Surface-to-bed heat transfer in fluidised beds: Effect of surface shape

In recent times, the possible application of fluidisation technologies to the surface treatments of engineering materials becomes a subject of growing interest both for manufacturing and chemical industries. Heat and mass transfer rates between the surface and the fluidised bed strongly influence th...

Full description

Saved in:
Bibliographic Details
Published inPowder technology Vol. 174; no. 3; pp. 75 - 81
Main Authors Di Natale, Francesco, Lancia, Amedeo, Nigro, Roberto
Format Journal Article
LanguageEnglish
Published Lausanne Elsevier B.V 25.05.2007
Elsevier
Subjects
Online AccessGet full text
ISSN0032-5910
1873-328X
DOI10.1016/j.powtec.2007.01.010

Cover

Abstract In recent times, the possible application of fluidisation technologies to the surface treatments of engineering materials becomes a subject of growing interest both for manufacturing and chemical industries. Heat and mass transfer rates between the surface and the fluidised bed strongly influence the performance of the surface treatment. Experimental results of heat transfer between a submerged surface and a fluidised bed are presented in this article. This work is focused on the influence of bed material properties and surface geometry on heat transfer coefficient. Experimental tests show that the heat transfer coefficient is notably affected by the shape of the immersed surface resulting higher for surfaces with better aerodynamic shape. An interpretative model, based on the dimensional analysis, has been used for the description of the experimental results. Heat transfer between submerged surfaces and a fluidised bed has been studied. Heat transfer coefficient depends on surface shape, resulting higher for more aerodynamic ones. Moreover, it is independent on particle thermal conductivity. A dimensional model is able to describe the experimental data by a shape factor, H/D eq, which accounts for the different fluid dynamic fields around the exchange surface. [Display omitted]
AbstractList In recent times, the possible application of fluidisation technologies to the surface treatments of engineering materials becomes a subject of growing interest both for manufacturing and chemical industries. Heat and mass transfer rates between the surface and the fluidised bed strongly influence the performance of the surface treatment. Experimental results of heat transfer between a submerged surface and a fluidised bed are presented in this article. This work is focused on the influence of bed material properties and surface geometry on heat transfer coefficient. Experimental tests show that the heat transfer coefficient is notably affected by the shape of the immersed surface resulting higher for surfaces with better aerodynamic shape. An interpretative model, based on the dimensional analysis, has been used for the description of the experimental results. Heat transfer between submerged surfaces and a fluidised bed has been studied. Heat transfer coefficient depends on surface shape, resulting higher for more aerodynamic ones. Moreover, it is independent on particle thermal conductivity. A dimensional model is able to describe the experimental data by a shape factor, H/D eq, which accounts for the different fluid dynamic fields around the exchange surface. [Display omitted]
Author Nigro, Roberto
Lancia, Amedeo
Di Natale, Francesco
Author_xml – sequence: 1
  givenname: Francesco
  surname: Di Natale
  fullname: Di Natale, Francesco
  email: fdinatal@unina.it
– sequence: 2
  givenname: Amedeo
  surname: Lancia
  fullname: Lancia, Amedeo
– sequence: 3
  givenname: Roberto
  surname: Nigro
  fullname: Nigro, Roberto
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18752393$$DView record in Pascal Francis
BookMark eNqFkFFLwzAQx4NMcJt-Ax_y4mPrJenSdg-CjDmFgQ8q-BbS9MIyaluSTvHbm1FB8EHh4B7u_zvufjMyabsWCblkkDJg8nqf9t3HgCblAHkKLBackCkrcpEIXrxOyBRA8GRRMjgjsxD2ACAFgynZPB281QaToUsqrOkO9UAHr9tg0VPXUtscXO1CHMVxWNK1tWgG2lkaRpKGne7xnJxa3QS8-O5z8nK3fl7dJ9vHzcPqdpsYkYshkQUr6qwuK5PpQpaA3CKTvBCa24wXICWwCiuxyKCUzAibaZ4LLnUuRWUYE3NyNe7tdTC6sfFS44LqvXvT_lPFlxdclCLmsjFnfBeCR_sTAXWUpvZqlKaO0hSwWBCx5S_MuEEPrmujE9f8B9-MMEYB7w69CsZha7B2PjpTdef-XvAFhgyLQg
CODEN POTEBX
CitedBy_id crossref_primary_10_1016_j_powtec_2024_119439
crossref_primary_10_1016_j_powtec_2009_05_024
crossref_primary_10_1021_ef101614j
crossref_primary_10_1016_j_ijmultiphaseflow_2011_05_015
crossref_primary_10_1016_j_powtec_2021_01_002
crossref_primary_10_1016_j_ijheatmasstransfer_2023_124252
crossref_primary_10_1080_10407782_2014_985994
crossref_primary_10_1016_j_ijheatmasstransfer_2021_121621
crossref_primary_10_1080_02726351_2022_2053015
crossref_primary_10_1002_aic_14635
crossref_primary_10_1016_j_csite_2024_104634
crossref_primary_10_1016_j_ijheatmasstransfer_2010_04_013
crossref_primary_10_1080_10407782_2017_1309207
crossref_primary_10_1115_1_4046318
crossref_primary_10_1016_j_partic_2020_08_002
crossref_primary_10_1016_j_applthermaleng_2012_08_018
crossref_primary_10_1007_s00231_022_03188_0
crossref_primary_10_1002_aic_14841
crossref_primary_10_1016_j_powtec_2018_04_028
crossref_primary_10_1016_j_powtec_2016_04_028
crossref_primary_10_1016_j_ces_2022_118268
crossref_primary_10_1016_j_ijheatmasstransfer_2019_06_058
crossref_primary_10_1016_j_jfoodeng_2012_10_011
crossref_primary_10_1016_j_ijheatmasstransfer_2012_08_002
crossref_primary_10_1016_j_powtec_2023_119001
crossref_primary_10_1016_j_csite_2024_105634
Cites_doi 10.1002/ceat.270150405
10.1002/ceat.270150302
10.1016/S0257-8972(99)00355-2
10.1016/0032-5910(86)80022-5
10.1023/A:1004881231312
10.1016/0009-2509(94)00445-W
10.1016/S0017-9310(02)00296-X
10.1016/S0927-7757(97)00109-X
10.1016/S0254-0584(97)02048-8
10.1021/ie034216w
10.1016/S0009-2509(99)00298-5
10.1002/srin.199501131
10.1016/0009-2509(85)85109-5
10.1016/0017-9310(82)90032-1
10.1016/0009-2509(95)00212-X
10.1016/0032-5910(94)02936-I
10.1016/S0032-5910(03)00080-9
10.1002/aic.690010317
10.1016/0032-5910(73)80037-3
ContentType Journal Article
Copyright 2007 Elsevier B.V.
2007 INIST-CNRS
Copyright_xml – notice: 2007 Elsevier B.V.
– notice: 2007 INIST-CNRS
DBID AAYXX
CITATION
IQODW
DOI 10.1016/j.powtec.2007.01.010
DatabaseName CrossRef
Pascal-Francis
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Applied Sciences
EISSN 1873-328X
EndPage 81
ExternalDocumentID 18752393
10_1016_j_powtec_2007_01_010
S0032591007000149
GroupedDBID ---
--K
--M
-~X
.DC
.~1
0R~
123
1B1
1~.
1~5
29O
4.4
457
4G.
5VS
7-5
71M
8P~
8WZ
9JN
A6W
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AAQXK
AARLI
AAXUO
ABFNM
ABJNI
ABMAC
ABNUV
ABTAH
ABXDB
ABXRA
ABYKQ
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEWK
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRAH
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHPOS
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
HLY
HVGLF
HZ~
IHE
J1W
KOM
LX7
M41
MAGPM
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SCB
SCE
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSG
SSM
SSZ
T5K
T9H
WUQ
XPP
ZY4
~02
~G-
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
EFKBS
IQODW
ID FETCH-LOGICAL-c373t-6818d4d9bc4a8690e2fe16283a2f42806601beb3540961c3f4a27326a763bc113
IEDL.DBID .~1
ISSN 0032-5910
IngestDate Mon Jul 21 09:16:53 EDT 2025
Tue Jul 01 02:04:32 EDT 2025
Thu Apr 24 23:02:57 EDT 2025
Fri Feb 23 02:32:32 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Exchange surface shape
Bubbling fluidised bed
Bed material properties
Heat transfer
Chemical industry
Fluidization
Heat transfer coefficient
Modeling
Surface treatment
Mass transfer
Bubbling
Dimensional analysis
Morphology
Properties of materials
Submerged surface
Manufacturing
Fluidized bed
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c373t-6818d4d9bc4a8690e2fe16283a2f42806601beb3540961c3f4a27326a763bc113
PageCount 7
ParticipantIDs pascalfrancis_primary_18752393
crossref_primary_10_1016_j_powtec_2007_01_010
crossref_citationtrail_10_1016_j_powtec_2007_01_010
elsevier_sciencedirect_doi_10_1016_j_powtec_2007_01_010
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2007-05-25
PublicationDateYYYYMMDD 2007-05-25
PublicationDate_xml – month: 05
  year: 2007
  text: 2007-05-25
  day: 25
PublicationDecade 2000
PublicationPlace Lausanne
PublicationPlace_xml – name: Lausanne
PublicationTitle Powder technology
PublicationYear 2007
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Chen, Lee, Yeh (bib7) 1998; 53
Schimdt, Renz (bib12) 1999; 54
Barreto, Lancia, Volpicelli (bib16) 1986; 46
Kim, Ahn, Kim, Hyun Lee (bib19) 2003; 46
Tsipas, Flitris (bib4) 2000; 35
Randall (bib9) 2001
Kunii, Levenspiel (bib1) 1991
Geldart (bib25) 1973; 7
Solimene, Marzocchella, Salatino (bib29) 2003; 133
Molerus, Mattmann (bib31) 1992; 15
Donsí, Ferrari (bib13) 1995; 82
Botterill, Denloye (bib20) 1975
Yates (bib26) 1996; 51
Perez, Hierro, Pedraza, Gomez, Carpienero (bib2) 1999; 120–121
Prins, Casteleijn, Draijer, van Swaaij (bib10) 1985; 40
Seville, Wong (bib18) 2005
Voudouris, Angelopoulos (bib5) 1997
A.M Xavier ”Heat transfer between a fluidised bed and a surface” PhD Thesis, University of Cambridge, U.K., (1977).
Molerus, Mattmann (bib22) 1992; 15
Baskakov (bib27) 1964; 4
Zabrodsky (bib30) 1966
Park, Kim (bib8) 1998; 133
Müller, Davidson, Dennis, Fennell, Gladden, Hayhurst, Mantle, Rees, Sederman (bib24) April 23–27 2006
Kingel, Angelopoulos, Papamantellos, Dahl (bib3) 1995; 66–67
Jung, Park, Park, Kim (bib6) 2004; 43
Mickley, Fairbanks (bib21) 1955; 1
Patankar, Spalding (bib32) 1970
Buyevich, Korolyov, Syromyatnikov (bib23) 1986
Ghanza, Upahyay, Saxena (bib11) 1982; 25
Prins, Harmsen, de Jong, van Swaaij (bib14) 1989
Molerus, Burshka, Dietz (bib17) 1995; 50
Nedderman (bib28) 1992
Donsí (10.1016/j.powtec.2007.01.010_bib13) 1995; 82
Solimene (10.1016/j.powtec.2007.01.010_bib29) 2003; 133
Barreto (10.1016/j.powtec.2007.01.010_bib16) 1986; 46
Buyevich (10.1016/j.powtec.2007.01.010_bib23) 1986
Yates (10.1016/j.powtec.2007.01.010_bib26) 1996; 51
Tsipas (10.1016/j.powtec.2007.01.010_bib4) 2000; 35
Perez (10.1016/j.powtec.2007.01.010_bib2) 1999; 120–121
Seville (10.1016/j.powtec.2007.01.010_bib18) 2005
Schimdt (10.1016/j.powtec.2007.01.010_bib12) 1999; 54
Ghanza (10.1016/j.powtec.2007.01.010_bib11) 1982; 25
Nedderman (10.1016/j.powtec.2007.01.010_bib28) 1992
Molerus (10.1016/j.powtec.2007.01.010_bib31) 1992; 15
Zabrodsky (10.1016/j.powtec.2007.01.010_bib30) 1966
Prins (10.1016/j.powtec.2007.01.010_bib10) 1985; 40
Mickley (10.1016/j.powtec.2007.01.010_bib21) 1955; 1
Kim (10.1016/j.powtec.2007.01.010_bib19) 2003; 46
Baskakov (10.1016/j.powtec.2007.01.010_bib27) 1964; 4
Voudouris (10.1016/j.powtec.2007.01.010_bib5) 1997
Müller (10.1016/j.powtec.2007.01.010_bib24) 2006
Kunii (10.1016/j.powtec.2007.01.010_bib1) 1991
10.1016/j.powtec.2007.01.010_bib15
Molerus (10.1016/j.powtec.2007.01.010_bib17) 1995; 50
Geldart (10.1016/j.powtec.2007.01.010_bib25) 1973; 7
Botterill (10.1016/j.powtec.2007.01.010_bib20) 1975
Chen (10.1016/j.powtec.2007.01.010_bib7) 1998; 53
Prins (10.1016/j.powtec.2007.01.010_bib14) 1989
Patankar (10.1016/j.powtec.2007.01.010_bib32) 1970
Kingel (10.1016/j.powtec.2007.01.010_bib3) 1995; 66–67
Jung (10.1016/j.powtec.2007.01.010_bib6) 2004; 43
Molerus (10.1016/j.powtec.2007.01.010_bib22) 1992; 15
Randall (10.1016/j.powtec.2007.01.010_bib9) 2001
Park (10.1016/j.powtec.2007.01.010_bib8) 1998; 133
References_xml – volume: 25
  start-page: 1531
  year: 1982
  end-page: 1540
  ident: bib11
  article-title: A mechanistic theory for heat transfer between fluidised beds of large particles and immersed surfaces
  publication-title: Int. J. Heat Mass Transfer
– volume: 15
  start-page: 139
  year: 1992
  end-page: 150
  ident: bib31
  article-title: Heat transfer mechanisms in gas fluidised beds. Part 1. Maximum heat transfer coefficients
  publication-title: Chem. Eng. Technol.
– volume: 35
  start-page: 5493
  year: 2000
  end-page: 5496
  ident: bib4
  article-title: Surface treatment in fluidised bed reactors
  publication-title: J. Mater. Sci.
– volume: 66–67
  start-page: 318
  year: 1995
  end-page: 324
  ident: bib3
  article-title: Feasibility of fluidised bed CVD for the formation of protective coatings
  publication-title: St. Res.
– volume: 50
  start-page: 871
  year: 1995
  end-page: 877
  ident: bib17
  article-title: Particle migration at solid surface and heat transfer in bubbling fluidised beds—I. Particle migration measurement system
  publication-title: Chem. Eng. Sci.
– year: 1991
  ident: bib1
  article-title: Fluidisation Engineering
– volume: 54
  start-page: 5515
  year: 1999
  end-page: 5522
  ident: bib12
  article-title: Eulerian computation of heat transfer in fluidised beds
  publication-title: Chem. Eng. Sci.
– volume: 15
  start-page: 240
  year: 1992
  end-page: 244
  ident: bib22
  article-title: Heat transfer mechanisms in gas fluidised beds. Part 2. Dependence of heat transfer on gas velocity
  publication-title: Chem. Eng. Technol.
– volume: 7
  start-page: 285
  year: 1973
  end-page: 292
  ident: bib25
  article-title: Types of gas fluidisation
  publication-title: Powder Technol.
– reference: A.M Xavier ”Heat transfer between a fluidised bed and a surface” PhD Thesis, University of Cambridge, U.K., (1977).
– year: April 23–27 2006
  ident: bib24
  article-title: The rise of bubbles and slugs in gas-fluidized beds using Ultra-fast Magnetic Resonance Imaging
  publication-title: Proceedings of the Fifth world congress on Particle Technology, Orlando (FL)
– volume: 51
  start-page: 167
  year: 1996
  end-page: 205
  ident: bib26
  article-title: Effect of temperature and pressure on gas solid fluidisation
  publication-title: Chem. Eng. Sci.
– year: 1992
  ident: bib28
  article-title: Statics and Kinematics of Granular Materials
– year: 1970
  ident: bib32
  article-title: Heat and Mass Transfer in Boundary Layers: A General Calculation Procedure
– volume: 1
  start-page: 374
  year: 1955
  end-page: 384
  ident: bib21
  article-title: Mechanism of heat transfer to fluidised beds
  publication-title: AIChE J.
– year: 1986
  ident: bib23
  article-title: Heat and Mass Transfer in Fixed and Fluidised Bed
– year: 2005
  ident: bib18
  article-title: Single particle motion and heat transfer in fluidised beds
  publication-title: 7th world Congress in Chemical Engineering, Glasgow, 10–14 July
– year: 2001
  ident: bib9
  article-title: Molecular Adhesion and Its Applications
– volume: 53
  start-page: 19
  year: 1998
  end-page: 27
  ident: bib7
  article-title: Thermal reactive deposition coating of Chromium carbide on die steel in a fluidised bed furnace
  publication-title: Mater. Chem. Phys.
– volume: 4
  start-page: 320
  year: 1964
  ident: bib27
  article-title: The mechanism of Heat transfer between a fluidised bed and a surface
  publication-title: Int. Chem. Eng.
– year: 1975
  ident: bib20
  article-title: Gas convective heat transfer in fluidised beds
  publication-title: V Int. Congress of Chemical Engineering, Chemical equipment, design and automation, lecture D, Fluidisation, Prague, (CZ)
– start-page: 677
  year: 1989
  end-page: 684
  ident: bib14
  article-title: Heat transfer from an immersed fixed silver sphere to a gas fluidised bed of very small particles
  publication-title: Fluidisation VI
– year: 1997
  ident: bib5
  article-title: Formation of aluminide coatings on nickel by a fluidised bed CVD process
  publication-title: 11th International Conference on Surface Modification Technologies SMT11 Proceedings, Paris
– volume: 43
  start-page: 5483
  year: 2004
  end-page: 5488
  ident: bib6
  article-title: Surface Modification of Fine Powders by Atmospheric Pressure Plasma in a Circulating fluidised Bed Reactor
  publication-title: Ind. Eng. Chem. Res.
– volume: 46
  start-page: 399
  year: 2003
  end-page: 409
  ident: bib19
  article-title: Heat transfer and bubble characteristics in a fluidised bed with immersed horizontal tube bundle
  publication-title: Int. J. Heat Mass Transfer
– volume: 46
  start-page: 155
  year: 1986
  end-page: 166
  ident: bib16
  article-title: Heat transfer and fluid dynamic characteristic of gas-fluidised beds under pressure
  publication-title: Powder Technol.
– year: 1966
  ident: bib30
  article-title: Hydrodynamics and Heat Transfer in Fluidised Beds
– volume: 133
  start-page: 79
  year: 2003
  end-page: 90
  ident: bib29
  article-title: Hydrodynamic interaction between a coarse gas-emitting particle and a gas fluidised bed of finer solids
  publication-title: Powder Technol.
– volume: 120–121
  start-page: 151
  year: 1999
  end-page: 157
  ident: bib2
  article-title: Aluminizing and chromizing bed treatment by CVD in a fluidised bed reactor on austenitic stainless steels
  publication-title: Surf. Coat. Technol.
– volume: 133
  start-page: 33
  year: 1998
  end-page: 39
  ident: bib8
  article-title: Oxygen plasma surface treatment of polymer powder in a fluidised bed reactor
  publication-title: Colloids Surf., A Physicochem. Eng. Asp.
– volume: 40
  start-page: 481
  year: 1985
  ident: bib10
  article-title: Mass transfer from a freely moving single sphere to the dense phase of a gas fluidised bed of inert particles
  publication-title: Chem. Eng. Sci.
– volume: 82
  start-page: 293
  year: 1995
  end-page: 299
  ident: bib13
  article-title: Heat transfer coefficients between gas fluidised beds and immersed spheres: dependence on the sphere size
  publication-title: Powder Technol.
– volume: 15
  start-page: 240
  issue: 4
  year: 1992
  ident: 10.1016/j.powtec.2007.01.010_bib22
  article-title: Heat transfer mechanisms in gas fluidised beds. Part 2. Dependence of heat transfer on gas velocity
  publication-title: Chem. Eng. Technol.
  doi: 10.1002/ceat.270150405
– volume: 15
  start-page: 139
  issue: 3
  year: 1992
  ident: 10.1016/j.powtec.2007.01.010_bib31
  article-title: Heat transfer mechanisms in gas fluidised beds. Part 1. Maximum heat transfer coefficients
  publication-title: Chem. Eng. Technol.
  doi: 10.1002/ceat.270150302
– volume: 120–121
  start-page: 151
  year: 1999
  ident: 10.1016/j.powtec.2007.01.010_bib2
  article-title: Aluminizing and chromizing bed treatment by CVD in a fluidised bed reactor on austenitic stainless steels
  publication-title: Surf. Coat. Technol.
  doi: 10.1016/S0257-8972(99)00355-2
– volume: 46
  start-page: 155
  year: 1986
  ident: 10.1016/j.powtec.2007.01.010_bib16
  article-title: Heat transfer and fluid dynamic characteristic of gas-fluidised beds under pressure
  publication-title: Powder Technol.
  doi: 10.1016/0032-5910(86)80022-5
– volume: 35
  start-page: 5493
  issue: 21
  year: 2000
  ident: 10.1016/j.powtec.2007.01.010_bib4
  article-title: Surface treatment in fluidised bed reactors
  publication-title: J. Mater. Sci.
  doi: 10.1023/A:1004881231312
– year: 1975
  ident: 10.1016/j.powtec.2007.01.010_bib20
  article-title: Gas convective heat transfer in fluidised beds
– volume: 50
  start-page: 871
  issue: 5
  year: 1995
  ident: 10.1016/j.powtec.2007.01.010_bib17
  article-title: Particle migration at solid surface and heat transfer in bubbling fluidised beds—I. Particle migration measurement system
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/0009-2509(94)00445-W
– volume: 46
  start-page: 399
  issue: 3
  year: 2003
  ident: 10.1016/j.powtec.2007.01.010_bib19
  article-title: Heat transfer and bubble characteristics in a fluidised bed with immersed horizontal tube bundle
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/S0017-9310(02)00296-X
– year: 2006
  ident: 10.1016/j.powtec.2007.01.010_bib24
  article-title: The rise of bubbles and slugs in gas-fluidized beds using Ultra-fast Magnetic Resonance Imaging
– year: 2001
  ident: 10.1016/j.powtec.2007.01.010_bib9
– volume: 133
  start-page: 33
  year: 1998
  ident: 10.1016/j.powtec.2007.01.010_bib8
  article-title: Oxygen plasma surface treatment of polymer powder in a fluidised bed reactor
  publication-title: Colloids Surf., A Physicochem. Eng. Asp.
  doi: 10.1016/S0927-7757(97)00109-X
– ident: 10.1016/j.powtec.2007.01.010_bib15
– start-page: 677
  year: 1989
  ident: 10.1016/j.powtec.2007.01.010_bib14
  article-title: Heat transfer from an immersed fixed silver sphere to a gas fluidised bed of very small particles
– year: 1966
  ident: 10.1016/j.powtec.2007.01.010_bib30
– volume: 53
  start-page: 19
  year: 1998
  ident: 10.1016/j.powtec.2007.01.010_bib7
  article-title: Thermal reactive deposition coating of Chromium carbide on die steel in a fluidised bed furnace
  publication-title: Mater. Chem. Phys.
  doi: 10.1016/S0254-0584(97)02048-8
– year: 1992
  ident: 10.1016/j.powtec.2007.01.010_bib28
– volume: 43
  start-page: 5483
  year: 2004
  ident: 10.1016/j.powtec.2007.01.010_bib6
  article-title: Surface Modification of Fine Powders by Atmospheric Pressure Plasma in a Circulating fluidised Bed Reactor
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie034216w
– volume: 54
  start-page: 5515
  issue: 22
  year: 1999
  ident: 10.1016/j.powtec.2007.01.010_bib12
  article-title: Eulerian computation of heat transfer in fluidised beds
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/S0009-2509(99)00298-5
– volume: 66–67
  start-page: 318
  year: 1995
  ident: 10.1016/j.powtec.2007.01.010_bib3
  article-title: Feasibility of fluidised bed CVD for the formation of protective coatings
  publication-title: St. Res.
  doi: 10.1002/srin.199501131
– volume: 40
  start-page: 481
  year: 1985
  ident: 10.1016/j.powtec.2007.01.010_bib10
  article-title: Mass transfer from a freely moving single sphere to the dense phase of a gas fluidised bed of inert particles
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/0009-2509(85)85109-5
– year: 1986
  ident: 10.1016/j.powtec.2007.01.010_bib23
  article-title: Heat and Mass Transfer in Fixed and Fluidised Bed
– year: 2005
  ident: 10.1016/j.powtec.2007.01.010_bib18
  article-title: Single particle motion and heat transfer in fluidised beds
– year: 1970
  ident: 10.1016/j.powtec.2007.01.010_bib32
– volume: 25
  start-page: 1531
  issue: 10
  year: 1982
  ident: 10.1016/j.powtec.2007.01.010_bib11
  article-title: A mechanistic theory for heat transfer between fluidised beds of large particles and immersed surfaces
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/0017-9310(82)90032-1
– volume: 51
  start-page: 167
  issue: 2
  year: 1996
  ident: 10.1016/j.powtec.2007.01.010_bib26
  article-title: Effect of temperature and pressure on gas solid fluidisation
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/0009-2509(95)00212-X
– volume: 82
  start-page: 293
  year: 1995
  ident: 10.1016/j.powtec.2007.01.010_bib13
  article-title: Heat transfer coefficients between gas fluidised beds and immersed spheres: dependence on the sphere size
  publication-title: Powder Technol.
  doi: 10.1016/0032-5910(94)02936-I
– volume: 4
  start-page: 320
  year: 1964
  ident: 10.1016/j.powtec.2007.01.010_bib27
  article-title: The mechanism of Heat transfer between a fluidised bed and a surface
  publication-title: Int. Chem. Eng.
– year: 1991
  ident: 10.1016/j.powtec.2007.01.010_bib1
– volume: 133
  start-page: 79
  issue: 1–3
  year: 2003
  ident: 10.1016/j.powtec.2007.01.010_bib29
  article-title: Hydrodynamic interaction between a coarse gas-emitting particle and a gas fluidised bed of finer solids
  publication-title: Powder Technol.
  doi: 10.1016/S0032-5910(03)00080-9
– volume: 1
  start-page: 374
  year: 1955
  ident: 10.1016/j.powtec.2007.01.010_bib21
  article-title: Mechanism of heat transfer to fluidised beds
  publication-title: AIChE J.
  doi: 10.1002/aic.690010317
– year: 1997
  ident: 10.1016/j.powtec.2007.01.010_bib5
  article-title: Formation of aluminide coatings on nickel by a fluidised bed CVD process
– volume: 7
  start-page: 285
  issue: 5
  year: 1973
  ident: 10.1016/j.powtec.2007.01.010_bib25
  article-title: Types of gas fluidisation
  publication-title: Powder Technol.
  doi: 10.1016/0032-5910(73)80037-3
SSID ssj0006310
Score 2.0044866
Snippet In recent times, the possible application of fluidisation technologies to the surface treatments of engineering materials becomes a subject of growing interest...
SourceID pascalfrancis
crossref
elsevier
SourceType Index Database
Enrichment Source
Publisher
StartPage 75
SubjectTerms Applied sciences
Bed material properties
Bubbling fluidised bed
Chemical engineering
Exact sciences and technology
Exchange surface shape
Fluidization
Heat and mass transfer. Packings, plates
Heat transfer
Miscellaneous
Solid-solid systems
Title Surface-to-bed heat transfer in fluidised beds: Effect of surface shape
URI https://dx.doi.org/10.1016/j.powtec.2007.01.010
Volume 174
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PT4MwFG6WedEY4884fyw9eK2jFArztizOqXEXXbIbKaWNMwuQweLNv91XCrodzBKTcoEWyKP5-j363vcQuvEZF3BwEusgIF7f0SR2tUMc5rJAJVrL0CQKv0z4eOo9zfxZCw2bXBgTVlljv8X0Cq3rM73amr18Pjc5vgy4u9nlt0TfZLB7gZnrt1-_YR6c0VqaEZwu6N2kz1UxXnn2WapGyJBCc_5anvZzUYDRtK12sbYEjQ7RQc0d8cC-3hFqqfQY7a0pCp6gh9fVUgupSJmRWCXYQC0uK3KqlnieYr1Yzc2mTILhcnGHrXoxzjQu7EhcvItcnaLp6P5tOCZ1rQQiWcBKwmHhTbykH0tPmCJTytWKcuAOwtWe2T0FxysGxxkIWp9TybQngLi4XAC-xJJSdobaaZaqc4SpYiFPVKikEYMTYagA1YDnSaAWSaDCDmKNiSJZC4mbehaLqIkY-4isYU2NyyByKDSng8jPqNwKaWzpHzTWjzYmRARYv2Vkd-Nj_T4OfDOj-Hbx71tfol37b9cnrn-F2uVypa6BlJRxt5p1XbQzeHweT74Bt6bflg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NT4MwFH-Z86DGGD_j_OzBazOgUJi3ZXFu6nZxS7yRUto4swwyWPz3fV3Bj4MxMSkX4AF5NL_-Xtv3ewA3AeMCD04THYbU7ziaJp52qMM8FqpUaxmZROHRmA-m_sNL8NKAXp0LY7ZVVthvMX2N1tWZduXNdj6bmRxfhtzdrPJbor8Bm36A0V4TNrvDx8H4E5A5cyt1Roy70KDOoFtv88qz91LVWoYuNue3EWo3FwX6TduCF99Gof4-7FX0kXTtFx5AQy0OYeebqOAR3D-vllpIRcuMJiolBm1JueanaklmC6Lnq5lZl0kJXi5uiRUwJpkmhbUkxavI1TFM-3eT3oBW5RKoZCErKcexN_XTTiJ9YepMKU8rlyN9EJ72zQIqxl4Jxs7I0TrclUz7ArmLxwVCTCJdl51Ac5Et1CkQV7GIpypS0ujBiShSCGxI9SSyizRUUQtY7aJYVlripqTFPK43jb3F1rGmzGUYOy42pwX00yq3Whp_3B_W3o9_9IkY4f4Py6sfP-vrdRieGdG3s38_-hq2BpPRU_w0HD-ew7ad6g2oF1xAs1yu1CVylDK5qvrgB31n4k0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Surface-to-bed+heat+transfer+in+fluidised+beds%3A+Effect+of+surface+shape&rft.jtitle=Powder+technology&rft.au=Di+Natale%2C+Francesco&rft.au=Lancia%2C+Amedeo&rft.au=Nigro%2C+Roberto&rft.date=2007-05-25&rft.issn=0032-5910&rft.volume=174&rft.issue=3&rft.spage=75&rft.epage=81&rft_id=info:doi/10.1016%2Fj.powtec.2007.01.010&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_powtec_2007_01_010
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0032-5910&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0032-5910&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0032-5910&client=summon