkSUebDvdsj32dB6RpObv7jvIsewPX03lB9H4w8H8MiFprBgIF7CZv11ZQ5R_6nVUbPDvwFX2PWQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Speed+optimized+influence+matrix+processing+in+inverse+treatment+planning+tools&rft.jtitle=Physics+in+medicine+%26+biology&rft.au=Ziegenhein%2C+Peter&rft.au=Wilkens%2C+Jan+J&rft.au=Nill%2C+Simeon&rft.au=Ludwig%2C+Thomas&rft.date=2008-05-07&rft.issn=0031-9155&rft.eissn=1361-6560&rft.volume=53&rft.issue=9&rft.spage=N157&rft.epage=N164&rft_id=info:doi/10.1088%2F0031-9155%2F53%2F9%2FN02&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_0031_9155_53_9_N02 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-9155&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-9155&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-9155&client=summon |