A complete process for human dynamics analysis including parameter identification and sEMG-torque estimation
In order to analyze the motion of the human lower limb, a comprehensive process was created in this paper. Firstly, an exoskeleton robot platform was leveraged and a dynamic model of human-exoskeleton lower limb was created for identifying human parameters. Then the sEMG signal was utilized to extra...
Saved in:
Published in | Advances in mechanical engineering Vol. 16; no. 9 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
London, England
SAGE Publications
01.09.2024
Sage Publications Ltd SAGE Publishing |
Subjects | |
Online Access | Get full text |
ISSN | 1687-8132 1687-8140 |
DOI | 10.1177/16878132241278508 |
Cover
Abstract | In order to analyze the motion of the human lower limb, a comprehensive process was created in this paper. Firstly, an exoskeleton robot platform was leveraged and a dynamic model of human-exoskeleton lower limb was created for identifying human parameters. Then the sEMG signal was utilized to extract information about muscle activity through multi-group experiments, and a backpropagation neural network (BPNN) was built to forecast joint torque. An inverse dynamics analysis combining the human motion data with the dynamic model can not only verify the reliability of prediction result by this BPNN but also the correctness of identified results before. Moreover, the mean absolute error (MAE), root mean square error (RMSE), and Pearson correlation coefficient (PCC) were used as evaluation index of both identification and prediction results. The proposed protocol can give accurate identified parameters for subject and estimated joint torque from sEMG during swing motion. We believe it can be extended to various types of human motion movement and potentially applied to complete human motion analysis. |
---|---|
AbstractList | In order to analyze the motion of the human lower limb, a comprehensive process was created in this paper. Firstly, an exoskeleton robot platform was leveraged and a dynamic model of human-exoskeleton lower limb was created for identifying human parameters. Then the sEMG signal was utilized to extract information about muscle activity through multi-group experiments, and a backpropagation neural network (BPNN) was built to forecast joint torque. An inverse dynamics analysis combining the human motion data with the dynamic model can not only verify the reliability of prediction result by this BPNN but also the correctness of identified results before. Moreover, the mean absolute error (MAE), root mean square error (RMSE), and Pearson correlation coefficient (PCC) were used as evaluation index of both identification and prediction results. The proposed protocol can give accurate identified parameters for subject and estimated joint torque from sEMG during swing motion. We believe it can be extended to various types of human motion movement and potentially applied to complete human motion analysis. |
Author | Guo, Qing Yan, Yao Ji, Shuang Chen, Zhenlei Sun, Tianyi Peng, Xinyu |
Author_xml | – sequence: 1 givenname: Tianyi surname: Sun fullname: Sun, Tianyi organization: University of Electronic Science and Technology of China, Chengdu, China – sequence: 2 givenname: Xinyu surname: Peng fullname: Peng, Xinyu organization: University of Electronic Science and Technology of China, Chengdu, China – sequence: 3 givenname: Shuang surname: Ji fullname: Ji, Shuang organization: University of Electronic Science and Technology of China, Chengdu, China – sequence: 4 givenname: Zhenlei surname: Chen fullname: Chen, Zhenlei organization: University of Electronic Science and Technology of China, Chengdu, China – sequence: 5 givenname: Qing surname: Guo fullname: Guo, Qing organization: University of Electronic Science and Technology of China, Chengdu, China – sequence: 6 givenname: Yao orcidid: 0000-0003-3748-8495 surname: Yan fullname: Yan, Yao email: y.yan@uestc.edu.cn organization: University of Electronic Science and Technology of China, Chengdu, China |
BookMark | eNp1kctOHTEMhiNEJS7lAdhF6nponEwmmSVC3CSqbmAdeXI5BM0kp8mcxXn7Bk5FF1VXtuz__yzbZ-Q45eQJuQR2BaDUdxi00iA474ErLZk-IqfvtU5Dz44_c8FPyEWtcWKSDYwN43hK5mtq87Kd_erptmTra6UhF_q6WzBRt0-4RFspJpz3NVYak513LqYN3WLBpdkKjc6nNYZocY05Na2j9fbHfbfm8mvnqa9rXD5aX8mXgHP1F3_iOXm5u32-eeieft4_3lw_dVYosXa9m_TYa-BecstAimCHECbtxIRS9WCDZL0YR-aDVV6G4LhjYgSnYXQOgzgnjweuy_hmtqWNL3uTMZqPQi4bg2WNdvZGM8vHXjLW0D2TCj3ghHqaOGoZODTWtwOrXadtU1fzlnelnaMaAQCD4kLJpoKDypZca_Hhcyow8_4j88-Pmufq4Km48X-p_zf8BlrQlBU |
Cites_doi | 10.1007/s12555-020-0632-1 10.1109/TIM.2015.2390958 10.3390/act12090353 10.1177/1687814017743664 10.3390/act12080321 10.1016/j.robot.2018.10.017 10.1016/j.measurement.2020.107765 10.1016/j.compeleceng.2016.07.012 10.1177/1687814017730003 10.1016/j.ijmecsci.2021.106942 10.1177/1687814016647354 10.1109/TBME.2010.2070840 10.1016/j.bbe.2020.05.010 10.1007/s12555-016-0545-1 10.1109/TNSRE.2022.3156786 10.1007/s10846-022-01762-6 10.1007/s42235-022-00230-z 10.3390/s21196597 10.1109/TBME.2014.2309727 10.1177/16878132231202578 10.3390/s150408337 10.1016/j.mechatronics.2021.102623 10.1016/j.jbiomech.2003.12.020 10.1186/s10033-021-00537-8 10.1109/TBME.2013.2295381 10.1016/j.apm.2021.12.007 10.3233/THC-220190 10.1016/S0021-9290(03)00010-1 10.1007/s11044-011-9273-8 10.1109/TBME.2022.3211842 10.1177/1687814020938899 10.1007/s11044-011-9285-4 10.1109/TNNLS.2021.3105595 10.1109/TNNLS.2020.3027293 10.1186/s10033-019-0389-8 10.3390/app13063868 10.3390/s20133685 10.1109/TMECH.2019.2893055 |
ContentType | Journal Article |
Copyright | The Author(s) 2024 The Author(s) 2024. This work is licensed under the Creative Commons Attribution License https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2024 – notice: The Author(s) 2024. This work is licensed under the Creative Commons Attribution License https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AFRWT AAYXX CITATION 7TB 8FD 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU DWQXO FR3 H8D HCIFZ L6V L7M M7S PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS DOA |
DOI | 10.1177/16878132241278508 |
DatabaseName | Sage Journals GOLD Open Access 2024 CrossRef Mechanical & Transportation Engineering Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Engineering Research Database Aerospace Database SciTech Premium Collection ProQuest Engineering Collection Advanced Technologies Database with Aerospace Engineering Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Aerospace Database ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: AFRWT name: Sage Journals GOLD Open Access 2024 url: http://journals.sagepub.com/ sourceTypes: Publisher – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1687-8140 |
ExternalDocumentID | oai_doaj_org_article_80c294500ba54057ae1aba8bb2a85f21 10_1177_16878132241278508 10.1177_16878132241278508 |
GrantInformation_xml | – fundername: Sichuan Science and Technology Program grantid: 2021ZDZX0004 – fundername: Sichuan Science and Technology Program grantid: 2022JDRC0018 – fundername: National Natural Science Foundation of China grantid: 11932015 funderid: https://doi.org/10.13039/501100001809 – fundername: National Natural Science Foundation of China grantid: 52175046 funderid: https://doi.org/10.13039/501100001809 – fundername: National Natural Science Foundation of China grantid: 11872147 funderid: https://doi.org/10.13039/501100001809 – fundername: National Natural Science Foundation of China grantid: 12072068 funderid: https://doi.org/10.13039/501100001809 |
GroupedDBID | .DC 0R~ 188 23M 2UF 2WC 4.4 54M 5GY 5VS 8FE 8FG 8R4 8R5 AAJPV AASGM ABAWP ABJCF ABQXT ACGFS ACIWK ACROE ADBBV ADOGD AEDFJ AENEX AEUHG AEWDL AFCOW AFKRA AFKRG AFRWT AINHJ AJUZI ALMA_UNASSIGNED_HOLDINGS AUTPY AYAKG BCNDV BDDNI BENPR BGLVJ C1A CAHYU CCPQU CNMHZ E3Z EBS EJD GROUPED_DOAJ H13 HCIFZ IAO IEA IL9 ITC J8X K.F KQ8 L6V M7S O9- OK1 PHGZM PHGZT PIMPY PTHSS Q2X RHU ROL SAUOL SCDPB SCNPE SFC TR2 UGNYK AAYXX ACHEB CITATION 7TB 8FD ABUWG AZQEC DWQXO FR3 H8D L7M PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PUEGO |
ID | FETCH-LOGICAL-c373t-4db894812e52c0153fc6ffb8d3ba5741cf5043990efc7e5ffd2d0391d819ddaf3 |
IEDL.DBID | 8FG |
ISSN | 1687-8132 |
IngestDate | Wed Aug 27 01:21:56 EDT 2025 Fri Jul 25 12:08:00 EDT 2025 Tue Jul 01 05:23:56 EDT 2025 Tue Jun 17 22:36:23 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Keywords | sEMG parameters identification BPNN prediction motion analysis |
Language | English |
License | This article is distributed under the terms of the Creative Commons Attribution 4.0 License (https://creativecommons.org/licenses/by/4.0/) which permits any use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c373t-4db894812e52c0153fc6ffb8d3ba5741cf5043990efc7e5ffd2d0391d819ddaf3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-3748-8495 |
OpenAccessLink | https://www.proquest.com/docview/3111672375?pq-origsite=%requestingapplication% |
PQID | 3111672375 |
PQPubID | 237349 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_80c294500ba54057ae1aba8bb2a85f21 proquest_journals_3111672375 crossref_primary_10_1177_16878132241278508 sage_journals_10_1177_16878132241278508 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20240900 2024-09-00 20240901 2024-09-01 |
PublicationDateYYYYMMDD | 2024-09-01 |
PublicationDate_xml | – month: 9 year: 2024 text: 20240900 |
PublicationDecade | 2020 |
PublicationPlace | London, England |
PublicationPlace_xml | – name: London, England – name: New York |
PublicationTitle | Advances in mechanical engineering |
PublicationYear | 2024 |
Publisher | SAGE Publications Sage Publications Ltd SAGE Publishing |
Publisher_xml | – name: SAGE Publications – name: Sage Publications Ltd – name: SAGE Publishing |
References | Wang 2022; 19 Zhang, Soselia, Wang 2022; 30 Chen, Huang, Guo 2020; 159 Ishmael 2023; 70 Duan, Yang 2022; 33 Menegaldo, Oliveira 2012; 28 Lloyd, Besier 2003; 36 Chen, Guo, Xiong 2021; 34 Zhao, Lv, Zeng 2024; 71 Gui, Liu, Zhang 2019; 24 Ege, Kucuk 2023; 13 Ha, Varol, Goldfarb 2011; 58 Zhao, Guo 2021; 32 Amarantini, Martin 2004; 37 Yang, Yin 2020; 20 Lu, Wu, Chen 2019; 111 Hussain, Iqbal, Maqbool 2020; 40 Hwang, Jeon 2018; 16 Jleilaty, Ammounah, Abdulmalek 2024; 44 Mayetin, Kucuk 2021; 78 Shi, Zhang, Zhang 2019; 32 Manal, Gravare-Silbernagel, Buchanan 2012; 28 Yang, Yang, Ma 2016; 8 Lam, Vujaklija 2021; 21 Sun, Zhang, Li 2023; 12 Kwon, Kim, Kim 2014; 61 Jun, Jeong, Ohno 2020; 12 Yan, Chen, Huang 2022; 104 Mayetin, Kucuk 2022; 106 Peng, Zhang, Cai 2023; 12 Chadwick, Blana, Kirsch 2014; 61 Hwang, Jeon 2015; 15 Ma, Xu, Fang 2022; 215 Yang, Wang, Sun 2023; 31 Kucuk 2016; 56 Xu 2017; 9 Sandre-Hernandez, Morales-Caporal, Rangel-Magdaleno 2015; 64 Guo, Chen, Yan 2022; 20 Konrad 2005; 1 Pina, Fernandes, Jorge 2018; 10 Zhou, Wang, Tang 2023; 15 Zhao J (bibr44-16878132241278508) 2024; 71 bibr16-16878132241278508 bibr19-16878132241278508 bibr6-16878132241278508 bibr3-16878132241278508 bibr13-16878132241278508 bibr10-16878132241278508 Kapandji A (bibr35-16878132241278508) 2011; 1 bibr8-16878132241278508 Ayiz C (bibr29-16878132241278508) Peng L (bibr18-16878132241278508) bibr20-16878132241278508 bibr33-16878132241278508 bibr40-16878132241278508 bibr30-16878132241278508 bibr23-16878132241278508 bibr46-16878132241278508 bibr9-16878132241278508 bibr36-16878132241278508 Peng L (bibr39-16878132241278508) Jleilaty S (bibr43-16878132241278508) 2024; 44 bibr22-16878132241278508 bibr45-16878132241278508 bibr7-16878132241278508 Toz M (bibr26-16878132241278508) bibr15-16878132241278508 bibr28-16878132241278508 bibr38-16878132241278508 bibr2-16878132241278508 bibr12-16878132241278508 bibr5-16878132241278508 bibr32-16878132241278508 bibr25-16878132241278508 bibr42-16878132241278508 bibr24-16878132241278508 bibr17-16878132241278508 bibr34-16878132241278508 bibr27-16878132241278508 bibr37-16878132241278508 bibr47-16878132241278508 bibr4-16878132241278508 bibr31-16878132241278508 bibr21-16878132241278508 Ma X (bibr14-16878132241278508) bibr41-16878132241278508 bibr1-16878132241278508 bibr11-16878132241278508 |
References_xml | – volume: 71 start-page: 652 year: 2024 end-page: 656 article-title: Online policy learning-based output-feedback optimal control of continuous-time systems publication-title: IEEE Trans Circuits Syst II Express Briefs – volume: 34 start-page: 22 year: 2021 article-title: Control and implementation of 2-DOF lower limb exoskeleton experiment platform publication-title: Chin J Mech Eng – volume: 9 start-page: 1687814017730003 year: 2017 article-title: The parameter estimation algorithms based on the dynamical response measurement data publication-title: Adv Mech Eng – volume: 64 start-page: 2146 year: 2015 end-page: 2154 article-title: Parameter identification of PMSMs using experimental measurements and a PSO algorithm publication-title: IEEE Trans Instrum Meas – volume: 19 start-page: 1359 year: 2022 end-page: 1373 article-title: Integral real-time locomotion mode recognition based on GA-CNN for lower limb exoskeleton publication-title: J Bionic Eng – volume: 111 start-page: 88 year: 2019 end-page: 98 article-title: Development of a sEMG-based torque estimation control strategy for a soft elbow exoskeleton publication-title: Robot Auton Syst – volume: 15 start-page: 8337 year: 2015 end-page: 8357 article-title: A method to accurately estimate the muscular torques of human wearing exoskeletons by torque sensors publication-title: Sensors – volume: 33 start-page: 2070 year: 2022 end-page: 2079 article-title: Recognizing missing electromyography signal by data split reorganization strategy and weight-based multiple neural network voting method publication-title: IEEE Trans Neural Netw Learn Syst – volume: 8 year: 2016 article-title: Learning vector quantization neural network–based model reference adaptive control method for intelligent lower-limb prosthesis publication-title: Adv Mech Eng – volume: 40 start-page: 1110 year: 2020 end-page: 1123 article-title: Intent based recognition of walking and ramp activities for amputee using sEMG based lower limb prostheses publication-title: Biocybern Biomed Eng – volume: 78 start-page: 102623 year: 2021 article-title: A low cost 3-DOF force sensing unit design for wrist rehabilitation robots publication-title: Mechatronics – volume: 36 start-page: 765 year: 2003 end-page: 776 article-title: An EMG-driven musculoskeletal model to estimate muscle forces and knee joint moments in vivo publication-title: J Biomech – volume: 12 start-page: 353 year: 2023 article-title: Modelling and RBF control of low-limb swinging dynamics of a human-exoskeleton system publication-title: Actuators – volume: 15 year: 2023 article-title: Design and analysis of a passive knee assisted exoskeleton publication-title: Adv Mech Eng – volume: 104 start-page: 439 year: 2022 end-page: 454 article-title: Human-exoskeleton coupling dynamics in the swing of lower limb publication-title: Appl Math Model – volume: 58 start-page: 144 year: 2011 end-page: 151 article-title: Volitional control of a prosthetic knee using surface electromyography publication-title: IEEE Trans Biomed Eng – volume: 32 start-page: 74 year: 2019 article-title: A review on lower limb rehabilitation exoskeleton robots publication-title: Chin J Mech Eng – volume: 37 start-page: 1393 year: 2004 end-page: 1404 article-title: A method to combine numerical optimization and EMG data for the estimation of joint moments under dynamic conditions publication-title: J Biomech – volume: 13 start-page: 3868 year: 2023 article-title: Energy minimization of new robotic-type above-knee prosthesis for higher battery lifetime publication-title: Appl Sci (Basel) – volume: 28 start-page: 169 year: 2012 end-page: 180 article-title: A real-time EMG-driven musculoskeletal model of the ankle publication-title: Multibody Syst Dyn – volume: 70 start-page: 1162 year: 2023 end-page: 1171 article-title: Powered hip exoskeleton reduces residual hip effort without affecting kinematics and balance in individuals with above-knee amputations during walking publication-title: IEEE Trans Biomed Eng – volume: 61 start-page: 1134 year: 2014 end-page: 1142 article-title: Movement stability analysis of surface electromyography-based elbow power assistance publication-title: IEEE Trans Biomed Eng – volume: 12 start-page: 321 year: 2023 article-title: A bionic control method for human–exoskeleton coupling based on cpg model publication-title: Actuators – volume: 61 start-page: 1947 year: 2014 end-page: 1956 article-title: Real-time simulation of three-dimensional shoulder girdle and arm dynamics publication-title: IEEE Trans Biomed Eng – volume: 28 start-page: 21 year: 2012 end-page: 36 article-title: The influence of modeling hypothesis and experimental methodologies in the accuracy of muscle force estimation using EMG-driven models publication-title: Multibody Syst Dyn – volume: 21 start-page: 6597 year: 2021 article-title: Joint torque prediction via hybrid neuromusculoskeletal modelling during gait using statistical ground reaction estimates: an exploratory study publication-title: Sensors – volume: 32 start-page: 5179 year: 2021 end-page: 5193 article-title: Particle swarm optimization algorithm with self-organizing mapping for nash equilibrium strategy in application of multiobjective optimization publication-title: IEEE Trans Neural Netw Learn Syst – volume: 20 start-page: 3685 year: 2020 article-title: Dependent-gaussian-process-based learning of joint torques using wearable smart shoes for exoskeleton publication-title: Sensors – volume: 215 start-page: 106942 year: 2022 article-title: Adaptive neural control for gait coordination of a lower limb prosthesis publication-title: Int J Mech Sci – volume: 44 start-page: 607 year: 2024 end-page: 620 article-title: Distributed real-time control architecture for electrohydraulic humanoid robots publication-title: Robot Intell Autom – volume: 159 start-page: 107765 year: 2020 article-title: Parameter identification and adaptive compliant control of rehabilitation exoskeleton based on multiple sensors publication-title: Measurement – volume: 20 start-page: 589 year: 2022 end-page: 600 article-title: Model identification and human-robot coupling control of lower limb exoskeleton with biogeography-based learning particle swarm optimization publication-title: Int J Control Autom Syst – volume: 1 start-page: 5 year: 2005 end-page: 30 article-title: The ABC of EMG. A practical introduction to kinesiological electromyography – volume: 31 start-page: 197 year: 2023 end-page: 204 article-title: Joint torques estimation in human gait based on gaussian process publication-title: Technol Health Care – volume: 12 year: 2020 article-title: Operation of assistive apparatus through recognition of human behavior: development and experimental evaluation of chair-typed assistive apparatus of nine-link mechanism with 1 degree of freedom publication-title: Adv Mech Eng – volume: 24 start-page: 483 year: 2019 end-page: 494 article-title: A practical and adaptive method to achieve EMG-based torque estimation for a robotic exoskeleton publication-title: IEEE ASME Trans Mechatron – volume: 16 start-page: 275 year: 2018 end-page: 283 article-title: Estimation of the user’s muscular torque for an over-ground gait rehabilitation robot using torque and insole pressure sensors publication-title: Int J Control Autom Syst – volume: 106 start-page: 65 year: 2022 article-title: Design and experimental evaluation of a low cost, portable, 3-DOF wrist rehabilitation robot with high physical human-robot interaction publication-title: J Intell Robot Syst – volume: 30 start-page: 600 year: 2022 end-page: 609 article-title: Lower-limb joint torque prediction using LSTM neural networks and transfer learning publication-title: IEEE Trans Neural Syst Rehabil Eng – volume: 10 year: 2018 article-title: Designing the mechanical frame of an active exoskeleton for gait assistance publication-title: Adv Mech Eng – volume: 56 start-page: 634 year: 2016 end-page: 647 article-title: Maximal dexterous trajectory generation and cubic spline optimization for fully planar parallel manipulators publication-title: Comput Electr Eng – ident: bibr24-16878132241278508 doi: 10.1007/s12555-020-0632-1 – ident: bibr33-16878132241278508 doi: 10.1109/TIM.2015.2390958 – ident: bibr47-16878132241278508 doi: 10.3390/act12090353 – ident: bibr3-16878132241278508 doi: 10.1177/1687814017743664 – ident: bibr37-16878132241278508 doi: 10.3390/act12080321 – ident: bibr17-16878132241278508 doi: 10.1016/j.robot.2018.10.017 – ident: bibr20-16878132241278508 doi: 10.1016/j.measurement.2020.107765 – ident: bibr30-16878132241278508 doi: 10.1016/j.compeleceng.2016.07.012 – ident: bibr41-16878132241278508 doi: 10.1177/1687814017730003 – ident: bibr32-16878132241278508 doi: 10.1016/j.ijmecsci.2021.106942 – ident: bibr11-16878132241278508 doi: 10.1177/1687814016647354 – start-page: 1 volume-title: 2015 international joint conference on neural networks (IJCNN) ident: bibr39-16878132241278508 – ident: bibr42-16878132241278508 doi: 10.1109/TBME.2010.2070840 – ident: bibr15-16878132241278508 doi: 10.1016/j.bbe.2020.05.010 – ident: bibr23-16878132241278508 doi: 10.1007/s12555-016-0545-1 – ident: bibr19-16878132241278508 doi: 10.1109/TNSRE.2022.3156786 – ident: bibr46-16878132241278508 doi: 10.1007/s10846-022-01762-6 – ident: bibr8-16878132241278508 doi: 10.1007/s42235-022-00230-z – ident: bibr22-16878132241278508 doi: 10.3390/s21196597 – ident: bibr5-16878132241278508 doi: 10.1109/TBME.2014.2309727 – ident: bibr9-16878132241278508 doi: 10.1177/16878132231202578 – ident: bibr28-16878132241278508 doi: 10.3390/s150408337 – ident: bibr45-16878132241278508 doi: 10.1016/j.mechatronics.2021.102623 – start-page: 589 volume-title: 2019 IEEE/ASME international conference on advanced intelligent mechatronics (AIM) ident: bibr14-16878132241278508 – ident: bibr21-16878132241278508 doi: 10.1016/j.jbiomech.2003.12.020 – ident: bibr36-16878132241278508 doi: 10.1186/s10033-021-00537-8 – ident: bibr13-16878132241278508 doi: 10.1109/TBME.2013.2295381 – ident: bibr27-16878132241278508 doi: 10.1016/j.apm.2021.12.007 – ident: bibr4-16878132241278508 doi: 10.3233/THC-220190 – ident: bibr25-16878132241278508 doi: 10.1016/S0021-9290(03)00010-1 – start-page: 1036 volume-title: 2015 IEEE international conference on robotics and biomimetics (ROBIO) ident: bibr18-16878132241278508 – start-page: 289 volume-title: 2011 IEEE international conference on industrial technology (ICIT) ident: bibr26-16878132241278508 – volume: 44 start-page: 607 year: 2024 ident: bibr43-16878132241278508 publication-title: Robot Intell Autom – ident: bibr12-16878132241278508 doi: 10.1007/s11044-011-9273-8 – ident: bibr2-16878132241278508 doi: 10.1109/TBME.2022.3211842 – ident: bibr10-16878132241278508 doi: 10.1177/1687814020938899 – ident: bibr6-16878132241278508 doi: 10.1007/s11044-011-9285-4 – ident: bibr40-16878132241278508 doi: 10.1109/TNNLS.2021.3105595 – ident: bibr38-16878132241278508 – ident: bibr34-16878132241278508 doi: 10.1109/TNNLS.2020.3027293 – ident: bibr1-16878132241278508 doi: 10.1186/s10033-019-0389-8 – ident: bibr31-16878132241278508 doi: 10.3390/app13063868 – volume: 1 volume-title: The physiology of the joints year: 2011 ident: bibr35-16878132241278508 – start-page: 966 volume-title: ISIE: 2009 IEEE international symposium on industrial electronics ident: bibr29-16878132241278508 – ident: bibr7-16878132241278508 doi: 10.3390/s20133685 – volume: 71 start-page: 652 year: 2024 ident: bibr44-16878132241278508 publication-title: IEEE Trans Circuits Syst II Express Briefs – ident: bibr16-16878132241278508 doi: 10.1109/TMECH.2019.2893055 |
SSID | ssib050600699 ssj0000395696 ssib044728254 ssib023771143 |
Score | 2.3187292 |
Snippet | In order to analyze the motion of the human lower limb, a comprehensive process was created in this paper. Firstly, an exoskeleton robot platform was leveraged... |
SourceID | doaj proquest crossref sage |
SourceType | Open Website Aggregation Database Index Database Publisher |
SubjectTerms | Artificial neural networks Back propagation networks Completeness Correlation coefficients Dynamic models Error analysis Error correction Exoskeletons Human motion Inverse dynamics Neural networks Parameter estimation Parameter identification Process parameters Robot dynamics Root-mean-square errors Torque |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NS8NAEF2kJz2InxitsgdBEILJbjbZHKu0FqGeLPQW9hMKNRbb_n9nNqlGRLx4TZYwzGTz3mbfviHkOpUKUF6oWCg01dZFHpfKl3GZmRzgyNjM4X_IyXM-nmZPMzHrtPpCTVhjD9wk7k4mhpWZSBKtArlQLlVaSa2ZksKHI-QsKZPOYip8gznw_jJvtzHRYSnNZSFx6ZWlrJAC20l2gCj49X8jmR1dV4Ca0QHZbzkiHTSxHZIdVx-RvY5z4DFZDGgQgwPlpctG60-BftLQco_aps38iqrWcoTOa7PYIExR9Pp-RQ0MndtWKRSKA2MtXQ0njzGswiE6ivYbzbnGEzIdDV8exnHbOCE2vODrOLNaogsLc4IZwHvuTe69lpZDEoFCGI--ZYBDzpvCCe8ts-gUb4EeWKs8PyW9-q12Z4Ra47z2wBqZkxkvYHrLJBzGhScm1iQRud1msVo2_hhV2lqI_0h5RO4xz58D0do6XICCV23Bq78KHpH-tkpVO99WFU9xP4nxQkTkBiv3devXaM7_I5oLssuA5jSqsz7prd837hJoylpfhTfyA2Up4XA priority: 102 providerName: Directory of Open Access Journals – databaseName: Sage Journals GOLD Open Access 2024 dbid: AFRWT link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fSxwxEB6svrQPRWtLr2rJQ6EgpO5mk93ck5ziVQr2oVT0bcnPInh34t09-N87k82eJ23B12xYhskk8yUz8w3Al1Ib9PLKcGWIVNs2NR-aOORD6Wp0R87LQO-QFz_r80v541pdb8Csr4XJGpx_o7QqlCgd1rS76TX6KAcZj8paN5ruUbIUjUaMcbxcTNruubvvqkEjFJ9eTii07Sgh8oH35W2vYIuaMeFO3hqNf12ttoComqZcY7yTsqHizpXJEh1fUWcEnw77Ci8YqQsYycRJqBw7_aecz7xfahLwDNmuJZMl_zbehrcZmLJRZ0k7sBGm7-DNGl3hLtyOWMpAR5zN7roCA4aYl6U-f8x3ve3nzGSeE3YzdbdL8o2MCMYnlHjDbnxOT0oWgXM9m59dfOd49UfpGHF-dMWU7-FyfPb79Jznbg3cVU214NJbTdQvIijhEGRU0dUxWu0raxTiFheJLA2dX4iuCSpGLzzR03vEJN6bWH2AzelsGj4C8y5EGxGqiqAlrggqsUgVwPjHwrtiAIe9Ftu7jpSjLTNv-V8qH8AJ6Xk1kfi008Ds_k-bt2erCyeGUhUFykoQ1oTSWKOtFUarKMoB7Per1PYm2lYlBbHQZNQAvtLKPX36rzSfXjxzD14LBFBdPts-bC7ul-EAAdDCfs5G-wjxtflR priority: 102 providerName: SAGE Publications |
Title | A complete process for human dynamics analysis including parameter identification and sEMG-torque estimation |
URI | https://journals.sagepub.com/doi/full/10.1177/16878132241278508 https://www.proquest.com/docview/3111672375 https://doaj.org/article/80c294500ba54057ae1aba8bb2a85f21 |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LSwMxEB58XPQgPrE-Sg6CICzuZje76UmqtIqgiCh6W_IUQdtq6_93JptqRfS0kA0hzEwyX5KZbwAOMqnQywuVCEWk2roqk47ynaRTmBLdkbGFo3vIq-vy4r64fBSP8cJtHMMqp3ti2Kjt0NAd-XGe0YsBzytxMnpLqGoUva7GEhrzsJihpyE7l_3zqT1h5yqboa8riooyNb_sj7j10jLC8bBz53haCCW9shLXnsSTWnwIJY4maqMm9Hm8koIKUs64ssD4_wOmzkSGBWfVX4WViDJZtzGLNZhzg3VYnuEe3ICXLgvh5Aia2ajJFmAIYFko2sdsU6h-zFQkLWHPA_PyQY6OEVv4K0XRsGcbY42CerGvZePe1XmC53icHSMCjyYzchPu-727s4skll5ITF7lk6SwWhKPC3eCG0QMuTel91raXCuBIMR4Yj5DT-a8qZzw3nJLXPMWAYa1yudbsDAYDtw2MGuc1x5xJ3eyQI2gENOQzosjptakLTiaSrEeNQwbdRZJyH-JvAWnJOevjkSOHRqG7091XGu1TA3vFCJNca6ER5XLlFZSa66k8Dxrwd5US3VcseP6275acEia-_7152x2_h9oF5Y4QqAmIm0PFibvH24fIcxEt4OdtmGx2799uMPvae_65rYdLgQ-AeTG6dA |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6V9AAcEE8RWsAHEBLSil3vetc5INRCSkqbCKFW6m3xE0VqN2mSCvVP8RuZ8XrbIAS3Xr0ra-QZzze2Z74BeJVJhSgvVCIUkWrrqkwGyg-SQWFKhCNjC0f3kONJOTouvpyIkw341dXCUFpl5xODo7YzQ3fk7_KMXgx4XokP8_OEukbR62rXQqM1iwN3-ROPbMv3-59Qv6853xsefRwlsatAYvIqXyWF1ZIoSrgT3CAY5t6U3mtpc60E4qvxROqFTtp5UznhveWWaNQtYqe1yuc47y3YLKiitQebu8PJ12-dBaN4VbZGmFcUFdWGXlk8sfmlZTwABKzI8XwSmohlJe52iWfD-PRKrFA0RkOIsrySglpgroFn6DHwR2C8losW4HHvPtyLcS3baQ3xAWy45iHcXWM7fASnOywksGOYzuZtfQLDkJmFNoHMXjbqbGqWTEWaFDZtzOkFQSsjfvIzytthUxuzm4JB4b-WLYfjz8lqtkDpGFGGtLWYj-H4RtTyBHrNrHFPgVnjvPYY6XInC9QILmIaCohxxtSatA9vu1Ws5y2nR51F2vO_lrwPu7TOVz8SHXcYmC1-1HF31zI1fFCINEVZKQJWLlNaSa25ksLzrA_bnZbq6COW9bVF9-ENae760z-lefb_iV7C7dHR-LA-3J8cbMEdjgFYmw-3Db3V4sI9xwBqpV9Eq2Xw_aY3ym8RwCT6 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3daxQxEB9qBdEH8RNPq-ZBEYSlu8lmN_sgUm2vrbXFBwt9W_MpB-3eeXdF-q_51zmTzbYnom99zS4hZGbym0lmfgPwqlAaUV7qTGoi1TZ1lTU6NFlT2grhyLrS0z3k4VG1d1x-OpEna_BrqIWhtMrhTIwHtZtauiPfFAW9GHBRy82Q0iK-bI_fz35k1EGKXlqHdhq9ihz4i58Yvi3e7W-jrF9zPt75-nEvSx0GMitqscxKZxTRlXAvuUVgFMFWIRjlhNESsdYGIvjCA9sHW3sZguOOKNUd4qhzOgic9wbcrEXdUOCnxruDLuNC62KFOq8sa6oSvdR94vXLqxQKRNQQGKnEdmJFhXavMEpMj7DED0VjNIR4y2slqRnmCozGbgN_uMgrWWkRKMf34G7ycNlWr5L3Yc13D-DOCu_hQzjdYjGVHR12NusrFRg6zyw2DGTuotNnE7tgOhGmsElnT88JZBkxlZ9RBg-buJTnFFUL_3VssXO4my2nc1wdI_KQvirzERxfi1Aew3o37fwTYM76YAL6vNyrEiWCm5jHUmKcMXc2H8HbYRfbWc_u0RaJAP2vLR_BB9rnyx-JmDsOTOff22Tnrcotb0qZ57hW8oW1L7TRyhiulQy8GMHGIKU2nRaL9kq3R_CGJHf16Z-refr_iV7CLTSP9vP-0cEzuM3RE-sT4zZgfTk_98_Rk1qaF1FlGXy7bhv5DezFJ8o |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+complete+process+for+human+dynamics+analysis+including+parameter+identification+and+sEMG-torque+estimation&rft.jtitle=Advances+in+mechanical+engineering&rft.au=Sun%2C+Tianyi&rft.au=Peng+Xinyu&rft.au=Ji+Shuang&rft.au=Chen+Zhenlei&rft.date=2024-09-01&rft.pub=Sage+Publications+Ltd&rft.issn=1687-8132&rft.eissn=1687-8140&rft.volume=16&rft.issue=9&rft_id=info:doi/10.1177%2F16878132241278508&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1687-8132&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1687-8132&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1687-8132&client=summon |