Automated explainable wavelet-based sleep scoring system for a population suspected with insomnia, apnea and periodic leg movement

Sleep is an integral and vital component of human life, contributing significantly to overall health and well-being, but a considerable number of people worldwide experience sleep disorders. Sleep disorder diagnosis heavily depends on accurately classifying sleep stages. Traditionally, this classifi...

Full description

Saved in:
Bibliographic Details
Published inMedical engineering & physics Vol. 130; p. 104208
Main Authors Ingle, Manisha, Sharma, Manish, Verma, Shresth, Sharma, Nishant, Bhurane, Ankit, Rajendra Acharya, U.
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 01.08.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Sleep is an integral and vital component of human life, contributing significantly to overall health and well-being, but a considerable number of people worldwide experience sleep disorders. Sleep disorder diagnosis heavily depends on accurately classifying sleep stages. Traditionally, this classification has been performed manually by trained sleep technologists that visually inspect polysomnography records. However, in order to mitigate the labor-intensive nature of this process, automated approaches have been developed. These automated methods aim to streamline and facilitate sleep stage classification. This study aims to classify sleep stages in a dataset comprising subjects with insomnia, PLM, and sleep apnea. The dataset consists of PSG recordings from the multi-ethnic study of atherosclerosis (MESA) cohort of the national sleep research resource (NSRR), including 2056 subjects. Among these subjects, 130 have insomnia, 39 suffer from PLM, 156 have sleep apnea, and the remaining 1731 are classified as good sleepers. This study proposes an automated computerized technique to classify sleep stages, developing a machine-learning model with explainable artificial intelligence (XAI) capabilities using wavelet-based Hjorth parameters. An optimal biorthogonal wavelet filter bank (BOWFB) has been employed to extract subbands (SBs) from 30 seconds of electroencephalogram (EEG) epochs. Three EEG channels, namely: Fz_Cz, Cz_Oz, and C4_M1, are employed to yield an optimum outcome. The Hjorth parameters extracted from SBs were then fed to different machine learning algorithms. To gain an understanding of the model, in this study, we used SHAP (Shapley Additive explanations) method. For subjects suffering from the aforementioned diseases, the model utilized features derived from all channels and employed an ensembled bagged trees (EnBT) classifier. The highest accuracy of 86.8%, 87.3%, 85.0%, 84.5%, and 83.8% is obtained for the insomniac, PLM, apniac, good sleepers and complete datasets, respectively. Using these techniques and datasets, the study aims to enhance sleep stage classification accuracy and improve understanding of sleep disorders such as insomnia, PLM, and sleep apnea. •Automated sleep scoring system using multi-ethnic and diverse large database called MESA.•Model developed using subjects suffering from sleep disorders such as insomnia, PLM, and sleep apnea.•The system provides transparent explanations for assigned sleep stages using Explainable AI using.•Developed a novel biorthogonal wavelet-based system to accurately identify sleep stages.•The developed model is superior to existing state-of-art techniques.
AbstractList Sleep is an integral and vital component of human life, contributing significantly to overall health and well-being, but a considerable number of people worldwide experience sleep disorders. Sleep disorder diagnosis heavily depends on accurately classifying sleep stages. Traditionally, this classification has been performed manually by trained sleep technologists that visually inspect polysomnography records. However, in order to mitigate the labor-intensive nature of this process, automated approaches have been developed. These automated methods aim to streamline and facilitate sleep stage classification. This study aims to classify sleep stages in a dataset comprising subjects with insomnia, PLM, and sleep apnea. The dataset consists of PSG recordings from the multi-ethnic study of atherosclerosis (MESA) cohort of the national sleep research resource (NSRR), including 2056 subjects. Among these subjects, 130 have insomnia, 39 suffer from PLM, 156 have sleep apnea, and the remaining 1731 are classified as good sleepers. This study proposes an automated computerized technique to classify sleep stages, developing a machine-learning model with explainable artificial intelligence (XAI) capabilities using wavelet-based Hjorth parameters. An optimal biorthogonal wavelet filter bank (BOWFB) has been employed to extract subbands (SBs) from 30 seconds of electroencephalogram (EEG) epochs. Three EEG channels, namely: Fz_Cz, Cz_Oz, and C4_M1, are employed to yield an optimum outcome. The Hjorth parameters extracted from SBs were then fed to different machine learning algorithms. To gain an understanding of the model, in this study, we used SHAP (Shapley Additive explanations) method. For subjects suffering from the aforementioned diseases, the model utilized features derived from all channels and employed an ensembled bagged trees (EnBT) classifier. The highest accuracy of 86.8%, 87.3%, 85.0%, 84.5%, and 83.8% is obtained for the insomniac, PLM, apniac, good sleepers and complete datasets, respectively. Using these techniques and datasets, the study aims to enhance sleep stage classification accuracy and improve understanding of sleep disorders such as insomnia, PLM, and sleep apnea. •Automated sleep scoring system using multi-ethnic and diverse large database called MESA.•Model developed using subjects suffering from sleep disorders such as insomnia, PLM, and sleep apnea.•The system provides transparent explanations for assigned sleep stages using Explainable AI using.•Developed a novel biorthogonal wavelet-based system to accurately identify sleep stages.•The developed model is superior to existing state-of-art techniques.
Sleep is an integral and vital component of human life, contributing significantly to overall health and well-being, but a considerable number of people worldwide experience sleep disorders. Sleep disorder diagnosis heavily depends on accurately classifying sleep stages. Traditionally, this classification has been performed manually by trained sleep technologists that visually inspect polysomnography records. However, in order to mitigate the labor-intensive nature of this process, automated approaches have been developed. These automated methods aim to streamline and facilitate sleep stage classification. This study aims to classify sleep stages in a dataset comprising subjects with insomnia, PLM, and sleep apnea. The dataset consists of PSG recordings from the multi-ethnic study of atherosclerosis (MESA) cohort of the national sleep research resource (NSRR), including 2056 subjects. Among these subjects, 130 have insomnia, 39 suffer from PLM, 156 have sleep apnea, and the remaining 1731 are classified as good sleepers. This study proposes an automated computerized technique to classify sleep stages, developing a machine-learning model with explainable artificial intelligence (XAI) capabilities using wavelet-based Hjorth parameters. An optimal biorthogonal wavelet filter bank (BOWFB) has been employed to extract subbands (SBs) from 30 seconds of electroencephalogram (EEG) epochs. Three EEG channels, namely: Fz_Cz, Cz_Oz, and C4_M1, are employed to yield an optimum outcome. The Hjorth parameters extracted from SBs were then fed to different machine learning algorithms. To gain an understanding of the model, in this study, we used SHAP (Shapley Additive explanations) method. For subjects suffering from the aforementioned diseases, the model utilized features derived from all channels and employed an ensembled bagged trees (EnBT) classifier. The highest accuracy of 86.8%, 87.3%, 85.0%, 84.5%, and 83.8% is obtained for the insomniac, PLM, apniac, good sleepers and complete datasets, respectively. Using these techniques and datasets, the study aims to enhance sleep stage classification accuracy and improve understanding of sleep disorders such as insomnia, PLM, and sleep apnea.Sleep is an integral and vital component of human life, contributing significantly to overall health and well-being, but a considerable number of people worldwide experience sleep disorders. Sleep disorder diagnosis heavily depends on accurately classifying sleep stages. Traditionally, this classification has been performed manually by trained sleep technologists that visually inspect polysomnography records. However, in order to mitigate the labor-intensive nature of this process, automated approaches have been developed. These automated methods aim to streamline and facilitate sleep stage classification. This study aims to classify sleep stages in a dataset comprising subjects with insomnia, PLM, and sleep apnea. The dataset consists of PSG recordings from the multi-ethnic study of atherosclerosis (MESA) cohort of the national sleep research resource (NSRR), including 2056 subjects. Among these subjects, 130 have insomnia, 39 suffer from PLM, 156 have sleep apnea, and the remaining 1731 are classified as good sleepers. This study proposes an automated computerized technique to classify sleep stages, developing a machine-learning model with explainable artificial intelligence (XAI) capabilities using wavelet-based Hjorth parameters. An optimal biorthogonal wavelet filter bank (BOWFB) has been employed to extract subbands (SBs) from 30 seconds of electroencephalogram (EEG) epochs. Three EEG channels, namely: Fz_Cz, Cz_Oz, and C4_M1, are employed to yield an optimum outcome. The Hjorth parameters extracted from SBs were then fed to different machine learning algorithms. To gain an understanding of the model, in this study, we used SHAP (Shapley Additive explanations) method. For subjects suffering from the aforementioned diseases, the model utilized features derived from all channels and employed an ensembled bagged trees (EnBT) classifier. The highest accuracy of 86.8%, 87.3%, 85.0%, 84.5%, and 83.8% is obtained for the insomniac, PLM, apniac, good sleepers and complete datasets, respectively. Using these techniques and datasets, the study aims to enhance sleep stage classification accuracy and improve understanding of sleep disorders such as insomnia, PLM, and sleep apnea.
Sleep is an integral and vital component of human life, contributing significantly to overall health and well-being, but a considerable number of people worldwide experience sleep disorders. Sleep disorder diagnosis heavily depends on accurately classifying sleep stages. Traditionally, this classification has been performed manually by trained sleep technologists that visually inspect polysomnography records. However, in order to mitigate the labor-intensive nature of this process, automated approaches have been developed. These automated methods aim to streamline and facilitate sleep stage classification. This study aims to classify sleep stages in a dataset comprising subjects with insomnia, PLM, and sleep apnea. The dataset consists of PSG recordings from the multi-ethnic study of atherosclerosis (MESA) cohort of the national sleep research resource (NSRR), including 2056 subjects. Among these subjects, 130 have insomnia, 39 suffer from PLM, 156 have sleep apnea, and the remaining 1731 are classified as good sleepers. This study proposes an automated computerized technique to classify sleep stages, developing a machine-learning model with explainable artificial intelligence (XAI) capabilities using wavelet-based Hjorth parameters. An optimal biorthogonal wavelet filter bank (BOWFB) has been employed to extract subbands (SBs) from 30 seconds of electroencephalogram (EEG) epochs. Three EEG channels, namely: Fz_Cz, Cz_Oz, and C4_M1, are employed to yield an optimum outcome. The Hjorth parameters extracted from SBs were then fed to different machine learning algorithms. To gain an understanding of the model, in this study, we used SHAP (Shapley Additive explanations) method. For subjects suffering from the aforementioned diseases, the model utilized features derived from all channels and employed an ensembled bagged trees (EnBT) classifier. The highest accuracy of 86.8%, 87.3%, 85.0%, 84.5%, and 83.8% is obtained for the insomniac, PLM, apniac, good sleepers and complete datasets, respectively. Using these techniques and datasets, the study aims to enhance sleep stage classification accuracy and improve understanding of sleep disorders such as insomnia, PLM, and sleep apnea.
ArticleNumber 104208
Author Sharma, Manish
Verma, Shresth
Sharma, Nishant
Rajendra Acharya, U.
Ingle, Manisha
Bhurane, Ankit
Author_xml – sequence: 1
  givenname: Manisha
  surname: Ingle
  fullname: Ingle, Manisha
  email: dt22ece003@students.vnit.ac.in
  organization: Department of Electronics and Communication Engineering, Visvesvaraya National Institute of Technology, Nagpur-440010, Maharashtra, India
– sequence: 2
  givenname: Manish
  orcidid: 0000-0002-2266-5332
  surname: Sharma
  fullname: Sharma, Manish
  email: manishsharma.iitb@gmail.com
  organization: Department of Electrical and Computer Science Engineering, and Centre of Advanced Defence Technology (CADT), Institute of Infrastructure, Technology, Research and Management (IITRAM), Ahmedabad-380026, Gujrat, India
– sequence: 3
  givenname: Shresth
  surname: Verma
  fullname: Verma, Shresth
  email: shresth.verma.19e@iitram.ac.in
  organization: Department of Electrical and Computer Science Engineering, and Centre of Advanced Defence Technology (CADT), Institute of Infrastructure, Technology, Research and Management (IITRAM), Ahmedabad-380026, Gujrat, India
– sequence: 4
  givenname: Nishant
  surname: Sharma
  fullname: Sharma, Nishant
  email: nishant.sharma.21me@iitram.ac.in
  organization: Department of Electrical and Computer Science Engineering, and Centre of Advanced Defence Technology (CADT), Institute of Infrastructure, Technology, Research and Management (IITRAM), Ahmedabad-380026, Gujrat, India
– sequence: 5
  givenname: Ankit
  orcidid: 0000-0001-8181-7685
  surname: Bhurane
  fullname: Bhurane, Ankit
  email: ankitbhurane@ece.vnit.ac.in
  organization: Department of Electronics and Communication Engineering, Visvesvaraya National Institute of Technology, Nagpur-440010, Maharashtra, India
– sequence: 6
  givenname: U.
  surname: Rajendra Acharya
  fullname: Rajendra Acharya, U.
  email: Rajendra.Acharya@usq.edu.au
  organization: School of Mathematics, Physics and Computing, University of Southern Queensland, Springfield, Australia
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39160031$$D View this record in MEDLINE/PubMed
BookMark eNqNkU1vEzEQhi1URD_gL4CPHNgwu96vnFBUQYtUqZf2bI3tSergtY29m5Irv5yNUnroqSdb9jOPNO97zk588MTYpxIWJZTt1-1iIEN-Ex_2iwqqen6tK-jfsLOy70RRg4CT-S4aKOpGiFN2nvMWAOq6Fe_YqViWLYAoz9jf1TSGAUcynP5Eh9ajcsQfcUeOxkJhnn-yI4o865Cs3_C8zyMNfB0SRx5DnByONniepxxJH0yPdnzg1ucweItfOEZPyNEbHinZYKzmjjZ8CDsayI_v2ds1ukwfns4Ldv_j-93ldXFze_XzcnVTaNGJsaiN6kypSfeN1sa0rdHYouhRKdDQ6kaRMqapoNNaUdOURIhQ9Y1q-2UtKnHBPh-9MYXfE-VRDjZrcg49hSlLAcu6r2DZtzP68Qmd1By0jMkOmPbyf24z0B0BnULOidbPSAny0JDcyueG5KEheWxonlwdJ2ledWcpyawteU3Gpjk9aYJ9hePbC4d21luN7hftX2X4B7EZts0
Cites_doi 10.1016/j.gheart.2016.08.004
10.1378/chest.14-0970
10.1371/journal.pone.0216456
10.1109/TPAMI.2007.250609
10.1016/j.isci.2021.102461
10.1016/j.medengphy.2023.104028
10.1109/TBME.2018.2872652
10.3390/electronics9030512
10.5664/jcsm.4758
10.1016/0013-4694(70)90143-4
10.1016/j.imu.2022.101026
10.3390/ijerph18063087
10.1007/s10115-007-0114-2
10.1016/j.compbiomed.2022.105594
10.1007/s13369-019-04197-8
10.1016/B978-0-444-53702-7.00007-5
10.12720/ijeee.2.2.106-110
10.1007/s00034-015-0228-9
10.1016/j.procs.2017.10.026
10.3390/electronics10131531
10.1109/TLA.2024.10431420
10.1038/s41746-019-0126-9
10.3390/ijerph19127176
10.1109/ACCESS.2023.3330901
10.1016/j.medengphy.2023.103956
10.1016/j.compbiomed.2019.01.013
10.1016/j.compbiomed.2018.04.025
10.1001/jama.2016.7653
10.1088/1361-6579/ac98f0
10.1007/BF00994018
10.1016/j.engappai.2023.106903
10.1016/j.compbiomed.2019.103375
10.1016/j.compbiomed.2022.105364
10.1016/j.compbiomed.2021.104246
10.1109/TNSRE.2017.2721116
10.1016/j.compbiomed.2018.07.005
10.3389/fncom.2018.00085
10.1016/j.compbiomed.2022.105224
10.1002/ima.22980
10.1016/j.cmpb.2022.107161
10.1016/j.cmpb.2016.12.015
10.1093/sleep/zsz180
10.1038/s41746-021-00440-5
10.1145/355744.355745
10.1109/TNSRE.2022.3192988
10.1016/j.cmpb.2023.107471
10.1016/j.compbiomed.2020.103691
10.1109/TCSII.2004.831430
10.1109/TNSRE.2020.3011181
ContentType Journal Article
Copyright 2024 IPEM
Copyright © 2024 IPEM. Published by Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2024 IPEM
– notice: Copyright © 2024 IPEM. Published by Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.medengphy.2024.104208
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
Chemistry
EISSN 1873-4030
ExternalDocumentID 39160031
10_1016_j_medengphy_2024_104208
S1350453324001097
Genre Journal Article
GroupedDBID ---
--K
--M
-~X
.1-
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29M
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JM
9JN
9M8
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXUO
AAYWO
ABBQC
ABFNM
ABJNI
ABMAC
ABMZM
ABWVN
ABXDB
ACDAQ
ACGFS
ACIEU
ACIUM
ACNNM
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HEE
HMK
HMO
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M28
M31
M41
MO0
N9A
O-L
O9-
OAUVE
OI~
OU0
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SAE
SDF
SDG
SDP
SEL
SES
SET
SEW
SPC
SPCBC
SSH
SST
SSZ
T5K
TN5
WUQ
YNT
YQT
Z5R
ZGI
ZY4
~G-
AACTN
ABTAH
AFCTW
AFKWA
AJOXV
AMFUW
RIG
AAXKI
AAYXX
AGRNS
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c373t-4db7d1cec85ccdd66dca6a38abb0c06c5bebdd5207ccbe551eeaa0285b6894323
IEDL.DBID .~1
ISSN 1350-4533
1873-4030
IngestDate Mon Jul 21 10:20:05 EDT 2025
Thu Apr 03 06:57:14 EDT 2025
Tue Jul 01 04:25:00 EDT 2025
Sat Aug 24 15:41:26 EDT 2024
Tue Aug 26 16:31:47 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License Copyright © 2024 IPEM. Published by Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c373t-4db7d1cec85ccdd66dca6a38abb0c06c5bebdd5207ccbe551eeaa0285b6894323
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-8181-7685
0000-0002-2266-5332
PMID 39160031
PQID 3094820986
PQPubID 23479
ParticipantIDs proquest_miscellaneous_3094820986
pubmed_primary_39160031
crossref_primary_10_1016_j_medengphy_2024_104208
elsevier_sciencedirect_doi_10_1016_j_medengphy_2024_104208
elsevier_clinicalkey_doi_10_1016_j_medengphy_2024_104208
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate August 2024
2024-08-00
20240801
PublicationDateYYYYMMDD 2024-08-01
PublicationDate_xml – month: 08
  year: 2024
  text: August 2024
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Medical engineering & physics
PublicationTitleAlternate Med Eng Phys
PublicationYear 2024
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Sharma, Makwana, Chad, Acharya (br0180) 2023
Dakhale, Sharma, Arif, Asthana, Bhurane, Kothari (br0190) 2023; 112
Murarka, Wadichar, Bhurane, Sharma, Acharya (br0070) 2022; 146
Sharma, Sharma, Telangore, Acharya (br0410) 2024
Sharma, Kumbhani, Tiwari, Kumar, Acharya (br0140) 2022; 144
Phan, Andreotti, Cooray, Chén, De Vos (br0270) 2018; 66
Rizal, Hadiyoso (br0450) 2015
Sharma, Lodhi, Yadav, Acharya (br0420) 2024; 34
Sharma, Kolte, Patwardhan, Gadre (br0390) 2010
Wu, Kumar, Quinlan, Ghosh, Yang, Motoda (br0470) 2008; 14
Guillot, Sauvet, During, Thorey (br0640) 2020; 28
Sharma, Yadav, Tiwari, Karabatak, Yildirim, Acharya (br0200) 2022; 19
Michielli, Acharya, Molinari (br0220) 2019; 106
Sharma, Bhati, Pillai, Pachori, Gadre (br0550) 2016; 35
Palotti, Mall, Aupetit, Rueschman, Singh, Sathyanarayana (br0320) 2019; 2
Zhou (br0510) 2019
Banfield, Hall, Bowyer, Kegelmeyer (br0540) 2006; 29
Remeseiro, Bolon-Canedo (br0560) 2019; 112
Walker (br0030) 2017
Kim, Lee, Shin (br0630) 2017; 116
Tay, Palaniswami (br0370) 2004; 51
Goshtasbi, Boostani, Sanei (br0300) 2022; 30
Kumar, Kumar, Patel, Sharma, Bajaj, Acharya (br0340) 2024; 22
Lewis (br0480) 1998
Widasari, Tanno, Tamura (br0650) 2020; 9
Supratak, Dong, Wu, Guo (br0230) 2017; 25
Sharma, Goyal, Achuth, Acharya (br0290) 2018; 98
Killgore (br0020) 2010; 185
Sharma, Dhiman, Acharya (br0160) 2021; 131
NSSR (br0350) 2014
Wadichar, Murarka, Shah, Bhurane, Sharma, Mir (br0590) 2023
Mousavi, Afghah, Acharya (br0260) 2019; 14
Ingle, Sharma, Kumar, Kumar, Bhurane, Elphick (br0620) 2023
Oh, Lee, Kim (br0430) 2014; 2
Vapnik (br0460) 2013
Sharma, Anand, Verma, Acharya (br0600) 2023; 126
Sharma, Kumar, Kumar, Tan, Acharya (br0120) 2022
Sharma, Patel, Choudhary, Acharya (br0210) 2020; 45
Sharma, Tiwari, Patel, Acharya (br0150) 2021; 10
Hjorth (br0440) 1970; 29
Kumar, Gupta, Sharma, Bajaj, Acharya (br0610) 2023; 119
Cortes, Vapnik (br0500) 1995; 20
Nohara, Matsumoto, Soejima, Nakashima (br0580) 2021
Sharma, Bhurane, Acharya (br0080) 2022
Strang, Nguyen (br0400) 1996
Panel, Watson, Badr, Belenky, Bliwise, Buxton (br0010) 2015; 11
Dhok, Pimpalkhute, Chandurkar, Bhurane, Sharma, Acharya (br0170) 2020; 119
Tsinalis, Matthews, Guo, Zafeiriou (br0280) 2016
Sharma, Tiwari, Acharya (br0100) 2021; 18
Sharma, Lodhi, Yadav, Sampathila, Swathi, Acharya (br0050) 2023
Li, Jain (br0520) 2009
Berry, Albertario, Harding, Lloyd, Plante, Quan (br0090) 2018
Olson, Bild, Kronmal, Burke (br0360) 2016; 11
Sateia (br0040) 2014; 146
Korkalainen, Aakko, Nikkonen, Kainulainen, Leino, Duce (br0660) 2019; 24
Kwon, Kim, Yeo (br0330) 2021; 24
Loh, Ooi, Seoni, Barua, Molinari, Acharya (br0570) 2022
Perslev, Darkner, Kempfner, Nikolic, Jennum, Igel (br0310) 2021; 4
Sharma, Darji, Thakrar, Acharya (br0110) 2022; 143
Sharma, San Tan, Acharya (br0380) 2018; 102
Walch, Huang, Forger, Goldstein (br0670) 2019; 42
Sharma, Bapodara, Tiwari, Acharya (br0130) 2022; 32
Bresch, Großekathöfer, Garcia-Molina (br0250) 2018; 12
Friedman, Bentley, Finkel (br0530) 1977; 3
Sharma, Lodhi, Yadav, Elphick, Acharya (br0060) 2023
Hassan, Bhuiyan (br0240) 2017; 140
Tolles, Meurer (br0490) 2016; 316
Vapnik (10.1016/j.medengphy.2024.104208_br0460) 2013
Hjorth (10.1016/j.medengphy.2024.104208_br0440) 1970; 29
Sharma (10.1016/j.medengphy.2024.104208_br0110) 2022; 143
Supratak (10.1016/j.medengphy.2024.104208_br0230) 2017; 25
Killgore (10.1016/j.medengphy.2024.104208_br0020) 2010; 185
Tay (10.1016/j.medengphy.2024.104208_br0370) 2004; 51
Strang (10.1016/j.medengphy.2024.104208_br0400) 1996
Palotti (10.1016/j.medengphy.2024.104208_br0320) 2019; 2
Sharma (10.1016/j.medengphy.2024.104208_br0210) 2020; 45
Kumar (10.1016/j.medengphy.2024.104208_br0610) 2023; 119
Walker (10.1016/j.medengphy.2024.104208_br0030) 2017
Sharma (10.1016/j.medengphy.2024.104208_br0380) 2018; 102
Tolles (10.1016/j.medengphy.2024.104208_br0490) 2016; 316
Sharma (10.1016/j.medengphy.2024.104208_br0050) 2023
Banfield (10.1016/j.medengphy.2024.104208_br0540) 2006; 29
Mousavi (10.1016/j.medengphy.2024.104208_br0260) 2019; 14
Sharma (10.1016/j.medengphy.2024.104208_br0200) 2022; 19
Wu (10.1016/j.medengphy.2024.104208_br0470) 2008; 14
Sharma (10.1016/j.medengphy.2024.104208_br0160) 2021; 131
Sharma (10.1016/j.medengphy.2024.104208_br0410) 2024
Panel (10.1016/j.medengphy.2024.104208_br0010) 2015; 11
Phan (10.1016/j.medengphy.2024.104208_br0270) 2018; 66
Kwon (10.1016/j.medengphy.2024.104208_br0330) 2021; 24
Walch (10.1016/j.medengphy.2024.104208_br0670) 2019; 42
Sharma (10.1016/j.medengphy.2024.104208_br0600) 2023; 126
Sharma (10.1016/j.medengphy.2024.104208_br0290) 2018; 98
Sharma (10.1016/j.medengphy.2024.104208_br0180) 2023
Sharma (10.1016/j.medengphy.2024.104208_br0140) 2022; 144
Dhok (10.1016/j.medengphy.2024.104208_br0170) 2020; 119
Sharma (10.1016/j.medengphy.2024.104208_br0120) 2022
Dakhale (10.1016/j.medengphy.2024.104208_br0190) 2023; 112
Kim (10.1016/j.medengphy.2024.104208_br0630) 2017; 116
Rizal (10.1016/j.medengphy.2024.104208_br0450) 2015
Kumar (10.1016/j.medengphy.2024.104208_br0340) 2024; 22
Michielli (10.1016/j.medengphy.2024.104208_br0220) 2019; 106
Wadichar (10.1016/j.medengphy.2024.104208_br0590) 2023
Korkalainen (10.1016/j.medengphy.2024.104208_br0660) 2019; 24
Berry (10.1016/j.medengphy.2024.104208_br0090) 2018
Remeseiro (10.1016/j.medengphy.2024.104208_br0560) 2019; 112
Lewis (10.1016/j.medengphy.2024.104208_br0480) 1998
Cortes (10.1016/j.medengphy.2024.104208_br0500) 1995; 20
Nohara (10.1016/j.medengphy.2024.104208_br0580)
Sharma (10.1016/j.medengphy.2024.104208_br0420) 2024; 34
Sharma (10.1016/j.medengphy.2024.104208_br0550) 2016; 35
Murarka (10.1016/j.medengphy.2024.104208_br0070) 2022; 146
Ingle (10.1016/j.medengphy.2024.104208_br0620) 2023
Sharma (10.1016/j.medengphy.2024.104208_br0150) 2021; 10
Sateia (10.1016/j.medengphy.2024.104208_br0040) 2014; 146
Sharma (10.1016/j.medengphy.2024.104208_br0060) 2023
Sharma (10.1016/j.medengphy.2024.104208_br0130) 2022; 32
Goshtasbi (10.1016/j.medengphy.2024.104208_br0300) 2022; 30
Guillot (10.1016/j.medengphy.2024.104208_br0640) 2020; 28
Zhou (10.1016/j.medengphy.2024.104208_br0510) 2019
Li (10.1016/j.medengphy.2024.104208_br0520) 2009
Friedman (10.1016/j.medengphy.2024.104208_br0530) 1977; 3
Bresch (10.1016/j.medengphy.2024.104208_br0250) 2018; 12
Sharma (10.1016/j.medengphy.2024.104208_br0390) 2010
Sharma (10.1016/j.medengphy.2024.104208_br0100) 2021; 18
Tsinalis (10.1016/j.medengphy.2024.104208_br0280)
NSSR (10.1016/j.medengphy.2024.104208_br0350)
Hassan (10.1016/j.medengphy.2024.104208_br0240) 2017; 140
Olson (10.1016/j.medengphy.2024.104208_br0360) 2016; 11
Oh (10.1016/j.medengphy.2024.104208_br0430) 2014; 2
Sharma (10.1016/j.medengphy.2024.104208_br0080) 2022
Perslev (10.1016/j.medengphy.2024.104208_br0310) 2021; 4
Loh (10.1016/j.medengphy.2024.104208_br0570) 2022
Widasari (10.1016/j.medengphy.2024.104208_br0650) 2020; 9
References_xml – year: 2017
  ident: br0030
  article-title: Why we sleep: unlocking the power of sleep and dreams
– volume: 102
  start-page: 341
  year: 2018
  end-page: 356
  ident: br0380
  article-title: A novel automated diagnostic system for classification of myocardial infarction ecg signals using an optimal biorthogonal filter bank
  publication-title: Comput Biol Med
– year: 2018
  ident: br0090
  article-title: The AASM manual for the scoring of sleep and associated events: rules, terminology and technical specifications
– volume: 4
  start-page: 1
  year: 2021
  end-page: 12
  ident: br0310
  article-title: U-sleep: resilient high-frequency sleep staging
  publication-title: npj Digit Med
– volume: 66
  start-page: 1285
  year: 2018
  end-page: 1296
  ident: br0270
  article-title: Joint classification and prediction cnn framework for automatic sleep stage classification
  publication-title: IEEE Trans Biomed Eng
– year: 2023
  ident: br0620
  article-title: A systematic review on automatic identification of insomnia
  publication-title: Physiol Meas
– volume: 10
  start-page: 1531
  year: 2021
  ident: br0150
  article-title: Automated identification of sleep disorder types using triplet half-band filter and ensemble machine learning techniques with eeg signals
  publication-title: Electronics
– volume: 14
  start-page: 1
  year: 2008
  end-page: 37
  ident: br0470
  article-title: Top 10 algorithms in data mining
  publication-title: Knowl Inf Syst
– volume: 119
  year: 2020
  ident: br0170
  article-title: Automated phase classification in cyclic alternating patterns in sleep stages using Wigner–Ville distribution based features
  publication-title: Comput Biol Med
– volume: 126
  year: 2023
  ident: br0600
  article-title: Automated insomnia detection using wavelet scattering network technique with single-channel eeg signals
  publication-title: Eng Appl Artif Intell
– year: 2022
  ident: br0120
  article-title: Pulse oximetry spo 2 signal for automated identification of sleep apnea: a review and future trends
  publication-title: Physiol Meas
– year: 2023
  ident: br0590
  article-title: A hierarchical approach for the diagnosis of sleep disorders using convolutional recurrent neural network
  publication-title: IEEE Access
– volume: 2
  start-page: 106
  year: 2014
  end-page: 110
  ident: br0430
  article-title: A novel eeg feature extraction method using hjorth parameter
  publication-title: Int J Electron Electr Eng
– volume: 116
  start-page: 435
  year: 2017
  end-page: 440
  ident: br0630
  article-title: Sleep stage classification based on noise-reduced fractal property of heart rate variability
  publication-title: Proc Comput Sci
– start-page: 87
  year: 2015
  end-page: 90
  ident: br0450
  article-title: Ecg signal classification using hjorth descriptor
  publication-title: 2015 international conference on automation, cognitive science, optics, micro electro-mechanical system, and information technology (ICACOMIT)
– volume: 12
  start-page: 85
  year: 2018
  ident: br0250
  article-title: Recurrent deep neural networks for real-time sleep stage classification from single channel eeg
  publication-title: Front Comput Neurosci
– year: 2013
  ident: br0460
  article-title: The nature of statistical learning theory
– volume: 19
  start-page: 7176
  year: 2022
  ident: br0200
  article-title: An automated wavelet-based sleep scoring model using eeg, emg, and eog signals with more than 8000 subjects
  publication-title: Int J Environ Res Public Health
– volume: 20
  start-page: 273
  year: 1995
  end-page: 297
  ident: br0500
  article-title: Support-vector networks
  publication-title: Mach Learn
– volume: 11
  start-page: 591
  year: 2015
  end-page: 592
  ident: br0010
  article-title: Recommended amount of sleep for a healthy adult: a joint consensus statement of the American academy of sleep medicine and sleep research society
  publication-title: J Clin Sleep Med
– start-page: 4
  year: 1998
  end-page: 15
  ident: br0480
  article-title: Naive (Bayes) at forty: the independence assumption in information retrieval
  publication-title: European conference on machine learning
– volume: 9
  start-page: 512
  year: 2020
  ident: br0650
  article-title: Automatic sleep disorders classification using ensemble of bagged tree based on sleep quality features
  publication-title: Electronics
– volume: 2
  start-page: 50
  year: 2019
  ident: br0320
  article-title: Benchmark on a large cohort for sleep-wake classification with machine learning techniques
  publication-title: npj Digit Med
– year: 1996
  ident: br0400
  article-title: Wavelets and filter banks
– start-page: 1
  year: 2024
  end-page: 18
  ident: br0410
  article-title: Automated accurate insomnia detection system using wavelet scattering method using ecg signals
  publication-title: Appl Intell
– volume: 51
  start-page: 378
  year: 2004
  end-page: 383
  ident: br0370
  article-title: A novel approach to the design of the class of triplet halfband filterbanks
  publication-title: IEEE Trans Circuits Syst II, Express Briefs
– volume: 34
  year: 2024
  ident: br0420
  article-title: Sleep disorder identification using wavelet scattering on ecg signals
  publication-title: Int J Imaging Syst Technol
– volume: 29
  start-page: 306
  year: 1970
  end-page: 310
  ident: br0440
  article-title: Eeg analysis based on time domain properties
  publication-title: Electroencephalogr Clin Neurophysiol
– volume: 140
  start-page: 201
  year: 2017
  end-page: 210
  ident: br0240
  article-title: Automated identification of sleep states from eeg signals by means of ensemble empirical mode decomposition and random under sampling boosting
  publication-title: Comput Methods Programs Biomed
– start-page: 1
  year: 2023
  end-page: 19
  ident: br0180
  article-title: A novel automated robust dual-channel eeg-based sleep scoring system using optimal half-band pair linear-phase biorthogonal wavelet filter bank
  publication-title: Appl Intell
– volume: 25
  start-page: 1998
  year: 2017
  end-page: 2008
  ident: br0230
  article-title: Deepsleepnet: a model for automatic sleep stage scoring based on raw single-channel eeg
  publication-title: IEEE Trans Neural Syst Rehabil Eng
– volume: 144
  year: 2022
  ident: br0140
  article-title: Automated detection of obstructive sleep apnea in more than 8000 subjects using frequency optimized orthogonal wavelet filter bank with respiratory and oximetry signals
  publication-title: Comput Biol Med
– volume: 32
  year: 2022
  ident: br0130
  article-title: Automated sleep apnea detection in pregnant women using wavelet-based features
  publication-title: Inform Med Unlocked
– volume: 112
  year: 2019
  ident: br0560
  article-title: A review of feature selection methods in medical applications
  publication-title: Comput Biol Med
– year: 2019
  ident: br0510
  article-title: Ensemble methods: foundations and algorithms
– year: 2022
  ident: br0080
  article-title: An expert system for automated classification of phases in cyclic alternating patterns of sleep using optimal wavelet-based entropy features
  publication-title: Expert Syst
– volume: 30
  start-page: 2088
  year: 2022
  end-page: 2096
  ident: br0300
  article-title: Sleepfcn: a fully convolutional deep learning framework for sleep stage classification using single-channel electroencephalograms
  publication-title: IEEE Trans Neural Syst Rehabil Eng
– year: 2022
  ident: br0570
  article-title: Application of explainable artificial intelligence for healthcare: a systematic review of the last decade (2011–2022)
  publication-title: Comput Methods Programs Biomed
– year: 2016
  ident: br0280
  article-title: Automatic sleep stage scoring with single-channel eeg using convolutional neural networks
– volume: 11
  start-page: 269
  year: 2016
  end-page: 274
  ident: br0360
  article-title: Legacy of mesa
  publication-title: Glob Heart
– volume: 35
  start-page: 3716
  year: 2016
  end-page: 3733
  ident: br0550
  article-title: Design of time–frequency localized filter banks: transforming non-convex problem into convex via semidefinite relaxation technique
  publication-title: Circuits Syst Signal Process
– volume: 22
  start-page: 186
  year: 2024
  end-page: 194
  ident: br0340
  article-title: Time frequency distribution and deep neural network for automated identification of insomnia using single channel EEG-signals
  publication-title: IEEE Latin Amer Trans
– year: 2023
  ident: br0060
  article-title: Computerized detection of cyclic alternating patterns of sleep: a new paradigm, future scope and challenges
  publication-title: Comput Methods Programs Biomed
– volume: 14
  year: 2019
  ident: br0260
  article-title: Sleepeegnet: automated sleep stage scoring with sequence to sequence deep learning approach
  publication-title: PLoS ONE
– volume: 119
  year: 2023
  ident: br0610
  article-title: Insomnet: automated insomnia detection using scalogram and deep neural networks with ecg signals
  publication-title: Med Eng Phys
– volume: 42
  year: 2019
  ident: br0670
  article-title: Sleep stage prediction with raw acceleration and photoplethysmography heart rate data derived from a consumer wearable device
  publication-title: Sleep
– volume: 146
  start-page: 1387
  year: 2014
  end-page: 1394
  ident: br0040
  article-title: International classification of sleep disorders
  publication-title: Chest
– volume: 45
  start-page: 2531
  year: 2020
  end-page: 2544
  ident: br0210
  article-title: Automated detection of sleep stages using energy-localized orthogonal wavelet filter banks
  publication-title: Arab J Sci Eng
– volume: 106
  start-page: 71
  year: 2019
  end-page: 81
  ident: br0220
  article-title: Cascaded lstm recurrent neural network for automated sleep stage classification using single-channel eeg signals
  publication-title: Comput Biol Med
– volume: 18
  start-page: 3087
  year: 2021
  ident: br0100
  article-title: Automatic sleep-stage scoring in healthy and sleep disorder patients using optimal wavelet filter bank technique with eeg signals
  publication-title: Int J Environ Res Public Health
– year: 2023
  ident: br0050
  article-title: Automated explainable detection of cyclic alternating pattern (cap) phases and sub-phases using wavelet-based single-channel eeg signals
  publication-title: IEEE Access
– volume: 112
  year: 2023
  ident: br0190
  article-title: An automatic sleep-scoring system in elderly women with osteoporosis fractures using frequency localized finite orthogonal quadrature Fejer Korovkin kernels
  publication-title: Med Eng Phys
– volume: 24
  start-page: 2073
  year: 2019
  end-page: 2081
  ident: br0660
  article-title: Accurate deep learning-based sleep staging in a clinical population with suspected obstructive sleep apnea
  publication-title: IEEE J Biomed Health Inform
– volume: 143
  year: 2022
  ident: br0110
  article-title: Automated identification of sleep disorders using wavelet-based features extracted from electrooculogram and electromyogram signals
  publication-title: Comput Biol Med
– start-page: 1
  year: 2010
  end-page: 5
  ident: br0390
  article-title: Time-frequency localization optimized biorthogonal wavelets
  publication-title: 2010 international conference on signal processing and communications (SPCOM)
– volume: 24
  year: 2021
  ident: br0330
  article-title: Recent advances in wearable sensors and portable electronics for sleep monitoring
  publication-title: iScience
– volume: 3
  start-page: 209
  year: 1977
  end-page: 226
  ident: br0530
  article-title: An algorithm for finding best matches in logarithmic expected time
  publication-title: ACM Trans Math Softw
– volume: 316
  start-page: 533
  year: 2016
  end-page: 534
  ident: br0490
  article-title: Logistic regression: relating patient characteristics to outcomes
  publication-title: JAMA
– volume: 98
  start-page: 58
  year: 2018
  end-page: 75
  ident: br0290
  article-title: An accurate sleep stages classification system using a new class of optimally time-frequency localized three-band wavelet filter bank
  publication-title: Comput Biol Med
– year: 2014
  ident: br0350
  article-title: Mesa exam 5 sleep data documentation guide
– volume: 28
  start-page: 1955
  year: 2020
  end-page: 1965
  ident: br0640
  article-title: Dreem open datasets: multi-scored sleep datasets to compare human and automated sleep staging
  publication-title: IEEE Trans Neural Syst Rehabil Eng
– year: 2021
  ident: br0580
  article-title: Explanation of machine learning models using Shapley additive explanation and application for real data in hospital
– volume: 185
  start-page: 105
  year: 2010
  end-page: 129
  ident: br0020
  article-title: Effects of sleep deprivation on cognition
  publication-title: Prog Brain Res
– volume: 29
  start-page: 173
  year: 2006
  end-page: 180
  ident: br0540
  article-title: A comparison of decision tree ensemble creation techniques
  publication-title: IEEE Trans Pattern Anal Mach Intell
– volume: 146
  year: 2022
  ident: br0070
  article-title: Automated classification of cyclic alternating pattern sleep phases in healthy and sleep-disordered subjects using convolutional neural network
  publication-title: Comput Biol Med
– start-page: 899
  year: 2009
  ident: br0520
  article-title: Lda (linear discriminant analysis), Encyclopedia of Biometrics
– volume: 131
  year: 2021
  ident: br0160
  article-title: Automatic identification of insomnia using optimal antisymmetric biorthogonal wavelet filter bank with ecg signals
  publication-title: Comput Biol Med
– volume: 11
  start-page: 269
  issue: 3
  year: 2016
  ident: 10.1016/j.medengphy.2024.104208_br0360
  article-title: Legacy of mesa
  publication-title: Glob Heart
  doi: 10.1016/j.gheart.2016.08.004
– volume: 146
  start-page: 1387
  issue: 5
  year: 2014
  ident: 10.1016/j.medengphy.2024.104208_br0040
  article-title: International classification of sleep disorders
  publication-title: Chest
  doi: 10.1378/chest.14-0970
– volume: 14
  issue: 5
  year: 2019
  ident: 10.1016/j.medengphy.2024.104208_br0260
  article-title: Sleepeegnet: automated sleep stage scoring with sequence to sequence deep learning approach
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0216456
– start-page: 4
  year: 1998
  ident: 10.1016/j.medengphy.2024.104208_br0480
  article-title: Naive (Bayes) at forty: the independence assumption in information retrieval
– volume: 29
  start-page: 173
  issue: 1
  year: 2006
  ident: 10.1016/j.medengphy.2024.104208_br0540
  article-title: A comparison of decision tree ensemble creation techniques
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2007.250609
– year: 2023
  ident: 10.1016/j.medengphy.2024.104208_br0620
  article-title: A systematic review on automatic identification of insomnia
  publication-title: Physiol Meas
– year: 2022
  ident: 10.1016/j.medengphy.2024.104208_br0080
  article-title: An expert system for automated classification of phases in cyclic alternating patterns of sleep using optimal wavelet-based entropy features
  publication-title: Expert Syst
– volume: 24
  issue: 5
  year: 2021
  ident: 10.1016/j.medengphy.2024.104208_br0330
  article-title: Recent advances in wearable sensors and portable electronics for sleep monitoring
  publication-title: iScience
  doi: 10.1016/j.isci.2021.102461
– volume: 119
  year: 2023
  ident: 10.1016/j.medengphy.2024.104208_br0610
  article-title: Insomnet: automated insomnia detection using scalogram and deep neural networks with ecg signals
  publication-title: Med Eng Phys
  doi: 10.1016/j.medengphy.2023.104028
– volume: 66
  start-page: 1285
  issue: 5
  year: 2018
  ident: 10.1016/j.medengphy.2024.104208_br0270
  article-title: Joint classification and prediction cnn framework for automatic sleep stage classification
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2018.2872652
– volume: 9
  start-page: 512
  issue: 3
  year: 2020
  ident: 10.1016/j.medengphy.2024.104208_br0650
  article-title: Automatic sleep disorders classification using ensemble of bagged tree based on sleep quality features
  publication-title: Electronics
  doi: 10.3390/electronics9030512
– volume: 11
  start-page: 591
  issue: 6
  year: 2015
  ident: 10.1016/j.medengphy.2024.104208_br0010
  article-title: Recommended amount of sleep for a healthy adult: a joint consensus statement of the American academy of sleep medicine and sleep research society
  publication-title: J Clin Sleep Med
  doi: 10.5664/jcsm.4758
– volume: 29
  start-page: 306
  issue: 3
  year: 1970
  ident: 10.1016/j.medengphy.2024.104208_br0440
  article-title: Eeg analysis based on time domain properties
  publication-title: Electroencephalogr Clin Neurophysiol
  doi: 10.1016/0013-4694(70)90143-4
– start-page: 1
  year: 2024
  ident: 10.1016/j.medengphy.2024.104208_br0410
  article-title: Automated accurate insomnia detection system using wavelet scattering method using ecg signals
  publication-title: Appl Intell
– start-page: 1
  year: 2010
  ident: 10.1016/j.medengphy.2024.104208_br0390
  article-title: Time-frequency localization optimized biorthogonal wavelets
– volume: 32
  year: 2022
  ident: 10.1016/j.medengphy.2024.104208_br0130
  article-title: Automated sleep apnea detection in pregnant women using wavelet-based features
  publication-title: Inform Med Unlocked
  doi: 10.1016/j.imu.2022.101026
– volume: 18
  start-page: 3087
  issue: 6
  year: 2021
  ident: 10.1016/j.medengphy.2024.104208_br0100
  article-title: Automatic sleep-stage scoring in healthy and sleep disorder patients using optimal wavelet filter bank technique with eeg signals
  publication-title: Int J Environ Res Public Health
  doi: 10.3390/ijerph18063087
– volume: 14
  start-page: 1
  issue: 1
  year: 2008
  ident: 10.1016/j.medengphy.2024.104208_br0470
  article-title: Top 10 algorithms in data mining
  publication-title: Knowl Inf Syst
  doi: 10.1007/s10115-007-0114-2
– volume: 146
  year: 2022
  ident: 10.1016/j.medengphy.2024.104208_br0070
  article-title: Automated classification of cyclic alternating pattern sleep phases in healthy and sleep-disordered subjects using convolutional neural network
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2022.105594
– year: 2023
  ident: 10.1016/j.medengphy.2024.104208_br0050
  article-title: Automated explainable detection of cyclic alternating pattern (cap) phases and sub-phases using wavelet-based single-channel eeg signals
  publication-title: IEEE Access
– volume: 45
  start-page: 2531
  year: 2020
  ident: 10.1016/j.medengphy.2024.104208_br0210
  article-title: Automated detection of sleep stages using energy-localized orthogonal wavelet filter banks
  publication-title: Arab J Sci Eng
  doi: 10.1007/s13369-019-04197-8
– volume: 185
  start-page: 105
  year: 2010
  ident: 10.1016/j.medengphy.2024.104208_br0020
  article-title: Effects of sleep deprivation on cognition
  publication-title: Prog Brain Res
  doi: 10.1016/B978-0-444-53702-7.00007-5
– ident: 10.1016/j.medengphy.2024.104208_br0350
– start-page: 87
  year: 2015
  ident: 10.1016/j.medengphy.2024.104208_br0450
  article-title: Ecg signal classification using hjorth descriptor
– volume: 2
  start-page: 106
  issue: 2
  year: 2014
  ident: 10.1016/j.medengphy.2024.104208_br0430
  article-title: A novel eeg feature extraction method using hjorth parameter
  publication-title: Int J Electron Electr Eng
  doi: 10.12720/ijeee.2.2.106-110
– volume: 35
  start-page: 3716
  issue: 10
  year: 2016
  ident: 10.1016/j.medengphy.2024.104208_br0550
  article-title: Design of time–frequency localized filter banks: transforming non-convex problem into convex via semidefinite relaxation technique
  publication-title: Circuits Syst Signal Process
  doi: 10.1007/s00034-015-0228-9
– volume: 116
  start-page: 435
  year: 2017
  ident: 10.1016/j.medengphy.2024.104208_br0630
  article-title: Sleep stage classification based on noise-reduced fractal property of heart rate variability
  publication-title: Proc Comput Sci
  doi: 10.1016/j.procs.2017.10.026
– ident: 10.1016/j.medengphy.2024.104208_br0580
– year: 2013
  ident: 10.1016/j.medengphy.2024.104208_br0460
– start-page: 1
  year: 2023
  ident: 10.1016/j.medengphy.2024.104208_br0180
  article-title: A novel automated robust dual-channel eeg-based sleep scoring system using optimal half-band pair linear-phase biorthogonal wavelet filter bank
  publication-title: Appl Intell
– volume: 10
  start-page: 1531
  issue: 13
  year: 2021
  ident: 10.1016/j.medengphy.2024.104208_br0150
  article-title: Automated identification of sleep disorder types using triplet half-band filter and ensemble machine learning techniques with eeg signals
  publication-title: Electronics
  doi: 10.3390/electronics10131531
– year: 2018
  ident: 10.1016/j.medengphy.2024.104208_br0090
– volume: 22
  start-page: 186
  issue: 3
  year: 2024
  ident: 10.1016/j.medengphy.2024.104208_br0340
  article-title: Time frequency distribution and deep neural network for automated identification of insomnia using single channel EEG-signals
  publication-title: IEEE Latin Amer Trans
  doi: 10.1109/TLA.2024.10431420
– volume: 2
  start-page: 50
  issue: 1
  year: 2019
  ident: 10.1016/j.medengphy.2024.104208_br0320
  article-title: Benchmark on a large cohort for sleep-wake classification with machine learning techniques
  publication-title: npj Digit Med
  doi: 10.1038/s41746-019-0126-9
– start-page: 899
  year: 2009
  ident: 10.1016/j.medengphy.2024.104208_br0520
– ident: 10.1016/j.medengphy.2024.104208_br0280
– volume: 19
  start-page: 7176
  issue: 12
  year: 2022
  ident: 10.1016/j.medengphy.2024.104208_br0200
  article-title: An automated wavelet-based sleep scoring model using eeg, emg, and eog signals with more than 8000 subjects
  publication-title: Int J Environ Res Public Health
  doi: 10.3390/ijerph19127176
– year: 1996
  ident: 10.1016/j.medengphy.2024.104208_br0400
– year: 2023
  ident: 10.1016/j.medengphy.2024.104208_br0590
  article-title: A hierarchical approach for the diagnosis of sleep disorders using convolutional recurrent neural network
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2023.3330901
– volume: 112
  year: 2023
  ident: 10.1016/j.medengphy.2024.104208_br0190
  article-title: An automatic sleep-scoring system in elderly women with osteoporosis fractures using frequency localized finite orthogonal quadrature Fejer Korovkin kernels
  publication-title: Med Eng Phys
  doi: 10.1016/j.medengphy.2023.103956
– volume: 106
  start-page: 71
  year: 2019
  ident: 10.1016/j.medengphy.2024.104208_br0220
  article-title: Cascaded lstm recurrent neural network for automated sleep stage classification using single-channel eeg signals
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2019.01.013
– volume: 98
  start-page: 58
  year: 2018
  ident: 10.1016/j.medengphy.2024.104208_br0290
  article-title: An accurate sleep stages classification system using a new class of optimally time-frequency localized three-band wavelet filter bank
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2018.04.025
– volume: 316
  start-page: 533
  issue: 5
  year: 2016
  ident: 10.1016/j.medengphy.2024.104208_br0490
  article-title: Logistic regression: relating patient characteristics to outcomes
  publication-title: JAMA
  doi: 10.1001/jama.2016.7653
– year: 2022
  ident: 10.1016/j.medengphy.2024.104208_br0120
  article-title: Pulse oximetry spo 2 signal for automated identification of sleep apnea: a review and future trends
  publication-title: Physiol Meas
  doi: 10.1088/1361-6579/ac98f0
– volume: 20
  start-page: 273
  issue: 3
  year: 1995
  ident: 10.1016/j.medengphy.2024.104208_br0500
  article-title: Support-vector networks
  publication-title: Mach Learn
  doi: 10.1007/BF00994018
– volume: 126
  year: 2023
  ident: 10.1016/j.medengphy.2024.104208_br0600
  article-title: Automated insomnia detection using wavelet scattering network technique with single-channel eeg signals
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2023.106903
– volume: 112
  year: 2019
  ident: 10.1016/j.medengphy.2024.104208_br0560
  article-title: A review of feature selection methods in medical applications
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2019.103375
– volume: 144
  year: 2022
  ident: 10.1016/j.medengphy.2024.104208_br0140
  article-title: Automated detection of obstructive sleep apnea in more than 8000 subjects using frequency optimized orthogonal wavelet filter bank with respiratory and oximetry signals
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2022.105364
– volume: 131
  year: 2021
  ident: 10.1016/j.medengphy.2024.104208_br0160
  article-title: Automatic identification of insomnia using optimal antisymmetric biorthogonal wavelet filter bank with ecg signals
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2021.104246
– volume: 25
  start-page: 1998
  issue: 11
  year: 2017
  ident: 10.1016/j.medengphy.2024.104208_br0230
  article-title: Deepsleepnet: a model for automatic sleep stage scoring based on raw single-channel eeg
  publication-title: IEEE Trans Neural Syst Rehabil Eng
  doi: 10.1109/TNSRE.2017.2721116
– volume: 102
  start-page: 341
  year: 2018
  ident: 10.1016/j.medengphy.2024.104208_br0380
  article-title: A novel automated diagnostic system for classification of myocardial infarction ecg signals using an optimal biorthogonal filter bank
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2018.07.005
– year: 2019
  ident: 10.1016/j.medengphy.2024.104208_br0510
– volume: 12
  start-page: 85
  year: 2018
  ident: 10.1016/j.medengphy.2024.104208_br0250
  article-title: Recurrent deep neural networks for real-time sleep stage classification from single channel eeg
  publication-title: Front Comput Neurosci
  doi: 10.3389/fncom.2018.00085
– volume: 143
  year: 2022
  ident: 10.1016/j.medengphy.2024.104208_br0110
  article-title: Automated identification of sleep disorders using wavelet-based features extracted from electrooculogram and electromyogram signals
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2022.105224
– volume: 34
  issue: 1
  year: 2024
  ident: 10.1016/j.medengphy.2024.104208_br0420
  article-title: Sleep disorder identification using wavelet scattering on ecg signals
  publication-title: Int J Imaging Syst Technol
  doi: 10.1002/ima.22980
– volume: 24
  start-page: 2073
  issue: 7
  year: 2019
  ident: 10.1016/j.medengphy.2024.104208_br0660
  article-title: Accurate deep learning-based sleep staging in a clinical population with suspected obstructive sleep apnea
  publication-title: IEEE J Biomed Health Inform
– year: 2022
  ident: 10.1016/j.medengphy.2024.104208_br0570
  article-title: Application of explainable artificial intelligence for healthcare: a systematic review of the last decade (2011–2022)
  publication-title: Comput Methods Programs Biomed
  doi: 10.1016/j.cmpb.2022.107161
– year: 2017
  ident: 10.1016/j.medengphy.2024.104208_br0030
– volume: 140
  start-page: 201
  year: 2017
  ident: 10.1016/j.medengphy.2024.104208_br0240
  article-title: Automated identification of sleep states from eeg signals by means of ensemble empirical mode decomposition and random under sampling boosting
  publication-title: Comput Methods Programs Biomed
  doi: 10.1016/j.cmpb.2016.12.015
– volume: 42
  issue: 12
  year: 2019
  ident: 10.1016/j.medengphy.2024.104208_br0670
  article-title: Sleep stage prediction with raw acceleration and photoplethysmography heart rate data derived from a consumer wearable device
  publication-title: Sleep
  doi: 10.1093/sleep/zsz180
– volume: 4
  start-page: 1
  issue: 1
  year: 2021
  ident: 10.1016/j.medengphy.2024.104208_br0310
  article-title: U-sleep: resilient high-frequency sleep staging
  publication-title: npj Digit Med
  doi: 10.1038/s41746-021-00440-5
– volume: 3
  start-page: 209
  issue: 3
  year: 1977
  ident: 10.1016/j.medengphy.2024.104208_br0530
  article-title: An algorithm for finding best matches in logarithmic expected time
  publication-title: ACM Trans Math Softw
  doi: 10.1145/355744.355745
– volume: 30
  start-page: 2088
  year: 2022
  ident: 10.1016/j.medengphy.2024.104208_br0300
  article-title: Sleepfcn: a fully convolutional deep learning framework for sleep stage classification using single-channel electroencephalograms
  publication-title: IEEE Trans Neural Syst Rehabil Eng
  doi: 10.1109/TNSRE.2022.3192988
– year: 2023
  ident: 10.1016/j.medengphy.2024.104208_br0060
  article-title: Computerized detection of cyclic alternating patterns of sleep: a new paradigm, future scope and challenges
  publication-title: Comput Methods Programs Biomed
  doi: 10.1016/j.cmpb.2023.107471
– volume: 119
  year: 2020
  ident: 10.1016/j.medengphy.2024.104208_br0170
  article-title: Automated phase classification in cyclic alternating patterns in sleep stages using Wigner–Ville distribution based features
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2020.103691
– volume: 51
  start-page: 378
  issue: 7
  year: 2004
  ident: 10.1016/j.medengphy.2024.104208_br0370
  article-title: A novel approach to the design of the class of triplet halfband filterbanks
  publication-title: IEEE Trans Circuits Syst II, Express Briefs
  doi: 10.1109/TCSII.2004.831430
– volume: 28
  start-page: 1955
  issue: 9
  year: 2020
  ident: 10.1016/j.medengphy.2024.104208_br0640
  article-title: Dreem open datasets: multi-scored sleep datasets to compare human and automated sleep staging
  publication-title: IEEE Trans Neural Syst Rehabil Eng
  doi: 10.1109/TNSRE.2020.3011181
SSID ssj0004463
Score 2.408689
Snippet Sleep is an integral and vital component of human life, contributing significantly to overall health and well-being, but a considerable number of people...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Publisher
StartPage 104208
SubjectTerms Aged
Automation
Female
Humans
Male
Middle Aged
Nocturnal Myoclonus Syndrome - diagnosis
Nocturnal Myoclonus Syndrome - physiopathology
Polysomnography
Signal Processing, Computer-Assisted
Sleep - physiology
Sleep Apnea Syndromes - diagnosis
Sleep Apnea Syndromes - physiopathology
Sleep Initiation and Maintenance Disorders - diagnosis
Sleep Initiation and Maintenance Disorders - physiopathology
Sleep Stages
Wavelet Analysis
Title Automated explainable wavelet-based sleep scoring system for a population suspected with insomnia, apnea and periodic leg movement
URI https://www.clinicalkey.com/#!/content/1-s2.0-S1350453324001097
https://dx.doi.org/10.1016/j.medengphy.2024.104208
https://www.ncbi.nlm.nih.gov/pubmed/39160031
https://www.proquest.com/docview/3094820986
Volume 130
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5VReJxqGB5bQuVkTgSNhs7WYfbakW1gNoLVOrNssdOtWibRGxWcOLAL2cmjy2VQCBxTGTLsWc08zkz3wzASxm8S1xQUYpTjBSmMsp1HkdFMZWFliiVZO7w6Vm2PFfvL9KLPVgMXBhOq-xtf2fTW2vdv5n0pzmpV6vJx6lMCY9IrijH8R1mlCs1Yy1__f06zYOuO22SPQ2OePSNHC9yOKG8pP3QRTFRHO9MuM_k7z3UnxBo64lO7sNBDyHFvPvKB7AXyhHcWQyd20Zw75cigyO4fdqHzx_Cj_m2qQiiBi_Ct3rdE6fEV8vdJ5qIPZoXm3UItdhgm5knukrPgqCtsKLedfsSm23L0aTx_CdXMIfsqlzZV8LWZbDCll5wDeWKlhbrcCmuqrYwefMIzk_efloso74JQ4RyJptIeTfzUwyoU0Tvs8yjzazU1rkY4wxTF5z3aRLPEF0g_BWCtQRaUpdxafdEPob9sirDUxC5LrTCvOACrCQW56R2qGSMuc1RFsUY4uHgTd3V2jBDEtpns5OVYVmZTlZj0IOAzEAlJeNnyB_8feqb3dQbGvdvk18M2mBIuBxksWWothsj6b5MqCrX2RiedGqy2wyTnNmKHv7P0kdwl5-6JMRnsN982YbnBIwad9xq_jHcmr_7sDz7CahOEUg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6VItFyQLBQujyNxJGw2TjJOtyqFdUC3V5opd4se-xUi7ZJ1M2qnHroL2cmj4VKIJA4JrHl2OPMfM7MfAPwVnpnI-vjIMExBjEmMshUFgZ5Ppa5kihjybnD8-N0dhp_PkvOtmDa58JwWGWn-1ud3mjr7s6oW81RtViMvo5lQnhEMqMc-3cmd-AuXSouY_D--mecB513mih7ah1w81tBXmRxfHFOE6KTYhSzwzPiQpO_N1F_gqCNKTp8CA86DCkO2td8BFu-GMDOtC_dNoD7v7AMDuDevPOfP4abg3VdEkb1Tvjv1bLLnBJXhstP1AGbNCdWS-8rscImNE-0VM-CsK0wotqU-xKrdZOkSe35V67gJLKLYmHeCVMV3ghTOMEkyiUNLZb-XFyUDTN5_QRODz-eTGdBV4UhQDmRdRA7O3Fj9KgSROfS1KFJjVTG2hDDFBPrrXNJFE4QrScA5r0xhFoSmzK3eyT3YLsoC78PIlO5ijHLmYGVxGKtVBZjGWJmMpR5PoSwX3hdtWQbuo9C-6Y3stIsK93KagiqF5Duc0lJ-2kyCH_v-mHT9daW-7fOb_rdoEm47GUxhS_XKy3pwEywKlPpEJ6222QzGc5yZjX67H-Gfg07s5P5kT76dPzlOezykzYi8QVs15dr_5JQUm1fNV_BD794EtY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automated+explainable+wavelet-based+sleep+scoring+system+for+a+population+suspected+with+insomnia%2C+apnea+and+periodic+leg+movement&rft.jtitle=Medical+engineering+%26+physics&rft.au=Ingle%2C+Manisha&rft.au=Sharma%2C+Manish&rft.au=Verma%2C+Shresth&rft.au=Sharma%2C+Nishant&rft.date=2024-08-01&rft.issn=1350-4533&rft.volume=130&rft.spage=104208&rft_id=info:doi/10.1016%2Fj.medengphy.2024.104208&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_medengphy_2024_104208
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1350-4533&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1350-4533&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1350-4533&client=summon