A complete process for human dynamics analysis including parameter identification and sEMG-torque estimation

In order to analyze the motion of the human lower limb, a comprehensive process was created in this paper. Firstly, an exoskeleton robot platform was leveraged and a dynamic model of human-exoskeleton lower limb was created for identifying human parameters. Then the sEMG signal was utilized to extra...

Full description

Saved in:
Bibliographic Details
Published inAdvances in mechanical engineering Vol. 16; no. 9
Main Authors Sun, Tianyi, Peng, Xinyu, Ji, Shuang, Chen, Zhenlei, Guo, Qing, Yan, Yao
Format Journal Article
LanguageEnglish
Published London, England SAGE Publications 01.09.2024
Sage Publications Ltd
SAGE Publishing
Subjects
Online AccessGet full text
ISSN1687-8132
1687-8140
DOI10.1177/16878132241278508

Cover

Abstract In order to analyze the motion of the human lower limb, a comprehensive process was created in this paper. Firstly, an exoskeleton robot platform was leveraged and a dynamic model of human-exoskeleton lower limb was created for identifying human parameters. Then the sEMG signal was utilized to extract information about muscle activity through multi-group experiments, and a backpropagation neural network (BPNN) was built to forecast joint torque. An inverse dynamics analysis combining the human motion data with the dynamic model can not only verify the reliability of prediction result by this BPNN but also the correctness of identified results before. Moreover, the mean absolute error (MAE), root mean square error (RMSE), and Pearson correlation coefficient (PCC) were used as evaluation index of both identification and prediction results. The proposed protocol can give accurate identified parameters for subject and estimated joint torque from sEMG during swing motion. We believe it can be extended to various types of human motion movement and potentially applied to complete human motion analysis.
AbstractList In order to analyze the motion of the human lower limb, a comprehensive process was created in this paper. Firstly, an exoskeleton robot platform was leveraged and a dynamic model of human-exoskeleton lower limb was created for identifying human parameters. Then the sEMG signal was utilized to extract information about muscle activity through multi-group experiments, and a backpropagation neural network (BPNN) was built to forecast joint torque. An inverse dynamics analysis combining the human motion data with the dynamic model can not only verify the reliability of prediction result by this BPNN but also the correctness of identified results before. Moreover, the mean absolute error (MAE), root mean square error (RMSE), and Pearson correlation coefficient (PCC) were used as evaluation index of both identification and prediction results. The proposed protocol can give accurate identified parameters for subject and estimated joint torque from sEMG during swing motion. We believe it can be extended to various types of human motion movement and potentially applied to complete human motion analysis.
Author Guo, Qing
Yan, Yao
Ji, Shuang
Chen, Zhenlei
Sun, Tianyi
Peng, Xinyu
Author_xml – sequence: 1
  givenname: Tianyi
  surname: Sun
  fullname: Sun, Tianyi
  organization: University of Electronic Science and Technology of China, Chengdu, China
– sequence: 2
  givenname: Xinyu
  surname: Peng
  fullname: Peng, Xinyu
  organization: University of Electronic Science and Technology of China, Chengdu, China
– sequence: 3
  givenname: Shuang
  surname: Ji
  fullname: Ji, Shuang
  organization: University of Electronic Science and Technology of China, Chengdu, China
– sequence: 4
  givenname: Zhenlei
  surname: Chen
  fullname: Chen, Zhenlei
  organization: University of Electronic Science and Technology of China, Chengdu, China
– sequence: 5
  givenname: Qing
  surname: Guo
  fullname: Guo, Qing
  organization: University of Electronic Science and Technology of China, Chengdu, China
– sequence: 6
  givenname: Yao
  orcidid: 0000-0003-3748-8495
  surname: Yan
  fullname: Yan, Yao
  email: y.yan@uestc.edu.cn
  organization: University of Electronic Science and Technology of China, Chengdu, China
BookMark eNp1kctOHTEMhiNEJS7lAdhF6nponEwmmSVC3CSqbmAdeXI5BM0kp8mcxXn7Bk5FF1VXtuz__yzbZ-Q45eQJuQR2BaDUdxi00iA474ErLZk-IqfvtU5Dz44_c8FPyEWtcWKSDYwN43hK5mtq87Kd_erptmTra6UhF_q6WzBRt0-4RFspJpz3NVYak513LqYN3WLBpdkKjc6nNYZocY05Na2j9fbHfbfm8mvnqa9rXD5aX8mXgHP1F3_iOXm5u32-eeieft4_3lw_dVYosXa9m_TYa-BecstAimCHECbtxIRS9WCDZL0YR-aDVV6G4LhjYgSnYXQOgzgnjweuy_hmtqWNL3uTMZqPQi4bg2WNdvZGM8vHXjLW0D2TCj3ghHqaOGoZODTWtwOrXadtU1fzlnelnaMaAQCD4kLJpoKDypZca_Hhcyow8_4j88-Pmufq4Km48X-p_zf8BlrQlBU
Cites_doi 10.1007/s12555-020-0632-1
10.1109/TIM.2015.2390958
10.3390/act12090353
10.1177/1687814017743664
10.3390/act12080321
10.1016/j.robot.2018.10.017
10.1016/j.measurement.2020.107765
10.1016/j.compeleceng.2016.07.012
10.1177/1687814017730003
10.1016/j.ijmecsci.2021.106942
10.1177/1687814016647354
10.1109/TBME.2010.2070840
10.1016/j.bbe.2020.05.010
10.1007/s12555-016-0545-1
10.1109/TNSRE.2022.3156786
10.1007/s10846-022-01762-6
10.1007/s42235-022-00230-z
10.3390/s21196597
10.1109/TBME.2014.2309727
10.1177/16878132231202578
10.3390/s150408337
10.1016/j.mechatronics.2021.102623
10.1016/j.jbiomech.2003.12.020
10.1186/s10033-021-00537-8
10.1109/TBME.2013.2295381
10.1016/j.apm.2021.12.007
10.3233/THC-220190
10.1016/S0021-9290(03)00010-1
10.1007/s11044-011-9273-8
10.1109/TBME.2022.3211842
10.1177/1687814020938899
10.1007/s11044-011-9285-4
10.1109/TNNLS.2021.3105595
10.1109/TNNLS.2020.3027293
10.1186/s10033-019-0389-8
10.3390/app13063868
10.3390/s20133685
10.1109/TMECH.2019.2893055
ContentType Journal Article
Copyright The Author(s) 2024
The Author(s) 2024. This work is licensed under the Creative Commons Attribution License https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2024
– notice: The Author(s) 2024. This work is licensed under the Creative Commons Attribution License https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AFRWT
AAYXX
CITATION
7TB
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FR3
H8D
HCIFZ
L6V
L7M
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOA
DOI 10.1177/16878132241278508
DatabaseName Sage Journals GOLD Open Access 2024
CrossRef
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
Aerospace Database
SciTech Premium Collection
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Engineering Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Aerospace Database
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database
CrossRef


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: AFRWT
  name: Sage Journals GOLD Open Access 2024
  url: http://journals.sagepub.com/
  sourceTypes: Publisher
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1687-8140
ExternalDocumentID oai_doaj_org_article_80c294500ba54057ae1aba8bb2a85f21
10_1177_16878132241278508
10.1177_16878132241278508
GrantInformation_xml – fundername: Sichuan Science and Technology Program
  grantid: 2021ZDZX0004
– fundername: Sichuan Science and Technology Program
  grantid: 2022JDRC0018
– fundername: National Natural Science Foundation of China
  grantid: 11932015
  funderid: https://doi.org/10.13039/501100001809
– fundername: National Natural Science Foundation of China
  grantid: 52175046
  funderid: https://doi.org/10.13039/501100001809
– fundername: National Natural Science Foundation of China
  grantid: 11872147
  funderid: https://doi.org/10.13039/501100001809
– fundername: National Natural Science Foundation of China
  grantid: 12072068
  funderid: https://doi.org/10.13039/501100001809
GroupedDBID .DC
0R~
188
23M
2UF
2WC
4.4
54M
5GY
5VS
8FE
8FG
8R4
8R5
AAJPV
AASGM
ABAWP
ABJCF
ABQXT
ACGFS
ACIWK
ACROE
ADBBV
ADOGD
AEDFJ
AENEX
AEUHG
AEWDL
AFCOW
AFKRA
AFKRG
AFRWT
AINHJ
AJUZI
ALMA_UNASSIGNED_HOLDINGS
AUTPY
AYAKG
BCNDV
BDDNI
BENPR
BGLVJ
C1A
CAHYU
CCPQU
CNMHZ
E3Z
EBS
EJD
GROUPED_DOAJ
H13
HCIFZ
IAO
IEA
IL9
ITC
J8X
K.F
KQ8
L6V
M7S
O9-
OK1
PHGZM
PHGZT
PIMPY
PTHSS
Q2X
RHU
ROL
SAUOL
SCDPB
SCNPE
SFC
TR2
UGNYK
AAYXX
ACHEB
CITATION
7TB
8FD
ABUWG
AZQEC
DWQXO
FR3
H8D
L7M
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PUEGO
ID FETCH-LOGICAL-c373t-4db894812e52c0153fc6ffb8d3ba5741cf5043990efc7e5ffd2d0391d819ddaf3
IEDL.DBID 8FG
ISSN 1687-8132
IngestDate Wed Aug 27 01:21:56 EDT 2025
Fri Jul 25 12:08:00 EDT 2025
Tue Jul 01 05:23:56 EDT 2025
Tue Jun 17 22:36:23 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords sEMG
parameters identification
BPNN prediction
motion analysis
Language English
License This article is distributed under the terms of the Creative Commons Attribution 4.0 License (https://creativecommons.org/licenses/by/4.0/) which permits any use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c373t-4db894812e52c0153fc6ffb8d3ba5741cf5043990efc7e5ffd2d0391d819ddaf3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-3748-8495
OpenAccessLink https://www.proquest.com/docview/3111672375?pq-origsite=%requestingapplication%
PQID 3111672375
PQPubID 237349
ParticipantIDs doaj_primary_oai_doaj_org_article_80c294500ba54057ae1aba8bb2a85f21
proquest_journals_3111672375
crossref_primary_10_1177_16878132241278508
sage_journals_10_1177_16878132241278508
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20240900
2024-09-00
20240901
2024-09-01
PublicationDateYYYYMMDD 2024-09-01
PublicationDate_xml – month: 9
  year: 2024
  text: 20240900
PublicationDecade 2020
PublicationPlace London, England
PublicationPlace_xml – name: London, England
– name: New York
PublicationTitle Advances in mechanical engineering
PublicationYear 2024
Publisher SAGE Publications
Sage Publications Ltd
SAGE Publishing
Publisher_xml – name: SAGE Publications
– name: Sage Publications Ltd
– name: SAGE Publishing
References Wang 2022; 19
Zhang, Soselia, Wang 2022; 30
Chen, Huang, Guo 2020; 159
Ishmael 2023; 70
Duan, Yang 2022; 33
Menegaldo, Oliveira 2012; 28
Lloyd, Besier 2003; 36
Chen, Guo, Xiong 2021; 34
Zhao, Lv, Zeng 2024; 71
Gui, Liu, Zhang 2019; 24
Ege, Kucuk 2023; 13
Ha, Varol, Goldfarb 2011; 58
Zhao, Guo 2021; 32
Amarantini, Martin 2004; 37
Yang, Yin 2020; 20
Lu, Wu, Chen 2019; 111
Hussain, Iqbal, Maqbool 2020; 40
Hwang, Jeon 2018; 16
Jleilaty, Ammounah, Abdulmalek 2024; 44
Mayetin, Kucuk 2021; 78
Shi, Zhang, Zhang 2019; 32
Manal, Gravare-Silbernagel, Buchanan 2012; 28
Yang, Yang, Ma 2016; 8
Lam, Vujaklija 2021; 21
Sun, Zhang, Li 2023; 12
Kwon, Kim, Kim 2014; 61
Jun, Jeong, Ohno 2020; 12
Yan, Chen, Huang 2022; 104
Mayetin, Kucuk 2022; 106
Peng, Zhang, Cai 2023; 12
Chadwick, Blana, Kirsch 2014; 61
Hwang, Jeon 2015; 15
Ma, Xu, Fang 2022; 215
Yang, Wang, Sun 2023; 31
Kucuk 2016; 56
Xu 2017; 9
Sandre-Hernandez, Morales-Caporal, Rangel-Magdaleno 2015; 64
Guo, Chen, Yan 2022; 20
Konrad 2005; 1
Pina, Fernandes, Jorge 2018; 10
Zhou, Wang, Tang 2023; 15
Zhao J (bibr44-16878132241278508) 2024; 71
bibr16-16878132241278508
bibr19-16878132241278508
bibr6-16878132241278508
bibr3-16878132241278508
bibr13-16878132241278508
bibr10-16878132241278508
Kapandji A (bibr35-16878132241278508) 2011; 1
bibr8-16878132241278508
Ayiz C (bibr29-16878132241278508)
Peng L (bibr18-16878132241278508)
bibr20-16878132241278508
bibr33-16878132241278508
bibr40-16878132241278508
bibr30-16878132241278508
bibr23-16878132241278508
bibr46-16878132241278508
bibr9-16878132241278508
bibr36-16878132241278508
Peng L (bibr39-16878132241278508)
Jleilaty S (bibr43-16878132241278508) 2024; 44
bibr22-16878132241278508
bibr45-16878132241278508
bibr7-16878132241278508
Toz M (bibr26-16878132241278508)
bibr15-16878132241278508
bibr28-16878132241278508
bibr38-16878132241278508
bibr2-16878132241278508
bibr12-16878132241278508
bibr5-16878132241278508
bibr32-16878132241278508
bibr25-16878132241278508
bibr42-16878132241278508
bibr24-16878132241278508
bibr17-16878132241278508
bibr34-16878132241278508
bibr27-16878132241278508
bibr37-16878132241278508
bibr47-16878132241278508
bibr4-16878132241278508
bibr31-16878132241278508
bibr21-16878132241278508
Ma X (bibr14-16878132241278508)
bibr41-16878132241278508
bibr1-16878132241278508
bibr11-16878132241278508
References_xml – volume: 71
  start-page: 652
  year: 2024
  end-page: 656
  article-title: Online policy learning-based output-feedback optimal control of continuous-time systems
  publication-title: IEEE Trans Circuits Syst II Express Briefs
– volume: 34
  start-page: 22
  year: 2021
  article-title: Control and implementation of 2-DOF lower limb exoskeleton experiment platform
  publication-title: Chin J Mech Eng
– volume: 9
  start-page: 1687814017730003
  year: 2017
  article-title: The parameter estimation algorithms based on the dynamical response measurement data
  publication-title: Adv Mech Eng
– volume: 64
  start-page: 2146
  year: 2015
  end-page: 2154
  article-title: Parameter identification of PMSMs using experimental measurements and a PSO algorithm
  publication-title: IEEE Trans Instrum Meas
– volume: 19
  start-page: 1359
  year: 2022
  end-page: 1373
  article-title: Integral real-time locomotion mode recognition based on GA-CNN for lower limb exoskeleton
  publication-title: J Bionic Eng
– volume: 111
  start-page: 88
  year: 2019
  end-page: 98
  article-title: Development of a sEMG-based torque estimation control strategy for a soft elbow exoskeleton
  publication-title: Robot Auton Syst
– volume: 15
  start-page: 8337
  year: 2015
  end-page: 8357
  article-title: A method to accurately estimate the muscular torques of human wearing exoskeletons by torque sensors
  publication-title: Sensors
– volume: 33
  start-page: 2070
  year: 2022
  end-page: 2079
  article-title: Recognizing missing electromyography signal by data split reorganization strategy and weight-based multiple neural network voting method
  publication-title: IEEE Trans Neural Netw Learn Syst
– volume: 8
  year: 2016
  article-title: Learning vector quantization neural network–based model reference adaptive control method for intelligent lower-limb prosthesis
  publication-title: Adv Mech Eng
– volume: 40
  start-page: 1110
  year: 2020
  end-page: 1123
  article-title: Intent based recognition of walking and ramp activities for amputee using sEMG based lower limb prostheses
  publication-title: Biocybern Biomed Eng
– volume: 78
  start-page: 102623
  year: 2021
  article-title: A low cost 3-DOF force sensing unit design for wrist rehabilitation robots
  publication-title: Mechatronics
– volume: 36
  start-page: 765
  year: 2003
  end-page: 776
  article-title: An EMG-driven musculoskeletal model to estimate muscle forces and knee joint moments in vivo
  publication-title: J Biomech
– volume: 12
  start-page: 353
  year: 2023
  article-title: Modelling and RBF control of low-limb swinging dynamics of a human-exoskeleton system
  publication-title: Actuators
– volume: 15
  year: 2023
  article-title: Design and analysis of a passive knee assisted exoskeleton
  publication-title: Adv Mech Eng
– volume: 104
  start-page: 439
  year: 2022
  end-page: 454
  article-title: Human-exoskeleton coupling dynamics in the swing of lower limb
  publication-title: Appl Math Model
– volume: 58
  start-page: 144
  year: 2011
  end-page: 151
  article-title: Volitional control of a prosthetic knee using surface electromyography
  publication-title: IEEE Trans Biomed Eng
– volume: 32
  start-page: 74
  year: 2019
  article-title: A review on lower limb rehabilitation exoskeleton robots
  publication-title: Chin J Mech Eng
– volume: 37
  start-page: 1393
  year: 2004
  end-page: 1404
  article-title: A method to combine numerical optimization and EMG data for the estimation of joint moments under dynamic conditions
  publication-title: J Biomech
– volume: 13
  start-page: 3868
  year: 2023
  article-title: Energy minimization of new robotic-type above-knee prosthesis for higher battery lifetime
  publication-title: Appl Sci (Basel)
– volume: 28
  start-page: 169
  year: 2012
  end-page: 180
  article-title: A real-time EMG-driven musculoskeletal model of the ankle
  publication-title: Multibody Syst Dyn
– volume: 70
  start-page: 1162
  year: 2023
  end-page: 1171
  article-title: Powered hip exoskeleton reduces residual hip effort without affecting kinematics and balance in individuals with above-knee amputations during walking
  publication-title: IEEE Trans Biomed Eng
– volume: 61
  start-page: 1134
  year: 2014
  end-page: 1142
  article-title: Movement stability analysis of surface electromyography-based elbow power assistance
  publication-title: IEEE Trans Biomed Eng
– volume: 12
  start-page: 321
  year: 2023
  article-title: A bionic control method for human–exoskeleton coupling based on cpg model
  publication-title: Actuators
– volume: 61
  start-page: 1947
  year: 2014
  end-page: 1956
  article-title: Real-time simulation of three-dimensional shoulder girdle and arm dynamics
  publication-title: IEEE Trans Biomed Eng
– volume: 28
  start-page: 21
  year: 2012
  end-page: 36
  article-title: The influence of modeling hypothesis and experimental methodologies in the accuracy of muscle force estimation using EMG-driven models
  publication-title: Multibody Syst Dyn
– volume: 21
  start-page: 6597
  year: 2021
  article-title: Joint torque prediction via hybrid neuromusculoskeletal modelling during gait using statistical ground reaction estimates: an exploratory study
  publication-title: Sensors
– volume: 32
  start-page: 5179
  year: 2021
  end-page: 5193
  article-title: Particle swarm optimization algorithm with self-organizing mapping for nash equilibrium strategy in application of multiobjective optimization
  publication-title: IEEE Trans Neural Netw Learn Syst
– volume: 20
  start-page: 3685
  year: 2020
  article-title: Dependent-gaussian-process-based learning of joint torques using wearable smart shoes for exoskeleton
  publication-title: Sensors
– volume: 215
  start-page: 106942
  year: 2022
  article-title: Adaptive neural control for gait coordination of a lower limb prosthesis
  publication-title: Int J Mech Sci
– volume: 44
  start-page: 607
  year: 2024
  end-page: 620
  article-title: Distributed real-time control architecture for electrohydraulic humanoid robots
  publication-title: Robot Intell Autom
– volume: 159
  start-page: 107765
  year: 2020
  article-title: Parameter identification and adaptive compliant control of rehabilitation exoskeleton based on multiple sensors
  publication-title: Measurement
– volume: 20
  start-page: 589
  year: 2022
  end-page: 600
  article-title: Model identification and human-robot coupling control of lower limb exoskeleton with biogeography-based learning particle swarm optimization
  publication-title: Int J Control Autom Syst
– volume: 1
  start-page: 5
  year: 2005
  end-page: 30
  article-title: The ABC of EMG. A practical introduction to kinesiological electromyography
– volume: 31
  start-page: 197
  year: 2023
  end-page: 204
  article-title: Joint torques estimation in human gait based on gaussian process
  publication-title: Technol Health Care
– volume: 12
  year: 2020
  article-title: Operation of assistive apparatus through recognition of human behavior: development and experimental evaluation of chair-typed assistive apparatus of nine-link mechanism with 1 degree of freedom
  publication-title: Adv Mech Eng
– volume: 24
  start-page: 483
  year: 2019
  end-page: 494
  article-title: A practical and adaptive method to achieve EMG-based torque estimation for a robotic exoskeleton
  publication-title: IEEE ASME Trans Mechatron
– volume: 16
  start-page: 275
  year: 2018
  end-page: 283
  article-title: Estimation of the user’s muscular torque for an over-ground gait rehabilitation robot using torque and insole pressure sensors
  publication-title: Int J Control Autom Syst
– volume: 106
  start-page: 65
  year: 2022
  article-title: Design and experimental evaluation of a low cost, portable, 3-DOF wrist rehabilitation robot with high physical human-robot interaction
  publication-title: J Intell Robot Syst
– volume: 30
  start-page: 600
  year: 2022
  end-page: 609
  article-title: Lower-limb joint torque prediction using LSTM neural networks and transfer learning
  publication-title: IEEE Trans Neural Syst Rehabil Eng
– volume: 10
  year: 2018
  article-title: Designing the mechanical frame of an active exoskeleton for gait assistance
  publication-title: Adv Mech Eng
– volume: 56
  start-page: 634
  year: 2016
  end-page: 647
  article-title: Maximal dexterous trajectory generation and cubic spline optimization for fully planar parallel manipulators
  publication-title: Comput Electr Eng
– ident: bibr24-16878132241278508
  doi: 10.1007/s12555-020-0632-1
– ident: bibr33-16878132241278508
  doi: 10.1109/TIM.2015.2390958
– ident: bibr47-16878132241278508
  doi: 10.3390/act12090353
– ident: bibr3-16878132241278508
  doi: 10.1177/1687814017743664
– ident: bibr37-16878132241278508
  doi: 10.3390/act12080321
– ident: bibr17-16878132241278508
  doi: 10.1016/j.robot.2018.10.017
– ident: bibr20-16878132241278508
  doi: 10.1016/j.measurement.2020.107765
– ident: bibr30-16878132241278508
  doi: 10.1016/j.compeleceng.2016.07.012
– ident: bibr41-16878132241278508
  doi: 10.1177/1687814017730003
– ident: bibr32-16878132241278508
  doi: 10.1016/j.ijmecsci.2021.106942
– ident: bibr11-16878132241278508
  doi: 10.1177/1687814016647354
– start-page: 1
  volume-title: 2015 international joint conference on neural networks (IJCNN)
  ident: bibr39-16878132241278508
– ident: bibr42-16878132241278508
  doi: 10.1109/TBME.2010.2070840
– ident: bibr15-16878132241278508
  doi: 10.1016/j.bbe.2020.05.010
– ident: bibr23-16878132241278508
  doi: 10.1007/s12555-016-0545-1
– ident: bibr19-16878132241278508
  doi: 10.1109/TNSRE.2022.3156786
– ident: bibr46-16878132241278508
  doi: 10.1007/s10846-022-01762-6
– ident: bibr8-16878132241278508
  doi: 10.1007/s42235-022-00230-z
– ident: bibr22-16878132241278508
  doi: 10.3390/s21196597
– ident: bibr5-16878132241278508
  doi: 10.1109/TBME.2014.2309727
– ident: bibr9-16878132241278508
  doi: 10.1177/16878132231202578
– ident: bibr28-16878132241278508
  doi: 10.3390/s150408337
– ident: bibr45-16878132241278508
  doi: 10.1016/j.mechatronics.2021.102623
– start-page: 589
  volume-title: 2019 IEEE/ASME international conference on advanced intelligent mechatronics (AIM)
  ident: bibr14-16878132241278508
– ident: bibr21-16878132241278508
  doi: 10.1016/j.jbiomech.2003.12.020
– ident: bibr36-16878132241278508
  doi: 10.1186/s10033-021-00537-8
– ident: bibr13-16878132241278508
  doi: 10.1109/TBME.2013.2295381
– ident: bibr27-16878132241278508
  doi: 10.1016/j.apm.2021.12.007
– ident: bibr4-16878132241278508
  doi: 10.3233/THC-220190
– ident: bibr25-16878132241278508
  doi: 10.1016/S0021-9290(03)00010-1
– start-page: 1036
  volume-title: 2015 IEEE international conference on robotics and biomimetics (ROBIO)
  ident: bibr18-16878132241278508
– start-page: 289
  volume-title: 2011 IEEE international conference on industrial technology (ICIT)
  ident: bibr26-16878132241278508
– volume: 44
  start-page: 607
  year: 2024
  ident: bibr43-16878132241278508
  publication-title: Robot Intell Autom
– ident: bibr12-16878132241278508
  doi: 10.1007/s11044-011-9273-8
– ident: bibr2-16878132241278508
  doi: 10.1109/TBME.2022.3211842
– ident: bibr10-16878132241278508
  doi: 10.1177/1687814020938899
– ident: bibr6-16878132241278508
  doi: 10.1007/s11044-011-9285-4
– ident: bibr40-16878132241278508
  doi: 10.1109/TNNLS.2021.3105595
– ident: bibr38-16878132241278508
– ident: bibr34-16878132241278508
  doi: 10.1109/TNNLS.2020.3027293
– ident: bibr1-16878132241278508
  doi: 10.1186/s10033-019-0389-8
– ident: bibr31-16878132241278508
  doi: 10.3390/app13063868
– volume: 1
  volume-title: The physiology of the joints
  year: 2011
  ident: bibr35-16878132241278508
– start-page: 966
  volume-title: ISIE: 2009 IEEE international symposium on industrial electronics
  ident: bibr29-16878132241278508
– ident: bibr7-16878132241278508
  doi: 10.3390/s20133685
– volume: 71
  start-page: 652
  year: 2024
  ident: bibr44-16878132241278508
  publication-title: IEEE Trans Circuits Syst II Express Briefs
– ident: bibr16-16878132241278508
  doi: 10.1109/TMECH.2019.2893055
SSID ssib050600699
ssj0000395696
ssib044728254
ssib023771143
Score 2.3187292
Snippet In order to analyze the motion of the human lower limb, a comprehensive process was created in this paper. Firstly, an exoskeleton robot platform was leveraged...
SourceID doaj
proquest
crossref
sage
SourceType Open Website
Aggregation Database
Index Database
Publisher
SubjectTerms Artificial neural networks
Back propagation networks
Completeness
Correlation coefficients
Dynamic models
Error analysis
Error correction
Exoskeletons
Human motion
Inverse dynamics
Neural networks
Parameter estimation
Parameter identification
Process parameters
Robot dynamics
Root-mean-square errors
Torque
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NS8NAEF2kJz2InxitsgdBEILJbjbZHKu0FqGeLPQW9hMKNRbb_n9nNqlGRLx4TZYwzGTz3mbfviHkOpUKUF6oWCg01dZFHpfKl3GZmRzgyNjM4X_IyXM-nmZPMzHrtPpCTVhjD9wk7k4mhpWZSBKtArlQLlVaSa2ZksKHI-QsKZPOYip8gznw_jJvtzHRYSnNZSFx6ZWlrJAC20l2gCj49X8jmR1dV4Ca0QHZbzkiHTSxHZIdVx-RvY5z4DFZDGgQgwPlpctG60-BftLQco_aps38iqrWcoTOa7PYIExR9Pp-RQ0MndtWKRSKA2MtXQ0njzGswiE6ivYbzbnGEzIdDV8exnHbOCE2vODrOLNaogsLc4IZwHvuTe69lpZDEoFCGI--ZYBDzpvCCe8ts-gUb4EeWKs8PyW9-q12Z4Ra47z2wBqZkxkvYHrLJBzGhScm1iQRud1msVo2_hhV2lqI_0h5RO4xz58D0do6XICCV23Bq78KHpH-tkpVO99WFU9xP4nxQkTkBiv3devXaM7_I5oLssuA5jSqsz7prd837hJoylpfhTfyA2Up4XA
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Sage Journals GOLD Open Access 2024
  dbid: AFRWT
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fSxwxEB6svrQPRWtLr2rJQ6EgpO5mk93ck5ziVQr2oVT0bcnPInh34t09-N87k82eJ23B12xYhskk8yUz8w3Al1Ib9PLKcGWIVNs2NR-aOORD6Wp0R87LQO-QFz_r80v541pdb8Csr4XJGpx_o7QqlCgd1rS76TX6KAcZj8paN5ruUbIUjUaMcbxcTNruubvvqkEjFJ9eTii07Sgh8oH35W2vYIuaMeFO3hqNf12ttoComqZcY7yTsqHizpXJEh1fUWcEnw77Ci8YqQsYycRJqBw7_aecz7xfahLwDNmuJZMl_zbehrcZmLJRZ0k7sBGm7-DNGl3hLtyOWMpAR5zN7roCA4aYl6U-f8x3ve3nzGSeE3YzdbdL8o2MCMYnlHjDbnxOT0oWgXM9m59dfOd49UfpGHF-dMWU7-FyfPb79Jznbg3cVU214NJbTdQvIijhEGRU0dUxWu0raxTiFheJLA2dX4iuCSpGLzzR03vEJN6bWH2AzelsGj4C8y5EGxGqiqAlrggqsUgVwPjHwrtiAIe9Ftu7jpSjLTNv-V8qH8AJ6Xk1kfi008Ds_k-bt2erCyeGUhUFykoQ1oTSWKOtFUarKMoB7Per1PYm2lYlBbHQZNQAvtLKPX36rzSfXjxzD14LBFBdPts-bC7ul-EAAdDCfs5G-wjxtflR
  priority: 102
  providerName: SAGE Publications
Title A complete process for human dynamics analysis including parameter identification and sEMG-torque estimation
URI https://journals.sagepub.com/doi/full/10.1177/16878132241278508
https://www.proquest.com/docview/3111672375
https://doaj.org/article/80c294500ba54057ae1aba8bb2a85f21
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LSwMxEB58XPQgPrE-Sg6CICzuZje76UmqtIqgiCh6W_IUQdtq6_93JptqRfS0kA0hzEwyX5KZbwAOMqnQywuVCEWk2roqk47ynaRTmBLdkbGFo3vIq-vy4r64fBSP8cJtHMMqp3ti2Kjt0NAd-XGe0YsBzytxMnpLqGoUva7GEhrzsJihpyE7l_3zqT1h5yqboa8riooyNb_sj7j10jLC8bBz53haCCW9shLXnsSTWnwIJY4maqMm9Hm8koIKUs64ssD4_wOmzkSGBWfVX4WViDJZtzGLNZhzg3VYnuEe3ICXLgvh5Aia2ajJFmAIYFko2sdsU6h-zFQkLWHPA_PyQY6OEVv4K0XRsGcbY42CerGvZePe1XmC53icHSMCjyYzchPu-727s4skll5ITF7lk6SwWhKPC3eCG0QMuTel91raXCuBIMR4Yj5DT-a8qZzw3nJLXPMWAYa1yudbsDAYDtw2MGuc1x5xJ3eyQI2gENOQzosjptakLTiaSrEeNQwbdRZJyH-JvAWnJOevjkSOHRqG7091XGu1TA3vFCJNca6ER5XLlFZSa66k8Dxrwd5US3VcseP6275acEia-_7152x2_h9oF5Y4QqAmIm0PFibvH24fIcxEt4OdtmGx2799uMPvae_65rYdLgQ-AeTG6dA
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6V9AAcEE8RWsAHEBLSil3vetc5INRCSkqbCKFW6m3xE0VqN2mSCvVP8RuZ8XrbIAS3Xr0ra-QZzze2Z74BeJVJhSgvVCIUkWrrqkwGyg-SQWFKhCNjC0f3kONJOTouvpyIkw341dXCUFpl5xODo7YzQ3fk7_KMXgx4XokP8_OEukbR62rXQqM1iwN3-ROPbMv3-59Qv6853xsefRwlsatAYvIqXyWF1ZIoSrgT3CAY5t6U3mtpc60E4qvxROqFTtp5UznhveWWaNQtYqe1yuc47y3YLKiitQebu8PJ12-dBaN4VbZGmFcUFdWGXlk8sfmlZTwABKzI8XwSmohlJe52iWfD-PRKrFA0RkOIsrySglpgroFn6DHwR2C8losW4HHvPtyLcS3baQ3xAWy45iHcXWM7fASnOywksGOYzuZtfQLDkJmFNoHMXjbqbGqWTEWaFDZtzOkFQSsjfvIzytthUxuzm4JB4b-WLYfjz8lqtkDpGFGGtLWYj-H4RtTyBHrNrHFPgVnjvPYY6XInC9QILmIaCohxxtSatA9vu1Ws5y2nR51F2vO_lrwPu7TOVz8SHXcYmC1-1HF31zI1fFCINEVZKQJWLlNaSa25ksLzrA_bnZbq6COW9bVF9-ENae760z-lefb_iV7C7dHR-LA-3J8cbMEdjgFYmw-3Db3V4sI9xwBqpV9Eq2Xw_aY3ym8RwCT6
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3daxQxEB9qBdEH8RNPq-ZBEYSlu8lmN_sgUm2vrbXFBwt9W_MpB-3eeXdF-q_51zmTzbYnom99zS4hZGbym0lmfgPwqlAaUV7qTGoi1TZ1lTU6NFlT2grhyLrS0z3k4VG1d1x-OpEna_BrqIWhtMrhTIwHtZtauiPfFAW9GHBRy82Q0iK-bI_fz35k1EGKXlqHdhq9ihz4i58Yvi3e7W-jrF9zPt75-nEvSx0GMitqscxKZxTRlXAvuUVgFMFWIRjlhNESsdYGIvjCA9sHW3sZguOOKNUd4qhzOgic9wbcrEXdUOCnxruDLuNC62KFOq8sa6oSvdR94vXLqxQKRNQQGKnEdmJFhXavMEpMj7DED0VjNIR4y2slqRnmCozGbgN_uMgrWWkRKMf34G7ycNlWr5L3Yc13D-DOCu_hQzjdYjGVHR12NusrFRg6zyw2DGTuotNnE7tgOhGmsElnT88JZBkxlZ9RBg-buJTnFFUL_3VssXO4my2nc1wdI_KQvirzERxfi1Aew3o37fwTYM76YAL6vNyrEiWCm5jHUmKcMXc2H8HbYRfbWc_u0RaJAP2vLR_BB9rnyx-JmDsOTOff22Tnrcotb0qZ57hW8oW1L7TRyhiulQy8GMHGIKU2nRaL9kq3R_CGJHf16Z-refr_iV7CLTSP9vP-0cEzuM3RE-sT4zZgfTk_98_Rk1qaF1FlGXy7bhv5DezFJ8o
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+complete+process+for+human+dynamics+analysis+including+parameter+identification+and+sEMG-torque+estimation&rft.jtitle=Advances+in+mechanical+engineering&rft.au=Sun%2C+Tianyi&rft.au=Peng+Xinyu&rft.au=Ji+Shuang&rft.au=Chen+Zhenlei&rft.date=2024-09-01&rft.pub=Sage+Publications+Ltd&rft.issn=1687-8132&rft.eissn=1687-8140&rft.volume=16&rft.issue=9&rft_id=info:doi/10.1177%2F16878132241278508&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1687-8132&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1687-8132&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1687-8132&client=summon